(新课标)2018年高考物理一轮复习第四章曲线运动万有引力与航天突破全国卷试题

合集下载

(新课标)2018年高考物理一轮复习 第四章 曲线运动万有引力与航天 第二节 抛体运动随堂达标巩固落实讲义

(新课标)2018年高考物理一轮复习 第四章 曲线运动万有引力与航天 第二节 抛体运动随堂达标巩固落实讲义

A.石块被抛出瞬间速度大小为 12 m/s B.石块被抛出瞬间速度大小为 16 m/s C.石块落地瞬间速度大小为 20 m/s D.石块落地瞬间速度大小为 16 m/s
解析:选 BC.石块被抛出后做平抛运动,水平方向 s=v0t, 竖直方向 h=12gt2,抛出点到地面的高度 h=L+L·sin α,解 得 v0=16 m/s,选项 B 正确;石块落地时,竖直方向的速度 vy=gt=12 m/s,落地速度 vt= v02+v2y=20 m/s,选项 C 正 确.
h2=h-12gL-v s2=1.0 m
两弹孔之间的距离Δ h=h2-h1=0.45 m.
(3)若第一发子弹打到靶的下沿(第二发打到靶上),装甲车枪 口离靶的距离为 L1 L1=(v0+v) 2gh=492 m 若第二发子弹打到靶的下沿(第一发打到地上),装甲车枪口 离靶的距离为 L2
L2=v 2gh+s=570 m 故 L 的范围为 492 m<L≤570 m. 答案:(1)290 m/s2 (2)0.55 m 0.45 m (3)492 m<L≤570 m
D.cos α· cos α
解析:选 C.根据平抛运动得甲小球水平方向的位移为 xA= Rsin α=v1t1,竖直方向的位移为 yA=Rcos α=12gt21,解得 v1

1 2gR
sin α ;乙小球水平方向的位移为 cos α
xB=Rcos
α=
v2t2,竖直方向的位移为 yB=Rsin α=12gt22,解得 v2= 12gR csoisnαα,所以有vv12=tan α· tan α.选项 C 正确.
加速度的大小 g=10 m/s2.可求得 h 等于( )
A.1.25 m
B.2.25 m

2018版高考物理(全国通用)大一轮复习讲义文档:第四章曲线运动万有引力与航天第2讲含答案

2018版高考物理(全国通用)大一轮复习讲义文档:第四章曲线运动万有引力与航天第2讲含答案

第2讲平抛运动一、平抛运动1。

定义:以一定的初速度沿水平方向抛出的物体只在重力作用下的运动.2.性质:平抛运动是加速度为g的匀加速曲线运动,其运动轨迹是抛物线。

3.平抛运动的条件(1)v0≠0,沿水平方向;(2)只受重力作用。

4.研究方法平抛运动可以分解为水平方向的匀速直线运动和竖直方向的匀变速直线运动.5。

基本规律(如图1所示)图1水平方向v x=v0,x=v0t竖直方向v y=gt,y=错误!gt2合速度大小v=错误!=错误!方向与水平方向夹角的正切tan θ=错误!=错误!合位移大小s=错误!方向与水平方向夹角的正切tan α=错误!=错误!轨迹方程y=错误!x2[深度思考] 从离水平地面某一高度的地方平抛的物体,其落地的时间由哪些因素决定?其水平射程由哪些因素决定?平抛的初速度越大,水平射程越大吗?答案运动时间t=错误!,取决于高度h和当地的重力加速度g。

水平射程x=v0t=v0错误!,取决于初速度v0、高度h和当地的重力加速度g。

当高度、重力加速度一定时,初速度越大,水平射程越大。

二、斜抛运动(说明:斜抛运动只作定性要求)1。

定义将物体以初速度v0沿斜向上方或斜向下方抛出,物体只在重力作用下的运动。

2。

性质加速度为重力加速度g的匀变速曲线运动,轨迹是抛物线.3.研究方法斜抛运动可以看做水平方向的匀速直线运动和竖直方向的匀变速直线运动的合运动。

1。

判断下列说法是否正确.(1)平抛运动的轨迹是抛物线,速度方向时刻变化,加速度方向也可能时刻变化。

(×)(2)无论初速度是斜向上方还是斜向下方的斜抛运动都是匀变速曲线运动。

(√)(3)做平抛运动的物体质量越大,水平位移越大.(×)(4)做平抛运动的物体初速度越大,落地时竖直方向的速度越大。

(×) (5)从同一高度水平抛出的物体,不计空气阻力,初速度大的落地速度大.(√)2。

(人教版必修2P10做一做改编)(多选)为了验证平抛运动的小球在竖直方向上做自由落体运动,用如图2所示的装置进行实验.小锤打击弹性金属片后,A球水平抛出,同时B球被松开,自由下落,关于该实验,下列说法中正确的有()图2A.两球的质量应相等B。

(新课标)2018版高考物理一轮复习第四章曲线运动万有引力与航天专题五平抛运动、圆周运动热点问题分析教案

(新课标)2018版高考物理一轮复习第四章曲线运动万有引力与航天专题五平抛运动、圆周运动热点问题分析教案

专题五平抛运动、圆周运动热点问题分析突破水平面内圆周运动的临界问题1.水平面内圆周运动的临界问题关于水平面内的匀速圆周运动的临界问题,主要是临界速度和临界力的问题.常见的是与绳的拉力、弹簧的拉力、接触面的弹力和摩擦力等相关的问题.通过受力分析来确定临界状态和临界条件,是较常用的解题方法.2.处理临界问题的解题步骤(1)判断临界状态有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往是临界状态.(2)确定临界条件判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来.(3)选择物理规律当确定了物体运动的临界状态和临界条件后,要分别对于不同的运动过程或现象,选择相对应的物理规律,然后再列方程求解.[典例1] (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg[问题探究] (1)物体随圆盘共同转动时,哪个物体受到的摩擦力大?(2)随着ω不断增大,哪个物体首先达到最大静摩擦力?谁先开始滑动?[提示] (1)根据F f =m ω2r 可知,b 物体受到的摩擦力大.(2)随着ω增大,b 物体先达到最大静摩擦力,所以b 物体先相对圆盘滑动.[解析] 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F fm =kmg 相同.它们所需的向心力由F 向=m ω2r 知F a <F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起绕转轴缓慢地转动时,F f =m ω2r ,r 不同,所受的摩擦力不同,B 项错误;b 开始滑动时有kmg =m ω2·2l ,其临界角速度为ωb =kg 2l ,选项C 正确;当ω=2kg 3l时,a 所受摩擦力大小为F f =m ω2r =23kmg ,选项D 错误.[答案] AC[变式1] (多选)如图所示,两个可视为质点的、相同的木块A 和B 放在水平转盘上,且木块A 、B 与转盘中心在同一条直线上,两木块用长为L 的轻绳连接,木块与转盘之间的最大静摩擦力均为各自重力的k 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的竖直转轴O 1O 2转动.开始时,绳恰好伸直但无弹力.现让该装置从静止开始转动,角速度缓慢增大,以下说法正确的是( )A.当ω>2kg3L时,A 、B 会相对于转盘滑动 B.当ω>kg2L 时,绳子一定有弹力 C.ω在kg 2L<ω<2kg3L范围内增大时,B 所受摩擦力变大 D.ω在0<ω<2kg3L范围内增大时,A 所受摩擦力一直变大 答案:ABD 解析:若木块A 、B 间没有轻绳相连,随着ω的逐渐增大,由F f =m ω2r 可知木块B 先出现相对滑动.木块A 、B 间有轻绳相连时,木块B 刚好要出现相对滑动,此时轻绳上弹力为零,以木块B 为研究对象可知kmg =m ω2·2L ,则ω=kg2L.若木块A 刚好要出现相对滑动,对木块B 有F T +kmg =m ω2·2L ,对木块A 有kmg -F T =m ω2L ,则ω=2kg3L.综上所述可知,当0<ω≤kg 2L时,绳子没有弹力,木块A 、B 各自的摩擦力均随ω的增大而增大;当kg2L <ω≤2kg3L时,绳子有弹力,且木块B 的摩擦力达到最大值,而木块A 的摩擦力随ω的增大而增大;当ω>2kg3L时,木块A、B会相对于转盘滑动.故A、B、D 正确,C错误.突破竖直面内圆周运动的临界问题1.在竖直面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”;二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”.2.轻绳和轻杆模型涉及的临界问题[典例2] 如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是( )A.过山车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B.人在最高点时对座位不可能产生大小为mg 的压力C.人在最低点时对座位的压力等于mgD.人在最低点时对座位的压力大于mg[解析] 人过最高点时,F N +mg =m v 2R ,当v ≥gR 时,不用保险带,人也不会掉下来,当v =2gR 时,人在最高点时对座位产生的压力为mg ,A 、B 均错误;人在最低点具有竖直向上的加速度,处于超重状态,故人此时对座位的压力大于mg ,C 错误,D 正确.[答案] D[变式2] 如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小得多).现给小球一个水平向右的初速度v 0,要使小球不脱离圆轨道,则v 0应满足(取g =10 m/s 2)( )①v 0≥0 ②v 0≥4 m/s ③v 0≥2 5 m/s ④v 0≤2 2 m/s A.①和④ B.②或④ C.③或④ D.②和③答案:C 解析:当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg ≤mv 2r ,根据机械能守恒定律有12mv 2+2mgr =12mv 20,可得v 0≥2 5 m/s ;当v 0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置时速度恰好减为零,根据机械能守恒定律有mgr =12mv 20,可得v 0≤2 2 m/s ,选项C 正确.考向2 轻杆模型[典例3] (2017·山东烟台模拟)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是gRC.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小[解析] 轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R ,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R,随v 增大,F 增大,故C 、D 均错误.[答案] A[变式3] 如图所示,小球紧贴在竖直放置的光滑圆形管道内壁做圆周运动,内侧管壁半径为R ,小球半径为r ,则下列说法正确的是( )A.小球通过最高点时的最小速度v min =g R +r )B.小球通过最高点时的最小速度v min =gRC.小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力答案:C 解析:小球沿管道上升到最高点时的速度可以为零,选项A 、B 错误;小球在水平线ab 以下的管道中运动时,由外侧管壁对小球的作用力F N 与小球的重力在背离圆心方向的分力F mg 的合力提供向心力,即F N -F mg =ma ,因此,外侧管壁一定对小球有作用力,而内侧管壁对小球无作用力,选项C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力情况与小球的速度大小有关,选项D错误.解决竖直平面内圆周运动的关键点(1)确定模型:首先判断是轻绳模型还是轻杆模型.(2)确定临界点:v临界=gr,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.突破平抛、圆周运动综合问题1.题目特点:此问题一般涉及圆周运动、平抛运动(或类平抛运动)、匀变速直线运动等多个运动过程,常结合功能关系进行求解.2.解答突破(1)分析临界点:对于物体在临界点相关多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口.(2)分析每个运动过程的运动性质:①若为圆周运动,应明确是水平面内的匀速圆周运动,还是竖直面内的变速圆周运动,机械能是否守恒.②若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是哪个力.考向1 水平面内圆周运动与平抛运动的综合问题[典例4] (2017·山西八校一联)如图所示,质量是1 kg的小球用长为0.5 m 的细线悬挂在O点,O点距地面竖直距离为1 m,如果使小球绕OO′轴在水平面内做圆周运动,若细线最大承受拉力为12.5 N,(取g=10 m/s2)求:(1)当小球的角速度为多大时,细线将断裂;(2)线断裂后小球落地点与悬点的水平距离.[解析] (1)当细线承受的拉力恰为最大时,对小球受力分析,如图所示:竖直方向F T cos θ=mg 得:θ=37° 向心力F 向=mg tan 37°=m ω2L sin 37° 解得:ω=5 rad/s.(2)线断裂后,小球做平抛运动,则其平抛运动的初速度为:v 0=ωL sin 37°=1.5 m/s 竖直方向:y =h -L cos 37°=12gt 2水平方向:x =v 0t解得d =L 2sin 2θ+x 2=0.6 m. [答案] (1)5 rad/s (2)0.6 m考向2 竖直面内圆周运动与平抛运动的综合问题[典例5] 如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球.现使小球恰好能在竖直面内做完整的圆周运动.已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L .不计空气阻力.(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力F T 恰好为小球重力的6倍,且小球经过B 点的瞬间细线断裂,求小球的落地点到C 点的距离.[解析] (1)若小球恰好能做完整的圆周运动,则小球通过A 点时细线的拉力刚好为零,根据向心力公式有mg =m v 2AL解得v A =gL .(2)小球在B 点时,根据牛顿第二定律有F T -mg =m v 2BL其中F T =6mg解得小球在B 点的速度大小为v B =5gL细线断裂后,小球从B 点开始做平抛运动,则由平抛运动的规律得 竖直方向上:1.9L -L =12gt 2水平方向上:x =v B t解得x =3L即小球落地点到C 点的距离为3L . [答案] (1)gL (2)3L圆周运动与平抛运动综合问题解题关键(1)明确圆周运动的向心力来源,根据牛顿第二定律和向心力公式列方程. (2)平抛运动一般是沿水平方向和竖直方向分解速度或位移.(3)速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度.1.[圆周运动中力和运动的关系]在室内自行车比赛中,运动员以速度v 在倾角为θ的赛道上做匀速圆周运动.已知运动员的质量为m ,做圆周运动的半径为R ,重力加速度为g ,则下列说法正确的是( )A.将运动员和自行车看做一个整体,整体受重力、支持力、摩擦力和向心力的作用B.运动员受到的合力大小为m v 2R ,做圆周运动的向心力大小也是m v 2RC.运动员做圆周运动的角速度为vRD.如果运动员减速,运动员将做离心运动答案:B 解析:向心力是整体所受力的合力,选项A 错误;做匀速圆周运动的物体,合力提供向心力,选项B 正确;运动员做圆周运动的角速度为ω=vR,选项C 错误;只有运动员加速到所受合力不足以提供做圆周运动的向心力时,运动员才做离心运动,选项D 错误.2.[竖直面内的圆周运动](多选)如图所示,水平的木板B 托着木块A 一起在竖直平面内做匀速圆周运动,从水平位置a 沿逆时针方向运动到最高点b 的过程中,下列说法正确的是( )A.木块A 处于超重状态B.木块A 处于失重状态C.B 对A 的摩擦力越来越小D.B 对A 的摩擦力越来越大答案:BC 解析:A 、B 一起做匀速圆周运动,合力提供向心力,加速度即向心加速度.水平位置a 沿逆时针方向运动到最高点b 的过程中,加速度大小不变,方向指向圆心.在竖直方向有竖直向下的分加速度,因此A 、B 都处于失重状态,A 错误,B 正确;对A 受力分析,加速度指向圆心,那么此过程中水平方向加速度逐渐减小,而能够提供A 水平加速度的力只有B 对A 的摩擦力,因此B 对A 的摩擦力越来越小,C 正确,D 错误.3.[水平面内圆周运动的临界问题](多选)如图所示,在水平转台的光滑水平横杆上穿有两个质量分别为2m 和m 的小球A 和B ,A 、B 间用劲度系数为k 的轻质弹簧连接,弹簧的自然长度为L ,转台的直径为2L ,当转台以角速度ω绕竖直轴匀速转动时,如果A 、B 仍能相对横杆静止而不碰左右两壁,则( )A.小球A 和B 具有相同的角速度B.小球A 和B 做圆周运动的半径之比为1∶2C.若小球不与壁相碰,则ω>k mD.若小球不与壁相碰,则ω<k 2m答案:ABD 解析:A 、B 两球共轴转动,角速度相同,故A 正确.两球靠弹簧的弹力提供向心力,知两球向心力大小相等,2mr 1ω2=mr 2ω2,解得r 1∶r 2=1∶2,故B 正确.转台的直径为2L ,则r 2<L ,由mr 2ω2=k ⎝⎛⎭⎪⎫r 2-L 2解得ω<k2m,故C 错误,D 正确. 4.[轻绳模型的应用]如图所示,小球沿水平面通过O 点进入半径为R 的半圆弧轨道后恰能通过最高点P ,然后落回水平面,不计一切阻力,下列说法正确的是( )A.小球落地点离O 点的水平距离为RB.小球落地点离O 点的水平距离为2RC.小球运动到半圆弧最高点P 时向心力恰好为零D.若将半圆弧轨道上部的14圆弧截去,其他条件不变,则小球能达到的最大高度比P 点低答案:B 解析:若小球恰能通过最高点P ,则在最高点P 时重力恰好提供向心力,选项C 错误;由圆周运动的知识可得mg =m v 2R ,小球离开P 点后做平抛运动,x =vt,2R =12gt 2,解得x =2R ,故选项A 错误,B 正确;若将弧轨道上部的14圆弧截去,其他条件不变,则小球离开轨道后做竖直上抛运动,达到最大高度时速度为零,故能达到的最大高度比P 点高,选项D 错误.5.[平抛、圆周运动综合问题](多选)如图所示,半径为R 的水平圆盘中心轴正上方a 处水平抛出一小球,圆盘以角速度ω做匀速转动,当圆盘半径Ob 恰好转到与初速度方向相同且平行的位置时,将小球抛出,要使球与圆盘只碰一次,且落点为b ,重力加速度为g ,小球抛出点a 距圆盘的高度h 和小球的初速度v 0可能应满足( )A.h =g π2ω2,v 0=R ω2πB.h =8π2g ω2,v 0=R ω4πC.h =2g π2ω2,v 0=R ω6πD.h =32π2g ω2,v 0=R ω8π答案:BD 解析:因圆盘转动具有周期性,则当小球落到b 点时,圆盘转过的角度θ=2πk (k =1,2,3,…),由ω=θt ,可得圆盘的角速度ω=2πkt(k =1,2,3,…),因小球做平抛运动,则小球下落高度h =12gt 2=2π2gk 2ω2(k =1,2,3,…),初速度v 0=R t =R ω2πk (k =1,2,3,…),将k 的取值代入可知,当k 取2和4时,B 、D 正确.。

(新课标)2018年高考物理一轮复习 第四章 曲线运动万有引力与航天 第三节 圆周运动试题

(新课标)2018年高考物理一轮复习 第四章 曲线运动万有引力与航天 第三节 圆周运动试题

第三节 圆周运动一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,f =1T.4.向心加速度:描述线速度方向变化的快慢.a n =r ω2=v 2r =ωv =4π2T2r .5.向心力:作用效果为产生向心加速度,F n =ma n .1.(多选)一质点做匀速圆周运动,其线速度大小为4 m/s ,转动周期为2 s ,则( )A .角速度为0.5 rad/sB .转速为0.5 r/sC .轨迹半径为4π mD .加速度大小为4π m/s 2提示:选BCD.由ω=2πT ,n =ω2π,v =2πr T 及a =v2r 可知,选项B 、C 、D 正确,A 错误.二、匀速圆周运动 1.匀速圆周运动的向心力(1)大小:F =m v 2r =m ω2r =m 4π2T2r =m ωv =4π2mf 2r .(2)方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. (3)作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小. 2.匀速圆周运动与非匀速圆周运动的比较2.判断正误(1)匀速圆周运动是匀变速曲线运动.( )(2)在做圆周运动时向心加速度大小不变,方向时刻改变.( )(3)当物体所受合力全部用来提供向心力时,物体做匀速圆周运动.( )(4)做变速圆周运动的物体,只有在某些特殊位置,合力方向才指向圆心.( )提示:(1)×(2)×(3)√(4)√三、离心运动1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动.2.供需关系与运动:如图所示,F为实际提供的向心力,则(1)当F=mω2r时,物体做匀速圆周运动;(2)当F=0时,物体沿切线方向飞出;(3)当F<mω2r时,物体逐渐远离圆心;(4)当F>mω2r时,物体逐渐靠近圆心.3.(多选)如图所示,光滑水平面上,质量为m的小球在拉力F作用下做匀速圆周运动.若小球运动到P点时,拉力F发生变化,下列关于小球运动情况说法中正确的是( )A.若拉力突然变大,小球将沿轨迹Pb做离心运动B.若拉力突然变小,小球将沿轨迹Pb做离心运动C.若拉力突然消失,小球将沿轨迹Pa做离心运动D.若拉力突然变小,小球将沿轨迹Pc做向心运动提示:选BC.若拉力减小,物体做离心运动,小球会沿Pb运动,选项B正确、D错误;若拉力消失,小球会沿切线Pa飞出,故选项C正确;当拉力变大时小球做近心运动,故A 错误.对传动装置问题的求解【知识提炼】在分析传动装置的物理量时,要抓住不等量和相等量的关系,表现为:1.同一转轴的各点角速度ω相同,而线速度v =ωr 与半径r 成正比,向心加速度大小a =ω2r 与半径r 成正比.2.当皮带不打滑时,用皮带连接的两轮边缘上的各点线速度大小相等,由ω=v r可知,ω与r 成反比,由a =v 2r可知,a 与r 成反比.【典题例析】(多选)(2017·山东聊城模拟)如图所示为一皮带传动装置,右轮的半径为r ,A是它边缘上的一点.左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r .B 点在小轮上,它到小轮中心的距离为r .C 点和D 点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则( )A .A 点与B 点的线速度大小相等 B .A 点与B 点的角速度大小相等C .A 点与C 点的线速度大小相等D .A 点与D 点的向心加速度大小相等[审题指导] A 点与B 点既不共轴也不同在皮带上,故线速度、角速度大小均不相等.A 与C 同皮带线速度大小相等.[解析] 由于A 、C 两点同在皮带上,故v A =v C ,C 正确;B 、C 、D 三点绕同一轴运动,故ωB =ωC =ωD =ω2,由v =ωr 得v B =ω2r ,v C =2ω2r ,v D =4ω2r ,v A =ω1r ,则ω1=2ω2,v A =v C >v B ,再根据a =ω2r 可得a A =a D ,故A 、B 错误,D 正确.[答案] CD(多选)如图所示为某一皮带传动装置.M 是主动轮,其半径为r 1,M ′半径也为r 1,M ′和N 在同一轴上,N 和N ′的半径都为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.则下列说法正确的是( )A .N ′轮做的是逆时针转动B .N ′轮做的是顺时针转动C .N ′轮的转速为⎝ ⎛⎭⎪⎫r 1r 22n D .N ′轮的转速为⎝ ⎛⎭⎪⎫r 2r 12n 解析:选BC.根据皮带传动关系可以看出,N 轮和M 轮转动方向相反,N ′轮和N 轮的转动方向相反,因此N ′轮的转动方向为顺时针,A 错误,B 正确.皮带与轮边缘接触处的速度相等,所以2πnr 1=2πn 2r 2,得N (或M ′)轮的转速为n 2=nr 1r 2,同理2πn 2r 1=2πn ′2r 2,得N ′轮转速n ′2=⎝ ⎛⎭⎪⎫r 1r 22n ,C 正确,D 错误.水平面内的圆周运动 【知识提炼】1.运动实例:圆锥摆、车辆转弯、飞机在水平面内盘旋等. 2.运动特点:运动轨迹为圆且在水平面内. 3.受力特点(1)物体所受合外力大小不变,方向沿水平方向指向圆心,提供向心力. (2)竖直方向的合力为零.【典题例析】如图所示,用一根长为l =1 m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T .(g 取10 m/s 2,结果可用根式表示)(1)若要小球离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?[审题指导] (1)小球离开锥面的临界条件是小球仍沿锥面运动,支持力为零. (2)细线与竖直方向夹角为60°时,小球离开锥面,做圆锥摆运动. [解析] (1)若要小球刚好离开锥面,此时小球只受到重力和细线拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=m ω20l sin θ解得:ω20=g l cos θ即ω0=g l cos θ=522 rad/s. (2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式:mg tan α=m ω′2l sin α解得ω′2=g l cos α,即ω′=gl cos α=2 5 rad/s.[答案] (1)522 rad/s (2)2 5 rad/s水平面内圆周运动的处理方法质点随水平圆盘一起转动、火车转弯、汽车转弯、飞机在空中的盘旋、开口向上的光滑圆锥体内小球绕竖直轴线的圆周运动等,都是水平面内圆周运动的典型实例,其受力特点是合力沿水平方向指向轨迹内侧,求解时要明确物体所受的合外力提供向心力⎝ ⎛⎭⎪⎫F =m v 2R =m ω2R =m 4π2R T 2.以质点随水平圆盘一起转动为例,质点与圆盘面之间的静摩擦力提供向心力.静摩擦力随速度的增大而增大,当静摩擦力增大到最大静摩擦力时,质点达到保持圆周运动的最大速度.若速度继续增大,质点将做离心运动.【跟进题组】考向1 车辆转弯问题1.(多选)(2015·高考浙江卷)如图所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等解析:选ACD.由几何关系可得,路线①、②、③赛车通过的路程分别为:(πr +2r )、(2πr +2r )和2πr ,可知路线①的路程最短,选项A 正确;圆周运动时的最大速率对应着最大静摩擦力提供向心力的情形,即μmg =m v 2R,可得最大速率v =μgR ,则知②和③的速率相等,且大于①的速率,选项B 错误;根据t =s v,可得①、②、③所用的时间分别为t 1=(π+2)r μgr ,t 2=2r (π+1)2μgr ,t 3=2r π2μgr,其中t 3最小,可知路线③所用时间最短,选项C 正确;在圆弧轨道上,由牛顿第二定律可得:μmg =ma 向,a 向=μg ,可知三条路线上的向心加速度大小均为μg ,选项D 正确.考向2 圆锥摆模型2.(多选)如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O 点,设法让两个小球均在水平面上做匀速圆周运动.已知L 1跟竖直方向的夹角为60°,L 2跟竖直方向的夹角为30°,下列说法正确的是( )A .细线L 1和细线L 2所受的拉力大小之比为 3∶1B .小球m 1和m 2的角速度大小之比为 3∶1C .小球m 1和m 2的向心力大小之比为3∶1D .小球m 1和m 2的线速度大小之比为33∶1解析:选AC.对任一小球进行研究,设细线与竖直方向的夹角为θ,竖直方向受力平衡,则T cos θ=mg ,解得T =mg cos θ,所以细线L 1和细线L 2所受的拉力大小之比为T 1T 2=cos 30°cos 60°=31,故A 正确;小球所受合力的大小为mg tan θ,根据牛顿第 二定律得mg tan θ=mL ω2sin θ,得ω2=g L cos θ,故两小球的角速度大小之比为ω1ω2=cos 30°cos 60°=431,故B 错误;小球所受合力提供向心力,则向心力为F =mg tan θ,小球m 1和m 2的向心力大小之比为F 1F 2=tan 60°tan 30°=3,故C 正确.两小球角速度大小之比为43∶1,由v =ωr 得线速度大小之比为33∶1,故D 错误.考向3 水平面内圆周运动的临界问题3.(多选)(高考全国卷Ⅰ)如图,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析:选AC.小木块发生相对滑动之前,静摩擦力提供向心力,由牛顿第二定律得,f =mω2r,显然b受到的摩擦力较大;当木块刚要相对于盘滑动时,静摩擦力f达到最大值f max,由题设知f max=kmg,所以kmg=mω2r,由此可以求得木块刚要滑动时的临界角速度ω0=kgr,由此得a发生相对滑动的临界角速度为kgl,b发生相对滑动的临界角速度为kg2l;若ω=2kg3l,a受到的是静摩擦力,大小为f=mω2l=23kmg.综上所述,本题正确答案为A、C.竖直面内的圆周运动【知识提炼】1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直平面内的圆周运动一定是变速圆周运动,遵守机械能守恒.3.竖直平面内的变速圆周运动问题,往往涉及最高点和最低点的两种情形.运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.绳、杆模型常涉及临界问题,分析如下:如图,一不可伸长的轻绳上端悬挂于O 点,下端系一质量m=1.0 kg 的小球.现将小球拉到A 点(保持绳绷直)由静止释放,当它经过B 点时绳恰好被拉断,小球平抛后落在水平地面上的C 点.地面上的D 点与OB 在同一竖直线上,已知绳长L =1.0 m ,B 点离地高度H =1.0 m ,A 、B 两点的高度差 h =0.5 m ,重力加速度g 取10 m/s 2,不计空气影响,求:(1)地面上DC 两点间的距离x ; (2)轻绳所受的最大拉力大小.[审题指导] (1)小球从A →B 做圆周运动,其机械能守恒,轻绳断前瞬间绳拉力与重力的合力提供向心力.(2)绳断瞬间,小球速度方向水平,做平抛运动.平抛初速度等于绳断瞬间的速度. [解析] (1)小球从A 到B 过程机械能守恒,有mgh =12mv 2B ①小球从B 到C 做平抛运动,在竖直方向上有H =12gt 2②在水平方向上有x =v B t ③ 由①②③式解得x ≈1.41 m.(2)小球下摆到达B 点时,绳的拉力和重力的合力提供向心力,有F -mg =m v 2BL④由①④式解得F =20 N 根据牛顿第三定律得F ′=-F 故轻绳所受的最大拉力大小为20 N. [答案] (1)1.41 m (2)20 N解决圆周运动问题的基本思路(1)寻找向心力的来源:对物体进行受力分析,列出向心力表达式. (2)临界条件的判断:找出特殊位置的临界速度,分析可能存在的状态. (3)动能定理的应用:把特殊点推广到一般,研究整个运动过程的特点.【跟进题组】考向1 汽车过拱桥模型1.(2015·高考福建卷)如图,在竖直平面内,滑道ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上.若小滑块第一次由A 滑到C ,所用的时间为t 1,第二次由C 滑到A ,所用的时间为t 2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( )A .t 1<t 2B .t 1=t 2C .t 1>t 2D .无法比较t 1、t 2的大小解析:选A.在滑道AB 段上取任意一点E ,比较从A 点到E 点的速度v 1和从C 点到E 点的速度v 2,易知v 1>v 2.因E 点处于“凸”形轨道上,速度越大,轨道对小滑块的支持力越小,因动摩擦因数恒定,则摩擦力越小,可知由A 滑到C 比由C 滑到A 在AB 段上的摩擦力小,因摩擦造成的动能损失也小.同理,在滑道BC 段的“凹”形轨道上,小滑块速度越小,其所受支持力越小,摩擦力也越小,因摩擦造成的动能损失也越小,从C 处开始滑动时,小滑块损失的动能更大.故综上所述,从A 滑到C 比从C 滑到A 在轨道上因摩擦造成的动能损失要小,整个过程中从A 滑到C 平均速度要更大一些,故t 1<t 2.选项A 正确.考向2 轻绳模型2.(2016·高考全国卷甲)小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点 ( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度解析:选C.小球从释放到最低点的过程中,只有重力做功,由机械能守恒定律可知,mgL =12mv 2,v =2gL ,绳长L 越长,小球到最低点时的速度越大,A 项错误;由于P 球的质量大于Q 球的质量,由E k =12mv 2可知,不能确定两球动能的大小关系,B 项错误;在最低点,根据牛顿第二定律可知,F -mg =m v 2L ,求得F =3mg ,由于P 球的质量大于Q 球的质量,因此C 项正确;由a =v 2L=2g 可知,两球在最低点的向心加速度相等,D 项错误.考向3 轻杆模型3.(多选)(2017·东城区模拟)长为L 的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内做圆周运动,关于小球在最高点的速度v ,下列说法中正确的是( )A .当v 的值为gL 时,杆对小球的弹力为零B .当v 由gL 逐渐增大时,杆对小球的拉力逐渐增大C .当v 由gL 逐渐减小时,杆对小球的支持力逐渐减小D .当v 由零逐渐增大时,向心力也逐渐增大解析:选ABD.在最高点球对杆的作用力为0时,由牛顿第二定律得:mg =mv 2L ,v =gL ,A 对;当v >gL 时,轻杆对球有拉力,则F +mg =mv 2L ,v 增大,F 增大,B 对;当v <gL 时,轻杆对球有支持力,则mg -F ′=mv 2L ,v 减小,F ′增大,C 错;由F 向=mv 2L知,v 增大,向心力增大,D 对.1.如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为( )A.ω1r 1r 3B .ω1r 3r 1C.ω1r 3r 2D .ω1r 1r 2解析:选A.本题相当于皮带轮的连接,各个轮边缘的线速度大小相同.即v 1=ω1r 1=v 2=ω2r 2=v 3=ω3r 3,故A 项正确.2.如图所示,水平圆盘可绕通过圆心的竖直轴转动,盘上放两个小物体P 和Q ,它们的质量相同,与圆盘的最大静摩擦力都是f m ,两物体中间用一根细线连接,细线过圆心O ,P 离圆心距离为r 1,Q 离圆心距离为r 2,且r 1<r 2,两个物体随圆盘以角速度ω匀速转动,且两个物体始终与圆盘保持相对静止,则( )A .ω取不同值时,P 和Q 所受静摩擦力均指向圆心B .ω取不同值时,Q 所受静摩擦力始终指向圆心,而P 所受静摩擦力可能指向圆心,也可能背离圆心C .ω取不同值时,P 所受静摩擦力始终指向圆心,而Q 所受静摩擦力可能指向圆心,也可能背离圆心D .ω取不同值时,P 和Q 所受静摩擦力可能都指向圆心,也可能都背离圆心 解析:选B.设P 、Q 质量均为m ,当角速度ω较小时,做圆周运动的向心力均由盘对其的静摩擦力提供,细线伸直但无张力.当m ω2r =f m 即ω=f mmr时,若再增大ω,则静摩擦力不足以提供做圆周运动所需的向心力,细线中开始出现张力,不足的部分由细线中张力提供,对Q 而言有T +f m =m ω2r 2,而此时对P 而言有T +f =m ω2r 1;随着细线张力的增大,P 受到的指向圆心的静摩擦力会逐渐减小,当T >m ω2r 1时,P 受到的静摩擦力开始背离圆心,B 项正确.3.(多选)(2016·高考浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s解析:选AB.因赛车在圆弧弯道上做匀速圆周运动,由向心力公式有F =m v 2R,则在大小圆弧弯道上的运动速率分别为v大=FR m= 2.25mgRm=45 m/s ,v小=Fr m= 2.25mgrm=30 m/s ,可知赛车在绕过小圆弧弯道后做加速运动,则A 、B 项正确;由几何关系得直道长度为d =L 2-(R -r )2=50 3 m ,由运动学公式v 2大-v 2小=2ad ,得赛车在直道上的加速度大小为a =6.50 m/s 2,则C 项错误;赛车在小圆弧弯道上运动时间t =2πr 3v 小=2.79 s ,则D 项错误.4.(高考全国卷Ⅱ)如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g ,当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析:选C.设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F ′N =F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F ′N =Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误.5.某实验小组做了如下实验,装置如图甲所示.竖直平面内的光滑轨道由倾角为θ的斜面轨道AB 和圆弧轨道BCD 组成,将可视为质点的小球,从轨道AB 上高H 处的某点由静止释放,用压力传感器测出小球经过圆弧最高点D 时对轨道的压力F ,改变H 的大小,可测出相应的F 大小,F 随H 的变化关系如图乙所示.已知小球经过圆弧最高点D 时的速度大小v D 与轨道半径R 和H 的关系满足v 2D =2gH -4gR ,且v D ≥gR ,g 取10 m/s 2.(1)求圆轨道的半径R 和小球的质量m ;(2)若小球从D 点水平飞出后又落到斜面上,其中最低的位置与圆心O 等高,求此时θ的值.解析:(1)由题意,小球在D 点的速度大小满足v 2D =2gH -4gR在D 点,由牛顿第二定律得mg +F ′=m v 2DR又F ′=F ,解得F =2mgRH -5mg根据图象得m =0.1 kg ,R =0.2 m.(2)小球落在斜面上最低的位置时,在D 点的速度最小,根据题意,小球恰能到达D 点时,在D 点的速度最小,设最小速度为v ,则有mg =mv 2R解得v =gR由平抛运动规律得R =12gt 2,s =vt解得s =2R ,由几何关系可得s sin θ=R , 解得θ=45°.答案:(1)0.2 m 0.1 kg (2)45°一、单项选择题1.轮箱沿如图所示的逆时针方向在竖直平面内做匀速圆周运动,圆半径为R ,速率v <Rg ,AC 为水平直径,BD 为竖直直径.物块相对于轮箱静止,则( )A .物块始终受两个力作用B .只有在A 、B 、C 、D 四点,物块受到的合外力才指向圆心 C .从B 运动到A ,物块处于超重状态 D .从A 运动到D ,物块处于超重状态解析:选D.在B 、D 位置,物块受重力、支持力,在A 、C 位置,物块受重力、支持力和静摩擦力,故A 错;物块做匀速圆周运动,任何位置的合外力都指向圆心,B 错;从B 运动到A ,向心加速度斜向下,物块失重,从A 运动到D ,向心加速度斜向上,物块超重,C 错、D 对.2.如图所示,放置在水平转盘上的物体A 、B 、C 能随转盘一起以角速度ω匀速转动,A 、B 、C 的质量分别为m 、2m 、3m ,它们与水平转盘间的动摩擦因数均为μ,离转盘中心的距离分别为0.5r 、r 、1.5r ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,则转盘的角速度应满足的条件是( )A .ω≤μgr B .ω≤2μg3rC .ω≤2μgrD .μgr≤ω≤2μgr解析:选B.当物体与转盘间不发生相对运动,并随转盘一起转动时,转盘对物体的静摩擦力提供向心力,当转速较大时,物体转动所需要的向心力大于最大静摩擦力,物体就相对转盘滑动,即临界方程是μmg =m ω2l ,所以质量为m 、离转盘中心的距离为l 的物体随转盘一起转动的条件是ω≤μgl,即ωA ≤2μgr ,ωB ≤μgr,ωC ≤2μg3r,所以要使三个物体都能随转盘转动,其角速度应满足ω≤2μg3r,选项B 正确. 3.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定的角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/sD .0.5 rad/s解析:选C.当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=m ω2r ,解得ω=1.0 rad/s ,故选项C 正确.4.(2017·云南临沧第一中学高三模拟)如图所示为一种叫做“魔盘”的娱乐设施,当转盘转动很慢时,人会随着“魔盘”一起转动,当“魔盘”转动到一定速度时,人会“贴”在“魔盘”竖直壁上,而不会滑下.若魔盘半径为r ,人与魔盘竖直壁间的动摩擦因数为μ,在人“贴”在“魔盘”竖直壁上,随“魔盘”一起运动过程中,则下列说法正确的是( )A .人随“魔盘”转动过程中受重力、弹力、摩擦力和向心力作用B .如果转速变大,人与器壁之间的摩擦力变大C .如果转速变大,人与器壁之间的弹力不变D .“魔盘”的转速一定大于12πg ur解析:选D.人随“魔盘”转动过程中受重力、弹力、摩擦力,向心力是弹力,故A 错误.人在竖直方向受到重力和摩擦力,二力平衡,则知转速变大时,人与器壁之间的摩擦力不变,故B 错误.如果转速变大,由F =mr ω2,知人与器壁之间的弹力变大,故C 错误.人恰好贴在魔盘上时,有 mg ≤f ,N =mr (2πn )2,又f =μN 解得转速为n ≥12πgμr,故“魔盘”的转速一定大于12πgμr,故D 正确.5.如图,在一半径为R 的球面顶端放一质量为m 的物块,现给物块一初速度v 0,则( )A .若v 0=gR ,则物块落地点离A 点2RB .若球面是粗糙的,当v 0<gR 时,物块一定会沿球面下滑一段,再斜抛离开球面C .若v 0<gR ,则物块落地点离A 点为RD .若v 0≥gR ,则物块落地点离A 点至少为2R解析:选D.若v 0≥gR ,物块将离开球面做平抛运动,由y =2R =gt 22,x =v 0t ,得x ≥2R ,A 错误,D 正确;若v 0<gR ,物块将沿球面下滑,若摩擦力足够大,则物块可能下滑一段后停下来,若摩擦力较小,物块在圆心上方球面上某处离开,斜向下抛,落地点离A 点距离大于R ,B 、C 错误.二、多项选择题6.公路急转弯处通常是交通事故多发地带.如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处( )A .路面外侧高内侧低B .车速只要低于v 0,车辆便会向内侧滑动C .车速虽然高于v 0,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v 0的值变小解析:选AC.当汽车行驶的速率为v 0时,汽车恰好没有向公路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力提供向心力,所以路面外侧高内侧低,选项A 正确;当车速低于v 0时,需要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,但并不会向内侧滑动,静摩擦力向外侧,选项B 错误;当车速高于v 0时,需要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C 正确;由mg tan θ=m v 20r可知,v 0的值只与斜面倾角和圆弧轨道的半径有关,与路面的粗糙程度无关,选项D错误.7.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好垂直与倾角为45°的斜面相碰.已知半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.则( )A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 m B .小球在斜面上的相碰点C 与B 点的水平距离是1.9 m C .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N解析:选AC.根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR ,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误.8.如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v 0应当满足(g =10 m/s 2)( )A .v 0≥0B .v 0≥4 m/sC .v 0≥2 5 m/sD .v 0≤2 2 m/s解析:选CD.解决本题的关键是全面理解“小球不脱离圆轨道运动”所包含的两种情况:(1)小球通过最高点并完成圆周运动;(2)小球没有通过最高点,但小球没有脱离圆轨道.。

2018版高考物理新课标一轮复习习题:第四章 曲线运动 万有引力与航天 课时作业19 含答案 精品

2018版高考物理新课标一轮复习习题:第四章 曲线运动 万有引力与航天 课时作业19 含答案 精品

课时作业(十九) 万有引力定律及其应用[基础训练]1.牛顿时代的科学家们围绕引力的研究,经历了大量曲折顽强而又闪烁智慧的科学实践.在万有引力定律的发现历程中,下列叙述不符合史实的是( )A .开普勒研究了第谷的行星观测记录,得出了开普勒行星运动定律B .牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律C .卡文迪许首次在实验室中比较准确地得出了引力常量G 的数值D .根据天王星的观测资料,哈雷利用万有引力定律计算出了海王星的轨道答案:D 解析:开普勒研究了第谷的行星观测记录,得出了开普勒行星运动定律,选项A 正确;牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律,选项B 正确;卡文迪许首次在实验室中比较准确地得出了引力常量G 的数值,选项C 正确;英国人亚当斯和法国人勒维耶根据万有引力推测出“新”行星的轨道和位置,柏林天文台年轻的天文学家伽勒和他的助手根据勒维耶计算出来的“新”行星的位置,发现了海王星,故D 不符合史实.2.(2018·山东冲刺)我国成功发射“嫦娥三号”探测器,实现了我国航天器首次在地外天体软着陆和巡视探测活动,月球半径为R 0,月球表面处重力加速度为g 0.地球和月球的半径之比为R R 0=4,表面重力加速度之比为g g 0=6,地球和月球的密度之比ρρ0为( )A.23B.32 C .4D .6答案:B 解析:设星球的密度为ρ,由GMm ′R 2=m ′g 得GM =gR 2,ρ=M V =M 43πR3,联立解得ρ=3g 4G πR ,设地球、月球的密度分别为ρ、ρ0,则ρρ0=gR 0g 0R ,将R R 0=4,gg 0=6代入上式,解得ρρ0=32,选项B 正确.3.(2018·江苏苏北四市一模)澳大利亚科学家近日宣布,在离地球约14光年的红矮星Wolf 1181周围发现了三颗行星b 、c 、d ,它们的公转周期分别是5天、18天、67天,公转轨道可视作圆,如图所示.已知引力常量为G .下列说法错误的是( )A .可求出b 、c 的公转半径之比B .可求出c 、d 的向心加速度之比C .若已知c 的公转半径,可求出红矮星的质量D .若已知c 的公转半径,可求出红矮星的密度答案:D 解析:行星b 、c 的周期分别为5天、18天,均做匀速圆周运动,根据开普勒第三定律R 3T 2=k ,可以求解轨道半径之比,故A 正确;行星c 、d 的周期分别为18天、67天,均做匀速圆周运动,根据开普勒第三定律R 3T2=k ,可以求解轨道半径之比,根据万有引力提供向心力,有G Mmr 2=ma ,解得a =GM r2,故可以求解c 、d 的向心加速度之比,故B 正确;已知c 的公转半径和周期,根据牛顿第二定律有G Mm r 2=m 4π2T 2r ,解得M =4π2r3T2,故可以求解出红矮星的质量,但不知道红矮星的体积,无法求解红矮星的密度,故C 正确,D 错误.4.(2018·河北省三市联考)如图所示,冥王星绕太阳公转的轨道是椭圆,公转周期为T 0,其近日点到太阳的距离为a ,远日点到太阳的距离为b ,半短轴的长度为c .若太阳的质量为M ,引力常量为G ,忽略其他行星对冥王星的影响,则( )A .冥王星从B →C →D 的过程中,速率逐渐变小B .冥王星从A →B →C 的过程中,万有引力对它先做正功后做负功 C .冥王星从A →B 所用的时间等于T 04D .冥王星在B 点的加速度大小为4GMb -a 2+4c 2答案:D 解析:根据开普勒第二定律:对每一个行星,其与太阳的连线在相同时间内扫过的面积相等,故冥王星从B →C →D 的过程中,冥王星与太阳间的距离先变大后变小,故速率先减小后增大,选项A 错误;同理从A →B →C 的过程中,速率逐渐减小,万有引力做负功,选项B 错误;冥王星的公转周期为T 0,从A →B →C 的过程所用时间为12T 0,由于冥王星在此过程中,速率逐渐减小,而A →B 与B →C 的路程相等,故其从A →B 的时间小于14T 0,选项C 错误;根据万有引力充当向心力可得:GMm R2=ma ′,由图中几何关系可得:R 2=c 2+⎝ ⎛⎭⎪⎫a +b 2-a 2=c 2+b -a 24,联立可得:a ′=4GM4c 2+b -a2,选项D 正确.5.(多选)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星的质量不相等,它们之间的距离为r ,引力常量为G .关于双星系统下列说法正确的是( )A .两颗恒星做匀速圆周运动的半径均为r2B .两颗恒星做匀速圆周运动的角速度相等C .双星中质量较大的恒星线速度大D .这个双星系统的总质量为4π2r3GT 2答案:BD 解析:设这两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,双星属于共轴转动,角速度ω相同,选项B 正确;两颗恒星都是由它们之间的万有引力提供向心力,则m 1ω2r 1=m 2ω2r 2,且r 1+r 2=r ,解得r 1=m 2m 1+m 2r ,r 2=m 1m 1+m 2r ,由于两颗恒星的质量不相等,则r 1≠r 2,r 2≠r2,选项A 错误;由于两颗恒星的质量大小关系未知,不能确定r 1和r 2的大小关系,根据v =ωr 也就无法确定它们的线速度大小关系,选项C 错误;根据G m 1m 2r 2=m 14π2T 2r 1,且r 1=m 2m 1+m 2r 解得m 1+m 2=4π2r 3GT 2,选项D 正确.6.(2018·江西南昌模拟)在物理学中,常常用等效替代法、类比法、微小量放大法等来研究问题.如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了引力常量G 的数值,如图所示是卡文迪许扭秤实验示意图.卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G 的数值及其他已知量,就可计算出地球的质量,卡文迪许也因此被誉为“第一个称量地球的人”.(1)若在某次实验中,卡文迪许测出质量分别为m 1、m 2且球心相距为r 的两个小球之间万有引力的大小为F ,求引力常量G .(2)若已知地球半径为R ,地球表面重力加速度为g ,引力常量为G ,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式.答案:见解析 解析:(1)根据万有引力定律,F =Gm 1m 2r 得G =Fr 2m 1m 2.(2)设地球质量为M ,质量为m 的任一物体在地球表面附近满足G Mm R2=mg 得GM =R 2g .解得地球的质量M =R 2gG地球的体积V =43πR 3解得地球的平均密度ρ=3g4πGR.7.(2018·河南洛阳尖子生一联)设金星和地球绕太阳中心的运动是公转方向相同且轨道共面的匀速圆周运动,金星在地球轨道的内侧(称为地内行星),在某特殊时刻,地球、金星和太阳会出现在一条直线上,这时候从地球上观测,金星像镶嵌在太阳脸上的小黑痣缓慢走过太阳表面,天文学称这种现象为“金星凌日”,假设地球公转轨道半径为R ,“金星凌日”每隔t 0年出现一次,则金星的公转轨道半径为( )A.t 01+t 0R B .R2⎝ ⎛⎭⎪⎫t 01+t 03C .R3⎝ ⎛⎭⎪⎫1+t 0t 02D .R3⎝ ⎛⎭⎪⎫t 01+t 02 答案:D 解析:根据开普勒第三定律有R 3金R 3=T 2金T 2地,“金星凌日”每隔t 0年出现一次,故⎝ ⎛⎭⎪⎫2πT 金-2πT 地t 0=2π,已知T 地=1年,联立解得R 金R =3⎝ ⎛⎭⎪⎫t 01+t 02,因此金星的公转轨道半径R 金=R3⎝ ⎛⎭⎪⎫t 01+t 02,故D 正确.[能力提升]8.(2018·河北保定调研)两颗互不影响的行星P 1、P 2,各有一颗近地卫星S 1、S 2绕其做匀速圆周运动.图中纵轴表示行星周围空间某位置的引力加速度a ,横轴表示该位置到行星中心距离r 平方的倒数,a ­1r2关系图象如图所示,卫星S 1、S 2的引力加速度大小均为a 0.则( )A .S 1的质量比S 2的大B .P 1的质量比P 2的大C .P 1的第一宇宙速度比P 2的小D .P 1的平均密度比P 2的大答案:B 解析:根据万有引力定律可知引力加速度a =GM r2,由此可知图象的斜率为GM ,P 1的斜率大,对应的行星质量大,而卫星质量未知,选项A 错误,B 正确;由题意知R P 1>R P 2,且M P 1>M P 2,由于第一宇宙速度v =GMR,所以无法比较两行星第一宇宙速度的大小,选项C 错误;同理,ρ=M V,无法比较两行星的平均密度,选项D 错误.9.(2018·福建厦门质检)假设宇宙中有两颗相距无限远的行星A 和B ,半径分别为R A和R B .这两颗行星周围卫星的轨道半径的三次方(r 3)与运行周期的平方(T 2)的关系如图所示,T 0为卫星环绕行星表面运行的周期.则( )A .行星A 的质量大于行星B 的质量 B .行星A 的密度小于行星B 的密度C .行星A 的第一宇宙速度小于行星B 的第一宇宙速度D .当两行星的卫星轨道半径相同时,行星A 的卫星向心加速度小于行星B 的卫星向心加速度答案:A 解析:根据GMm r 2=m 4π2r T 2,可得M =4π2r 3GT 2,r 3=GM 4π2T 2,由图象可知,A 的斜率大,所以A 的质量大,A 正确.由图象可知当卫星在两行星表面运行时,周期相同,将M =ρV =ρ·43πR 3代入上式可知两行星密度相同,B 错误.根据万有引力提供向心力,则GMm R2=mv 2R ,所以v =GM R =43πρGR 2,行星A 的半径大,所以行星A 的第一宇宙速度也大,C 错误.两卫星的轨道半径相同时,它们的向心加速度a =GMr2,由于A 的质量大于B 的质量,所以行星A 的卫星向心加速度大,D 错误.10.(2018·湖南十校联考)银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点O 做匀速圆周运动.由天文观察测得它们的运动周期为T ,若已知S 1和S 2的距离为r ,引力常量为G ,求两星的总质量M .答案:4π2r 3GT2 解析:设星体S 1、S 2的质量分别为m 1、m 2,运动的轨道半径分别为R 1、R 2,则运动的角速度为ω=2πT根据万有引力定律和向心力公式有Gm 1m 2r2=m 1ω2R 1=m 2ω2R 2 又R 1+R 2=r联立解得两星的总质量为M =m 1+m 2=ω2r 2R 2G +ω2r 2R 1G =ω2r 3G =4π2r3GT2.11.(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a 的三次方与它的公转周期T 的二次方成正比,即a 3T2=k ,k 是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k 的表达式.已知引力常量为G ,太阳的质量为M 太.(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立.经测定月地距离为3.84×118 m ,月球绕地球运动的周期为2.36×118 s ,试计算地球的质量M 地.(G =6.67×10-11N·m 2/kg 2,结果保留一位有效数字)答案:(1)k =G4π2M 太 (2)6×1024kg解析:(1)因行星绕太阳做匀速圆周运动,于是轨道半长轴a 即为轨道半径r ,根据万有引力定律和牛顿第二定律有Gm 行M 太r 2=m 行⎝ ⎛⎭⎪⎫2πT 2r ①于是有r 3T 2=G 4π2M 太②即k =G4π2M 太.③(2)在地月系统中,设月球绕地球运动的轨道半径为R ,周期为T ,由②式可得R 3T 2=G4π2M 地④ 解得M 地=6×1024kg.⑤。

2018版高考物理(新课标)一轮复习课件:第四章 曲线运动 万有引力与航天 4-5

2018版高考物理(新课标)一轮复习课件:第四章 曲线运动 万有引力与航天 4-5

)
(5)同步卫星可以定点在北京市的正上方.(

)
(6)不同的同步卫星的质量不同,但离地面的高度是相同 的.( √ )
(7)地球同步卫星的运行速度一定小于地球的第一宇宙速 度.( √ )
宇宙速度的理解与计算
1.第一宇宙速度的推导 v2 Mm 1 方法一:由G 2 =m R 得 R v1= m/s. GM R = 6.67×10-11×5.98×1024 m/s=7.9×103 3 6 370×10
Mm ⑥向心加速度一定:由G R+h)2
gh=0.23 m/s2,即同步卫星的向心加速度等于轨道处的重力加 速度. ⑦绕行方向一定:运行方向与地球自转方向
一致
.
2.极地卫星和近地卫星 (1)极地卫星运行时每圈都经过 南北两极 ,由于地球自 转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动 的卫星,其运行的轨道半径可近似认为等于 运行线速度约为
A.发射速度只要大于第一宇宙速度即可 B.发射速度只有达到第三宇宙速度才可以 C.发射速度应大于第二宇宙速度而小于第三宇宙速度 D.火星探测器环绕火星运行的最大速度为地球第一宇宙速 2 度的 3
[解析]
根据三个宇宙速度的意义,可知选项A、B错误, GM火 ∶ R火
M地 R地 vm 选项C正确;已知M火= ,R火= ,则 = 9 2 v1 GM地 2 = . 3 R地
7.9 地球的半径
,其
km/s.
地球的球心
(3)两种卫星的轨道平面一定通过
.
(1)第一宇宙速度是卫星绕地球做匀速圆周运动的最小速 度.( ) (2)第一宇宙速度的大小与地球质量有关.( (3)月球的第一宇宙速度也是7.9 km/s.(

(新课标)高考物理一轮复习第四章曲线运动万有引力与航天单元过关检测(1)

(新课标)高考物理一轮复习第四章曲线运动万有引力与航天单元过关检测(1)

C.若在月球上以较小的初速度 v0 竖直上抛一个物体,则物体从抛出到落回抛出点所用
R2v0 时间为 Gm月
D .若在月球上以较小的初速度 v0 竖直上抛一个物体,则物体上升的最大高度为
R2v02 2Gm月
第 II 卷(非选择题)
评卷人
得分
三、计算题(本题共 4 道小题 , 共 52 分)
13.(10 分 ) 如图所示,平直轨道上有一车厢,质量为
min=0.05 s ,圆柱棒竖直自由下
落,速度越来越大,因此毛笔所画出的记号之间的距离越来越大,因此左端的记号后画上,所以
左端是悬挂端.
(2)匀变速直 线运动 的中间 时刻的 瞬时速 度等于 这一段的 平均 速度
vD=
m/s=1.60 m/s ,
加速度 a= =9.60 m/s2 . 【答案】( 1) 0.05 左 (2) 1.60 9.60 .
. 11.CD 12.BD
14. 【解析】( 1)由救生垫平抛运动,设绳长 L
L cos L sin
1 2
gt
2 0
v0t 0
t0

2v0 g tan
1.8s
L 54 3m 5
H 1 gt 2

2 得 H 16.2m
( 2)根据题意,加速与减速有相同的位移,所以在绳的中点时速度最大。
L 由2
0
vm 2
滑至地面,速度刚好为零,在队员甲开始下滑时,队员乙在阳台上同时开始向地面以速度
v0= 3 3 m/s 平
抛救生垫,第一个救生垫刚落到绳下端地面,接着抛第二个,结果第二个救生垫刚好与甲队员同时抵达
地面,若队员甲的质量 m,重力加速度 g=10m/s2,忽略空气的阻力,忽略人的高度。问:

2018版高考物理(新课标)一轮复习教师用书:第四章曲线运动万有引力与航天第3讲圆周运动含答案

2018版高考物理(新课标)一轮复习教师用书:第四章曲线运动万有引力与航天第3讲圆周运动含答案

第3讲圆周运动知识点一匀速圆周运动、角速度、线速度、向心加速度1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长,就是匀速圆周运动.(2)特点:加速度大小,方向始终指向,是变加速运动。

(3)条件:合外力大小、方向始终与方向垂直且指向圆心.2.描述匀速圆周运动的物理量定义、意义公式、单位线速度描述做圆周运动的物体运动的物理量(v)(1)v=ΔsΔt=(2)单位:角速度描述物体绕圆心的物理量(ω)(1)ω=错误!=(2)单位:周期物体沿圆周运动的时间(T)(1)T==,错误!m/s 转动快慢错误!rad/s 一圈错误!错误!s 方向圆心错误!ω2r m/s2知识点二匀速圆周运动的向心力1.作用效果:产生向心加速度,只改变线速度的,不改变线速度的.2。

大小:F==mrω2==mωv=m·4π2f2r。

3。

方向:始终沿半径指向。

4。

来源:向心力可以由一个力提供,也可以由几个力的提供,还可以由一个力的提供.答案:1.方向大小2。

m错误!m错误!r3。

圆心 4.合力分力知识点三离心现象1。

定义:做的物体,在所受合外力突然消失或不足以提供圆周运动所需的情况下,所做的沿切线飞出或逐渐远离圆心的运动现象。

2.受力特点(1)当F n=mω2r时,物体做运动。

(2)当F n=0时,物体沿方向飞出.(3)当F n〈mω2r时,物体逐渐圆心,做离心运动.(4)当F n>mω2r时,物体逐渐圆心,做近心运动.答案:1。

圆周运动向心力 2.(1)匀速圆周(2)切线(3)远离(4)靠近(1)匀速圆周运动是匀变速曲线运动.()(2)做匀速圆周运动的物体所受合力是保持不变的.()(3)做匀速圆周运动的物体向心加速度与半径成反比。

( )(4)做匀速圆周运动的物体角速度与转速成正比。

( )(5)随水平圆盘一起匀速转动的物块受重力、支持力和向心力的作用。

( )答案:(1)(2)(3)(4)√(5)考点圆周运动的运动学问题1.圆周运动各物理量间的关系2。

2018版高考物理(全国通用)大一轮复习讲义文档:第四章曲线运动万有引力与航天第4讲含答案

2018版高考物理(全国通用)大一轮复习讲义文档:第四章曲线运动万有引力与航天第4讲含答案

第4讲万有引力与航天一、开普勒行星运动定律1.开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,表达式:错误!=k.二、万有引力定律1.公式:F=错误!,其中G=6.67×10-11N·m2/kg2,叫引力常量.2.适用条件:只适用于质点间的相互作用.3.理解(1)两质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r为两球心间的距离.(2)一个质量分布均匀的球体和球外一个质点间的万有引力的计算也适用,其中r为质点到球心间的距离.[深度思考]1.如图1所示的球体不是均匀球体,其中缺少了一规则球形部分,如何求球体剩余部分对质点P的引力?图1答案求球体剩余部分对质点P的引力时,应用“挖补法",先将挖去的球补上,然后分别计算出补后的大球和挖去的小球对质点P的引力,最后再求二者之差就是阴影部分对质点P的引力.2.两物体间的距离趋近于零时,万有引力趋近于无穷大吗?答案不是.当两物体无限接近时,不能再视为质点.三、宇宙速度1.三个宇宙速度第一宇宙速度(环绕速度)v1=7。

9 km/s,是人造卫星在地面附近绕地球做匀速圆周运动的速度第二宇宙速度(脱离速度)v2=11。

2 km/s,使物体挣脱地球引力束缚的最小发射速度第三宇宙速度(逃逸速度)v3=16。

7 km/s,使物体挣脱太阳引力束缚的最小发射速度2.第一宇宙速度的理解:人造卫星的最大环绕速度,也是人造卫星的最小发射速度.3.第一宇宙速度的计算方法(1)由G MmR 2=m 错误!得v = 错误!.(2)由mg =m v 2R得v =错误!。

1.判断下列说法是否正确.(1)地面上的物体所受地球引力的大小均由F =G 错误!决定,其方向总是指向地心.( √ )(2)只有天体之间才存在万有引力.( × )(3)只要已知两个物体的质量和两个物体之间的距离,就可以由F =G 错误!计算物体间的万有引力.( × )(4)发射速度大于7。

2018版高考物理(新课标)一轮复习习题:第四章 曲线运动 万有引力与航天课时作业18含答案

2018版高考物理(新课标)一轮复习习题:第四章 曲线运动 万有引力与航天课时作业18含答案

课时作业(十八) 平抛运动、圆周运动热点问题分析[基础训练]1.(2017·四川乐山调考)如图所示,一个内壁光滑的圆锥筒,其轴线垂直于水平面,圆锥筒固定不动.有一质量为m 的小球A 紧贴着筒内壁在水平面内做匀速圆周运动,筒口半径和筒高分别为R 和H ,小球A 所在的高度为筒高的一半,已知重力加速度为g ,则( )A .小球A 做匀速圆周运动的角速度ω=错误!B .小球A 受到重力、支持力和向心力三个力作用C .小球A 受到的合力大小为mgR HD .小球A 受到的合力方向垂直筒壁斜向上答案:A 解析:对小球进行受力分析可知,小球受重力、支持力两个力的作用,两个力的合力提供向心力,由向心力关系可得mg cot θ=mω2r ,其中cot θ=H R,r =错误!,解得ω=错误!,选项A 正确,B 错误;小球所受合力方向应指向圆周运动的圆心,提供向心力,所以合力大小为mg cot θ=错误!,选项C 、D 错误.2.(2017·福建毕业班质检)如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g 。

现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根绳的拉力大小为( )A 。

错误!mgB.错误!错误!mg C .3mg D .2错误!mg答案:A 解析:当小球以速度v 通过最高点时,mg =m 错误!;当小球以2v 通过最高点时,设每根绳拉力大小为F ,则3F +mg =m 错误!,解得F =错误!mg ,选项A 正确.3.(2017·湖南株洲二中月考)用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,线的张力为T ,则T 随ω2变化的图象是下图中的( )答案:B 解析:设绳长为L,锥面与竖直方向夹角为θ,当ω=0时,小球静止,受重力mg、支持力N和绳的拉力T而平衡,T=mg cos θ≠0,A错误;ω增大时,T增大,N减小,当N=0时,角速度为ω0,当ω<ω0时,由牛顿第二定律得T sin θ-N cos θ=mω2L sin θ,T cos θ+N sin θ=mg,解得T=mω2L sin2θ+mg cos θ,当ω〉ω0时,小球离开锥面,绳与竖直方向夹角变大,设为β,由牛顿第二定律得T sin β=mω2L sin β,所以T =mLω2,可知T。

最新-2018届高考物理一轮复习 课时作业 第4单元 曲线

最新-2018届高考物理一轮复习 课时作业 第4单元 曲线

2018届高三物理总复习精品单元测试第4单元曲线运动万有引力与航天一、选择题:本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.据中新社3月10日消息,我国于2018年上半年发射“天宫一号”目标飞行器,2018年下半年发射“神舟八号”飞船并与“天宫一号”实现对接.某同学得知上述消息后,画出“天宫一号”和“神舟八号”绕地球做匀速圆周运动的假想图如图所示,A代表“天宫一号”,B代表“神舟八号”,虚线为各自的轨道.由此假想图,可以判定( )A.“天宫一号”的运行速度小于第二宇宙速度B.“天宫一号”的周期小于“神舟八号”的周期C.“天宫一号”的向心加速度大于“神舟八号”的向心加速度D.“神舟八号”加速有可能与“天宫一号”实现对接【解析】环绕地球运行的卫星或飞船的线速度都小于第一宇宙速度,故更小于第二宇宙速度,A正确;轨道半径越大,运行周期越长,向心加速度越小,B、C都不对;如“神舟八号”加速将做离心运动,所以有可能与“天宫一号”实现对接,D正确.【答案】AD2.一个质量为2 kg的物体,在5个共点力作用下处于匀速直线运动状态.现同时撤去大小分别为15 N和10 N的两个力,其余的力保持不变.关于此后该物体的运动,下列说法中正确的是( )A.可能做匀变速曲线运动,加速度大小可能是10 m/s2B.可能做匀速圆周运动,向心加速度大小是5 m/s2C.可能做匀减速直线运动,加速度大小是2 m/s2D.一定做匀变速直线运动,加速度大小可能是5 m/s2【解析】当同时撤去大小分别为15 N和10 N的两个力后,其余的三个力的合力应该和撤去的这两个力的合力等大反向.由于15 N和10 N的两个力的方向不确定,二者的合力可在5 N和25 N之间,所以物体的加速度可在2.5 m/s2和12.5 m/s2之间.剩余力的合力方向可能和物体运动方向一致,也可能有夹角,所以物体可能做曲线运动,也可能做直线运动,但因合力恒定,不可能做圆周运动.【答案】A3.如图所示,取稍长的细杆,其一端固定一枚铁钉,另一端用羽毛做一个尾翼,做成A、B两只飞镖,将一软木板挂在竖直墙壁上,作为镖靶.在离墙壁一定距离的同一处,将它们水平掷出,不计空气阻力,两只飞镖插在靶上的状态如图所示(侧视图).则下列说法中正确的是( )A .A 镖掷出时的初速度比B 镖掷出时的初速度大B .B 镖插入靶时的末速度比A 镖插入靶时的末速度大C .B 镖的运动时间比A 镖的运动时间长D .A 镖的质量一定比B 镖的质量大【解析】平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动.即x =v 0t ,y =12gt 2.题目中两飞镖在同一处水平抛出,飞镖B 在竖直方向下落的距离大,说明飞镖B 在空中运动的时间长.又因为两飞镖抛出时距墙壁的水平距离相同,所以飞镖B 的水平速度小.所以选项A 、C 正确;两飞镖的质量大小不能确定,所以选项D 错误;飞镖B 的水平速度比飞镖A 小,但飞镖B 的竖直速度比飞镖A 大,而末速度指的是水平速度和竖直速度的合速度.因此不能确定两飞镖的末速度,所以选项B 错误.【答案】AC4.如图所示,一小物块在开口向上的半圆形曲面内以某一速率开始下滑,曲面内各处动摩擦因数不同,此摩擦作用使物块下滑时的速率保持不变.则下列说法正确的是( )A .因物块下滑速率保持不变,故加速度为零B .物块所受合外力大小不变,方向改变C .在滑到最低点以前,物块对曲面的压力越来越大D .在滑到最低点以前,物块受到的摩擦力越来越大【解析】物块下滑速率不变,可理解为物块的运动是匀速圆周运动的一部分,物块所受合外力充当所需的向心力,故合外力大小不变,而方向改变,向心加速度不为零;设下滑过程中物块和圆心的连线与竖直方向的夹角为θ,对物块进行受力分析可得F N -mg cos θ=m v 2R,其中θ越来越小,所以F N 越来越大;F f =mg sin θ,θ越来越小时F f 越来越小,故选项B 、C 正确.【答案】BC5.如图所示,发射远程弹道导弹,弹头脱离运载火箭后,在地球引力作用下,沿椭圆轨道飞行,击中地面目标B .C 为椭圆轨道的远地点,距地面高度为h .已知地球的半径为R ,地球的质量为M ,引力常量为G .关于弹头在C 点处的速度v 和加速度a ,下列结论正确的是( )A .v =GM R +h ,a =GM R +h 2B .v <GM R +h ,a =GM R +h 2C .v =GM R +h ,a >GMR +h 2 D .v <GM R +h ,a <GMR +h2 【解析】离地面高h 绕地球做匀速圆周运动的飞行器的线速度v =GMR +h,该弹头落回地面,因此弹头在C 点的速度v <GMR +h;弹头在C 点的加速度就是该位置的重力加速度a =GMR +h2.【答案】B6.原香港中文大学校长、“光纤之父”高锟被宣布获得诺贝尔物理学奖.早在1996年中国科学院紫金山天文台就将一颗于1981年12月3日发现的国际编号为“3463”的小行星命名为“高锟星”.假设高锟星的公转周期为T (T >1年),轨道半径为R ,引力常量为G ,则( )A .高锟星公转的线速度大于地球公转的线速度B .由上述数据可计算出太阳的质量C .由上述数据可计算出太阳和高锟星之间的引力D .地球和高锟星的轨道半径之比为31T【解析】离太阳越远的行星公转的线速度越小,根据题意可知A 不对;根据G mM R 2=m 4π2T2R可知太阳的质量M =4π2R3GT2,B 正确;由于不知道高锟星的质量,无法计算太阳和高锟星之间的引力,C 不对;由于地球绕太阳公转的周期为1年,所以根据G m 1M R 2=m 14π2T 2R 和G m 2M r 2=m 24π2T2r 可计算出,地球和高锟星的轨道半径之比为31T 2,所以D 选项不对.【答案】B7.随着人们生活水平的提高,高尔夫球将逐渐成为普通人的休闲娱乐.如图所示,某人从高出水平地面h 的坡上水平击出一个质量为m 的高尔夫球.由于恒定的水平风力的作用,高尔夫球竖直地落入距击球点水平距离为L 的A 穴.则( )A .球被击出后做平抛运动B .该球从被击出到落入A 穴所用的时间为 2h gC .球被击出时的初速度大小为L2g hD .球被击出后受到的水平风力的大小为mgh L【解析】由于受到恒定的水平风力的作用,球被击出后在水平方向做匀减速运动,A 错误;由h =12gt 2得球从被击出到落入A 穴所用的时间t =2hg,B 正确;由题述高尔夫球竖直地落入A 穴可知球水平末速度为零,由L =v 0t2得球被击出时的初速度大小v 0=L2gh,C 正确;由v 0=at 得球在水平方向的加速度大小a =gL h,球被击出后受到的水平风力的大小F =ma =mgLh,D 错误. 【答案】BC8.如图所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端P 处;今在P 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的中点Q 处.若不计空气阻力,下列关系式正确的是( )A .v a =v bB .v a =2v bC .t a =t bD .t a =2t b【解析】做平抛运动的物体的运动时间由竖直方向的高度决定t =2hg,a 物体下落的高度是b 的2倍,有t a =2t b ,D 正确;水平方向的距离由高度和初速度决定,有x =v 02hg,由题意得a 的水平位移是b 的2倍,可知v a =2v b ,B 正确.【答案】BD 二、非选择题:本题共4小题,共52分.把答案填在题中的横线上或按题目要求作答.解答时应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.9.(12分)图甲为测量电动机转动角速度的实验装置,半径不大的圆形卡纸固定在电动机转轴上,在电动机的带动下匀速转动.在圆形卡纸的旁边垂直安装一个改装了的电火花计时器.(1)请将下列实验步骤按先后排序:____________________________. A .使电火花计时器与圆形卡纸保持良好接触 B .接通电火花计时器的电源,使它工作起来 C .启动电动机,使圆形卡纸转动起来D .关闭电动机,拆除电火花计时器;用量角器测出相邻n 个点对应的圆心角θ,写出角速度ω的表达式,代入数据,得出ω的测量值(2)已知打点的时间间隔为t ,写出角速度ω的表达式:ω=________.【答案】(1)ACBD (2)θn -1 t10.(4分)如图所示,在倾角α=30°的光滑斜面上,有一根长L =0.8 m 的细绳,一端固定在O 点,另一端系一质量m =0.2 kg 的小球,小球沿斜面做圆周运动.若要小球能通过最高点A ,则小球在最低点B 的最小速度是________m/s.(g 取10 m/s 2)【解析】通过A 点的最小速度v A =gL ·sin α=2 m/s ,则根据机械能守恒定律得:12mv 2B=12mv 2A +mgL ,解得vB =2 5 m/s. 【答案】2 511.(16分)将一个物体放置在航天飞机中,当航天飞机以a =g2的加速度随火箭竖直向上加速升空的过程中,某时刻测得物体与航天飞机中的支持物在竖直方向上的相互挤压力为在起飞前静止时压力的1718.(1)求此时航天飞机所处位置的重力加速度的大小. (2)求此时航天飞机距地面的高度.(3)若航天飞机在此高度绕地球飞行一周,所需的时间T 为多大?(地球半径取R =6.4×118 m ,g 取10 m/s 2)【解析】(1)航天飞机起飞前静止时: N =mg ,当a =g2时, N ′-mg ′=ma又N ′=1718N ,故:g ′=49g =4.4 m/s 2.(2)又有:GMm R 2=mg, G MmR +h2=mg ′ 故可解得:h =R2=3.2×118 m.(3)由牛顿第二定律和万有引力定律有:mg ′=m4π2T 2(R +h )解得: T =2πR +hg ′=9.23×118 s =2.6 h. 【答案】(1)4.4 m/s 2(2)3.2×118 m (3)2.6 h12.(20分)如图所示,竖直平面内有一光滑圆弧轨道,其半径为R ,平台与轨道的最高点Q 等高.一小球从平台边缘的A 处水平射出,恰能沿圆弧轨道上P 点的切线方向进入轨道内侧,轨道半径OP 与竖直线的夹角为45°,试求:(1)小球从平台上的A 点射出时的速度v 0.(2)小球从平台上射出点A 到圆轨道入射点P 之间的距离l . (3)小球能否沿轨道通过圆弧的最高点?请说明理由.【解析】(1)小球从A 到P 的高度差h =R (1+cos 45°)=(22+1)R 小球做平抛运动,有h =12gt 2小球做平抛运动的时间t =2h g =2+2 Rg则小球在P 点的竖直分速度v y =gt = 2+2 gR把小球在P 点的速度分解可得v 0=v y ,所以小球平抛的初速度v 0= 2+2 gR .(2)小球平抛下降高度h =12v y ·t水平射程s =v 0t =2h故A 、P 间的距离l =h 2+s 2=5h =(5+1210)R . (3)能.小球从A 到达Q 时,根据机械能守恒定律可得: 12mV 2P -12mV 2Q =mgh 解得:v Q =v 0= 2+2 gR >gR 所以小球能通过圆弧轨道的最高点.【答案】(1) 2+2 gR (2)(5+1210)R (3)能 理由略。

2018版高考物理(新课标)一轮复习习题:第四章 曲线运动 万有引力与航天课时作业20含答案

2018版高考物理(新课标)一轮复习习题:第四章 曲线运动 万有引力与航天课时作业20含答案

课时作业(二十)人造卫星宇宙速度[基础训练]1.(2017·湖北七市联考)人造地球卫星在绕地球做圆周运动的过程中,下列说法中正确的是()A.卫星离地球越远,角速度越大B.同一圆轨道上运行的两颗卫星,线速度大小一定相同C.一切卫星运行的瞬时速度都大于7。

9 km/sD.地球同步卫星可以在以地心为圆心、离地高度为固定值的一切圆轨道上运动答案:B 解析:卫星所受的万有引力提供向心力,则G错误!=m v2r=mω2r,可知r越大,角速度越小,A错误,B正确。

7。

9 km/s是卫星的最大环绕速度,C错误.因为地球会自转,同步卫星只能在赤道上方的轨道上运动,D错误.2.(2017·山东淄博摸底考试)北斗卫星导航系统空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗中轨道卫星、3颗倾斜同步轨道卫星.中轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中轨道卫星离地面高度低,则中轨道卫星与静止轨道卫星相比,做圆周运动的( )A.向心加速度大B.周期大C .线速度小D .角速度小答案:A 解析:由于中轨道卫星离地面高度低,轨道半径较小,质量相同时所受地球万有引力较大,则中轨道卫星与静止轨道卫星相比,做圆周运动的向心加速度大,选项A 正确.由G Mm r 2=mr 错误!2,解得T =2π错误!,可知中轨道卫星与静止轨道卫星相比,做圆周运动的周期小,选项B 错误.由G 错误!=m 错误!,解得v =错误!,可知中轨道卫星与静止轨道卫星相比,做圆周运动的线速度大,选项C 错误.由G 错误!=mrω2。

解得ω=错误!,可知中轨道卫星与静止轨道卫星相比,做圆周运动的角速度大,选项D 错误.3.(2017·河南洛阳高三统考)从星球表面发射的物体能脱离星球的引力束缚不再绕星球运行所需的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1,已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16,不计其他星球的影响,则该星球的第二宇宙速度为( ) A.错误!B.错误!C.错误!D.错误!答案:B 解析:由G 错误!=m 错误!,G 错误!=错误!联立解得星球的第一宇宙速度v1=错误!,星球的第二宇宙速度v2=错误!v1=错误!错误!=错误!,选项B正确.4.“嫦娥五号”将于2017年左右在海南文昌航天发射中心发射,完成探月工程的重大跨越——带回月球样品.假设“嫦娥五号"在“落月”前,以速度v沿月球表面做匀速圆周运动,测出运动的周期为T,已知引力常量为G,不计周围其他天体的影响,则下列说法正确的是()A.月球的半径为错误!B.月球的平均密度为错误!C.“嫦娥五号”探月卫星的质量为错误!D.月球表面的重力加速度为2πvT答案:B 解析:由T=错误!可知,月球的半径为R=错误!,选项A 错误;由G错误!=m错误!2R可知,月球的质量为M=错误!,选项C错误;由M=错误!πR3ρ可知,月球的平均密度为ρ=错误!,选项B正确;由错误!=mg可知,月球表面的重力加速度为g=错误!,选项D错误.5.(2017·江西宜春高安二中段考)近年来,自然灾害在世界各地频频发生,给人类带来巨大损失.科学家们对其中地震、海啸的研究结果表明,地球的自转将因此缓慢变快.下列说法正确的是()A.“天宫一号”飞行器的高度要略调高一点B.地球赤道上物体的重力会略变大C.同步卫星的高度要略调低一点D.地球的第一宇宙速度将略变小答案:C 解析:“天宫一号"飞行器的向心力由地球的万有引力提供,其高度与地球的自转快慢无关,故A错误;地球自转快了,则地球自转的周期变小,在地面上赤道处的物体随地球自转所需的向心力会增大,而向心力等于地球对物体的万有引力减去地面对物体的支持力,万有引力的大小不变,所以地面对物体的支持力必然减小,地面对物体的支持力大小等于物体受到的“重力",所以物体的重力减小了,故B错误;对地球同步卫星而言,卫星的运行周期等于地球的自转周期,地球的自转周期T变小了,由开普勒第三定律错误!=k可知,卫星的轨道半径R减小,卫星的高度要减小些,故C正确;地球的第一宇宙速度v=错误!,R是地球的半径,可知v与地球自转的速度无关,D错误.6.(2017·贵州贵阳检测)“天宫一号”目标飞行器与“神舟十号"飞船自动交会对接前的示意图如图所示,圆形轨道Ⅰ为“天宫一号”运行轨道,圆形轨道Ⅱ为“神舟十号”运行轨道.此后“神舟十号”要进行多次变轨,才能实现与“天宫一号”的交会对接,则( )A.“天宫一号”的运行速率大于“神舟十号”在轨道Ⅱ上的运行速率B.“神舟十号”变轨后比变轨前高度增加,机械能减少C.“神舟十号”可以通过减速而使轨道半径变大D.“天宫一号”和“神舟十号”对接瞬间的向心加速度大小相等答案:D 解析:做圆周运动的天体,线速度大小v=错误!,因此轨道半径较大的“天宫一号"速率较小,A项错误;“神舟十号”由低轨道到高轨道运动需要消耗火箭燃料加速,由功能关系可知在高轨道上飞船机械能更大,B项错误;飞船在圆周轨道上减速时,万有引力大于所需要的向心力,飞船做近心运动,轨道半径减小,C项错误;在对接瞬间,“神舟十号”与“天宫一号”所受万有引力提供向心力,向心加速相等,D项正确.7.(2017·江苏连云港外国语学校月考)(多选)“嫦娥一号”探月飞行器绕月球做匀速圆周运动,为保持轨道半径不变,逐渐消耗所携带的燃料.若轨道距月球表面的高度为h,月球质量为m、半径为r,引力常量为G,下列说法正确的是()A.月球对“嫦娥一号”的万有引力将逐渐减小B.“嫦娥一号”绕月球运行的线速度将逐渐减小C.“嫦娥一号”绕月球运行的向心加速度为错误!D.“嫦娥一号”绕月球的运行周期为2π错误!答案:AC 解析:飞行器逐渐消耗所携带的燃料,即飞行器质量减小,则万有引力减小,A正确.轨道半径不变,则线速度不变,B 错误.由G错误!=m′a得a=错误!,C正确.G错误!=m′错误!(r+h),知T=2π错误!,D错误.8.(2017·海南七校联盟一联)(多选)某火星探测器发射过程的简化图如图所示,首先将该探测器发射到一停泊测试轨道,使探测器沿椭圆环绕地球运行,其中图中的P点为椭圆轨道上的远地点,再经一系列的变轨进入工作轨道,使探测器在圆轨道上环绕火星运行.已知地球和火星的半径分别为R1、R2,P点距离地面的高度为h1,在工作轨道上探测器距离火星表面的高度为h2,地球表面的重力加速度为g,火星的质量为M,引力常量为G,忽略地球和火星自转的影响.根据以上信息可知( )A.探测器在P点的线速度大小B.探测器在P点的加速度大小C.探测器环绕火星运行的周期D.火星表面的重力加速度答案:BCD 解析:由于P点在椭圆轨道上,探测器所受万有引力不能用向心力公式计算,所以不能求出探测器在P点的线速度大小,选项A错误;探测器在P点,由牛顿第二定律知G错误!=ma P,又G错误!=m′g,联立两式可解出探测器在P点的加速度大小,选项B正确;由于探测器绕火星做圆周运动,由G错误!=m错误!2(R2+h2),可解出运行周期T,选项C正确;在火星表面,根据G错误!=m″g火,解得g =错误!,选项D正确.火[能力提升]9.(2017·河南郑州第一次检测)中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.预计2020年左右,北斗卫星导航系统将形成全球覆盖能力.如图所示是北斗导航系统中部分卫星的轨道示意图,已知a、b、c三颗卫星均做圆周运动,a是地球同步卫星,则()A.卫星a的角速度小于c的角速度B.卫星a的加速度大于b的加速度C.卫星a的运行速度大于第一宇宙速度D.卫星b的周期大于24 h答案:A 解析:a的轨道半径大于c的轨道半径,因此卫星a的角速度小于c的角速度,选项A正确;a的轨道半径与b的轨道半径相等,因此卫星a的加速度等于b的加速度,选项B错误;a的轨道半径大于地球半径,因此卫星a的运行速度小于第一宇宙速度,选项C错误;a的轨道半径与b的轨道半径相等,卫星b的周期等于a的周期,为24 h,选项D错误.10.(2017·四川广元一模)“玉兔号"登月车在月球表面登陆的第一步实现了中国人“奔月"的伟大梦想.机器人“玉兔号"在月球表面做了一个自由下落试验,测得物体从静止自由下落h高度的时间t,已知月球半径为R,自转周期为T,引力常量为G.则( )A.月球表面重力加速度为t2 2hB.月球的第一宇宙速度为错误!C.月球质量为错误!D.月球同步卫星离月球表面的高度为错误!-R答案:D 解析:由自由落体运动规律有h=错误!gt2,所以g=错误!,故A错误.月球的第一宇宙速度为近月卫星的运行速度,根据重力提供向心力有mg=错误!,所以v1=错误!=错误!,故B错误.在月球表面的物体受到的重力等于万有引力有mg=错误!,所以M=错误!=错误!,故C错误.月球同步卫星绕月球做匀速圆周运动,根据万有引力提供向心力有GMmR+h2=m错误!(R+h),解得h=错误!-R=错误!-R,故D正确.11.(2017·安徽合肥一检)(多选)如图所示,一航天器围绕地球沿椭圆形轨道运动,地球的球心位于该椭圆的一个焦点上,A、B 两点分别是航天器运行轨道上的近地点和远地点.若航天器所受阻力可以忽略不计,则该航天器()A.由近地点A运动到远地点B的过程中动能减小B.在近地点A的加速度小于它在远地点B的加速度C.由近地点A运动到远地点B的过程中万有引力做正功D.运动到A点时其速度如果能增加到第二宇宙速度,那么它将不再围绕地球运行答案:AD 解析:航天器围绕地球沿椭圆形轨道运动,其动能和引力势能之和保持不变,由近地点A运动到远地点B的过程中,引力势能增大,动能减小,选项A正确.由G错误!=ma可得a=G错误!,在近地点A,距离地心的距离r较小,其加速度较大,即在近地点A 的加速度大于它在远地点B的加速度,选项B错误.由近地点A运动到远地点B的过程中万有引力做负功,引力势能增大,选项C错误.运动到A点时其速度如果能增加到第二宇宙速度,那么它将脱离地球的束缚,不再围绕地球运行,选项D正确.12.(多选)2015年12月10日,我国成功将中星1C卫星发射升空,卫星顺利进入预定转移轨道.如图所示是某卫星沿椭圆轨道绕地球运动的示意图,已知地球半径为R,地球表面的重力加速度为g,卫星远地点P距地心O的距离为3R。

2018版高考物理总复习第4章曲线运动万有引力与航天第1课时曲线运动平抛运动试题

2018版高考物理总复习第4章曲线运动万有引力与航天第1课时曲线运动平抛运动试题

第1课时曲线运动平抛运动[学考题组])1.下列对曲线运动的理解正确的是( )A.物体做曲线运动时,加速度一定变化B.做曲线运动的物体不可能受恒力作用C.曲线运动可以是匀变速曲线运动D.做曲线运动的物体,速度的方向可以不变解析当物体受到恒力作用且力与速度方向不共线时,物体就做加速度恒定的曲线运动,故A、B错误,C正确;做曲线运动的物体速度方向一定变化,故D错误。

答案C2.如图所示,工地上常用的塔吊起吊重物时,塔吊的水平横臂保持静止,悬挂重物的小车沿水平横臂匀速运动,同时使吊钩下的重物匀速上升。

关于重物的运动,下列判断正确的有( )A.做曲线运动B.做匀变速曲线运动C.速度大小不变,方向改变D.速度大小和方向都不变解析重物在竖直方向和水平方向都做匀速运动,说明它所受合外力为零,一定做匀速直线运动,D正确。

答案D3.如图所示,某同学将一枚飞镖从高于靶心的位置水平投向竖直悬挂的靶盘,结果飞镖打在靶心的正下方。

忽略飞镖运动过程中所受空气阻力,在其他条件不变的情况下,为使飞镖命中靶心,他在下次投掷时可以( )A.换用质量稍大些的飞镖B.适当增大投飞镖的高度C.到稍远些的地方投飞镖D .适当减小投飞镖的初速度解析 飞镖做的是平抛运动,飞镖打在靶心的正下方说明飞镖竖直方向的位移太大,根据平抛运动的规律可得,水平方向上x =v 0t ,竖直方向上h =12gt 2,所以要想减小飞镖竖直方向的位移,在水平位移不变的情况下,可以适当增大投飞镖的初速度来减小飞镖的运动时间,故D 错误;初速度不变时,时间不变,适当增大投飞镖的高度,可以使飞镖命中靶心,飞镖的质量不影响平抛运动的规律,故A 错误,B 正确;在稍远些地方投飞镖,则运动时间变长,下落的位移变大,不会击中靶心,故C 错误。

答案 B4.电动自行车绕如图所示的400 m 标准跑道运动,车上的车速表指针一直指在36 km/h 处不动。

则下列说法中正确的是( )A .电动车的速度一直保持不变B .电动车沿弯道BCD 运动过程中,车一直具有加速度C .电动车绕跑道一周需40 s ,此40 s 内电动车的平均速度等于10 m/sD .跑完一圈过程中,由于电动车的速度没有发生改变,故电动车所受合力为零解析 电动车做曲线运动,速度是变化的,A 错;电动车在弯道BCD 的运动为曲线运动,合力不等于零,车的加速度不为零,B 对,D 错;电动车跑完一周的位移为零,其平均速度为零,C 错。

2018年高考总复习物理新课标第四章 曲线运动 万有引力

2018年高考总复习物理新课标第四章 曲线运动 万有引力

, [学生用书P69])1.(考点一)(单选)如图所示,汽车在一段弯曲水平路面上行驶,关于它受的水平方向的作用力的示意图如图所示,其中可能正确的是(图中F 为牵引力,F f 为汽车行驶时所受阻力)( )解析:选C.阻力F f 与速度反向,沿曲线切线方向,牵引力指向曲线凹侧,故C 正确.2.(考点二)(单选)(2016·衡阳联考)如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE 匀速运动.现从t =0时汽车由静止开始做甲、乙两种匀加速启动,甲启动后t 1时刻,乘客看到雨滴从B 处离开车窗,乙启动后t 2时刻,乘客看到雨滴从F 处离开车窗,F 为AB 中点,则t 1∶t 2为( )A .2∶1B .1∶ 2C .1∶ 3D .1∶(2-1)解析:选A.由题意可知,在乘客看来,雨滴在竖直方向上做匀速直线运动,在水平方向做匀加速直线运动,因分运动与合运动具有等时性,则t 1∶t 2=AB v ∶AFv =2∶1.3.(考点二)(单选)(2015·高考全国卷Ⅱ)由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103 m/s ,某次发射卫星飞经赤道上空时的速度为1.55×103 m/s ,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为( )A .西偏北方向,1.9×103 m/sB .东偏南方向,1.9×103 m/sC .西偏北方向,2.7×103 m/sD .东偏南方向,2.7×103 m/s解析:选B .设当卫星在转移轨道上飞经赤道上空与同步轨道高度相同的某点时,速度为v 1,发动机给卫星的附加速度为v 2,该点在同步轨道上运行时的速度为v.三者关系如图,由图知附加速度方向为东偏南,由余弦定理知v 22=v 21+v 2-2v 1v cos 30°,代入数据解得v 2≈1.9×103 m /s .选项B 正确.4.(微专题10)(多选)(2016·广东顺德一中月考)一条河宽100 m ,船在静水中的速度为4 m/s ,水流速度是5 m/s ,则( )A .该船能垂直河岸横渡到对岸B .当船头垂直河岸横渡时,过河所用的时间最短C .当船头垂直河岸横渡时,船的位移最小,是100 mD .该船渡到对岸时,船沿岸方向的位移可能小于100 m解析:选BD.据题意,由于船速为v 1=4 m/s ,而水速为v 2=5 m/s ,船速小于水速,则无论船头指向哪个方向,都不可能使船垂直驶向对岸,A 选项错误;据t =Lv 1 sin θ(θ为船头指向与水流方向的夹角),知道使t 最小需要使sin θ最大,即使船头与河岸垂直,B 选项正确;要使船的渡河位移最短,需要使船速方向与合运动方向垂直,则有合速度为v =3 m/s ,渡河时间为t =L 35v 1=1253 s ,则船的合位移为v t =125 m ,所以C 选项错误;船的渡河位移最小时,船沿岸方向的位移为:⎝⎛⎭⎫v 2-45v 1t =75 m ,所以D 选项正确. 5.(微专题10)(单选)人用绳子通过定滑轮拉物体A ,A 穿在光滑的竖直杆上,当以速度v 0匀速地拉绳使物体A 到达如图所示位置时,绳与竖直杆的夹角为θ,则物体A 实际运动的速度是( )A .v 0sin θ B.v 0sin θ C .v 0cos θ D.v 0cos θ解析:选D.由运动的合成与分解可知,物体A 参与两个分运动:一个是沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动.而物体A 的实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运动就是物体A 的合运动,它们之间的关系如图所示.由几何关系可得v =v 0cos θ,所以D 项正确.。

(新课标)高考物理一轮复习第四章曲线运动万有引力与航天章末热点集训(2021学年)

(新课标)高考物理一轮复习第四章曲线运动万有引力与航天章末热点集训(2021学年)

(新课标)2018年高考物理一轮复习第四章曲线运动万有引力与航天章末热点集训编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2018年高考物理一轮复习第四章曲线运动万有引力与航天章末热点集训)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2018年高考物理一轮复习第四章曲线运动万有引力与航天章末热点集训的全部内容。

第四章曲线运动万有引力与航天章末热点集训抛物运动问题(多选)如图所示,斜面倾角为θ,位于斜面底端A正上方的小球以初速度v0正对斜面顶点B水平抛出,小球到达斜面经过的时间为t,重力加速度为g,则下列说法中正确的是()A.若小球以最小位移到达斜面,则t=错误!B.若小球垂直击中斜面,则t=vcot θgC.若小球能击中斜面中点,则t=错误!D.无论小球到达斜面何处,运动时间均为t=\f(2v0tanθ,g)[解析] 小球以最小位移到达斜面时即位移与斜面垂直,位移与水平方向的夹角为错误!-θ,则tan错误!=错误!=错误!,即t=错误!,A正确,D错误;小球垂直击中斜面时,速度与水平方向的夹角为错误!-θ,则tan错误!=错误!,即t=错误!,B正确;小球击中斜面中点时,令斜面长为2L,则水平射程为L cos θ=v0t,下落高度为Lsin θ=错误!gt2,联立两式得t=错误!,C错误.[答案] AB1。

如图所示,在距地面2l的高空A处以水平初速度v0=错误!投掷飞镖,在与A点水平距离为l的水平地面上的B点有一个气球,选择适当时机让气球也以速度v0=gl匀速上升,在升空过程中被飞镖击中.飞镖在飞行过程中受到的空气阻力不计,在计算过程中可将飞镖和气球视为质点,已知重力加速度为g,试求:(1)飞镖是以多大的速度击中气球的?(2)掷飞镖和释放气球两个动作之间的时间间隔Δt应为多少?解析:(1)飞镖被投掷后做平抛运动,从掷出飞镖到击中气球,经过时间t1=\f(l,v0)=\r(lg)此时飞镖在竖直方向上的分速度vy=gt1=错误!故此时飞镖的速度大小v=错误!=错误!.(2)飞镖从掷出到击中气球过程中,下降的高度h1=\f(1,2)gt错误!=错误!气球从被释放到被击中过程中上升的高度h2=2l-h1=错误!气球的上升时间t2=h2v=错误!=错误!错误!可见,t2>t1,所以应先释放气球,释放气球与掷飞镖之间的时间间隔Δt=t2-t1=\f(1,2)错误!。

(新课标)高考物理一轮复习第四章曲线运动万有引力与航天第四节万有引力与航天试题(2021学年)

(新课标)高考物理一轮复习第四章曲线运动万有引力与航天第四节万有引力与航天试题(2021学年)

(新课标)2018年高考物理一轮复习第四章曲线运动万有引力与航天第四节万有引力与航天试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2018年高考物理一轮复习第四章曲线运动万有引力与航天第四节万有引力与航天试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2018年高考物理一轮复习第四章曲线运动万有引力与航天第四节万有引力与航天试题的全部内容。

第四节万有引力与航天一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的二次方成反比.2.公式:F=G错误!,其中G=6。

67×10-11 N·m2/kg2.3.适用条件(1)严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.(2)均匀的球体可视为质点,其中r是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r为球心到质点的距离.1。

判断正误(1)地面上的物体所受地球引力的大小均由F=G\f(m1m2,r2)决定,其方向总是指向地心.()(2)只有天体之间才存在万有引力.( )(3)只要已知两个物体的质量和两个物体之间的距离,就可以由F=G错误!计算物体间的万有引力.( )(4)当两物体间的距离趋近于0时,万有引力趋近于无穷大.( )提示:(1)√(2)×(3)× (4)×二、宇宙速度1.第一宇宙速度(环绕速度)(1)数值v1=7。

9km/s,是人造卫星的最小发射速度,也是人造卫星最大的环绕速度.(2)第一宇宙速度的计算方法①由G错误!=m错误!得v= 错误!.②由mg=m错误!得v=错误!.2.第二宇宙速度(脱离速度):v2=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度.3.第三宇宙速度(逃逸速度):v3=16.7 km/s,使物体挣脱太阳引力束缚的最小发射速度.2。

2018版高考物理一轮复习 第4章 曲线运动 万有引力 第4讲 万有引力与航天模拟 新人教版必修2

2018版高考物理一轮复习 第4章 曲线运动 万有引力 第4讲 万有引力与航天模拟 新人教版必修2

万有引力与航天1.(2016·全国卷Ⅲ)关于行星运动的规律,下列说法符合史实的是导学号 51342462( B )A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律[解析] 开普勒在第谷的观测数据的基础上,总结出了行星运动的规律,B 项正确;牛顿在开普勒总结的行星运动规律的基础上发现了万有引力定律,找出了行星运动的原因,A 、C 、D 项错。

2.(2016·四川理综)国务院批复,自2016年起将4月24日设立为“中国航天日”。

1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35786 km 的地球同步轨道上。

设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为导学号 51342463( D )A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3[解析] 固定在赤道上的物体随地球自转的周期与同步卫星运行的周期相等,同步卫星做圆周运动的半径大,由a =r (2πT)2可知,同步卫星做圆周运动的加速度大,即a 2>a 3,B 、C 项错误;由于东方红二号与东方红一号在各自轨道上运行时受到万有引力,由牛顿第二定律有G Mm r 2=ma ,即a =G Mr2,由于东方红二号的轨道半径比东方红一号在远地点时距地高度大,因此有a 1>a 2,D 项正确。

3.(2016·全国卷Ⅰ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯,目前,地球同步卫星的轨道半径约为地球半径的6.6倍。

2018版高考一轮总复习物理模拟演练第4章 曲线运动 万有引力与航天4-4万有引力与航天含答案

2018版高考一轮总复习物理模拟演练第4章 曲线运动 万有引力与航天4-4万有引力与航天含答案

4—4万有引力与航天时间:45分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分.其中1~6为单选,7~10为多选)1.2016年2月1日15时29分,我国在西昌卫星发射中心成功发射了第五颗新一代北斗导航卫星。

该卫星为地球中圆轨道卫星,质量为m,轨道离地面的高度约为地球半径R的3倍。

已知地球表面的重力加速度为g,忽略地球自转的影响。

则()A.卫星的绕行速率大于7。

9 km/sB.卫星的绕行周期约为8π 错误!C.卫星所在处的重力加速度约为g/4D.卫星的动能约为错误!2.某行星的质量约为地球质量的错误!,半径为地球半径的错误!,那么在此行星上的“第一宇宙速度"与地球上的第一宇宙速度之比为()A.2∶1 B.1∶2C.1∶4 D.4∶13.火星被认为是太阳系中最有可能存在地外生命的行星,对人类来说充满着神奇,为了更进一步探究火星,发射一颗火星的同步卫星。

已知火星的质量为地球质量的p倍,火星自转周期与地球自转周期相同均为T,地球表面的重力加速度为g,地球的半径为R,则火星的同步卫星距球心的距离为()A.r=错误!B.r=错误!C.r=错误!D.r=错误!4.太阳系中某行星运行的轨道半径为R0,周期为T0。

但天文学家在长期观测中发现,其实际运行的轨道总是存在一些偏离,且周期性地每隔t0时间发生一次最大的偏离(行星仍然近似做匀速圆周运动)。

天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星。

假设两行星的运行轨道在同一平面内,且绕行方向相同,则这颗未知行星运行轨道的半径R和周期T正确的是(认为未知行星近似做匀速圆周运动)()A.T=错误!B.T=错误!T0C.R=R0错误!D.R=R0错误!5.如图所示,人造卫星A、B在同一平面内绕地心O做匀速圆周运动,已知A、B连线与A、O连线间的夹角最大为θ,则卫星A、B的线速度之比为()A.sinθB。

错误!C。

错误! D.错误!6.如图是两颗仅在地球引力作用下绕地球运动的人造卫星轨道示意图,Ⅰ是半径为R的圆轨道,Ⅱ为椭圆轨道,AB为椭圆的长轴且AB=2R,两轨道和地心在同一平面内,C、D为两轨道的交点.已知轨道Ⅱ上的卫星运动到C点时速度方向与AB平行,下列说法正确的是( )A.两个轨道上的卫星在C点时的加速度相同B.两个轨道上的卫星在C点时的向心加速度大小相等C.Ⅱ轨道上卫星的周期大于Ⅰ轨道上卫星的周期D.Ⅱ轨道上卫星从C经B运动到D的时间与从D经A运动到C的时间相等7.近期,电影《火星救援》的热映,再次激起了人们对火星的关注.某火星探测器贴近火星表面做匀速圆周运动,已知速度为v ,周期为T ,引力常量为G 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章曲线运动万有引力与航天
天体运动问题是牛顿运动定律、匀速圆周运动规律及万有引力定律的综合应用,由于天体运动贴近科技前沿,且蕴含丰富的物理知识,因此是高考命题的热点.近几年在全国卷中都有题目进行考查,2016年全国甲、乙、丙三卷中都有涉及天体运动的题目.预计高考可能会结合我国最新航天成果考查卫星运动中基本参量的求解和比较以及变轨等问题.
【重难解读】
本部分要重点理解解决天体运动的两条基本思路,天体质量和密度的计算方法,卫星运行参量的求解及比较等.其中卫星变轨问题和双星系统模型是天体运动中的难点.
【典题例证】
2016年10月17日,“神舟十一号”载人飞船发射升空,
运送两名宇航员前往在2016年9月15日发射的“天宫二号”空间实
验室,宇航员计划在“天宫二号”驻留30天进行科学实验.“神舟
十一号”与“天宫二号”的对接变轨过程如图所示,AC是椭圆轨道
Ⅱ的长轴.“神舟十一号”从圆轨道Ⅰ先变轨到椭圆轨道Ⅱ,再变轨
到圆轨道Ⅲ,与在圆轨道Ⅲ运行的“天宫二号”实施对接.下列描述
正确的是( )
A.“神舟十一号”在变轨过程中机械能不变
B.可让“神舟十一号”先进入圆轨道Ⅲ,然后加速追赶“天宫二号”实现对接
C.“神舟十一号”从A到C的平均速率比“天宫二号”从B到C的平均速率大
D.“神舟十一号”在椭圆轨道上运行的周期与“天宫二号”运行周期相等
[解析] “神舟十一号”飞船变轨过程中轨道升高,机械能增加,A选项错误;若飞船在进入圆轨道Ⅲ后再加速,则将进入更高的轨道飞行,不能实现对接,选项B错误;飞船轨道越低,速率越大,轨道Ⅱ比轨道Ⅲ的平均高度低,因此平均速率要大,选项C正确;由开普勒第三定律可知,椭圆轨道Ⅱ上的运行周期比圆轨道Ⅲ上的运行周期要小,D项错误.[答案] C
题目涉及飞船变轨的机械能、速度和周期等,以考查学生对人造天体运动原理的理解、天体运动规律的掌握及综合分析能力.在轨飞行的人造天体,加速后轨道半径增大,机械能增加,平均速率减小,减速后则相反,轨道半径减小,机械能减小,平均速率增大.
【突破训练】
1.中国月球探测工程首席科学家欧阳自远在第22届国际天文馆学会大会上透露,我国即将开展深空探测,计划将在2020年实现火星的着陆巡视,假设火星探测器在着陆前,绕火星表面匀速飞行(不计周围其他天体的影响),宇航员测出飞行N 圈所用时间为t ,已知地球质量为M ,地球半径为R ,地球表面重力加速度为g .仅利用以上数据,可以计算出的物理量有( )
A .火星的质量
B .火星的密度
C .火星探测器的质量
D .火星表面的重力加速度
解析:选B.由题意可知火星探测器绕火星表面运行的周期T =t
N
,由GM =gR 2
和G M 火m r 2
=m ⎝ ⎛⎭
⎪⎫2πT 2
r ,可得火星的质量为M 火=4N 2
π2r 3
M gR 2t 2,由于火星半径未知,所以火星质量不可求,故选项A 错误;由M 火=ρ·43πr 3及火星质量表达式可得ρ=3πN 2
M
gR 2t 2,则密度可求出,选项
B 正确;天体运动问题中,在一定条件下只能计算出中心天体的质量(本题中无法求出),不能计算出环绕天体的质量,故选项
C 错误;根据g 火=a =⎝ ⎛⎭⎪⎫2πT 2
r =4π2N 2
r t 2,由于火星半径
未知,所以火星表面重力加速度不可求,选项D 错误.
2.(高考全国卷Ⅱ)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( )
A.3πGT 2
g 0-g
g 0
B .3πGT 2g 0
g 0-g
C.

GT
2
D .3πGT 2g 0g
解析:选B.在地球两极重力等于万有引力,即有mg 0=G Mm R 2=4
3
πρmGR ,在赤道上重力
等于万有引力与向心力的差值,即mg +m 4π
2
T
2
R =G
Mm R 2=4
3
πρmGR ,联立解得:ρ=3πg 0
GT 2
(g 0-g )
,B 项正确.
3.我国“玉兔号”月球车被顺利送抵月球表面,并发回大量图片和信息.若该月球车在地球表面的重力为G 1,在月球表面的重力为G 2.已知地球半径为R 1,月球半径为R 2,地球表面处的重力加速度为g ,则( )
A .“玉兔号”月球车在地球表面与月球表面质量之比为 G 1G 2
B .地球的质量与月球的质量之比为 G 1R 22
G 2R 21
C .地球表面处的重力加速度与月球表面处的重力加速度之比为 G 2G 1
D .地球的第一宇宙速度与月球的第一宇宙速度之比为
G 1R 1
G 2R 2
解析:选D.质量与引力无关,故“玉兔号”月球车在地球表面与月球表面质量之比为1∶1,A 错误;重力加速度g =
G 重
m
,故地球表面处的重力加速度与月球表面处的重力加速度之比为G 1∶G 2,C 错误;根据g =GM R 2,有M =gR 2G ,故地球的质量与月球的质量之比为M 地M 月=G 1R 21
G 2R 22

B 错误;因第一宇宙速度是近地卫星的环绕速度,且v =gR ,故地球的第一宇宙速度与月球的第一宇宙速度之比为v 1
v 2=
G 1R 1
G 2R 2
,D 正确. 4.(2015·高考福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆
周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( )
A.v 1
v 2=
r 2
r 1 B.v 1v 2=
r 1r 2 C.v 1v 2
=(r 2r 1
)2
D .v 1v 2
=(r 1r 2
)2
解析:选A.对人造卫星,根据万有引力提供向心力GMm r 2=m v 2
r
,可得v =
GM
r
.所以对于a 、b 两颗人造卫星有v 1v 2=
r 2
r 1
,故选项A 正确.
5.2015年4月,科学家通过欧航局天文望远镜在一个河外星系中,发现了一对相互环绕旋转的超大质量双黑洞系统,如图所示.这也是天文学家首次在正常星系中发现超大质量双黑洞.这对验证宇宙学与星系演化模型、广义相对论在极端条件下的适应性等都具有十分
重要的意义.若图中双黑洞的质量分别为M 1和M 2,它们以两者连线上的某一点为圆心做匀速圆周运动.根据所学知识,下列选项正确的是( )
A .双黑洞的角速度之比ω1∶ω2=M 2∶M 1
B .双黑洞的轨道半径之比r 1∶r 2=M 2∶M 1
C .双黑洞的线速度之比v 1∶v 2=M 1∶M 2
D .双黑洞的向心加速度之比a 1∶a 2=M 1∶M 2
解析:选B.双黑洞绕连线上的某点做匀速圆周运动的周期相等,角速度也相等,选项A
错误;双黑洞做匀速圆周运动的向心力由它们之间的万有引力提供,向心力大小相等,设双黑洞间的距离为L ,由G
M 1M 2L
=M 1r 1ω2=M 2r 2ω2

得双黑洞的轨道半径之比r 1∶r 2=M 2∶M 1,选项B 正确;双黑洞的线速度之比v 1∶v 2=r 1∶r 2=M 2∶M 1,选项C 错误;双黑洞的向心加速度之比为a 1∶a 2=r 1∶r 2=M 2∶M 1,选项D 错误.
6.在天体运动中,将两颗彼此相距较近的行星称为双星.它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动.如果双星间距为L ,质量分别为M 1和M 2,试计算:
(1)双星的轨道半径; (2)双星的运行周期; (3)双星的线速度的大小.
解析:因为双星受到同样大小的万有引力作用,且保持距离不变,绕同一圆心做匀速圆周运动,如图所示,所以具有周期、频率和角速度均相同,而轨道半径、
线速度不同的特点.
(1)由于两星受到的向心力相等, 则M 1ω2
R 1=M 2ω2
R 2,L =R 1+R 2. 由此得:R 1=
M 2
M 1+M 2L ,R 2=M 1
M 1+M 2
L . (2)由万有引力提供向心力得 G M 1M 2L 2=M 1⎝ ⎛⎭⎪⎫2πT 2R 1=M 2⎝ ⎛⎭⎪⎫2πT 2R 2.
所以,周期为T =2πL L G (M 1+M 2)
. (3)线速度v 1=2πR 1T =M 2
G
L (M 1+M 2)

v 2=
2πR 2
T
=M 1
G L (M 1+M 2).
答案:(1)R 1=M 2
M 1+M 2L R 2=M 1
M 1+M 2
L (2)2πL L
G (M 1+M 2)
(3)v 1=M 2
G
L (M 1+M 2)
v 2=M 1
G L (M 1+M 2)。

相关文档
最新文档