山东省济宁市鱼台县2018-2019学年八年级上学期数学期末考试试卷(解析版)
2018-2019学年度八年级上数学期末试卷(解析版) (2)
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
山东省济宁梁山县联考2018-2019学年八上数学期末考试试题
山东省济宁梁山县联考2018-2019学年八上数学期末考试试题一、选择题1.分式3(1)(2)x x x -+-有意义,则x 的取值范围是( ) A .x≠2B .x≠2且x≠3C .x≠﹣1或x≠2D .x≠﹣1且x≠2 2.若方程323x x k=++的根是正数,则k 的取值范围是( ) A .2k < B .32k -<< C .2k <且3k ≠-D .3k ≠- 3.下列各式:2a b -,3x x +,5y π+,a b a b +-,1m (x+y )中,是分式的共有( ) A .1个B .2个C .3个D .4个 4.下列运算正确的是( )A .2352a a a +=B .842a a a ÷=C .a 3•a 5=a 15D .2224()ab a b = 5.多项式241a +再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有( )A .2种B .3种C .4种D .多于4种 6.下列分解因式错误的是( ) A.()()2422x x x x x -+=+-+B.()()22x y x y y x -+=+-C.()2212x x x x -+=--D.()22211x x x -+=- 7.在△ABC 中,∠C =90°,AB =c ,∠A =30°,则AC =( )A .12cBC .2cD 8.如图,在Rt △ABC 中(AB >2BC ),∠C =90°,以BC 为边作等腰△BCD ,使点D 落在△ABC 的边上,则点D 的位置有( )A.2个B.3个C.4个D.5个9.如图,点E ,F 在线段BC 上,△ABF 与△DEC 全等,其中点A 与点D ,点B 与点C 是对应顶点,AF 与DE 交于点M ,则∠DEC 等于( )A .∠B B .∠AC .∠EMFD .∠AFB10.已知△ABC 的三边长分别为3,4,5,△DEF 的三边长分别为3,3x ﹣2,2x+1,若这两个三角形全等,则x 的值为( )A .2B .2或C .或D .2或或11.下列有关三角形全等的判定,错误的是( )A.三边分别相等的两个三角形全等(SSS )B.两边和它们的夹角分别相等的两个三角形全等(SAS )C.两角和它们的夹边分别相等的两个三角形全等(ASA )D.两边及其中一边的对角对应相等的两个三角形全等(SSA )12.如图,在△ABC 中,AB=8,∠C=90°,∠A=30°,D 、E 分别为AB 、AC 边上的中点,则DE 的长为( )A.2B.3D.4 13.下列哪一种正多边形不能..铺满地面( ) A .正三边形 B .正四边形 C .正六边形 D .正八边形14.要组成一个三角形,三条线段长度可取( )A .3、5、9B .2、3、5C .18、9、8D .9、6、1315.如图,在Rt △ABC 中,∠ACB=90°,∠A=55°,点D 是AB 延长线上的一点.∠CBD 的度数是( )A.125°B.135°C.145°D.155°二、填空题 16.已知a+b =5,ab =3,b a a b+=_____. 17.已知3a b +=,1ab =,则22a b ab +=____________.【答案】318.如图,在△ABC 中,CD =DE ,AC =AE ,∠DEB =110°,则∠C =_____.19.如图,直线 m ∥n ,若∠1=70°,∠2=25°,则∠A 等于_____.20.已知点P (12,1)关于y 轴的对称点Q 的坐标是(a ,1﹣b ),则a b 的值为___. 三、解答题21.“四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙,学校计划分阶段引导学生读这些书,计划先购买《论语》和《孟子》供学生使用,已知用500元购买《孟子》的数量和用800元购买《论语》的数量相同,《孟子》的单价比《论语》的单价少15元.(1)求《论语》和《孟子》这两种书的单价各是多少?(2)学校准备一次性购买这两种书25本,但总费用不超过805元,那么这所学校最多购买多少本《论语》?22.阅读下面文字内容:对于形如222x ax a ++的二次三项式,可以直接用完全平方公式把它分解成2()x a +的形式.但对于二次三项式245x x +-,就不能直接用完全平方公式分解了.对此,我们可以添上一项4,使它与x²+4x 构成一个完全平方式,然后再减去4,这样整个多项式的值不变,即x2+4x-5=()222454445(2)9(23)(23)x x x x x x x +-=++--=+-=+++-=(5)(1)x x +-.像这样,把一个二次三项式变成含有完全平方式的方法,叫做配方法.请用配方法来解下列问题:(1)请用上述方法把267x x --分解因式.(2)已知:2246130x y x y ++-+=,求x y 的值.23.如图,在四边形ABCD 中,AB AD =,A 90∠=,CBD 30∠=,C 45∠=,如果AB =求CD 的长.24.如图,平行四边形ABCD 中,AE=CE.(1)用尺规或只用无刻度的直尺作出AEC ∠的角平分线,保留作图痕迹,不需要写作法.(2)设AEC ∠的角平分线交边AD 于点F ,连接CF ,求证:四边形AECF 为菱形.25.如图,在△ABC 中,∠B =90°,∠ACB 、∠CAF 的平分线所在的直线交于点H ,求∠H 的度数.【参考答案】***一、选择题16..17.无18.70°19.45°20.三、解答题21.(1)《孟子》的单价为25元/本,《论语》单价为40元/本;(2)最多购买12本.22.(1)()()71x x -+;(2)1923【解析】【分析】过点D 作DE ⊥BC 于E ,根据等腰直角三角形的性质求出AD 、BD ,再根据直角三角形30°角所对的直角边等于斜边的一半求出DE ,利用△CDE 是等腰直角三角形,即可求出CD 的长.【详解】如图,过点D 作DE ⊥BC 于E ,∵AB =AD ,∠A =90°,AB ,∴AD =AB ,∴由勾股定理可得BD 2=, ∵∠CBD =30°,∴DE =12BD =12×2=1, 又∵Rt △CDE 中,∠DEC =90°,∠C =45°,∴DE=EC=1∴由勾股定理可得CD = 【点睛】本题考查了勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,以及等腰直角三角形的性质,通过作辅助线,把△BCD 分成两个直角三角形是解题的关键,也是本题的难点.24.(1)见详解;(2)见解析.【解析】【分析】(1)只用无刻度直尺作图过程如下:①连接AC 、BD 交于点O ,②连接EO ,EO 为∠AEC 的角平分线;(2)先根据AF=EC ,AF ∥CE ,判定四边形AECF 是平行四边形,再根据AE=EC ,即可得出平行四边形AECF 是菱形.【详解】解:(1)如图所示,EO为∠AEC的角平分线;(2)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFE=∠FEC,又∵∠AEF=∠CEF,∴∠AEF=∠AFE,∴AE=AF,∴AF=EC,∴四边形AECF是平行四边形,又∵AE=EC,∴平行四边形AECF是菱形.【点睛】本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.25.∠H=45°.。
2018~2019(上)初二数学期末考试试题解析
(1) 求证:CD⊥AB; (2) 求 AC 的长. 【考点】勾股定理及其逆定理
【难度星级】★★
【答案】(1)证明:在 BCD 中, BD 1, CD 2 , BC 5 ,
∴ BD2 +CD2 12 22 5 , BC 2 5 ∴ BD2 +CD2 BC2 ∴ BCD 是直角三角形,且 CDB 90 ∴CD⊥AB. (2)解:由(1)知 CD⊥AB,∴ ADC 90 ∵ AB 4 , BD 1,∴ AD AB DB 3 在 RtACD 中, CD 2 , AD 3
【考点】函数与方程 【难度星级】★ 【答案】B 【解析】 2x 3y 6,整理可得y 2 x 2 ,图象过一、三、四象限.
3
-1-
-1--1-
4.如图,将含 30°角的直角三角板 ABC 的直角顶点 C 放在直尺的一边上,已知 A 30,1 40 ,则 2 的度数为( )
A.55°
B.60°
一个角的两边,那么这两个角相等.其中是真命题的有( )
A.0 个
B.1 个
C.2 个
D.3 个
【考点】真命题与假命题的判定 【难度星级】★ 【答案】C 【解析】③如果一个角的两边分别平行于另一个角的两边,那么这两个角可能相等也可能互补.真命题个 数有 2 个.
-3-
-3--3-
9. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出 八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 钱, 还多 3 钱;每人出 7 钱,则差 4 钱.求物品的价格和共同购买该物品的人数.设该物品的价格是 x 钱,共同 购买该物品的有 y 人,则根据题意,列出的方程组是()
2018—2019学年度第一学期期末学业水平检测 八年级数学试题答案
2018—2019学年度第一学期期末学业水平检测八年级数学参考答案一、选择题 (每小题3分,共36分。
每小题只有一个选项符合题意)二、填空题(每小题3分,共15分。
每小题只填写最后结果)13. 5个14. 112°15. 2 16. 42 17. (﹣2,5)三、解答题(共7小题,共69分。
解答应写出必要的步骤)18.(本题满分8分,每小题4分)解:(1)去分母得:x2﹣x=x2﹣2x﹣3,解得:x=﹣3,……………………3分经检验x=﹣3是原方程的根;…………………………………………………4分(2)去分母得:x2+4x﹣x2﹣2x+8=12,解得:x=2,………………………………3分经检验x=2是增根,分式方程无解.…………………………………………4分19.(本题满分8分,(1)题3分,(2)题5分)(1)原式= •= ﹣•= ……………………3分(2)原式=﹣=…………………………………………………………3分当m=﹣12时,原式=53………………………………………………………5分20.(本题满分7分)解:(1)设D31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:﹣=1,……………………………………………………3分解得x=250.经检验:x=250,是分式方程的解,且符合题意.………………………4分所以,D31的平均速度250千米/时.……………………………………5分(2)G377的性价比==0.75 D31的性价比==0.94,…………7分∵0.94>0.75 ∴为了G377的性价比达到D31的性价比,建议降低G377票价.……………………………………………………………………………8分21.(本题满分8分)(1)如图所示△A′B′C′……………………………………………3分(2)A′(2,3)、B′(3,1)、C′(-1,2) ……………………………………………6分(3)如图所示P点即为所求找到点B关于x轴的对称点B′′,连接AB′′交x轴于点P,此时P A+PB的值最小.………………………………………………………8分22.(本题满分8分)(1)证明:∵∠ACB=90°,∠ABC=30°,∴BC⊥AE,∠CAB=60°,∵AD平分∠CAB,∴∠DAB=∠CAB=30°=∠ABC,∴DA=DB,∵CE=AC,∴BC是线段AE的垂直平分线,∴DE=DA,∴DE=DB;…………………4分(2)△ABE是等边三角形;理由如下:连接BE,如图:∵BC是线段AE的垂直平分线,∴BA=BE,即△ABE是等腰三角形,又∵∠CAB=60°,∴△ABE是等边三角形.……………………8分23.(本题满分8分)解:(1)服装项目的权是:1﹣20%﹣30%﹣40%=10%;……………………………2分(2)小亮在选拔赛中四个项目所得分数的众数是85,…………………………3分中位数是:(80+85)÷2=82.5;…………………………………………………4分(3)小亮得分为:85×10%+70×20%+80×30%+85×40%=80.5,小颖得分为:90×10%+75×20%+75×30%+80×40%=78.5,……………………6分∵80.5>78.5,∴小亮的演讲成绩好,故选择小亮参加“不忘初心,永远跟党走”主题演讲比赛.……………………8分24.(本题满分10分)(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.………………………………………………………3分在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;……………………………………………………………………………5分(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FD A.……………………………………………………………………8分在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.……………………………………………………………………………10分25.(本题满分12分)解:(1)∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵BC=7cm,BP=5cm,∴PC=2cm,∴AB=PC,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS);………3分(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DP A=∠DPE=90°,在△DP A和△DPE中,,∴△DP A≌△DPE(ASA),∴P A=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=90°.在△APB和△EPC中,,∴△APB≌△EPC(AAS),∴PB=PC;…………………8分(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=2cm,∴PC=BC﹣BP=5cm,∴CD=CP=5cm. ………………………………12分。
山东省八年级(上)期末数学试卷 含解析
2018-2019学年八年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣12.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C.D.3.下列计算正确的是()A.B.x5+x5=x10C.x8÷x2=x4D.(﹣a3)2=a64.在代数式,,,a+中,分式的个数是()A.2 B.3 C.4 D.55.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b26.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm7.下列说法错误的是()A.等腰三角形的高、中线、角平分线互相重合B.三角形两边的垂直平分线的交点到三个顶点距离相等C.等腰三角形的两个底角相等D.等腰三角形顶角的外角是底角的二倍8.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)9.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.10.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS11.甲瓶盐水含盐量为,乙瓶盐水含盐量为,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为()A.B.C.D.随所取盐水重量而变化12.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°二、填空题(每小题4分,共24分)13.若分式的值为零,则x的值为.14.如果实数a,b满足a+b=6,ab=8,那么a2+b2=.15.一个多边形的内角和是720°,这个多边形的边数是.16.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为.17.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的即挂铅锤的线绳与房梁直),用到的数学原理是.18.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为.三、解答题(共68分)19.解分式方程:.20.因式分解:(1)3x3﹣12x(2)ax2﹣4ay+4ay221.先化简:,再从﹣1,0,2三个数中任选一个你喜欢的数代入求值.22.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.23.如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.(1)求证:△ADB≌△AFC;(2)求BD的长度.24.动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司这两批各购进多少套玩具?(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案与试题解析一.选择题(共12小题)1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.056用科学记数法表示为5.6×10﹣2,故选:B.2.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是,故选:A.3.下列计算正确的是()A.B.x5+x5=x10C.x8÷x2=x4D.(﹣a3)2=a6【分析】根据负整数指数幂、幂的乘方与积的乘方、零指数幂、同底数幂的除法、合并同类项等知识点进行解答.【解答】解:A、(﹣)0×3﹣1=1×=;故不对;B、x5+x5=2x5;故不对;C、x8÷x2=x6;故不对;D、(﹣a3)2=a6,正确;故选:D.4.在代数式,,,a+中,分式的个数是()A.2 B.3 C.4 D.5【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:在代数式,,,a+中,分式有和,共有2个.故选:A.5.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.6.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm【分析】题目给出等腰三角形有两条边长为8cm和4cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为4cm时,4+4=8,不能构成三角形,因此这种情况不成立.当腰为8cm时,8<8+4,能构成三角形;此时等腰三角形的周长为8+8+4=20cm.故选:D.7.下列说法错误的是()A.等腰三角形的高、中线、角平分线互相重合B.三角形两边的垂直平分线的交点到三个顶点距离相等C.等腰三角形的两个底角相等D.等腰三角形顶角的外角是底角的二倍【分析】利用等腰三角形的性质和线段垂直平分线的性质分别对四个选项进行判断后即可确定正确的选项.【解答】解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,故A错误;B、三角形两边的垂直平分线的交点到三个顶点的距离相等,故B正确;C、等腰三角形的两个底角相等,故C正确;D、等腰三角形顶角的外角是底角的二倍,故D正确,故选:A.8.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y轴对称的点的坐标特征即可求解.【解答】解:∵将点A(3,2)沿x轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2).故选:C.9.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.【分析】本题的关键描述语是:“提前4天完成任务”;等量关系为:原计划用时﹣实际用时=4.【解答】解:设原计划每天挖x米,则原计划用时为:,实际用时为:.所列方程为:﹣=4,故选:C.10.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.11.甲瓶盐水含盐量为,乙瓶盐水含盐量为,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为()A.B.C.D.随所取盐水重量而变化【分析】设从甲乙两瓶中各取重量相等的盐水x,列式计算即可.【解答】解:设从甲乙两瓶中各取重量相等的盐水x,则混合制成新盐水的含盐量为:=,故选:A.12.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN =∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.二.填空题(共6小题)13.若分式的值为零,则x的值为 2 .【分析】分式的值为零:分子2﹣|x|=0,且分母x+2≠0.【解答】解:根据题意,得2﹣|x|=0,且x+2≠0,解得,x=2.故答案是:2.14.如果实数a,b满足a+b=6,ab=8,那么a2+b2=20 .【分析】原式利用完全平方公式化简,将已知等式代入计算即可求出值.【解答】解:∵a+b=6,ab=8,∴a2+b2=(a+b)2﹣2ab=36﹣16=20,故答案为:2015.一个多边形的内角和是720°,这个多边形的边数是 6 .【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.16.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为 3 .【分析】如图,作辅助线;首先运用角平分线的性质证明CD=DE;其次求出DE的长度,即可解决问题.【解答】解:如图,过点D作DE⊥AB于点E;∵∠C=90°,AD平分∠BAC,∴CD=DE;∵,且AB=10,∴DE=3,CD=DE=3.故答案为3.17.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的即挂铅锤的线绳与房梁直),用到的数学原理是等腰三角形的底边上的中线、底边上的高重合.【分析】根据△ABC是个等腰三角形可得AC=BC,再根据点O是AB的中点,即可得出OC⊥AB,然后即可得出结论.【解答】解:∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB.故答案为:等腰三角形的底边上的中线、底边上的高重合.18.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为 4 .【分析】根据直角三角形的性质得到BD=2BE=2,求出AB,根据等边三角形的判定定理和性质定理解答即可.【解答】解:∵DE⊥BC,∠B=∠C=60°,∴∠BDE=30°,∴BD=2BE=2,∵点D为AB边的中点,∴AB=2BD=4,∵∠B=∠C=60°,∴△ABC为等边三角形,∴AC=AB=4,故答案为:4.三.解答题(共7小题)19.解分式方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同乘(x﹣2),得1+2(x﹣2)=﹣1﹣x解得:x=,经检验x=是分式方程的解.20.因式分解:(1)3x3﹣12x(2)ax2﹣4ay+4ay2【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式即可.【解答】解:(1)原式=3x(x2﹣4)=3x(x+2)(x﹣2);(2)原式=a(x2﹣4y+4y2).21.先化简:,再从﹣1,0,2三个数中任选一个你喜欢的数代入求值.【分析】先算括号里面,再把除法转化为乘法,化简后代入求值.【解答】解:原式=()×=×=×=x﹣2.由于分母不能是0,除式不能为0,所以x≠﹣1,x≠2.当x=0时原式=0﹣2=﹣2.22.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是 6 ;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a= 3 ,b= 2 .【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)直接根据三角形的面积公式列式计算可得;(3)根据关于x轴的对称点的横坐标相等、纵坐标互为相反数解答可得.【解答】解:(1)如图所示,△A1B1C1即为所求;A1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.23.如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.(1)求证:△ADB≌△AFC;(2)求BD的长度.【分析】(1)欲证明△ADB≌△AFC,只要证明∠ACF=∠2即可.(2)由(1)可知BD=CF,只要证明BC=BF,可得EC=EF=1,即可解决问题.【解答】证明:(1)如图,∵∠BAC=90°,∴∠2+∠F=90°,∠ACF+∠F=90°,∴∠ACF=∠2,在△ABF和△ACD中,,∴△ACF≌△ABD.(2)∵△ACF≌△ABD,∴BD=CF,∵BE⊥CF,∴∠BEC=∠BEF=90°,∵∠1+∠BCE=90°,∠2+∠F=90°,∴∠BCF=∠F,∴BC=BF,CE=EF=1,∴BD=CF=2.24.动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就分两批分别用32000元和68000元购进了这种玩具销售,其中第二批购进数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司这两批各购进多少套玩具?(2)如果这两批玩具每套售价相同,且全部销售后总利润不少于20000元,那么每套售价至少是多少元?【分析】(1)先设商场第一次购进x套玩具,就可以表示出第二次购进玩具的套数,根据题目条件就可以列出方程,求出其解就可以.(2)设每套玩具的售价为y元,根据利润=售价﹣进价,建立不等式,求出其解就可以了.【解答】解:(1)设动漫公司第一批购进x套玩具,则第二批购进2x套玩具,由题意得:﹣=10,解这个方程,得x=200.经检验,x=200是所列方程的根.2x=2×200=400.答:动漫公司第一批购进200套玩具,第二批购进400套玩具;(2)设每套玩具的售价为y元,由题意得:600y﹣32000﹣68000≥20000,解这个不等式得y≥200,答:每套玩具的售价至少要200元.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+FD;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【分析】问题背景中,根据小亮的设计可以得到所要的结论;探索延伸中,先判断结论是否成立,然后根据图形和题目中条件,作出合适的辅助线,进行说明即可;在实际应用中,根据题目中的条件进行合理的推导,只要能说明符合探索延伸的条件,即可解答本题.【解答】解:问题背景:∵小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,∴EF=FG,FG=FD+DG=FD+BE,∴EF=BE+FD,故答案为:EF=BE+FD;探索延伸:上述结论EF=BE+FD成立,理由:如图2,延长FD到点G,使得DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,∵AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠DAF+∠BAE=∠BAD﹣∠EAF=∠BAD,∴∠GAF=∠EAF,又∵AG=AE,AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF,∵GF=DF+DG=DF+BE,∴EF=BE+FD;实际应用:如图3,连接EF,延长AE、BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠FOE=70°=,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=60°+120°=180°,∴图3符合探索延伸的条件,∴EF=AE+FB=1.5×(60+80)=210(海里),即此时两舰艇之间的距离210海里.。
鲁教版(五四制)八年级2018--2019学年度第一学期期末考试数学试卷
鲁教版(五四制)八年级2018--2019学年度第一学期期末考试数学试卷鲁教版(五四制)八年级2018-201年度第一学期期末考试数学试卷考试时间:100分钟,满分120分一、单选题(共30分)1.已知有理式:$\frac{4a}{1x}$、$\frac{4}{x-y}$、$\frac{3x}{4}$、$\frac{1}{2x^2}$、$\frac{1}{a+4}$,其中分式有()。
A。
2个 B。
3个 C。
4个 D。
5个2.如果一个多边形的内角和等于它的外角和的2倍,则这个多边形是()。
A。
三角形 B。
四边形 C。
五边形 D。
六边形3.下列各式从左到右的变形为因式分解的是()。
A。
$18x^3y^2=3x^3y^2\cdot6$ B。
$(m+2)(m-3)=m^2-m-6$C。
$x^2+8x-9=(x+3)(x-3)+8x$ D。
$m^2-m-6=(m+2)(m-3)$4.下列图形中既是轴对称图形,又是中心对称图形的是()。
A。
B。
C。
D。
5.某小区随机抽查了若干户家庭的月用水量,结果如图表,则关于这若干户家庭的月用水量,下列说法错误的是()。
A。
众数是4 B。
平均数是4.6 C。
样本容量是10 D。
中位数是4.56.关于x的分式方程有增根,则m的值为()。
A。
1 B。
4 C。
2 D。
7.把一张形状是矩形的纸片剪去其中某一个角,剩下的部分是一个多边形,则这个多边形的内角和不可能是()。
A。
720° B。
540° C。
360° D。
180°温馨提示:亲爱的同学们,考试只是检查我们对所学的知识的掌握情况,希望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!8.要测量的A、C两点被池塘隔开,XXX在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得EF两点间距离等于23米,则AC两点间的距离为()。
选项:A.46 B.23 C.50 D.25.9.菱形AOBC如图放置,A(3,4),先将菱形向左平移9个单位长度,再向下平移1个单位长度,然后沿轴翻折,最后绕坐标原点O旋转90°得到点C的对应点为点P,则点P的坐标为()。
2018-2019学年八年级上期末质量数学试卷含答案
2018-2019学年度第一学期期末教学质量检测八年级数学试卷一、选择题(共10个小题,每小题2分,共20分)下列各题均有四个选项,其中只有一个是符合题意的 .1有意义,则x 的取值范围是 A .1x >-且1x ≠ B .1x ≥-C .1x ≠D .x ≥-1且1x ≠2.下列各式从左到右的变形正确的是A .yx y x -+-= -1B .y x =11++y xC .y x x +=y +11D .2)3(y x -=223yx3.在实数722,3π23.14中,无理数有 A.2个 B.3个 C.4个 D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是 A .22B .19C .17D . 17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6. 在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是 A .25B .35C .13D .127. 下列事件中,属于必然事件的是A. 2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B. 某班级11名学生中,至少有两名同学的生日在同一个月份C. 用长度分别为2cm ,3cm ,6cm 的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001⋅⋅⋅(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数 8.下列运算错误的是== = D.2(2=9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △ABC =10,DE =2,AB=4,则AC 长是 A.9B. 8C. 7D. 610. 我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log212=﹣1.其中正确的是A.①②B.①③C.②③D.①②③二、填空题(共10个小题,每小题2分,共20分)11.25的平方根是.12.计算:2= .13.若实数x y,0y=,则代数式2xy的值是.14. 已知:ABC∆中,AB AC=,30B A∠-∠=︒,则A∠=.15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.边长为10cm的等边三角形的面积是.17.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为.18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x 颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是14,则y与x之间的关系式是.19.已知1132a b+=,则代数式254436a ab bab a b-+--的值为.(第17题图)20.已知: 如图,ABC △中,45ABC ∠=,H 是高AD 和BE的交点,12AD =,17BC =,则线段BH 的长为.三、解答题 (共12个小题,共60分)21.(4分)22.(5+23.(4分)1= , 3(2)64x y += ,求代数式22x yx y ++的值.24. (5分)先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.25.(5分).已知: 如图,点B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .26.(5分) 解关于x 的方程:32211x x x +=-+ .27.(4分))在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m 的值.28.(5分) 某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?29.(5分) 在ABC ∆中,AB ,BC ,AC 形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC ∆中,(即ABC ∆三个顶点都在小正方形的顶点处),如图1所示,这样不需要ABC ∆高,借用网格就能计算出它的面积.(1)△ABC 的面积为 ;(2)如果MNP ∆2的正方形网格(每个小正方形的边长为1)画出相应的格点MNP ∆,并直接写出MNP ∆的面积为 .30.(5分) 已知:如图,在ABC ∆中,90C ∠=︒.(1)求作:ABC ∆的角平分线AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若6AC =,8BC =,求CD 的长.31.(5分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+. 其中是“和谐分式”是(填写序号即可); (2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值; (3) 在化简22344a a bab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:22344=a a ab b b b -⨯-原式223244a a ab b b =--()()222323244a b a ab b ab b b--=-小强:22344=a a ab b b b -⨯-原式()22244a a b a b b =--()()2244a a a b a b b--=- 显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是: ,请你接着小强的方法完成化简. 32.(6分)已知:如图,D 是ABC ∆的边BA 延长线上一点,且AD AB =,E 是 边AC 上一点,且DE BC =. 求证:DEA C ∠=∠.顺义区2017---2018学年度第一学期期末八年级教学质量检测数学试题答案及评分参考二、填空题三、解答题21. 3分(各1分)=4分22. 解:原式=5(1512)--………………………………… 4分(前2分后2分)=8-5分23 解:∵1= , 3(2)64x y += ,∴ 124x y x y -=⎧⎨+=⎩………………………………………………2分(各1分)解得21x y =⎧⎨=⎩……………………………………………4分(各1分)∴2222213215x y x y ++==++………………………………………5分24 解:原式=(2)(2)5323(2)x x x x x x +---⎛⎫÷⎪--⎝⎭………………………1分 =293(2)23x x x x x --⨯--……………………………………………2分 =(3)(3)3(2)23x x x x x x +--⨯-- ……………………………3分=239x x +……………………………………………4分∵ 2310x x +-= ∴ 231x x +=∴ 原式=22393(3)313x x x x +=+=⨯=……………………5分25.证明:∵BD AE =,∴BD AD AE AD -=-.即AB DE =. ……………………………………………………………… 1分∵BC ∥EF ,∴B E ∠=∠. ……………………………………………………………… 2分又∵C F ∠=∠……………………………………………………………… 3分在ABC ∆和DEF ∆中,,,,B E C F AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ ABC ∆≌DEF ∆. ………………………………………………………4分 ∴ AC DF =. …………………………………………………………… 5分26. 解:方程两边同乘以(1)(1)x x +-,……………………………………………1分3(1)2(1)2(1)(1)x x x x x ++-=+-. ……………………………………………2分 223+32222x x x x +-=-. ……………………………………………3分解这个整式方程,得5x =-. …………………………………………… 4分 检验:当5x =-时,(1)(1)0x x +-≠.…………………………………………5分5x ∴=-是原方程的解.27.…………………………………………… 3分 (2)依题意,得64105m +=…………………………………………… 4分解得 2m =…………………………………………… 5分 所以m 的值为228. 解:设该服装厂原计划每天加工x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得105.130003000=-xx …………………………………3分 解这个方程得100x = …………………………………………4分 经检验,100x =是所列方程的根. ………………………………5分 答:该服装厂原计划每天加工100件服装.29. 解: (1)ABC ∆的面积为 4.5 …………………………………………2分正确画图………………………………………4分 (2)MNP ∆的面积为 7 ………………………………………… 5分30. 解:(1)如图 ………………1分(2)过点D 作DE ⊥AB 于E . ………………2分∵DE ⊥AB ,∠C =90° ∴由题意可知DE =DC , ∠DEB =90° 又∵DE =DC ,AD =AD ∴AD 2-ED 2=AD 2-DC 2 ∴AE =AC =6………………3分∵A B =10 ∴BE =AC -AE =4 ………………4分 设DE =DC =x ,则BD =8-x∴在Rt △BED 中 ()22168x x +=-∴x =3………………5分 ∴CD =3.31. (1)②………………1分 (2) 4,5………………3分(3)小强通分时,利用和谐分式找到了最简公分母. ………………4分解:原式()222444a a ab a b b-+=-()24ab a b b =-()4aa b b =-24a ab b =-………………5分32.证明:过点D 作BC 的平行线交CA 的延长线于点F .……………… 1分∴C F ∠=∠.∵点A 是BD 的中点,∴AD=AB . …………………………… 2分 在△ADF 和△ABC 中,,,,C F DAF BAC AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADF ≌△ABC .………………… 3分 ∴DF=BC .…………………………… 4分 ∵DE=BC , ∴DE=DF .∴F DEA ∠=∠. ………………………………………………………… 5分 又∵C F ∠=∠,∴C DEA ∠=∠. …………………………………………………………… 6分其它证法相应给分。
山东省济宁市2018-2019学年八年级数学上册期末试题
2018-2019学年度第一学期期末考试八年级数学试题(时间:110分钟 满分:100分)注意事项:1.本试题分第I 卷和第Ⅱ卷两部分,共8页.第I 卷第1页至第2页为选择题,30分;第Ⅱ卷第3页至第8页为非选择题,70分;共100分.2.答卷前务必将自己的姓名、考号等填写在装订线内规定位置.第Ⅰ卷 (选择题 共30分)一.精心选一选(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的, 把所选项前的字母代号填在卷Ⅱ的答题栏内.相信你一定能选对!) 1.下列图形具有稳定性的是( )A. 三角形B. 四边形C. 五边形D. 六边形2.已知△ABC ≌△DEF ,∠A=50°,∠E=60°.那么∠C 等于( )A. 30°B. 50°C. 60°D. 70° 3.把分式yx x+中的x 、y 都扩大3倍,那么分式的值是( ) A. 扩大3倍 B. 缩小3倍 C. 不变 D. 缩小原来的614.下列各式正确的是( )A. 55b b b =⋅B. 2222)(b a b a =C. 236a a a =÷D.a a a 32=+5.如图1,点A 和点D 都在线段BC 的垂直平分线上. 连接AB ,AC ,DB ,DC.如果∠1=20°,∠2=50°. 那么∠BAC 比∠BDC ( )A. 大40°B. 小40°C. 大30°D. 小30°6.下列分式中,是最简分式的是( )A. a 36B. 3232y y x C. x x x -2 D.ba b a ++2 7.一个多边形的外角和与它的内角和的比为1:3,这个多边形的边数是( )A. 9B. 8C. 7D. 6 8.如果492+-ka a 是完全平方式,那么k 的值是( )A. -12B. 6C. ±12D. ±6 9.已知分式x x 1+-.下列分式中与其相等的是( ) A. x x 1-- B. x x 1+- C. xx --1 D.12++-x x 10.在一次数学课上,李老师出示一道题目:如图2,在△ABC 中,AC=BC ,AD=BD ,∠A=30°. 在线段AB 上求作两点P ,Q ,使AP=CP=CQ=BQ.明明作法:分别作∠ACD 和∠BCD 的平分线,交AB 于点P ,Q.点P ,Q 就是所求作的点.晓晓作法:分别作AC 和BC 的垂直平分线,交AB 于点P ,Q.点P ,Q 就是所求作的点.你认为明明和晓晓作法正确的是( )A. 明明B. 晓晓C. 两人都正确D. 两人都错误第Ⅱ卷 (非选择题 共70分)一、精心选择题(答题栏)(每小题3分,共30分)二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个三角形的三边长分别是3,6,x .那么整数x 可能是 .(填一种情况即可)12.齐鲁网2018年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域的研究.纤毛虫作为原生动物中特化程度最高且最为复杂的一个门,是单细胞真核生物,具有高度的形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学计数法表示为 .13.已知一个等腰三角形的一个角是80°.那么它的顶角度数是 .14.若)3)(5(2-+=++x x c bx x ,则点P (b ,c )关于y 轴对称点的坐标是 . 15.如果xxm x -+=+-2121的解为正数,那么m 的取值范围是 .三、认真答一答(本大题共7题,满分55分. 只要你认真审题, 细心运算, 一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.(本小题 6分)计算:(1)111---x x x ; (2)32246b a a b ⋅⎪⎪⎭⎫ ⎝⎛;(3)()20214.3---π. 17.(本小题8分)(1)化简:()()()y x y x y x 2232-+--;(2)先化简分式:1339692222---+-÷++-a a a a a a a a a ,然后在0,1,2,3中选择一个你喜欢的a 值,代入求值.18.(本小题8分)如图3,在△ABC 中,AD ,CE 是高线,AF 是角平分线,∠BAC=∠AFD=80°. (1)求∠BCE 的度数;(2)如果AD=6,BE=5.求△ABC 的面积.19.(本小题7分)作图与证明:(1)读下列语句,作出符合题意的图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;②分别以A,B为圆心,以AB长为半径作弧,两弧在线段AB的同侧交于点C;③连接AC,以点C为圆心,以AB长为半径作弧,交AC延长线于点D;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.画图区20.(本小题 8分)本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好的前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量的笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量的笔记本和钢笔,分别设未知数并列出了方程:班 长:xx 1501650=-; 团支部书记:yy 1501650=+. (1)填空:班长所列方程中x 的实际意义是 ;团支部书记所列方程中y 的实际意义是 .(2)你认为刘老师能买到相同数量的笔记本和钢笔吗?请说明理由.21.(本小题8分) 先阅读下面的内容,然后再解答问题. 例:已知0122222=+-++n n mn m .求m 和n 的值.解:∵0122222=+-++n n mn m ,∴0122222=+-+++n n n mn m . ∴()()0122=-++n n m .∴⎩⎨⎧=-=+010n n m .解这个方程组,得:⎩⎨⎧=-=11n m .解答下面的问题:(1)如果04110822=++-+y x y x 成立.求()2016y x +的值;(2)已知a ,b ,c 为△ABC 的三边长,若ca bc ab c b a ++=++222,试判断△ABC 的形状,并证明.22.(本小题10分)已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图4-1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图4-2).那么图中是否存在与AM相等的线段?若存在,请写出来并证明;若不存在,请说明理由.2018-2019学年度第一学期期末考试八年级数学试题参考答案一、精心选择题(答题栏)(每小题3分,共30分)二、细心填一填(本大题共有5小题,每题3分,共15分.) 11.4(或5,6,7,8);12.2×510-;13. 80°或20°;14.(-2,-15);15. m <1且m ≠-3.三、认真答一答(本大题共7题,满分55分.) 16.(本小题 6分)解:(1)111---x x x =11--x x …………………………………………1分=1 ………………………………………………2分(2)32246b a a b ⋅⎪⎪⎭⎫ ⎝⎛=324436baa b ⋅ ……………………………………3分 =ab9 ……………………………………………4分 (3)()20214.3---π =1-221…………………………………………5分 =43 ………………………………………………6分 17.(本小题8分)解:(1)()()()y x y x y x 2232-+--=()()222224223y xy xy x y xy x -+--+- ………………………………2分=2222242363y xy xy x y xy x +-+-+- …………………………………3分=2253y xy x +-.………………………………………………………………4分(2)1339692222---+-÷++-a a a a a a a a a=()()()()()11333332----+⋅+-+a a a a a a a a a …………5分=()a a -- ………………………………………6分 =a 2 ………………………………………………7分 当a =2时,原式=2×2=4. ……………………………………8分 (只能选择a =2)18.(本小题8分)如图3.解:(1)∵AD ,CE 是高线,∴∠BEC=∠ADB=∠ADC=90°.∴∠DAF=90°-∠AFD=90°-80°=10°. ………………………1分∵AF 平分∠BAC ,∴∠BAF=21∠BAC=21×80°=40°. ……………………………2分∴∠BAD=∠BAF-∠DAF=40°-10°=30°. ………………………3分∵∠BAD+∠B=90°,∠BCE+∠B=90°, ∴∠BCE=∠BAD=30°. ……………………………………………4分 (2)在Rt △BCE 中,∠BCE=30°,∴BC=2BE=2×5=10. ………………………………………………6分∴ABC △S =21BC ·AD=21×10×6=30. ……………………………8分19.(本小题7分)(1)作△ABD 如图所示. ………………………3分 (2)证明:连接BC.由作图可知: AB=AC=BC=CD. ∴∠ABC=∠BCA=60°,∠DBC=∠BDC. …………………4分 ∵∠BCA=∠DBC+∠BDC , ∴∠DBC=21∠BCA=21×60° =30°. ……………………5分∴∠ABD=∠ABC+∠DBC=60°+30°=90°. ……………………6分∴△ABD 是直角三角形. …………7分20.(本小题 8分) (1)钢笔的单价; ………………………………………………………………1分所买笔记本的本数.(或所买钢笔的只数)………………………………2分 (只要考生表述正确即可得分)(2)解:假设刘老师能买到相同数量的笔记本和钢笔.设笔记本每本z 元,则钢笔每只(z +16)元.根据题意,得 ……3分1615050+=z z . …………………………………………………………4分解这个方程,得z =8. (5)分 经检验z=8是所列方程的解.…………………………………………6分∴25.685050==z ,而笔记本的本数必须为整数, ∴z=8不符合实际题意.………………………………………………7分∴刘老师不能买到相同数量的笔记本和钢笔.………………………………8分 (其它方法参照赋分)21.(本小题8分) 解:(1)∵04110822=++-+y x y x ,∴025*******=++++-y y x x .∴()()05422=++-y x (1)分∴04=-x 且05=+y . …………………………………………2分∴4=x ,5-=y .…………………………………………………3分∴()2016y x +=()[]201654-+=1 (4)分(2)∵ca bc ab c b a ++=++222,∴ca bc ab c b a 222222222++=++.∴022*******=+-++-++-a ca c c bc b b ab a . ∴()()()0222=-+-+-a c c b b a .…………………………………………5分∴0=-b a 且0=-c b 且0=-a c .…………………………………………6分∴c b a ==. ……………………………………………………………………7分∴△ABC 是等边三角形. …………………………………………………………8分 22.(本小题10分)证明:(1)∵点D 是AB 的中点,AC=BC ,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG .………………………………………………1分 ∵BF ⊥CE ,∴∠CBG+∠BCF=90°.…………………………………………2分 ∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG .………………………………………………3分 在△AEC 和△CGB 中, ∠CAE=∠BCG AC=BC ∠ACE=∠CBG∴△AEC ≌△CGB (ASA ).………………………………………4分∴AE=CG .…………………………………………………………5分(2)答:图中存在与AM 相等的线段,AM=CE. …………………………………6分 证明:∵CH ⊥HM ,CD ⊥ED ,∴∠CMA+∠MCH=90°,∠BEC+∠MCH =90°.………………………………7分 ∴∠CMA=∠BEC .………………………………………………………………8分 ∵AC=BC ,∠ACM=∠CBE=45°, 在△CAM 和△BCE 中 ∠CMA=∠BEC ∠ACM=∠CBEAC=BC∴△CAM≌△BCE (AAS).……………………………………………………9分∴AM=CE. ……………………………………………………………………10分(其它方法参照赋分)。
2018-2019年八年级数学上册期末试卷含答案解析
八年级数学上册期末模拟练习卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)x 11.若分式f的值为0,则x的值为()x+2A. 0B. — 1C. 1D. 22.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为(A. 25B. 25 或20C. 20D. 153.如图,点B、F、C、E在一条直线上,AB//ED, AC//FD ,那么添加下列一个条件后,仍无法判定△ ABC^ADEF的是( )A. AB=DEB. AC=DFC. /A=/DD. BF=EC4.下列因式分解正确的是()A.m2 + n2 = (m+n)(m—n)B.x2+2x-1 = (x- 1)2C, a2— a = a(a—1) D. a2 + 2a+1 = a(a+ 2)+15.如图,在△ ABC中,AB = AC, /BAC=100°, AB的垂直平分线分别交AB、BC于A 点D、E,则/ BAE的大小为( )A. 80B. 60C. 50D. 40 /《----- c6.已知2m+3n = 5,则4m 8n的值为( )A. 16B. 25C. 32D. 647.已知1m2+ 1n2 = n—m— 2,则工一1的值为( )4 4 m n1A. 1B. 0C. — 1D. — /48.如图,在△ ABC中,/C = 40°,将△ ABC沿着直线l折叠,点C落在点D的位置,则/ 1 —/2的度数是()A. 40B. 80C. 90D. 1409.若关于x的分式方程x — a=x+ 1a无解,则a的值为(A. 1B. - 1C.由D. 010.如图,在Rt^ABC 中,/ BAC = 90 , AB = AC, 点D为BC的中点,直角/ MDN绕点D旋转,DM, DN分别与边AB, AC交于E, F两点,下列结论:①A DEF 是等腰直角三角形;②AE=CF; ©ABDE^AADF;④BE+CF = EF.其中正确的是A.①②④B.②③④二、填空题(每小题3分,共24分)11.如图,/ ACD 是4ABC 的外角,若/ ACD=125°, / A= 75°,则/ B = _____________12.计算:(-8)2018X 0.1252017 =13. (1)分解因式:ax2-2ax+a =(2)计算: 4 + 2xx2—1 (x— 1) (x+ 2)14.如图,AB=AC, AD = AE, / BAC= / DAE,点D 在线段BE 上.若/1 = 25°, /2=30°,则/ 3的度数为15.如图,在△ ABC 中,D 为AB 上一点,AB = AC, CD=CB.若/ ACD = 42°,则/ BAC =16.若x2 + bx+c= (x+ 5)(x-3),其中b, c 为常数,则点P(b, c)关于y轴对称的点的坐标是17.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时,设原来的平均速度为x千米/时,根据题意,可列方程为w18.如图,五边形 ABCDE 中,/B=/E=90°, AB= CD = AE= BC+DE = 2,则这个20. (6分)现要在三角地ABC 内建一中心医院,使医院到 A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.R21. (10分)(1)已知 a+b=7, ab= 10,求 a 2+b 2, (a —b)2的值;⑵先化简,再求值:(a —2 —,其中a=(3-兀计1.22. (10 分)如图,在五边形 ABCDE 中,/ BCD=/EDC=90 , BC= ED, AC = AD.(1)求证:A ABC^AAED;五边形ABCDE 的面积是. 三、解答题(共66分)19. (8分)计算: (1)x(x-2y)-(x+ y)2;+ a — 2a 2—2a+1a a+2(2)当/B= 140时,求/ BAE的度数.23.(10分)如图,在AABC中,D是BC的中点,过点D的直线GF交AC于F,交AC 的平行线BG于点G, DEXDF,交AB于点E,连接EG, EF.(1)求证:BG = CF;(2)请你判断BE + CF与EF的大小关系,并说明理由.G24.(10 分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的 1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过 5.2万元,甲工程队至少修路多少天?25.(12 分)如图①,CA=CB, CD=CE, /ACB=/DCE=& AD, BE 相交于点M, 连接CM.(1)求证:BE = AD;(2)用含0c的式子表示/ AMB的度数;⑶当%= 90°时,分别取AD, BE的中点为点P, Q,连接CP, CQ, PQ,如图②所示, 判断4CPQ的形状,并加以证明.参考答案与解析1. B 2,A 3.C 4.C 5.D 6.C 7.C 8,B9. C 解析:在方程两边同乘x+1,得x —a=a(x+ 1),整理得(1 — a)x = 2a.当1 — a=0 时,即a=1,整式方程无解;当x+ 1 = 0,即x= -1时,分式方程无解,把x = -1代入(1 —a)x=2a,得—(1 —a)=2a,解得 a= — 1.故选 C.10. C 解析:•.在 Rtz\ABC 中,/BAC=90 ,AB=AC,点 D 为 BC 的中点,/.ADXBC,/ B = / C= / BAD = / CAD = 45 , 「. / ADB = /ADC= 90 , AD = CD = BD.「/MDN 是直角,「./ ADF + /ADE = 90 .../BDE+/ADE = /ADB = 90 ,[/ B=/ FAD,・•./ADF = /BDE.在 ABDE 和 AADF 中,{BD = AD, l/BDE=/ADF,BDEBADF(ASA) ,「.DE = DF, BE = AF,「.△ DEF 是等腰直角三角形,故 ①③正确;: AE = AB —BE, CF = AC —AF, AB = AC, BE = AF,「.AE = CF,故 ②正确;:BE+CF = AF + AE, AF + AE>EF, BE+ CF>EF,故④错误.综上 所述,正确的结论有①②③.故选C.18 . 4 解析:如图,延长 DE 至 F,使 EF=BC,连接 AC, AD, AF.v AB = CD = AE= BC+DE = 2, /B=/AED = 90,CD = EF + DE = DF.在△ ABC 与△ AEF 中, [AB=AE,〈/ABC= /AEF,「.△ABC 二△AEF(SAS),AC= AF.在AACD 与AAFD 中, [BC = EF,AC=AF,<CD = FD, .•.△ACD 二△AFD(SSS), [AD =AD ,11. 50 12.813.(1)a(x- 1)2(2) 土x 114. 55 15.32 16.(— 2, —15) 1480 17. 丁= x1480x+701 1「•五边形 ABCDE 的面积 S= 2S A ADF = 2X] DF AE=2X]X2X2=4.故答案为 4.19 .解:(1)原式=x 2—2xy —x 2 —2xy — y2=-4xy-y 2.(4 分)20 .解:如图,作AB 的垂直平分线EF, (2分)作/BAC 的平分线AM,两线交于P,(5分)则P 为这个中心医院的位置.(6分)H卓21 .解:(1)「a+b=7, ab=10, •. a 2+ b 2= (a+b )2— 2ab=72— 2X10 = 49 — 20 = 29,(2 分)(a —b )2= (a + b )2—4ab=72— 4X 10 = 49 — 40 = 9.(5 分)-用“(a —2) (a+2) - 52 (a+ 2) (a+3) (a —3) 2 (a+2)⑵原式= ---------- a ^ -------- .二1=-aJ^一 丁1= 2a- = 1+4 = 5,原式=2X5+6=16.(10分) 22 . (1)证明:AC=AD,ACD=/ADC.又・. / BCD=/EDC =90 ,ACB =[BC=ED,/ADE.(3 分)在 AABC 和 AAED中,</ACB=/ADE, [AC = AD,・ .△ABB △AED(SAS ). (6 分)(2)解:由(1)知△ABC^^AED,E=/B=140 .又「。
每日一学:山东省济宁市鱼台县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答
每日一学:山东省济宁市鱼台县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答
答案山东省济宁市鱼台县2018-2019学年八年级上学期数学期末考试试卷_压轴题
~~ 第1题 ~~
(2019鱼台.八上期末) 如图,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD=∠BCE=90°,点
M 为DE 的中点,过点E 与AD 平行的直线交射线AM 于点N .
(1) 当A ,B ,C 三点在同一直线上时(如图l),求证:M 为AN 的中点;
(2) 将图1中的△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3) 将图1中ABCE 绕点B 旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.考点: 等腰直角三角形;全等三角形的判定与性质;~~ 第2题 ~~
(2019鱼台.八上期末) 已知10=3,10=2,则10的值为________.
~~ 第3题 ~~
(2019鱼台.八上期末) 如图,在△ABC 中,∠A=60°,BE ⊥AC ,垂足为E ,CF ⊥AB ,垂足为F ,点D 是BC 的中点,B
E ,C
F 交于点M ,如果CM=4,FM=5,则BE 等于( )
A . 14
B . 13
C . 12
D . 11
山东省济宁市鱼台县2018-2019学年八年级上学期数学期末考试试卷_压轴题解答
~~ 第1题 ~~
答案:
m n 2m-n
解析:
~~ 第2题 ~~
答案:
解析:
~~ 第3题 ~~
答案:C
解析:。
2018-2019学年度第一学期八年级数学期末试卷(解析版) (1)
2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.在下列黑体大写英文字母中,不是轴对称图形的是A. TB. IC. ND. H【答案】C【解析】解:A、“T”是轴对称图形,故本选项不合题意;B、“I”是轴对称图形,故本选项不合题意;C、“N”不是轴对称图形,故本选项符合题意;D、“H”是轴对称图形,故本选项不合题意.故选:C.根据轴对称图形的概念对各个大写字母判断即可得解.本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列各点中,位于第四象限的点是A. B. C. D.【答案】A【解析】解:A、在第四象限,故本选项正确;B、在第一象限,故本选项错误;C、在第二象限,故本选项错误;D、在第三象限,故本选项错误.故选:A.根据各象限内点的坐标特征对各选项分析判断利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.3.小亮的体重为,用四舍五入法将精确到的近似值为A. 48B.C. 47D.【答案】B【解析】解:精确到的近似值为.故选:B.把百分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字近似数与精确数的接近程度,可以用精确度表示一般有,精确到哪一位,保留几个有效数字等说法.4.若一个三角形的三边长分别为3、4、5,则这个三角形最长边上的中线为A. B. 2 C. D.【答案】D【解析】解:,该三角形是直角三角形,.故选:D.根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.5.已知一次函数,函数值y随自变量x的增大而减小,且,则函数的图象大致是A. B.C. D.【答案】B【解析】解:一次函数,y随着x的增大而减小,,一次函数的图象经过第二、四象限;,,图象与y轴的交点在x轴下方,一次函数的图象经过第二、三、四象限.故选:B.根据一次函数的性质得到,而,则,所以一次函数的图象经过第二、四象限,与y轴的交点在x轴下方.本题考查了一次函数的图象:一次函数、b为常数,是一条直线,当,图象经过第一、三象限,y随x的增大而增大;当,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为.6.如图,点B、E、C、F在同一条直线上,,,要用SAS证明≌ ,可以添加的条件是A. B. C. D.【答案】C【解析】解:,,可添加条件,理由:在和中,,≌ ;故选:C.根据得出,添加条件,则利用SAS定理证明 ≌ .本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在中,AB、AC的垂直平分线分别交BC于点E、F,若,则为A. B. C. D.【答案】D【解析】解:,,、FH分别为AC、AB的垂直平分线,,,,,,,故选:D.根据三角形内角和定理求出,根据线段垂直平分线的性质得到,,根据等腰三角形的性质得到,,计算即可.此题主要考查线段的垂直平分线的性质等几何知识线段的垂直平分线上的点到线段的两个端点的距离相等.8.小苏和小林在如图1所示的跑道上进行米折返跑在整个过程中,跑步者距起跑线的距离单位:与跑步时间单位:的对应关系如图2所示下列叙述正确的是A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D. 小林在跑最后100m的过程中,与小苏相遇2次【答案】D【解析】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,,所以小苏跑全程的平均速度小于小林跑全程的平均速度,而路程相同,根据速度路程时间故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏,根据行程问题的数量关系可以求出甲、乙用的时间多,而路程相同,根据速度路程时间的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s 跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共8小题,共16.0分)9.4的平方根是______.【答案】【解析】解:,的平方根是.故答案为:.根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.已知点,关于y轴对称的点的坐标为______.【答案】【解析】解:首先可知点,再由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得:点P关于y轴的对称点的坐标是.故答案为:.本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.在实数,,,,中,无理数有______个【答案】2【解析】解:,,,是有理数,,是无理数,故答案为:2.根据无理数的概念判断即可.本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.12.若点在函数的图象上,则______.【答案】【解析】解:点在函数的图象上,,解得,,故答案为:.根据点在函数的图象上,可以求得m的值,本题得以解决.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.13.下列关于建立平面直角坐标系的认识,合理的有______.尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系.【答案】【解析】解:下列关于建立平面直角坐标系的认识,合理的有,尽量使更多的点在坐标轴上;尽量使图形关于坐标轴对称;建立坐标系沟通了“数”与“形”之间的联系,故答案为:根据平面直角坐标系的性质判断即可.此题考查了关于x轴、y轴对称的点的坐标,以及轴对称图形,熟练掌握平面直角坐标系的性质是解本题的关键.14.如图,在等边中,D、E分别是边AB、AC上的点,且,则______【答案】180【解析】解:是等边三角形,≌.,,,故答案为:180.根据等边三角形的性质,得出各角相等各边相等,已知,利用SAS判定≌ ,从而得出,所以,进而利用四边形内角和解答即可.此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.15.如图,在中,,AD平分,,,则点D到直线AB的距离是______.【答案】【解析】解:作于E,,,,,平分,,,.故答案为:.作于E,根据勾股定理求出CD的长,根据角平分线的性质解答即可.本题考查的是勾股定理,角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.已知的三条边长分别为3,4,6,在所在平面内画一条直线,将分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画______条【答案】7【解析】解:如图所示:当,,,,,,时,都能得到符合题意的等腰三角形.故答案为:7.根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.三、计算题(本大题共2小题,共18.0分)17.阅读理解:,即,.的整数部分为1.的小数部分为解决问题:已知a是的整数部分,b是的小数部分,求的平方根.【答案】解:,,,,,,,,,则25的平方根是.【解析】估算确定出a与b的值,代入原式计算即可求出平方根.此题考查了估算无理数的大小,以及平方根,熟练掌握估算的方法是解本题的关键.18.如图所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地如图是汽车行驶时离C站的路程千米与行驶时间小时之间的函数关系的图象.填空:______km,AB两地的距离为______km;求线段PM、MN所表示的y与x之间的函数表达式;求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【答案】240 390【解析】解:由题意和图象可得,千米,A,B两地相距:千米,故答案为:240,390由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:MN所表示的函数关系式为:由得,解得:由得,解得:由图象可知当行驶时间满足:,小汽车离车站C的路程不超过60千米根据图象中的数据即可得到A,B两地的距离;根据函数图象中的数据即可得到两小时后,货车离C站的路程与行驶时间x之间的函数关系式;根据题意可以分相遇前和相遇后两种情况进行解答.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.四、解答题(本大题共7小题,共50.0分)19.已知:,求x的值.【答案】解:,,.【解析】直接利用平方根的性质计算得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.20.计算:.【答案】解:原式.【解析】直接利用零指数幂的性质以及绝对值、立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.已知:如图,在中,,BE、CD是中线求证:.【答案】证明:,,、CD是中线,,,,在和中,,≌ ,.【解析】由等腰三角形的性质得出,由已知条件得出,证明≌ ,得出对应边相等,即可得出结论.本题考查了等腰三角形的性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.22.如图,点D是内部的一点,,过点D作,,垂足分别为E、F,且求证:为等腰三角形.【答案】证明:,,.在和中,≌ ,,,,,即,.【解析】欲证明,只要证明即可;本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.请你用学习“一次函数”时积累的经验和方法研究函数的图象和性质,并解决问题.完成下列步骤,画出函数的图象;列表、填空;描点:连线观察图象,当x______时,y随x的增大而增大;结合图象,不等式的解集为______.【答案】2 0【解析】解:填表正确画函数图象如图所示:由图象可得:时,y随x的增大而增大;由图象可得:不等式的解集为;故答案为:2;0;;.根据函数值填表即可;根据图象得出函数性质即可;根据图象得出不等式的解集即可.本题考查了一次函与不等式的关系,一次函数的图象等知识点注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数,则需要两组x,y的值.24.某产品每件成本10元,试销阶段每件产品的销售价元与产品的日销售量件之间的关系如表:已知日销售量y是销售价x的一次函数.求日销售量件与每件产品的销售价元之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】解:设日销售量件与每件产品的销售价元之间的函数表达式是,,解得,,即日销售量件与每件产品的销售价元之间的函数表达式是;当每件产品的销售价定为35元时,此时每日的销售利润是:元,即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【解析】根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量件与每件产品的销售价元之间的函数表达式;根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.问题解决:如图1,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y 轴交于点B,以AB为腰在第二象限作等腰直角,,点A、B的坐标分别为A______、B______.求中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点请你借助小明的思路,求出点C的坐标;类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标,点B坐标,过点B作x轴垂线l,点P是l 上一动点,点D是在一次函数图象上一动点,若是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.【答案】【解析】解:针对于一次函数,令,,,令,,,,故答案为,;如图1,由知,,,,,过点C作轴于E,,,,,,是等腰直角三角形,,在和中,,≌ ,,,,;如图2,过点D作轴于F,延长FD交BP于G,,点D在直线上,设点,,轴,,,同的方法得, ≌ ,,,如图2,,,,或,或,当时,,,,,当时,,,,,即:,或,利用坐标轴上点的特点建立方程求解,即可得出结论;先构造出 ≌ ,求出AE,CE,即可得出结论;同的方法构造出 ≌ ,分两种情况,建立方程求解即可得出结论.此题是一次函数综合题,主要考查了全等三角形的判定和性质,方程的思想,构造全等三角形是解本题的关键.。
山东省济宁鱼台县联考2018-2019学年八上数学期末教学质量检测试题
山东省济宁鱼台县联考2018-2019学年八上数学期末教学质量检测试题一、选择题1.已知a =2﹣2,b =﹣1)0,c =(﹣1)9,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a 2.要使分式无意义的x 的值是( )A.;B.;C.;D.;3.甲、乙两地的铁路长240千米,动车运行后的平均速度是原来慢车的2倍,这样甲地到乙地的行驶时间缩短了1.5小时.设原来慢车的平均速度为x 千米/时,则下列方程正确的是( )A .2402402 1.5x x += B .2402401.52x x += C .2402402 1.5x x -= D .2402401.52x x-= 4.下列各式从左边到右边的变形中,是因式分解的是( ) A .()ax ay a x y -=-B .244(4)4x x x x -+=-+C .298(3)(3)8x x x x x -+=+-+D .2(32)(32)49a a a ---=- 5.下列运算中,正确的是( )A .(﹣3a 2)2=6a 4B .(﹣a 3)2=﹣a 6C .(﹣x 2)3=﹣x 5D .x 3•x 2=x 56.下列各式中不能用平方差公式计算的是( ) A.()2x y)x 2y -+( B.() 2x y)2x y -+--( C.() x 2y)x 2y ---( D.()2x y)2x y +-+( 7.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,DE ⊥AC ,垂足为E ,ED 的延长线与直线AB 交于点F ,则图中与∠EDC 相等的角(∠EDC 除外)有( )A .1个B .2个C .3个D .4个8.下列手机手势解锁图案中,是轴对称图形的是( )A. B. C. D.9.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是( )A.9cmB.12cmC.15cmD.15cm 或12cm10.如图,将两块相同的三角板(含30°角)按图中所示位置摆放,若BE 交CF 于D ,AC 交BE 于M ,AB 交CF 于N ,则下列结论中错误的是( )A.∠EAC=∠FABB.∠EAF=∠EDFC.△ACN ≌△ABMD.AM=AN 11.如图,在△ABC 中,AB=AC=6,点D 在边AC 上,AD 的中垂线交BC 于点E .若∠AED=∠B ,CE=3BE ,则CD 等于( )A.32B.2C.83D.312.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶513.利用反证法证明命题“在ABC ∆中,若AB AC =,则90B ∠<︒”时,应假设( )A.若AB AC =,则90B ∠>︒B.若AB AC ≠,则90B ∠<︒C.若AB AC =,则90B ∠︒…D.若AB AC ≠,则90B ∠︒… 14.如图, ABCD 中,对角线AC 和BD 交于点O ,若AC=8,BD=6,则边AB 长的取值范围是( )A .1<AB <7 B .2<AB <14C .6<AB <8D .3<AB <415.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( )A .7条B .8条C .9条D .10条二、填空题16.若a+=1,b+=2,那么c+的值是_____.17.已知2P m m =-,1Q m =-(m 为任意实数),则P 、Q 的大小关系为________.18.如图,在ABC ∆中,D 、E 分别是AC 、BC 上的点,若ADB EDB EDC ∆≅∆≅∆,则C ∠的度数是_________.19.如图,在四边形ABCD 中,∠A =90°,∠BDC =90°,AD =2,∠ADB =∠C ,则点D 到BC 边的距离等于______.20.如图,在Rt ABC ∆中,90C ∠=︒,BD 平分ABC ∠,交AC 于点D ,DE ⊥AB ,E 为AB 的中点,且DE=10cm ,则AC=___.三、解答题21.(1)解不等式13(1)42x x +--…;并把解集表示在数轴上 (2)解方程: 242111x x x++=--- 22.先化简,再求值:2[(2)24]xy xy xy -+-÷,其中110,5x y ==-.23.如图所示的正方形网格中,每个小正方形的边长均为1个单位, ABC ∆的三个顶点都在格点上. (1)在网格中画出ABC ∆向下平移3个单位得到的111A B C ∆;(2)在网格中画出ABC ∆关于直线m 对称的222A B C ∆;(3)在直线m 上画一点P ,使得2PA PC -的值最大.24.如图,在△ABC 中,AB =6,AC =8,BC =10,BC 的垂直平分线分别交AC 、BC 于点D 、E ,求CD 的长.25.如果一个多边形的所有内角都相等,我们称这个多边形为“等角多边形”,现有两个等角多边形,它们的边数之比为1:2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.【参考答案】***一、选择题16.17.P≥Q18.30°19.220.30cm三、解答题21.(1)3x ≤;(2)13x =22.4-23.(1)如图,111A B C ∆.见解析;(2)如图,222A B C ∆.见解析;(3)如图,点P 即为所求.见解析.【解析】【分析】(1)将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;(2)利用轴对称性质,作出A 、B 、C 关于直线m 的对称点,A 2、B 2、C 2,顺次连接A 2B 2、B 2C 2、C 2A 2,即得到关于直线m 对称的△A 2B 2C 2;(3)过点A 2B 2作直线,此直线与直线m 的交点即为所求;(3)过点A 2C 2作直线,此直线与直线m 的交点P 即为所求.【详解】解:作图如下:(1)如图,111A B C ∆.(2)如图,222A B C ∆.(3)如图,点P 即为所求.【点睛】本题考查的是平移变换与轴对称变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.24.25 4【解析】【分析】连接DB,根据勾股定理的逆定理得到∠A=90°,根据线段垂直平分线的想知道的DC=DB,设DC=DB=x,则AD=8-x.根据勾股定理即可得到结论.【详解】解:连接DB,在△ACB中,∵AB2+AC2=62+82=100,又∵BC2 =102 =100,∴AB2+AC2=BC2.∴△ACB是直角三角形,∠A=90°,∵DE垂直平分BC,∴DC=DB,设DC=DB=x,则AD=8﹣x.在Rt△ABD中,∠A=90°,AB2+AD2=BD2,即62+(8﹣x)2=x2,解得x=254,即CD=254.【点睛】本题考查了勾股定理的逆定理,线段的垂直平分线的性质,熟练掌握是解题的关键. 25.十二边形和二十四边形。
山东省济宁市2018-2019学年八年级数学上册期末试题
2018-2019学年度第一学期期末考试八年级数学试题(时间:110分钟 满分:100分)注意事项:1.本试题分第I 卷和第Ⅱ卷两部分,共8页.第I 卷第1页至第2页为选择题,30分;第Ⅱ卷第3页至第8页为非选择题,70分;共100分.2.答卷前务必将自己的姓名、考号等填写在装订线内规定位置.第Ⅰ卷 (选择题 共30分)一.精心选一选(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的, 把所选项前的字母代号填在卷Ⅱ的答题栏内.相信你一定能选对!) 1.下列图形具有稳定性的是( )A. 三角形B. 四边形C. 五边形D. 六边形2.已知△ABC ≌△DEF ,∠A=50°,∠E=60°.那么∠C 等于( )A. 30°B. 50°C. 60°D. 70° 3.把分式yx x+中的x 、y 都扩大3倍,那么分式的值是( ) A. 扩大3倍 B. 缩小3倍 C. 不变 D. 缩小原来的614.下列各式正确的是( )A. 55b b b =⋅B. 2222)(b a b a =C. 236a a a =÷D.a a a 32=+5.如图1,点A 和点D 都在线段BC 的垂直平分线上. 连接AB ,AC ,DB ,DC.如果∠1=20°,∠2=50°. 那么∠BAC 比∠BDC ( )A. 大40°B. 小40°C. 大30°D. 小30°6.下列分式中,是最简分式的是( )A. a 36B. 3232y y x C. x x x -2 D.ba b a ++2 7.一个多边形的外角和与它的内角和的比为1:3,这个多边形的边数是( )A. 9B. 8C. 7D. 6 8.如果492+-ka a 是完全平方式,那么k 的值是( )A. -12B. 6C. ±12D. ±6 9.已知分式x x 1+-.下列分式中与其相等的是( ) A. x x 1-- B. x x 1+- C. xx --1 D.12++-x x 10.在一次数学课上,李老师出示一道题目:如图2,在△ABC 中,AC=BC ,AD=BD ,∠A=30°. 在线段AB 上求作两点P ,Q ,使AP=CP=CQ=BQ.明明作法:分别作∠ACD 和∠BCD 的平分线,交AB 于点P ,Q.点P ,Q 就是所求作的点.晓晓作法:分别作AC 和BC 的垂直平分线,交AB 于点P ,Q.点P ,Q 就是所求作的点.你认为明明和晓晓作法正确的是( )A. 明明B. 晓晓C. 两人都正确D. 两人都错误第Ⅱ卷 (非选择题 共70分)一、精心选择题(答题栏)(每小题3分,共30分)二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个三角形的三边长分别是3,6,x .那么整数x 可能是 .(填一种情况即可)12.齐鲁网2018年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域的研究.纤毛虫作为原生动物中特化程度最高且最为复杂的一个门,是单细胞真核生物,具有高度的形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学计数法表示为 .13.已知一个等腰三角形的一个角是80°.那么它的顶角度数是 .14.若)3)(5(2-+=++x x c bx x ,则点P (b ,c )关于y 轴对称点的坐标是 . 15.如果xxm x -+=+-2121的解为正数,那么m 的取值范围是 .三、认真答一答(本大题共7题,满分55分. 只要你认真审题, 细心运算, 一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.(本小题 6分)计算:(1)111---x x x ; (2)32246b a a b ⋅⎪⎪⎭⎫ ⎝⎛;(3)()20214.3---π. 17.(本小题8分)(1)化简:()()()y x y x y x 2232-+--;(2)先化简分式:1339692222---+-÷++-a a a a a a a a a ,然后在0,1,2,3中选择一个你喜欢的a 值,代入求值.18.(本小题8分)如图3,在△ABC 中,AD ,CE 是高线,AF 是角平分线,∠BAC=∠AFD=80°. (1)求∠BCE 的度数;(2)如果AD=6,BE=5.求△ABC 的面积.19.(本小题7分)作图与证明:(1)读下列语句,作出符合题意的图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;②分别以A,B为圆心,以AB长为半径作弧,两弧在线段AB的同侧交于点C;③连接AC,以点C为圆心,以AB长为半径作弧,交AC延长线于点D;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.画图区20.(本小题 8分)本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好的前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量的笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量的笔记本和钢笔,分别设未知数并列出了方程:班 长:xx 1501650=-; 团支部书记:yy 1501650=+. (1)填空:班长所列方程中x 的实际意义是 ;团支部书记所列方程中y 的实际意义是 .(2)你认为刘老师能买到相同数量的笔记本和钢笔吗?请说明理由.21.(本小题8分) 先阅读下面的内容,然后再解答问题. 例:已知0122222=+-++n n mn m .求m 和n 的值.解:∵0122222=+-++n n mn m ,∴0122222=+-+++n n n mn m . ∴()()0122=-++n n m .∴⎩⎨⎧=-=+010n n m .解这个方程组,得:⎩⎨⎧=-=11n m .解答下面的问题:(1)如果04110822=++-+y x y x 成立.求()2016y x +的值;(2)已知a ,b ,c 为△ABC 的三边长,若ca bc ab c b a ++=++222,试判断△ABC 的形状,并证明.22.(本小题10分)已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图4-1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图4-2).那么图中是否存在与AM相等的线段?若存在,请写出来并证明;若不存在,请说明理由.2018-2019学年度第一学期期末考试八年级数学试题参考答案一、精心选择题(答题栏)(每小题3分,共30分)二、细心填一填(本大题共有5小题,每题3分,共15分.) 11.4(或5,6,7,8);12.2×510-;13. 80°或20°;14.(-2,-15);15. m <1且m ≠-3.三、认真答一答(本大题共7题,满分55分.) 16.(本小题 6分)解:(1)111---x x x =11--x x …………………………………………1分=1 ………………………………………………2分(2)32246b a a b ⋅⎪⎪⎭⎫ ⎝⎛=324436baa b ⋅ ……………………………………3分 =ab9 ……………………………………………4分 (3)()20214.3---π =1-221…………………………………………5分 =43 ………………………………………………6分 17.(本小题8分)解:(1)()()()y x y x y x 2232-+--=()()222224223y xy xy x y xy x -+--+- ………………………………2分=2222242363y xy xy x y xy x +-+-+- …………………………………3分=2253y xy x +-.………………………………………………………………4分(2)1339692222---+-÷++-a a a a a a a a a=()()()()()11333332----+⋅+-+a a a a a a a a a …………5分=()a a -- ………………………………………6分 =a 2 ………………………………………………7分 当a =2时,原式=2×2=4. ……………………………………8分 (只能选择a =2)18.(本小题8分)如图3.解:(1)∵AD ,CE 是高线,∴∠BEC=∠ADB=∠ADC=90°.∴∠DAF=90°-∠AFD=90°-80°=10°. ………………………1分∵AF 平分∠BAC ,∴∠BAF=21∠BAC=21×80°=40°. ……………………………2分∴∠BAD=∠BAF-∠DAF=40°-10°=30°. ………………………3分∵∠BAD+∠B=90°,∠BCE+∠B=90°, ∴∠BCE=∠BAD=30°. ……………………………………………4分 (2)在Rt △BCE 中,∠BCE=30°,∴BC=2BE=2×5=10. ………………………………………………6分∴ABC △S =21BC ·AD=21×10×6=30. ……………………………8分19.(本小题7分)(1)作△ABD 如图所示. ………………………3分 (2)证明:连接BC.由作图可知: AB=AC=BC=CD. ∴∠ABC=∠BCA=60°,∠DBC=∠BDC. …………………4分 ∵∠BCA=∠DBC+∠BDC , ∴∠DBC=21∠BCA=21×60° =30°. ……………………5分∴∠ABD=∠ABC+∠DBC=60°+30°=90°. ……………………6分∴△ABD 是直角三角形. …………7分20.(本小题 8分) (1)钢笔的单价; ………………………………………………………………1分所买笔记本的本数.(或所买钢笔的只数)………………………………2分 (只要考生表述正确即可得分)(2)解:假设刘老师能买到相同数量的笔记本和钢笔.设笔记本每本z 元,则钢笔每只(z +16)元.根据题意,得 ……3分1615050+=z z . …………………………………………………………4分解这个方程,得z =8. (5)分 经检验z=8是所列方程的解.…………………………………………6分∴25.685050==z ,而笔记本的本数必须为整数, ∴z=8不符合实际题意.………………………………………………7分∴刘老师不能买到相同数量的笔记本和钢笔.………………………………8分 (其它方法参照赋分)21.(本小题8分) 解:(1)∵04110822=++-+y x y x ,∴025*******=++++-y y x x .∴()()05422=++-y x (1)分∴04=-x 且05=+y . …………………………………………2分∴4=x ,5-=y .…………………………………………………3分∴()2016y x +=()[]201654-+=1 (4)分(2)∵ca bc ab c b a ++=++222,∴ca bc ab c b a 222222222++=++.∴022*******=+-++-++-a ca c c bc b b ab a . ∴()()()0222=-+-+-a c c b b a .…………………………………………5分∴0=-b a 且0=-c b 且0=-a c .…………………………………………6分∴c b a ==. ……………………………………………………………………7分∴△ABC 是等边三角形. …………………………………………………………8分 22.(本小题10分)证明:(1)∵点D 是AB 的中点,AC=BC ,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG .………………………………………………1分 ∵BF ⊥CE ,∴∠CBG+∠BCF=90°.…………………………………………2分 ∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG .………………………………………………3分 在△AEC 和△CGB 中, ∠CAE=∠BCG AC=BC ∠ACE=∠CBG∴△AEC ≌△CGB (ASA ).………………………………………4分∴AE=CG .…………………………………………………………5分(2)答:图中存在与AM 相等的线段,AM=CE. …………………………………6分 证明:∵CH ⊥HM ,CD ⊥ED ,∴∠CMA+∠MCH=90°,∠BEC+∠MCH =90°.………………………………7分 ∴∠CMA=∠BEC .………………………………………………………………8分 ∵AC=BC ,∠ACM=∠CBE=45°, 在△CAM 和△BCE 中 ∠CMA=∠BEC ∠ACM=∠CBEAC=BC∴△CAM≌△BCE (AAS).……………………………………………………9分∴AM=CE. ……………………………………………………………………10分(其它方法参照赋分)。
2018-2019学年上期八年级数学期末试卷(解析版)
2018-2019学年上期八年级数学期末试卷一、填空题(本大题共12小题,共24.0分)1.9的平方根等于______.2.比较大小:-1______(填“>”、“=”或“<”).3.若式子有意义,则x的取值范围是______.4.△ABC中,AB=AC,且∠A=80°,则∠B=______°.5.在平面直角坐标系中,点A(2,-3)关于y轴对称的点的坐标为______.6.Rt△ABC中,两条直角边长分别为5和12,则斜边上的中线长等于______.7.正比例函数y=(m-1)x图象经过二、四象限,则m的值可以是______(写一个即可).8.如图,△ABC≌△DBE,A、D、C在一条直线上,且∠A=60°,∠C=35°,则∠DBC=______°.9.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=______.10.如图,根据函数图象回答问题:方程组的解为______.11.如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=______.12.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的若干信息.请你根据表格中的相关数据计算:.二、选择题(本大题共6小题,共18.0分)13.下面四个图形分别是低碳、节水、回收和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.14.数3.14、、π、、、中,无理数的个数为()A. 2个B. 3个C. 4个D. 5个15.关于一次函数y=1-2x,下列说法正确的是()A. 它的图象过点B. 它的图象与直线平行C. y随x的增大而增大D. 当时,总有16.如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有()个.A. 1B. 2C. 3D. 417.某超市以每千克0.8元的价格从批发市场购进若干千克西瓜,在销售了部分西瓜之后,余下的每千克降价0.3元,直至全部售完.销售金额y与售出西瓜的千克数x 之间的关系如图所示,那么超市销售这批西瓜一共赚了()A. 20元B. 32元C. 35元D. 36元18.如图△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB中点,将△CAE沿着直线CE翻折,得到△CDE,连接AD,则线段AD的长等于()A. 8B.C.D. 10三、解答题(本大题共8小题,共78.0分)19.(1)求x的值:4x2-9=0;(2)计算:-+.20.已知直线y=kx+b与直线y=2x平行,且经过点A(4,4).(1)求k和b的值;(2)若直线y=kx+b与y轴相交于点B,求△AOB的面积.21.已知点A(1,3)、B(3,-1),利用图中的“格点”完成下列作图或解答:(1)在第三象限内找“格点”C,使得CA=CB;(2)在(1)的基础上,标出“格点”D,使得△DCB≌△ABC;(3)点M是x轴上一点,且MA-MB的值最大,则点M的坐标______.22.如图,四边形ABCD中,AD∥BC,∠A=90°,CE⊥BD,垂足为E,BE=DA.(1)求证:△ABD≌△ECB;(2)若∠DBC=45°,BE=1,求DE的长(结果精确到0.01,参考数值:≈1.414,≈1.732)23.快递员张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,到达小区后将快递投放到快递专柜,然后原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,张师傅距离快递公司的路程y(千米)与从公司出发所用时间t(小时)的函数图象如图所示,根据图象回答问题:(1)合理解释线段AB表示的实际意义______;(2)图中a=______,直线BC的函数表达式为______.(3)出发t小时,快递员距离快递公司10千米,求t的值.24.如图,正比例函数y=x的图象与一次函数y=kx+b的图象交于点A(m,3),一次函数y=kx+b图象与x轴负半轴交于点B.(1)根据图象回答问题:不等式kx+b>x的解为______;(2)若AB=5,求一次函数的表达式;(3)在第(2)问的条件下,若点P是直线AB上的一个动点,则线段OP长的最小值为______.25.在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为______;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是______.26.如图,在平面直角坐标系中,点B的坐标是(0,2),动点A从原点O出发,沿着x轴正方向移动,△ABP是以AB为斜边的等腰直角三角形(点A、B、P顺时针方向排列),当点A与原点O重合时,得到等腰直角△OBC(此时点P与点C重合).(1)BC=______;当OA=2时,点P的坐标是______;(2)设动点A的坐标为(t,0)(t≥0).①求证:点A在移动过程中,△ABP的顶点P一定在射线OC上;②用含t的代数式表示点P的坐标为:(______,______);(3)过点P做y轴的垂线PQ,Q为垂足,当t=______时,△PQB与△PCB全等.答案和解析1.【答案】±3【解析】解:∵(±3)2=9,∴9的平方根是±3.故答案为:±3.直接根据平方根的定义进行解答即可.本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.【答案】<【解析】解:-1=2-1=1,∵1<,∴-1<.故答案为:<.首先求出-1的值是多少;然后根据实数大小比较的方法判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.【答案】x≥-2【解析】解:根据题意得:x+2≥0,解得:x≥-2.故答案是:x≥-2.根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.4.【答案】50【解析】解:∵△ABC中,∠A=80°,AB=AC,∴∠B=∠C=(180°-∠A)÷2=(180°-80°)÷2=50°.故答案为:50.根据等腰三角形的性质:∠B=∠C,再根据三角形的内角和定理即可解答.本题考查了等腰三角形两底角相等的性质,是基础题.5.【答案】(-2,-3)【解析】解:点A(2,-3)关于y轴对称的点的坐标为(-2,-3),故答案为:(-2,-3).根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称的点的坐标,关键是掌握点的坐标的变化规律.6.【答案】6.5【解析】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5.故答案为:6.5.根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.7.【答案】0(答案不唯一)【解析】解:∵正比例函数y=(m-1)x,它的图象经过二、四象限,∴m-1<0,解得m<1.∴m的值可以是0.故答案为:0(答案不唯一).先根据正比例函数y=(m-1)x,它的图象经过二、四象限得出关于m的不等式,求出m的取值范围即可.本题考查的是正比例函数的性质,熟知正比例函数的增减性是解答此题的关键.8.【答案】25【解析】解:∵△ABC≌△DBE,∴AB=BD,∴∠A=∠BDA=60°,∵∠BDA=∠C+∠DBC,∠C=35°,∴∠DBC=60°-35°=25°,故答案为25.由△ABC≌△DBE,推出AB=BD,推出∠A=∠BDA=60°,再根据∠BDA=∠C+∠DBC,求出∠DBC即可.本题考查全等三角形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】4【解析】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=AC=2DE=2×5=10,∵BE=8,∴AE==6,∴EC=AC-AE=4,故答案为:4.由BE⊥AC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得AE的长.此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.10.【答案】【解析】解:根据图象知:y=kx+3经过点(-3,0),所以-3k+3=0,解得:k=1,所以解析式为y=x+3,当x=-1时,y=2,所以两个函数图象均经过(-1,2)所以方程组的解为,故答案为:.首先观察函数的图象y=kx+3经过点(-3,0),然后求得k值确定函数的解析式,最后求得两图象的交点求方程组的解即可;此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.11.【答案】2【解析】解:如图,过点P作PF⊥OB于点F,∵点P是∠AOB的角平分线上一点,PD⊥OA于点D,∴PD=PF,∠AOP=∠BOP=∠AOB=15°.∵CE垂直平分OP,∴OE=OP.∴∠POE=∠EPO=15°.∴∠PEF=2∠POE=30°.∴PF=PE=OE=2.则PD=PF=2.故答案是:2.过点P作PF⊥OB于点F,由角平分线的性质知:PD=PF,所以在直角△PEF中求得PF的长度即可.考查了角平分线的性质,线段垂直平分线的性质,由已知能够注意到PD=PF 是解决的关键.12.【答案】6【解析】解:设一次函数解析式为:y=kx+b,…则可得:-k+b=m①;k+b=2②;2k+b=n③;m+2n=①+2③=3k+3b=3×2=6.故答案为:6.设y=kx+b,将(-1,m)、(1,2)、(2,n)代入即可得出答案.本题考查待定系数法求函数解析式的知识,比较简单,注意掌握待定系数法的运用.13.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.【答案】A【解析】解:在所列实数中,无理数有、π这2个,故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.【答案】D【解析】解:A、当x=1时,y=-1.所以图象不过(1,-2),故错误;B、因为一次函数y=1-2x与直线y=2x的k不相等,所以它的图象与直线y=2x 平行,故错误;C、因为k=-2,所以y随x的增大而减小,故错误;D、因为y随x的增大而减小,当x=0时,y=1,所以当x>0时,y<1,故正确.故选:D.根据一次函数y=kx+b(k≠0)的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降进行分析即可.此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b(k≠0)的性质.16.【答案】D【解析】解:如图所示:点A、B、C、D组成一个轴对称图形,这样的点D共有4个.故选:D.直接利用轴对称图形的性质得出符合题意的答案.此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.17.【答案】B【解析】解:由图可求:60÷40=1.5元,由于后来每千克降价0.3元,可以求后来的出售的西瓜重量:(72-60)÷(1.5-0.3)=10 (千克)所有进货的总重量:10+40=50 (千克);所以进货总进价:50×0.8=40 (元)赚了:出售总价格-进货总价格=72-40=32 (元)故选:B.通过审题,发现题目中不知道购进的西瓜重量,而问题一共赚了多少元,由出售的总价格-进货的总价格=赚了多少和右图所示出售的总价格是72元,那么可以用一次函数求出购进的西瓜重重,就可以求出进货的总价格;考查一次函数的应用,经济问题相关公式,看图分析问题能力;要理解题目意思和看懂图中的信息,易错点是:看懂图中的信息,把两次不同价格出售的西瓜重量加起来.18.【答案】C【解析】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠ACB=90°,CE为中线,∴CE=AE=BE,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC∽△CAF,∴=,即=,∴CF=6.4,∴EF=CF-CE=1.4,由折叠可得,AC=DC,AE=DE,∴CE垂直平分AD,又∵E为AB的中点,∴EF为△ABD的中位线,∴BD=2EF=2.8,∵AE=BE=DE,∴∠DAE=∠ADE,∠BDE=∠DBE,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt△ABD中,AD===,故选:C.延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.19.【答案】解:(1)4x2-9=0,4x2=9,x2=x=±;(2)原式=6-3+2=5.【解析】(1)首先把-9移到等号右边,再两边同时除以4,然后再求的平方根即可;(2)首先化简二次根式和立方根,再计算有理数的加减即可.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.【答案】解:(1)∵直线y=kx+b与直线y=2x平行,∴k=2,∴y=2x+b,把点A(4,4)代入y=2x+b得8+b=4,解得b=-4;∴k和b的值分别为2、-4;(2)由(1)得,一次函数解析式为:y=2x-4,令x=0,可得y=-4,∴B点坐标为(0,-4),∴△AOB的面积为:•|OB|•x A=×4×4=8.答:△AOB的面积为8.【解析】(1)由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(4,4)代入一次函数解析式可求出b的值;(2)由(1)的结果可得一次函数解析式,令x=0,可得B点坐标,利用三角形的面积公式可得结果.本题是一次函数综合题,主要考查了两条直线相交或平行问题,待定系数法,三角形的面积公式等知识.解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.21.【答案】(4,0)【解析】解:(1)格点C如图所示.(2)格点D如图所示.(3)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点M,点M即为所求,M(4,0).(1)点C想线段AB的垂直平分线上.(2)根据全等三角形的性质即可解决问题.(3)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点M,点M即为所求,M(4,0).本题考查作图-应用与设计,全等三角形的判定和性质,轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】证明:(1)∵∠A=90°,CE⊥BD∴∠A=∠BEC=90°∵AD∥BC∴∠ADB=∠DBC,且∠A=∠BEC,BE=DA,∴△ABD≌△ECB(AAS)(2)∵∠DBC=45°,∠A=90°,BE=AD=1∴∠ADB=∠ABD=45°∴AD=AB=1∴BD==∴DE=BD-BE≈1.414-1≈0.41【解析】.(1)由“AAS”可证△ABD≌△ECB;(2)由等腰三角形的性质可得AD=AB=1,由勾股定理可求BD的长,即可求DE的长.本题考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,熟练运用全等三角形的判定是本题的关键.23.【答案】张师傅到达小区后将快递投放到快递专柜 3 y=-30x+90.【解析】解:(1)AB段张师傅未有路程行驶,表示张师傅在原地未动,根据题意,AB段表示张师傅到达小区后将快递投放到快递专柜;故答案为:张师傅到达小区后将快递投放到快递专柜(2)根据题意,OA表示张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,其速度为:30÷1.5=20(km/h),BC段表示原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,故其速度为:20×1.5=30(km/h),故时间为:30÷30=1h,故a=2+1=3h;直线BC的函数函数图象为直线,设y=kx+b,把B(2,30),C(3,0)代入y=kx+b,得,解得,∴直线BC的函数表达式为:y=-30x+90.故答案为:3,y=-30x+90.(3)分为两种情况:当出发至离公司10千米时,t=10÷20=0.5h,当回公司至离公司10千米时,10=-30x+90,解得x=.(1)AB段张师傅未有路程行驶,表示张师傅在原地未动,根据题意,AB段表示张师傅到达小区后将快递投放到快递专柜;(2)OA表示张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,BC段表示原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,即可求出直线BC;(3)分为两种情况:当出发至离公司10千米时,当回公司至离公司10千米时,本题主要考查一次函数的图象和解析式,图象和函数函数结合的题目,看清图象是解题的关键.24.【答案】x<2【解析】解:(1)∵点A(m,3)在正比例函数y=x上,∴3=m,∴m=2,∴A(2,3),∴不等式kx+b>x的解为x<2,故答案为:x<2;(2)由(1)知,A(2,3),∵点B在x轴负半轴上,∴设B(n,0)(n<0),∵AB=5,∴(n-2)2+9=25,∴n=6(舍)或n=-2,∴B(-2,0),将点A(2,3),B(-2,0)代入y=kx+b中得,,∴,∴一次函数的表达式为y=x+;(3)如图,由(2)知,直线AB的解析式为y=x+,∴当OP⊥AB时,OP最小,由(1)知,A(2,3),由(2)知,B(-2,0),AB=5,∴S△AOC=OB•|y C|=AB•OP,最小∴×2×3=×5OP,最小∴OP=,最小故答案为.(1)将点A坐标代入正比例函数解析式中,求出m,即可得出结论;(2)设出点B坐标,利用AB=5,求出点B坐标,最后将点A,B坐标代入一次函数表达式中,即可求出k,b,即可得出结论;(3)点判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,两点间距离公式,求出直线AB的解析式是解本题的关键.25.【答案】2≤L≤10【解析】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=BC=AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=CD,∴BE+CF=BD+=BC=AB,∵BE+CF=nAB,∴n=,故答案为;(2)如图2,①过点D作DG⊥AB于G,DH⊥AC于H,∴∠DGB=∠AGD=∠CFD=∠AHF=90°,∵△ABC是等边三角形,∴∠A=60°,∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,∵∠EDF=120°,∴∠EDG=∠FDH,∵△ABC是等边三角形,且D是BC的中点,∴∠BAD=∠CAD,∵DG⊥AB,DH⊥AC,∴DG=DH,在△EDG和△FDH中,,∴△EDG≌△FDH(ASA),∴DE=DF,即:DE始终等于DF;②同(1)的方法得,BG+CH=AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=AB,∴BE与CF的和始终不变'(3)由(2)知,DE=DF,BE+CF=AB,∵AB=4,∴BE+CF=2,∴四边形DEAF的周长为L=DE+EA+AF+FD =DE+AB-BE+AC-CF+DF=DE+AB-BE+AB+DE=2DE+2AB-(BE+CF)=2DE+2×4-2=2DE+6,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,由(1)知,BG=BD=1,∴DE=BG=,最小∴L=2+6,最小当点F和点C重合时,DE最大,此时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴DE=BD=AB=2,即:L最大=2×2+6=10,∴周长L的变化范围是2≤L≤10,故答案为2≤L≤10.(1)先利用等边三角形判断出BD=CD=AB,进而判断出BE=BD,再判断出∠DFC=90°,得出CF=CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+6,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.此题是四边形综合题,主要考查了等边三角形的性质,含30度角的直角三角形的性质,角平分线定理,全等三角形的判定和性质,旋转的性质,构造出全等三角形是解本题的关键.26.【答案】(2,2)2+2【解析】解:(1)作PM⊥y轴于M,PN⊥OA于N.∵△OBC是等腰直角三角形,OB=2,∴BC=OB•cos45°=,∵∠PMN=∠PNA=∠PNO=∠MON=90°,∴∠MPN=∠BPA=90°,四边形PMON是矩形,∴∠MPB=∠NPA,∵PB=PA,∴△PMB≌△PNA(AAS),∴PM=PN,BM=AN,∴OB+OA=OM-BM+ON+AN=2OM=4,∴OM=ON=2,∴四边形PMON是正方形,∴P(2,2).故答案为:,(2,2).(2)①由(1)可知:PM=PN,∵PM⊥OB,PN⊥OA,∴OP平分∠AOB,∵∠BOC=45°,∴OC平分∠AOB,∴点P在射线OC上.②由(1)可知:2OM=OB+OA=2+t,∴OM=ON=,∴P(,).故答案为,.(3)如图,作PN⊥OA于N.第21页,共21页由(1)可知:△PQC ≌△PNA .△PQC ≌△PBC ,∴QC=BC=AN=, ∵四边形PNOQ 是正方形,∴ON=OQ=PN=PQ=2+, ∴OA=2++=2+2,∴t=2+2, 故答案为2+2. (1)作PM ⊥y 轴于M ,PN ⊥OA 于N .证明△PMB ≌△PNA 即可解决问题. (2)①利用角平分线的判定定理证明OP 平分∠AOB 即可.②利用全等三角形的性质即可解决问题.(3)如图,作PN ⊥OA 于N .利用全等三角形的判定和性质即可解决问题. 本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,正方形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。
山东省济宁市鱼台县2019-2020学年八年级上学期数学期末试卷(含答案解析)
山东省济宁市鱼台县2019-2020学年八年级上学期数学期末试卷一、单选题1.若分式的值为零,则的值为()A. 2B. 3C. ﹣2D. ﹣32.下列因式分解正确的是()A. x2-6x+9=(x-3)2B. x 2-y2=(x-y)2C. x2-5x+6=(x-1)(x-6)D. 6x2+2x=x(6x+2)3.化简-5a·(2a2-ab),结果正确的是( )A. -10a3-5abB. -10a3-5a2bC. -10a2+5a2bD. -10a3+5a2b4.到的三顶点距离相等的点是的是()A. 三条中线的交点B. 三条角平分线的交点C. 三条高线的交点D. 三条边的垂直平分线的交点5.若,则对于任意一个a的值,x一定是()A. x<0B. x 0C. 无法确定D. x>06.若(x-3)(x+5)是x2+px+q的因式,则q为( )A. -15B. -2C. 8D. 27.下列各式由左边到右边的变形中,是分解因式的为()A. a(x+y)=ax+ayB. x2﹣4x+4=x(x﹣4)+4C. x2﹣16+3x=(x+4)(x﹣4)+3xD. 10x2﹣5x=5x(2x﹣1)8.化简的结果是()A. B. C. D.9.五一”期间,某班同学包租一辆面包车前去东方太阳城游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费,若设原来参加游览的同学有x人,为求x,可列方程为()A. B. C. D.10.在和中,① ,② ,③ ,④ ,⑤,⑥ ,则下列各组条件中使和全等的是()A. ④⑤⑥B. ①②⑥C. ①③⑤D. ②⑤⑥二、填空题11.当x=________时,分式的值等于零.12.分解因式x(x﹣2)+3(2﹣x)=________.13.下列关于x的方程① ,② ,③ 1,④ 中,是分式方程的是(________)(填序号)14.如图所示,在△ABC中,,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到直线AB的距离是________cm.15.如图,在△ABC中,AB和AC的垂直平分线分别交BC于E、F,若∠BAC=130°,则∠EAF=________.三、解答题16.(1)分解因式;(2)利用因式分解计算:.17.化简:(1)(-2ab)(3a2-2ab-4b2); (2)3x(2x-3y)-(2x-5y)·4x.18.先化简,再从-2<x<3中选一个合适的整数代入求值.19.解方程:(1);(2);(3).20.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC.(2)写出AB+AC与AE之间的等量关系,并说明理由.21.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?22.如图所示,有一个狡猾的地主,把一块边长为a米的正方形土地租给马老汉栽种.过了一年,他对马老汉说:“我把你这块地的一边减少5米,另一边增加5米,继续租给你,你也没吃亏,你看如何?”马老汉一听,觉得好像没吃亏,就答应了.同学们,你们觉得马老汉有没有吃亏?请说明理由.23.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.答案解析部分一、单选题1.【答案】A【解析】【解答】解: 要使分式的值为零,由分子2-x=0,解得:x=2.而x-3≠0;所以x=2.故答案为:A.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.2.【答案】A【解析】【解答】A.因为,所以A中分解符合题意;B.因为,所以B中分解不符合题意;C.因为,所以C中分解不符合题意;D.因为,所以D中分解不符合题意.故答案为:A.【分析】根据相关分解因式的方法进行分析判断即可.3.【答案】D【解析】【解答】根据单项式乘以多项式的计算法则进行计算,原式= ,故答案为:D.【分析】将式子去括号,合并同类项进行化简即可得到答案。
济宁市2018-2019学年八上数学期末考试试题
济宁市2018-2019学年八上数学期末考试试题一、选择题1.计算式子(12)﹣1,得( ) A .2 B .﹣2 C .﹣12 D .﹣12.化简2m mn mn m n m n+÷--的结果是( ) A .m n n+ B .2m m n - C .m n n - D .2m 3.不论x 取何值,下列分式中总有意义的是( ) A .21x x- B .22(2)x x + C .||2x x + D .22x x + 4.下列算式能用平方差公式计算的是( ) A .(-a-b)(-a+b) B .(2x+y)(-2x-y)C .(3x-y)(-3x+y)D .(2a+b)(2b-a) 5.若a+b =6,ab =4,则a 2+4ab+b 2的值为( )A .40B .44C .48D .526.下列各式不能用平方差公式法分解因式的是( )A .x 2﹣4B .﹣x 2﹣y 2C .m 2n 2﹣1D .a 2﹣4b 27.点 ()1,3P -- 关于 y 轴对称的点的坐标是 ( )A .()1,3-B .()1,3C .()3,1-D .()1,3-8.等腰三角形的一边长是8,另一边长是12,则周长为( )A .28B .32C .28或32D .30或329.如图,△ABC 中,AB =AC,AB 的垂直平分线交 AB 于点 D ,交 CA 的延长线于点 E ,∠EBC =42°,则∠BAC =( )A .159°B .154°C .152°D .138°10.下列图形是中心对称图形而不是轴对称图形的是( )A .等边三角形B .平行四边形C .圆D .矩形11.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中不正确...的是( )A .AD 是∠BAC 的平分线B .∠ADC=60°C .点D 在AB 的中垂线上 D .S △DAC ︰S △ABD =1︰312.在等腰ABC 中,5AB =,底边8BC =,则下列说法中正确的有( )()1AC AB =;()26ABC S =;()3ABC 底边上的中线为4;()4若底边中线为AD ,则ABD ACD ≅.A.1个B.2个C.3个D.4个 13.△ABC 的三条边分别为5、x 、7,则x 的取值范围为( )A .5<x <7B .2<x <12C .5≤x≤7D .2≤x≤12 14.如图,点D 为△ABC 边BC 的延长线上一点.∠ABC 的角平分线与∠ACD 的角平分线交于点M ,将△MBC 以直线BC 为对称轴翻折得到△NBC ,∠NBC 的角平分线与∠NCB 的角平分线交于点Q ,若∠A=48°,则∠BQC 的度数为( )A.138°B.114°C.102°D.100°15.如图,直线a ∥b ,若∠1=50°,∠3=95°,则∠2的度数为( )A.35°B.40°C.45°D.55°二、填空题 16.宽x 米的长方形的面积是160平方米,则它的长y= ___________米。
山东省济宁鱼台县联考2019年数学八上期末调研试卷
山东省济宁鱼台县联考2019年数学八上期末调研试卷一、选择题1.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是()A .7500750015x 1.2x -=B .750075001x 1.2x 4-=C .7.57.515x 1.2x -=D .7.57.51x 1.2x 4-= 2.甲、乙两班学生参加植树造林活动,已知甲班每天比乙班少植2棵树,甲班植树60棵所用天数与乙班植树70棵所用天数相等,若设甲班每天植树x 棵,则根据题意列出的方程正确的是A. B. C. D.3.数据0.000063用科学记数法表示应为( )A .6.3×10-5B .0.63×10-4C .6.3×10-4D .63×10-54.下列运算正确的是( )A .2421x x x ÷= B .(x ﹣y )2=x 2﹣y 2C 3=-D .(2x 2)3=6x 65.若102m =,103n =,则32110m n +-的值为( )A .7B .7. 1C .7. 2D .7. 46.下列计算正确的是( )A.a•a 2=a 2B.(a 2)2=a 4C.3a+2a =5a 2D.(a 2b )3=a 2•b 37.如图,将绕点按逆时针方向旋转得,且点在 上,交于点,若,则的度数为( )A.B.C.D.8.已知等腰△ABC 的周长为10,若设腰长为x ,则x 的取值范围是( )A .52<x <5 B .0<x <2.5 C .0<x <5 D .0<x <109.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是( )A .SSSB .SASC .AASD .ASA10.如图,ΔABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,CPE ∠的度数是( )A .30︒B .45︒C .60︒D .90︒ 11.如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,如果∠AOB =40°,∠COE =60°,则∠BOD 的度数为( )A .50°B .60°C .70°D .80°12.如图,△ABC ≌△ADC ,∠ABC =118°,∠DAC =40°,则∠BCD 的度数为( )A .40°B .44°C .50°D .84°13.某中学阅览室在装修过程中,准备用边长相等的正方形、正三角形两种地砖铺满地面,在每个顶点的周围正方形、正三角形地砖的块数分别是( )A.1、2B.2、1C.2、2D.2、3 14.在ΔABC 中,AB 3=,AC 5=,第三边BC 的取值范围是( )A .10BC 13<<B .4BC 12<< C .3BC 8<<D .2BC 8<< 15.下列长度的三条线段能组成三角形的是( )A .3,4,8B .5,6,11C .5,6,10D .6,6,13二、填空题16.已知 1a -1 b =1,则a ab b a 2ab b+--- 的值等于 __________ 17.已知120182019a =+,120192019b =+,120202019c =+,则代数式2222()a b c ab bc ac ++---的值是_____.【答案】618.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为_______ .19.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=________°.20.如图,△ABC是等边三角形,D,E分别是AC,BC上的两点,且AD=CE,AE,BD相交于点N,则∠DNE的度数是______.三、解答题21.探索发现:111122=-⨯,1112323=-⨯,1113434=-⨯…,根据你发现的规律,回答下列问题:(1)156=⨯,()11n n=+;(2)利用你发现的规律计算:1111 12233420182019 ++++⨯⨯⨯⨯…;(3)灵活利用规律解方程:1111 (3)(3)(6)(96)(99)99x x x x x x x+++= ++++++….22.先化简,再求值(x +2y)2 -(8x2 y2 +10xy3 -2xy) ¸2xy,其中x=-1,y=-2.23.(1)如图1,在△ABC中,∠ACB=90°,点D在△ABC外,连接AD,作DE⊥AB,交BC于点F,AD=AB,AE=AC,连接AF,则DF,BC,CF间的等量关系是;(2)如图2,AB=AD,AC=AE,∠ACB=∠AED=90°,延长BC交DE于点F,写出DF,BC,CF间的等量关系,并证明你的结论.24.已知:如图,在中,∠BAC=90°,,垂直平分AC,点D在BA的延长线上,.求证(1)△DAF≌△EFC;(2)DF=BE.25.如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).【参考答案】***一、选择题16.;17.无18.419.7220.120°三、解答题21.(1)1156-,111n n-+;(2)20182019;(3)33x=.22.x2-y2+1;-2.23.(1);(2);证明见解析处.【解析】【分析】(1)首先根据已知条件可判定,得出,再次利用同样的原理判定,可得出,进而得出三者的等量关系为;(2)首先连接,根据已知条件可判定,得出,再根据同理即可判定,得出,进而得出三者等量关系为.【详解】解:(1)∵∠ACB=90°,DE⊥AB,∴又∵AD=AB,AE=AC,∴∴又∵AE=AC,,∴∴又∵∴故答案为.(2)证明:连接,如图所示,∵AB=AD,AC=AE,∠ACB=∠AED=90°,∴∴又∵AC=AE,,∴∴又∵∴【点睛】此题主要考查直角三角形全等的判定,然后利用其性质进行等量转换.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据全等三角形的判定(SAS)进行证明,即可得到答案;(2)连接,根据全等三角形的性质和垂直平分线的性质即可得到答案.【详解】解:(1)∵垂直平分∴,∵∴∵∴∵又∵∴在和中,∴≌(2)连接∵≌∴∵垂直平分∴∴∴∴∴【点睛】本题考查全等三角形的判定(SAS)和性质、垂直平分线的性质,解题的关键是掌握全等三角形的判定(SAS)和性质、垂直平分线的性质.25.(1)45°;(2)12;(3)MN=12m.。
山东省济宁市2019届数学八上期末考试试题
山东省济宁市2019届数学八上期末考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.若分式23x +有意义,则x 的取值范围为( ) A .3x ≠-B .3x ≠C .0x ≠D .3x ≠± 2.把分式x yy x +中的x ,y 的值都扩大为原来的5倍,则分式的值( ) A .缩小为原来的15 B .不变C .扩大为原来的10倍D .扩大为原来的5倍 3.已知方程233x m x x -=-- 无解,则m 的值为( ) A .0 B .3 C .6 D .24.下列计算,正确的是( )A .a 5+a 5=a 10B .a 3÷a ﹣1=a 2C .a•2a 2=2a 4D .(﹣a 2)3=﹣a 65.下列计算正确的是( )A .222(a b)a b -=-B .235(x )x =C .824x x x ÷=D .257x x x ⋅=6.如图,在ABC 中,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN //BC 交AB 于M ,交AC 于N ,若BM CN 8+=,则线段MN 的长为( )A.6B.7C.8D.9 7.多项式4x-x 3分解因式的结果是( ) A .()2x 4x - B .()()x 2x 2x -+C .()()x x 2x 2-+D .2x(2x)- 8.在△ABC 中,∠C =90°,AB =c ,∠A =30°,则AC =( )A .12cBC .2cD 9.已知等腰△ABC 的周长为10,若设腰长为x ,则x 的取值范围是( )A .52<x <5B .0<x <2.5C .0<x <5D .0<x <1010.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确11.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB ,其中正确的有( )A.2个B.3个C.4个D.1个 12.如图,在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若BC=12,BD=8,则点D 到AB 的距离是( )A .6B .4C .3D .2 13.下列正多边形的地板瓷砖中,单独使用一种不能铺满地面的是( )A .正三角形B .正方形C .正六边形D .正八边形 14.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,若∠BOC =70°,则∠COE 的度数是( )A .110°B .120°C .135°D .145°15.直角三角形的一个锐角∠A 是另一个锐角∠B 的3倍,那么∠B 的度数是( )A .22.5° B.45° C.67.5° D.135°二、填空题16.计算:20(1)--+=_____________.17.代数式a 2b ﹣2ab+b 分解因式为_____.18.如图,已知∠BAC=60°,∠C=40° ,DE 垂直平分AC 交BC 于点D ,交AC 于点E ,则∠BAD 的度数是_________.19.如图直线12//l l ,AB CD ⊥,134∠=︒,那么2∠的度数是________.20.如图所示,△ABC 中,AB=10cm,AC=8cm,∠ABC 和∠ACB 的角平分线交于点O,过点O 作BC 的平行线MN 交AB 于点M,交AC 于点N,则△AMN 的周长为____.三、解答题21.(1)解不等式组()2311222x x x +>⎧⎪⎨-≤+⎪⎩(2)解方程:223124x x x --=+-. 22.在当今“互联网+”时代,有一种用“因式分解法”生成密码的方法:将一个多项式因式分解,如将多项式3222x x x +--分解的结果为()()()112.x x x -++当19x =时,118x -=,120x +=,221x +=,此时可得到数字密码182021.()1根据上述方法,当37x =,12y =时,对于多项式32x xy -分解因式后可以形成哪些数字密码(写出两个即可)?()2将多项式()32321x m n x nx +---因式分解后,利用题目中所示的方法,当87x =时可以得到密码808890,求m ,n 的值.23.边长为2的正方形ABCD 中,点E 是BD 上一点,过点E 作EF AE ⊥交射线CB 于点F ,且2BC BF =,则线段DE 的长为?24.如图,已知点,,,在一条直线上,,,(1)求证:; (2)若,,求的长.25.如图1是一个五角星.(1)计算:∠A+∠B+∠C+∠D+∠E 的度数.(2)当BE 向上移动,过点A 时,如图2,五个角的和(即∠CAD+∠B+∠C+∠D+∠E )有无变化?说明你的理由.(3)如图3,把图2中的点C 向上移到BD 上时,五个角的和(即∠CAD +∠B +∠ACE +∠D +∠E)有无变化?说明你的理由.【参考答案】一、选择题二、填空题16.217.b (a ﹣1)2.18.20°19..20.18三、解答题21.(1)16x -<≤ (2)54x =22.()1372549或374925 ;()272m =,25n =.23.2或2【解析】【分析】分两种情况讨论,①过点E 作MN BC ⊥,垂直为N ,交AD 于M ,先求出N 是CF 的中点,然后得出14=CN BN ,根据矩形和等腰三角形的性质得出==CN DM ME 即可求出答案;②过点E 作MN BC ⊥,垂直为N ,交AD 于M ,根据正方形和全等三角形的性质得出BAE BCE ∠=∠,然后再求出=FN CN ,3=FC ,32=CN ,12==EN BN ,最终即可求出DE .【详解】解:①过点E 作MN BC ⊥,垂直为N ,交AD 于M ,CE EF =,N ∴是CF 的中点.2BC BF =,14CN BN ∴=. 又四边形CDMN 是矩形,DME 为等腰直角三角形,CN DM ME ∴==,ED ∴===. ②过点E 作MN BC ⊥,垂直为N ,交AD 于M .正方形ABCD 关于BD 对称,ABE CBE ∴△≌△,BAE BCE ∴∠=∠,又90ABF AEF ∠︒∠==,BAE EFC ∴∠=∠,BCE EFC ∴∠=∠,CE EF ∴=.FN CN ∴=.又2BC BF =,3FC ∴=,32CN ∴=, 12EN BN ∴==,2DE ∴=.综上所述,ED 的长为2或2 【点睛】本题主要考查的是矩形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,掌握本题的辅助线的法则是解题的关键.24.(1)证明见解析;(2)BC=9.【解析】【分析】(1)利用线段的和差关系可得BC=EF ,利用平行线的性质可得∠B=∠F ,利用SAS 即可证明△ABC ≌△DFE ,可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)利用线段的和差关系即可求出BC 的长.【详解】∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,在△ABC 和△DFE 中,, ∴△ABC ≌△DFE ,∴∠ACE=∠DEF ,∴AC//DE.(2)∵BE=CF ,∴BF=BC+CF=BC+BC-CE=2BC-CE ,∵BF=13,CE=5,∴BC=9.【点睛】此题主要考查了全等三角形的判定和性质,全等三角形的判定方法有:SSS 、AAS 、ASA 、SAS 、HL 等,注意:SAS 时,角必须是两边的夹角,SSA 和AAA 不能判定两个三角形全等.熟练掌握全等三角形的判定方法是解题关键.25.:()1180A B C D E ∠+∠+∠+∠+∠=; ()2不变,180CAD B ACE D E ∠+∠+∠+∠+∠=; 理由见解析.(3)无变化.理由见解析.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济宁市鱼台县2018-2019学年八年级上学期数学期末考试试卷一、选择题1.下列图形是轴对称图形而不是中心对称图形的是()A. B. C. D.【答案】A【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A是轴对称图形而不是中心对称图形,而B、C、D既轴对称图形又是中心对称图形.故答案为:A.【分析】是轴对称而不是中心对称的图形是指,对折后能重叠,而旋转后却不能重叠的图形.2.(a2)3÷a4的计算结果是()A. aB. a2C. a4D. a5【答案】B【考点】幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:原式=a6÷a4=a2,故答案为:B.【分析】再按幂的乘方,底数不变,指数相乘,再算同底数幂的除法,底数不变,指数相减得出结果。
3.若分式有意义,则x的取值范围是( )A.x≠3B.x=3C.x<3D.x>3【答案】A【考点】分式有意义的条件【解析】【解答】解:依题可得:3-x≠0,解得:x≠3.故答案为:A.【分析】根据分式有意义的条件:分母不为0列出不等式,解之即可得出答案.4.若x2+kx+81是一个完全平方式,则k的值为( )A.18B.-18C.±9D.±18【答案】 D【考点】完全平方公式及运用【解析】【解答】解:∵x2+kx+81是一个完全平方式,∴k=±2×9=±18.故答案为:D.【分析】根据完全平方公式即可得出答案.5.计算(x2y)3的结果是( )A.x5yB.x5y3C.x6y3D.x2y3【答案】C【考点】积的乘方,幂的乘方【解析】【解答】解:∵(x2y)3 = x6y3.故答案为:C.【分析】根据幂的乘方、积的乘方公式计算即可.6.下列各式计算正确的是( )A.a+2a=3a2B.(-a3)2=a6C.a3·a2=a6D.(a+b)2=a2+b2【答案】B【考点】同底数幂的乘法,完全平方式,合并同类项法则及应用,积的乘方,幂的乘方【解析】【解答】解:A.∵a+2a=3a,故错误,A不符合题意;B.∵(-a3)2=a6,故正确,B符合题意;C.∵a3·a2=a5 ,故错误,C不符合题意;D.∵(a+b)2=a2+2ab+b2,故错误,D不符合题意;故答案为:B.【分析】A根据同类以及合并同类项法则即可判断错误;B根据幂的乘方计算即可判断正确;C根据同底数幂计算即可判断错误;D根据完全平方公式计算即可判断错误;7.下列各组数据能作为一个等腰三角形各边长的是()A. 1,1,2B. 4,2,4C. 2,3,4D. 3,3,7【答案】B【考点】三角形三边关系,等腰三角形的判定【解析】【解答】解:A、因为1+1=2,所以本组数据不可以构成等腰三角形;故本选项错误;B、因为4﹣4<2<4+4,所以本组数据可以构成等腰三角形;故本选项正确;C、因为这个三角形没有一组相等的边,所以构不成等腰三角形;故本选项错误;D、因为3+3<7,所以本组数据不可以构成等腰三角形;故本选项错误;故选B.【分析】根据三角形的三边关系对以下选项进行一一分析、判断.8.已知x2+3xy+y2=0(x≠0,y≠0),则分式的值等于( )A.[MISSING IMAGE: , ]B.- [MISSING IMAGE: , ]C.3D.-3【答案】 D【考点】代数式求值【解析】【解答】解:∵x2+3xy+y2=0(x≠0,y≠0),∴x2+y2=-3xy,∴=-3,即=-3.故答案为:D.【分析】将原等式移项得x2+y2=-3xy,再两边同时除以xy即可得出答案.9.如图.在△ABC中.∠B=30°.∠C=70°.AD是△ABC的一条角平分线.则∠CAD的角数为( )A.40°B.45°C.50°D.55°【答案】A【考点】三角形内角和定理【解析】【解答】解:∵∠B=30°,∠C=70°,∴∠BAC=180°-∠B-∠C,=180°-30°-70°,=80°,又∵AD平分∠BAC,∴∠CAD=∠BAC,=×80°,=40°.故答案为:A.【分析】根据三角形内角和定理结合已知条件求得∠BAC=80°,再由角平分线定义即可求得答案.10.如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A.14B.13C.12D.11【答案】C【考点】含30度角的直角三角形【解析】【解答】解:∵BE⊥AC,CF⊥AB,∴∠AEB=∠AFC=90°,∵∠A=60°,∴∠ABE=∠ACF=30°,在Rt△FBM中,∵FM=5,∴BM=2FM=10,在Rt△EMC中,∵CM=4,∴EM=CM=2,∴BE=BM+ME=10+2=12.故答案为:C.【分析】根据垂直的定义可知∠AEB=∠AFC=90°,由三角形内角和定理得∠ABE=∠ACF=30°,在Rt△FBM、Rt△EMC中,根据直角三角形的性质求得BM=10,EM=2,再由BE=BM+ME即可求得答案.二、填空题11.因式分解:4m2-n2=________.【答案】(2m+n)(2m-n)【考点】因式分解﹣运用公式法【解析】【解答】解:4m2-n2=(2m+n)(2m-n).【分析】根据平方差公式分解因式即可。
12.计算:=________【答案】a﹣2【考点】分式的加减法【解析】【解答】解:= =a﹣2.故答案为:a﹣2.【分析】本题属于同分母分式相加减,只需将分子相加减即可,不用通分,然后约分化简.13.点P(2,-5)关于x轴对称的点的坐标为________【答案】(2,5)【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:依题可得:点P(2,-5)关于x轴对称的点的坐标为:(2,5).故答案为:(2,5).【分析】根据点关于x轴对称特点:横坐标不变,纵坐标变为原来的相反数,由此即可得出答案.14.化简得________【答案】【考点】分式的约分【解析】【解答】解:原式=,=.故答案为:.【分析】先将原分式的分子、分母因式分解,再约分化简即可.15.已知10m=3,10n=2,则102m-n的值为________.【答案】【考点】积的乘方,幂的乘方【解析】【解答】解:∵10m=3,10n=2,∴102m-n = 102m÷ 10n,=(10m)2÷ 10n,=32÷ 2 ,=.故答案为:.【分析】先将102m-n利用同底数幂的除法和幂的乘方化简为(10m)2÷ 10n,结合已知条件代入、计算即可得出答案.三、计算题16.(1)计算:(-1)0-l-3I+( )-2-(-1)2012(2)( a2b)3(-9ab3)÷(- a5b3)【答案】(1)解:原式=1-3+4-1,=1.(2)解:原式=(a6b3)(-9ab3)÷(- a5b3) ,=×(-9)×(-2)(a6·a÷ a5)(b3·b3÷b3),=a2b3.【考点】单项式乘单项式,0指数幂的运算性质,负整数指数幂的运算性质,单项式除以单项式【解析】【分析】(1)根据零指数幂、负指数幂、乘方、绝对值化简、计算即可得出答案. (2)根据单项式乘以单项式、单项式除以单项式法则计算即可得出答案.17.解方程:(1)=1(2).【答案】(1)解:方程两边同时乘以x2-4得:2(x+2)-8=x2-4,解得:x=0,或x=2,经检验:x=0是原分式方程的根,x=2是原分式方程的增根,∴原分式方程的根为:x=0.(2)解:方程两边同时乘以x2-4得:2(x+2)+(x+2)=4,解得:x=2,经检验:x=2是原分式方程的增根,∴原分式方程无解.【考点】解分式方程【解析】【分析】先将原分式方程去分母转换成整式方程,解之,再检验即可得出答案.18.先化简,再请你用喜爱的数代入求值【答案】解:原式=【】×,=×-×,=x+2-,=,=,=,当x=1时,∴==3.【考点】利用分式运算化简求值【解析】【分析】先将原分式因式分解,再利用分式乘除法法则计算即可化简分式,再将x=1代入化简之后的分式,计算即可得出答案.19.已知:AB=CD,AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF.求证:AB∥CD.[MISSING IMAGE: , ]【答案】解:证明:∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,在Rt△AEB和Rt△DFC中,∵,∴Rt△AEB≌Rt△DFC(HL),∴∠B=∠C,∴AB∥DC.【考点】全等三角形的判定与性质【解析】【分析】根据垂直的定义可得∠AEB=∠DFC=90°,根据直角三角形全等的判定HL可得Rt△AEB≌Rt△DFC,再由全等三角形性质得∠B=∠C,根据平行线的判定即可得证.20.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC②AD=AE③∠1=∠2④BD=CE.[MISSING IMAGE: , ]请你以其中三个等式作为题设,余下的作为结论,写出一个正确的结论(要求写出已知,求证及证明过程) 【答案】解:如图,在△ABD和△ACE中,AB=AC,AD=AE,∠1=∠2 ,求证:BD=CE.证明:∵∠1=∠2 ,∴∠1+∠CAD=∠2 +∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE.【考点】全等三角形的判定与性质【解析】【分析】根据角的计算得∠BAD=∠CAE,根据全等三角形判定SAS得△BAD≌△CAE,由全等三角形性质即可得证.21.如图所示,在△ABC中,∠ABC=∠C,BD⊥AC交AC于D.求证:∠DBC= ∠A.【答案】证明:作AE⊥BC于点E,如图:∵∠ABC=∠C,∴AB=AC,又∵AE⊥BC,∴∠CAE=∠BAC,∠CAE+∠BCD=90°,∵BD⊥AC,∴∠DBC+∠BCD=90°,∴∠DBC=∠CAE=∠BAC.【考点】等腰三角形的性质【解析】【分析】作AE⊥BC于点E,根据等腰三角形性质:等角对等边得AB=AC,再由三角形三线合一有的性质得∠CAE=∠BAC,∠CAE+∠BCD=90°,由垂直定义和同角的余角相等即可得证.22.为了美化环境,某地政府计划对辖区内60km2的土地进行绿化,为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.【答案】解:设原计划平均每月的绿化面积为xkm2,则实际平均每月的绿化面积为1.5xkm2,依题可得:,解得:x=10,经检验:x=10是原分式方程的解,答:原计划平均每月的绿化面积为10km2.【考点】分式方程的实际应用【解析】【分析】设原计划平均每月的绿化面积为xkm2,则实际平均每月的绿化面积为1.5xkm2,根据等量关系式:计划的天数-实际的天数=2,列出方程,解之即可得出答案.23.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.[MISSING IMAGE: , ](1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【答案】(1)证明:∵∠A=∠BCD=90°,∴∠ABC+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE.(2)证明:连结AC,[MISSING IMAGE: , ]在△ABC和△EDC中,∵,∴△ABC≌△EDC中(SAS).【考点】全等三角形的判定与性质【解析】【分析】(1)根据同角的补角相等即可得证.(2)连结AC,根据全等三角形的判定SAS即可得证.24.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD 平行的直线交射线AM于点N.[MISSING IMAGE: , ](1)当A,B,C三点在同一直线上时(如图l),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中ABCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【答案】(1)证明:∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM,∵点M为DE中点,∴DM=EM,在△ADM和△ENM中,∵,∴△ADM≌△ENM(AAS),∴AM=NM,∴M为AN中点.(2)证明:∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°,∵AD∥NE,∴∠DAE+∠NEA=180°,又∵∠DAE=90°,∴∠NEA=90°,∴∠NEC=∠NEA+∠CEB=135°,∵A、B、E三点在同一条直线上,∴∠ABC=180°-∠CBE=135°,∴∠ABC=∠NEC,由(1)知△ADM≌△NEM,∴AD=NE,∵AD=AB,∴AB=NE,在△ABC和△NEC中,∵,∴△ABC≌△NEC(SAS),∴AC=NC,∠ACB=∠NCE,∴∠ACN=∠ACB+∠DCN=∠NCE+∠DCN=90°,∴△ACN为等腰直角三角形.(3)解:(2)中结论仍然成立,证明过程如下:在图3中,∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°,又∵∠BCE=90°,∴∠CBN+∠CEN=360°-90°-90°=180°,此时,A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°,∴∠ABC=∠NEC,由(1)知△ADM≌△NEM,∴AD=NE,∵AD=AB,∴AB=NE,在△ABC和△NEC中,∵,∴△ABC≌△NEC(SAS),∴AC=NC,∠ACB=∠NCE,∴∠ACN=∠BCE=90°,∴△ACN为等腰直角三角形.【考点】全等三角形的判定与性质,等腰直角三角形【解析】【分析】(1)由平行线性质得∠MAD=∠MNE,∠ADM=∠NEM,根据中点定义得DM=EM,再由全等三角形判定AAS得△ADM≌△ENM,根据全等三角形性质和中点定义即可得证.(2)根据等腰直角三角形性质可AB=AD,CB=CE,∠CBE=∠CEB=45°,根据平行线性质和垂直定义得∠ABC=∠NEC,由(1)知全等三角形性质和等量代换得AB=NE,根据全等三角形判定SAS得△ABC≌△NEC,由全等三角形性质和等量代换即可得证.(3)(2)中结论仍然成立,证明过程如下:在图3中,根据平行线的性质和垂直的定义得∠ABC=∠NEC,由(1)知全等三角形性质和等量代换得AB=NE,根据全等三角形判定SAS得△ABC≌△NEC,由全等三角形性质即可得证.。