2016年江苏省苏州市吴江市青云中学九年级上学期数学期中试卷与解析
初中数学吴江市青云中学九年级上期中数学考试卷及答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:程x2﹣5x=0的解是()A. x1=0,x2=﹣5 B. x=5 C. x1=0,x2=5 D. x=0试题2:用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9试题3:已知(a2+b2)2﹣(a2+b2)﹣12=0,则a2+b2的值为()A.﹣3 B. 4 C.﹣3或4 D. 3或﹣4试题4:已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是() A. k<﹣2 B. k<2 C. k>2 D. k<2且k≠1试题5:要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是() A. 5个 B. 6个 C. 7个 D. 8个试题6:若m是方程x2﹣2014x﹣1=0的根,则(m2﹣2014m+3)(m2﹣2014m+4)的值为()A. 16 B. 12 C. 20 D. 30试题7:如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.B.C.D.试题8:如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135° B. 122.5° C. 115.5° D.112.5°试题9:圆外切等腰梯形的一腰长是8,则这个等腰梯形的上底与下底长的和为()A. 4 B. 8 C. 12 D. 16试题10:如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A. 6cm B. 12cm C. 6cm D. 4cm试题11:已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是试题12:如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程.试题13:某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为试题14:已知关于x的一元二次方程x2﹣x﹣3=0的两个实数根分别为α、β,则(α+3)(β+3)= .试题15:如图,在半径分别为5cm和3cm的两个同心圆中,大圆的弦AB与小圆相切于点C,则弦AB的长为cm.试题16:如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).试题17:已圆的半径为r=5,圆心到直线l的距离为d,当d满足时,直线l与圆有公共点.试题18:已等腰三角形的腰长为10,底边长为12,则它的外接圆半径等于试题19:(x﹣3)(x+7)=﹣9试题20:x2﹣3x﹣10=0试题21:6x2﹣x﹣2=0.试题22:(x+3)(x﹣3)=3.试题23:若关于x的方程ax2+2(a+2)x+a=0有实数解,求实数a的取值范围.试题24:若a,b,c分别是三角形的三边,判断方程(a+b)x2+2cx+(a+b)=0的根的情况.试题25:如图,以O为圆心的同心圆中,大圆的弦AB交小圆于C、D两点,求证:(1)∠AOC=∠BOD;(2)AC=BD.试题26:如图,已知⊙O为△ABC的外接圆,CE是⊙O的直径,CD⊥AB,D为垂足,求证:∠ACD=∠BCE.试题27:已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?试题28:如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,CD=5cm,求⊙O的半径R.试题29:楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)试题30:如图,点I是△ABC的内心,AI交BC于D,交△ABC的外接圆于点E.①求证:IE=BE;②线段IE是哪两条线段的比例中项,试加以证明.试题1答案:C 解:直接因式分解得x(x﹣5)=0,解得x1=0,x2=5.试题2答案:D.试题3答案:B.考点:换元法解一元二次方程.分析:根据换元法,可得一元二次方程,根据因式分解,可得方程的解.解答:解:设a2+b2=x,原方程为x2﹣x﹣12=0.因式分解,得(x﹣4)(x+3)=0.x﹣4=0或x+3=0,解得x=4,x=﹣3(不符合题意,要舍去),a2+b2=x=4,试题4答案::D.考点:根的判别式;一元二次方程的定义.专题:计算题;压轴题.分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.解答:解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,解得:k<2,且k≠1.试题5答案:C.考点:一元二次方程的应用.专题:应用题.分析:赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=.即可列方程求解.解答:解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,x(x﹣1)÷2=21,解得x=7或﹣6(舍去).故应邀请7个球队参加比赛.试题6答案:C考点:一元二次方程的解.分析:首先把m代入x2﹣2013x﹣1=0,得出m2﹣2013m=1,再进一步整体代入求得数值即可.解答:解:∵m是方程x2﹣2014x﹣1=0的根,∴m2﹣2014m=1,∴(m2﹣2014m+3)(m2﹣2014m+4)=(1+3)×(1+4)=20.试题7答案:B考点:垂径定理;勾股定理.分析:根据垂径定理可得AC=BC=AB,在Rt△OBC中可求出OB.解答:解:∵OC⊥弦AB于点C,∴AC=BC=AB,在Rt△OBC中,OB==.试题8答案:D考点:圆周角定理.分析:首先利用等腰三角形的性质求得∠AOB的度数,然后利用圆周角定理即可求解.解答:解:∵OA=OB,∴∠OAB=∠OBA=22.5°,∴∠AOB=180°﹣22.5°﹣22.5°=135°.∴∠C=(360°﹣135°)=112.5°.试题9答案:D考点:切线长定理.分析:直接利用圆外切四边形对边和相等,进而求出即可.解答:解:∵圆外切等腰梯形的一腰长是8,∴梯形对边和为:8+8=16,则这个等腰梯形的上底与下底长的和为16.试题10答案:C考点:正多边形和圆.分析:根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.解答:解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(cm).故选.试题11答案:2 .考点:根的判别式.专题:计算题.分析:根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b的值.解答:解:根据题意得:△=b2﹣4(b﹣1)=(b﹣2)2=0,则b的值为2.试题12答案:(30﹣2x)(20﹣x)=6×78考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:设道路的宽为xm,将6块草地平移为一个长方形,长为(30﹣2x)m,宽为(20﹣x)m.根据长方形面积公式即可列方程(30﹣2x)(20﹣x)=6×78.解答:解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,故答案为:(30﹣2x)(20﹣x)=6×78.点评:此题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.试题13答案:20% .考点:一元二次方程的应用.专题:增长率问题.分析:解答此题利用的数量关系是:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.解答:解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为:20%试题14答案:9考点:根与系数的关系.分析:根据x的一元二次方程x2﹣x﹣3=0的两个实数根分别为α、β,求出α+β和αβ的值,再把要求的式子变形为αβ+3(α+β)+9,最后把α+β和αβ的值代入,计算即可.解答:解:∵x的一元二次方程x2﹣x﹣3=0的两个实数根分别为α、β,∴α+β=1,αβ=﹣3,∴(α+3)(β+3)=αβ+3α+3β+9=αβ+3(α+β)+9=﹣3+3×1+9=9;试题15答案:8考点:切线的性质.分析:本题应根据垂径定理和勾股定理求解.解答:解:大圆的弦AB与小圆相切于点C,∴OC⊥AB,由垂径定理知,AC=BC,由勾股定理得,AC=4,∴AB=2AC=8.试题16答案:55考点:切线的性质.分析:首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.解答:解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.试题17答案:0≤d≤5考点:直线与圆的位置关系.分析:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.直线和圆有两个公共点,则直线和圆相交;直线和圆有唯一一个公共点,则直线和圆相切;直线和圆没有公共点,则直线和圆相离.解答:解:根据题意,可知圆的半径为5.∵直线l与圆有公共点,∴直线与圆相交或相切,∴d满足0≤d≤5,试题18答案:.考点:三角形的外接圆与外心;等腰三角形的性质.专题:计算题.分析:如图,⊙O为等腰三角形ABC的外接圆,AB=AC=10,BC=12,作AD⊥BC于D,根据等腰三角形的性质得BD=CD=BC=6,则AD垂直平分BC,根据垂径定理的推论得点O在AD上;连结OB,设⊙O的半径为r,在Rt△ABD中利用勾股定理计算出AD=8,在Rt△OBD中,再利用勾股定理得到(8﹣r)2+62=r2,然后解方程即可得到外接圆半径.解答:解:如图,⊙O为等腰三角形ABC的外接圆,AB=AC=10,BC=12,作AD⊥BC于D,∵AB=AC,∴BD=CD=BC=6,∴AD垂直平分BC,∴点O在AD上,连结OB,设⊙O的半径为r,在Rt△ABD中,∵AB=10,BD=6,∴AD==8,在Rt△OBD中,OD=AD﹣OA=8﹣r,OB=r,∵OD2+BD2=OB2,∴(8﹣r)2+62=r2,解得r=,即它的外接圆半径等于.故答案为.试题19答案:整理得:x2+4x﹣12=0,(x+6)(x﹣2)=0,x+6=0,x﹣2=0,x1=﹣6,x2=2;试题20答案:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,x﹣5=0,x+2=0,x1=5,x2=﹣2;试题21答案:6x2﹣x﹣2=0,(3x+1)(x﹣2)=0,3x+1=0,x﹣2=0,x1=﹣,x2=2;试题22答案:整理得:x2=12,x=±2,x1=2,x2=﹣2.试题23答案:解:当a=0时,此方程是一元一次方程,故方程有解;当a≠0时,此方程是一元二次方程.∵方程有实数解,∴△=[2(a+2)]2﹣4a2≥0,解得a≥﹣1.试题24答案:解:△=(2c)2﹣4(a+b)(a+b)=4c2﹣4(a+b)2=4(c+a+b)(c﹣a﹣b).∵a,b,c分别是三角形的三边,∴a+b>c.∴c+a+b>0,c﹣a﹣b<0,∴△<0,∴方程没有实数根.试题25答案:(1)证明:过O作OE⊥AB,∵∠OAB与△OCD均为等腰三角形,∴∠AOE=∠BOE,∠COE=∠DOE,∴∠AOE﹣∠COE=∠BOE﹣∠DOE,∠AOC﹣∠BOD;(2)证明:∵OE⊥AB,∴AE=BE,CE=DE,∴BE﹣DE=AE﹣CE,即AC=BD.试题26答案:证明:连接EB,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=90°,∵CE是⊙O的直径,∴∠CBE=90°,∴∠E+∠ECB=90°,∵∠A=∠E,∴∠ACD=∠BCE.试题27答案:解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.试题28答案:解:连接OB,OC,OD,∵等边△ABC内接于⊙O,BD为内接正十二边形的一边,∴∠BOC=×360°=120°,∠BOD=×360°=30°,∴∠COD=∠BOC﹣∠BOD=90°,∵OC=OD,∴∠OCD=45°,∴OC=CD•cos45°=5×=5(cm).即⊙O的半径R=5cm.试题29答案:解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.试题30答案:①证明:连接BI.∵I是△ABC的内心,∴∠1=∠2,∠3=∠4;∵∠BIE=∠3+∠2,∠EBI=∠4+∠5,且∠5=∠1,∴∠BIE=∠EBI;∴IE=BE;②解:考虑有公共边公共角的相似三角形及IE=BE,知:IE是DE和AE的比例中项.证明如下:∵∠5=∠1,∠1=∠2;∴∠5=∠2;又∵∠E=∠E,∴△BED∽△AEB;∴BE:DE=AE:BE;∴BE2=AE•DE;又∵IE=BE,∴IE2=AE•DE.。
2016年江苏省苏州市吴江区九年级上学期数学期中考试试卷
2016年江苏省苏州市吴江区九年级上学期数学期中考试试卷一、选择题(共10小题;共50分)1. 下列方程中,一元二次方程有①;②;③;④;⑤.A. 个B. 个C. 个D. 个2. 若,是一元二次方程的两根,则A. B. C. D.3. 关于的一元二次方程的一个根是,则的值为A. B. C. 或 D.4. ,则的值为A. B. C. 或 D. 无法确定5. 某商品两次价格上调后,单位价格从元变为元,则平均每次调价的百分率是A. B. C. D.6. 如图,平行四边形的一边为直径的过点,若,则等于A. B. C. D.7. 如图,是的直径,弦于点,,,那么的半径是A. B. C. D.8. 等边三角形的内切圆半径、外接圆半径和一边上的高的比为A. B. C. D.9. 如图,过外一点引的两条切线,,切点分别是,,交于点,点是优弧上不与点,点重合的一个动点,连接,,若,则的度数是A. B. C. D.10. 如图,以为直径的半圆绕点,逆时针旋转,点旋转到点的位置,已知,则图中阴影部分的面积为A. B. C. D.二、填空题(共10小题;共50分)11. 方程的根是______.12. 已知,是方程的两个实数根,则 ______.13. 已知关于的一元二次方程有两个不相等的实数根,则的取值范围是______.14. 甲、乙两同学解方程,甲看错了一次项系数,得根为和;乙看错了常数项,得根为和,则原方程为______.15. 已知的周长为,若点到点的距离为,则点在 ______.16. 已知是关于的方程的一个实数根,并且这个方程的两个实数根恰好是等腰的两条边的边长,则的周长为______.17. 如图,在的内接四边形中,,,则 ______.18. 如图,点为上一点,点为边上一点,.以为圆心,长为半径作圆,交于另一点,交于点,,连接.若,则 ______.19. 如图,以原点为圆心的圆交轴于,两点,交轴的正半轴于点,为第一象限内上的一点,若,则 ______ .20. 如图,海边立有两座灯塔,,暗礁分布在经过,两点的弓形(弓形的弧是的一部分)区域内,.为了避免触礁,轮船与,的张角的最大值为______.三、解答题(共8小题;共104分)21. 解方程.(1)(配方法).(2).(3).(4).22. 关于的一元二次方程的两实数根之积为正,求实数的取值范围?23. 已知关于的一元二次方程(为常数).(1)求证:方程有两个不相等的实数根;(2)设,为方程的两个实数根,且,试求出方程的两个实数根和的值.24. 某市百货商店服装部在销售中发现“米奇”童装平均每天可售出件,每件获利元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价元,则平均每天可多售出件,要想平均每天在销售这种童装上获利元,那么每件童装应降价多少元?25. 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽,水面最深地方的高度为,求这个圆形截面的半径.26. 如图,已知直线交于,两点,是的直径.点为上一点,且平分,过作,垂足为.(1)求证:为的切线;(2)若,的直径为,求的长.27. 已知:如图,是的直径,点,为圆上两点,且弧弧,于点,的延长线于点.(1)试说明:;(2)若,,求的面积.28. 如图,中,,,.半径为的圆的圆心以个单位/ 的速度由点沿方向在线段上移动,设移动时间为(单位:).(1)当为何值时,与相切;(2)作交于点,如果和线段交于点.求当为何值时,四边形为平行四边形.答案第一部分1. B2. B3. B4. A5. B6. A7. C8. C9. C 10. A第二部分11. 或12.13. 且14.15. 的内部16. 或17.18.19.20.第三部分21. (1)所以所以(2)原方程整理为:解得:(3)所以所以(4)设,则原方程变形为解得:当时,解得:当时,解得:所以方程的解为或.22. 关于的一元二次方程的两实数根之积为正,,,,,,,即,的取值范围为:.23. (1),因此方程有两个不相等的实数根;(2),又,解方程组<br>\(\[\begin{cases}x_1+x_2=6,\\x_1+2x_2=14\end{cases}\]\)<br>得<br>\(\[\begin{cases}x_1=-2,\\x_2=8.\end{cases}\]\)<br>将代入原方程得<br>\(\[\left(-2\right)^2-6\times \left(-2\right)-k^2=0,\]\)<br>解得<br>\(\[k=\pm 4.\]\)<br>24. 设每件童装应降价元,由题意得:解得:或因为要更多地减少库存,所以应该降价元.25. (1)先作弦的垂直平分线;在弧上任取一点连接,作弦的垂直平分线,两线交点作为圆心,作为半径,画圆即为所求图形.(2)过作于点,交弧于点,连接.,,由题意可知,,设半径为,则.在中,由勾股定理得:,,解得.即这个圆形截面的半径为.26. (1)连接.,.,,,平分,..为的切线.(2)作,垂足为,,四边形为矩形,,.,设,则,的直径为,,.在中,由勾股定理得,即,化简得,解得,.大于,故舍去.,从而,.,由垂径定理知,为的中点,.27. (1)弧弧,,,又,,,在和中,,;(2),,在和中,,是的直径,,,,,,于点,,,,28. (1)因为过作于点,如图,与相切,,,,,,中,,,,,,,当时,与相切.(2),,,当时,四边形为平行四边形.,,,,,当时,四边形为平行四边形.。
2016-2017学年江苏省苏州市吴中区九年级(上)数学期中试卷带解析答案
2016-2017学年江苏省苏州市吴中区九年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)下列方程中,是一元二次方程的是()A.x2+=0 B.ax2+bx+c=0C.(x﹣1)(x﹣2)=1 D.3x2﹣2xy﹣5y2=02.(3分)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.80°C.40°D.50°3.(3分)用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=74.(3分)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有一个实数根C.有两个相等的实数根D.没有实数根5.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,且AE:BE=1:4,则AB的长度为()A.10 B.5 C.12 D.56.(3分)已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm27.(3分)在平面直角坐标系中,⊙O的半径为5,圆心O为坐标原点,则点P (3,﹣4)与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O外部 C.点P在⊙O内部 D.不能确定8.(3分)如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD的周长是36,则AP的长为()A.12 B.18 C.24 D.99.(3分)下列说法一定正确的是()A.三角形的内心是三内角角平分线的交点B.过三点一定能作一个圆C.同圆中,同弦所对的圆周角相等D.三角形的外心到三边的距离相等10.(3分)如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN的长度为()A.πB.πC.πD.π二、填空题(每题3分,共30分)11.(3分)方程x2=x的解是.12.(3分)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为.13.(3分)若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.14.(3分)一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为.15.(3分)直角三角形的两直角边长分别为6和8,它的外接圆的半径是.16.(3分)如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=.17.(3分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=度.18.(3分)如图,P为⊙O的直径AB延长线上的一点,PC切⊙O于点C,弦CD ⊥AB,垂足为点E,若PC=3,PB=2.则圆的半径为.19.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=.20.(3分)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.三、解答题(共70分)21.(8分)解下列方程:(1)x2﹣4x﹣3=0;(2)(x﹣1)(x+2)=2(x+2).22.(8分)已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.23.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.24.(9分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧.(1)画出圆弧所在圆的圆心P;(2)过点B画一条直线,使它与该圆弧相切;(3)连结AC,求线段AC和弧AC围成的图形的面积.25.(8分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(9分)如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD 平分∠ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由;(3)求线段CE 的长.27.(10分)如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连AD .(1)求证:AD=AN ;(2)若AB=4,ON=1,求⊙O 的半径;(3)若S △CMN :S △ADN =1:8,且AE=4,求CM .28.(10分)如图,Rt △ABC 的内切圆⊙O 与AB 、BC 、CA 分别相切于点D 、E 、F ,且∠ACB=90°,AB=5,BC=3,点P 在射线AC 上运动,过点P 作PH ⊥AB ,垂足为H .(1)直接写出线段AD 及⊙O 半径的长;(2)设PH=x ,PC=y ,求y 关于x 的函数关系式;(3)当PH 与⊙O 相切时,求相应的y 值.2016-2017学年江苏省苏州市吴中区九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列方程中,是一元二次方程的是()A.x2+=0 B.ax2+bx+c=0C.(x﹣1)(x﹣2)=1 D.3x2﹣2xy﹣5y2=0【解答】解:A、不是关于x的一元二次方程,故此选项错误;B、a=0时不是一元二次方程,故此选项错误;C、是一元二次方程,故此选项正确;D、不是一元二次方程,故此选项错误;故选:C.2.(3分)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.80°C.40°D.50°【解答】解:∵OB=OC,∠OCB=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:D.3.(3分)用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=7【解答】解:x2﹣2x﹣3=0,移项得:x2﹣2x=3,两边都加上1得:x2﹣2x+1=3+1,即(x﹣1)2=4,则用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是(x﹣1)2=4.故选:B.4.(3分)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有一个实数根C.有两个相等的实数根D.没有实数根【解答】解:∵a=1,b=﹣4,c=4,∴△=16﹣16=0,∴方程有两个相等的实数根.故选:C.5.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,且AE:BE=1:4,则AB的长度为()A.10 B.5 C.12 D.5【解答】解:连接OC,设AE=x,∵AE:BE=1:4,∴BE=4x,∴OC=2.5x,∴OE=1.5x,∵CD⊥AB,∴CE=DE,∵CD=8,∴CE=4,Rt△OCE中,OE2+CE2=OC2,∴(1.5x)2+42=(2.5x)2,∴x=2,∴AB=10,故选:A.6.(3分)已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm2【解答】解:圆锥的侧面积=2π×3×5÷2=15π.故选:D.7.(3分)在平面直角坐标系中,⊙O的半径为5,圆心O为坐标原点,则点P (3,﹣4)与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O外部 C.点P在⊙O内部 D.不能确定【解答】解:∵圆心P的坐标为(3,﹣4),∴OP==5.∵⊙P的半径为5,∴原点O在⊙P上.故选:A.8.(3分)如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD的周长是36,则AP的长为()A.12 B.18 C.24 D.9【解答】解:∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=36,∴PA=PB=18,故选:B.9.(3分)下列说法一定正确的是()A.三角形的内心是三内角角平分线的交点B.过三点一定能作一个圆C.同圆中,同弦所对的圆周角相等D.三角形的外心到三边的距离相等【解答】解:A、符合内心的定义,故本选项正确.B、不在同一直线上的三点确定一个圆,故本选项错误;C、同圆中,同弦所对的圆周角不一定相等,故本选项错误;D、不符合外心的定义,故本选项错误;故选:A.10.(3分)如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN的长度为()A.πB.πC.πD.π【解答】解:如图:连接OM,ON,∵⊙O与正五边形ABCDE的边AB、AE相切于点M、N,∴OM⊥AB,ON⊥AC,∵∠A=108°,∴∠MON=72°,∵半径为1,∴劣弧MN的长度为:=π,故选:B.二、填空题(每题3分,共30分)11.(3分)方程x2=x的解是x1=0,x2=1.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=112.(3分)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为﹣2.【解答】解:设关于x的方程x2+3x+a=0的两根分别为m、n,由已知得:,解得:n=﹣2.故答案为:﹣2.13.(3分)若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是相离.【解答】解:∵⊙O的直径是4,∴⊙O的半径r=2,∵圆心O到直线l的距离为3,3>2,∴直线l与⊙O相离.故答案为:相离.14.(3分)一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为60(1﹣x)2=48.6.【解答】解:第一次降价后的价格为60×(1﹣x),二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1﹣x)×(1﹣x),所以可列方程为60(1﹣x)2=48.6.15.(3分)直角三角形的两直角边长分别为6和8,它的外接圆的半径是5.【解答】解:∵直角边长分别为6和8,∴斜边是10,∴这个直角三角形的外接圆的半径为5.故答案为:5.16.(3分)如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=90°.【解答】解:∵∠AOB=90°,∴∠ACB=∠AOB=90°.故答案为:90°.17.(3分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=70度.【解答】解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠A=40°,∴∠ABD=90°﹣∠A=50°,∠C=180°﹣∠A=140°,∵点C为的中点,∴CD=CB,∴∠CBD=∠CDB=20°,∴∠ABC=∠ABD+∠CBD=70°.故答案为:70°.18.(3分)如图,P为⊙O的直径AB延长线上的一点,PC切⊙O于点C,弦CD⊥AB,垂足为点E,若PC=3,PB=2.则圆的半径为.【解答】解:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴OC2+PC2=OP2,设圆的半径为x,则OC=x,OP=OB+PB=x+2,∴x2+32=(x+2)2,解得:x=,∴圆的半径为:.故答案为:.19.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=8.【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=8故答案为:8.20.(3分)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4,∴k(x﹣3)=y﹣4,∵k有无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.三、解答题(共70分)21.(8分)解下列方程:(1)x2﹣4x﹣3=0;(2)(x﹣1)(x+2)=2(x+2).【解答】解:(1)∵x2﹣4x﹣3=0,∴x2﹣4x+4﹣4﹣3=0,∴(x﹣2)2=7,∴x﹣2=±∴x1=2﹣,x2=2+;(2)∵(x﹣1)(x+2)=2(x+2),∴(x+2)(x﹣1﹣2)=0,∴x+2=0或x﹣3=0,∴x1=﹣2,x2=3.22.(8分)已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.【解答】解:(1)∵方程有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×k×2=16﹣8k≥0,解得:k≤2,又因为k是二次项系数,所以k≠0,所以k的取值范围是k≤2且k≠0.(2)由于AB=2是方程kx2﹣4x+2=0,所以把x=2代入方程,可得k=,所以原方程是:3x2﹣8x+4=0,解得:x1=2,x2=,所以BC的值是.23.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.【解答】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AOD=∠B=70°,∴∠CAB=90°﹣∠B=90°﹣70°=20°,∵OA=OD,∴∠DAO=∠ADO===55°,∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===2,∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=4,∴DE=OD﹣OE=4﹣.24.(9分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧.(1)画出圆弧所在圆的圆心P;(2)过点B画一条直线,使它与该圆弧相切;(3)连结AC,求线段AC和弧AC围成的图形的面积.【解答】解:(1)连接BC,作BC的垂直平分线,再利用网格得出AB的垂直平分线,即可得出交点P的位置;(2)如图所示:EF即为所求;(3)连接AP,PC,AC,∵AP=,PC=,AC=,∴AP2+PC2=AC2,∴△APC是直角三角形,∴∠APC=90°,∴S==,扇形APCS△APC=××=,∴线段AC和弧AC围成的图形的面积为:﹣.25.(8分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?【解答】解:设购买了x件这种服装且多于10件,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=20时,80﹣2(20﹣10)=60元>50元,符合题意;当x=30时,80﹣2(30﹣10)=40元<50元,不合题意,舍去;答:她购买了20件这种服装.26.(9分)如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.【解答】解:(1)∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,又∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵弧BD=弧AD,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE.(2)直线ED与⊙O相切.连接OD.∵OC=OD,∴∠ODC=∠OCD,又∵∠DCE=∠ACD,∴∠DCE=∠ODC,∵OD∥BE,∴∠ODE=∠DEC,又∵DE⊥BC,∴∠DEC=90°,∴∠ODE=90°∴OD⊥DE,∴ED与⊙O相切.(3)延长DO交AB于点H.∵OD∥BE,O是AC的中点,∴H是AB的中点,∴HO是△ABC的中位线,∴HO=BC=3,又∵AC 为直径,∴∠ADC=90°,又∵O 是AC 的中点∴OD=AC=×=5,∴HD=3+5=8,∵∠ABC=∠DEC=∠ODE=90°,∴四边形BEDH 是矩形,∴BE=HD=8,∴CE=8﹣6=2.27.(10分)如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连AD .(1)求证:AD=AN ;(2)若AB=4,ON=1,求⊙O 的半径;(3)若S △CMN :S △ADN =1:8,且AE=4,求CM .【解答】(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角,∴∠BAD=∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM ,∴∠BCD=∠BAM ,∴∠BAM=BAD ,在△ANE 与△ADE 中,,∴△ANE ≌△ADE ,∴AD=AN ;(2)解:∵AB=4,AE ⊥CD ,∴AE=2, 又∵ON=1,∴设NE=x ,则OE=x ﹣1,NE=ED=x , r=OD=OE +ED=2x ﹣1连结AO ,则AO=OD=2x ﹣1, ∵△AOE 是直角三角形,AE=2,OE=x ﹣1,AO=2x ﹣1, ∴(2)2+(x ﹣1)2=(2x ﹣1)2, 解得x=2,∴r=2x ﹣1=3;(3)解:∵AD=AN ,AB ⊥CD , ∴AE 平分ND ,∴S △AEN =S △ADE∵S △CMN :S △AND =1:8,∴S △CMN :S △AEN =1:4,又∵△CMN ∽△AEN ,∴()2=,∵AE=4,∴CM=2.28.(10分)如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.【解答】解:(1)⊙O的半径r=(AC+BC﹣AB)=(4+3﹣5)=1;∴AD=3(2)①如图,若点P在线段AC上时.在Rt△ABC中,AB=5,BC=3,∴AC=4,∵∠C=90°,PH⊥AB,∴∠C=∠PHA=90°,∵∠A=∠A,∴△PAH∽△BAC,∴,∴∴y=﹣x+4,即y与x的函数关系式是y=﹣x+4(0≤x≤2.4);②同理,当点P在线段AC的延长线上时,△AHP∽△ACB,∴∴y=x﹣4,即y与x的函数关系式是y=x﹣4(x>2.4),(3)①当点P在线段AC上时,如图2,P′H′与⊙O相切.∵∠OMH′=∠MH′D=∠H′DO=90°,OM=OD,∴四边形OMH′D是正方形,∴MH′=OM=1;由(1)知,四边形CFOE是正方形,CF=OF=1,∴P′H′=P′M+MH′=P′F+FC=P′C,即x=y;又由(2)知,y=﹣x+4,解得,y=.②当点P在AC的延长线上时,如图,P″H″与⊙O相切.此时y=1.。
【精品】2016年江苏省苏州市吴江市青云中学九年级上学期期中数学试卷带解析答案
2015-2016学年江苏省苏州市吴江市青云中学九年级(上)期中数学试卷一、选择题:(本大题共10小题,每小题3分,共30分)1.(3分)下列关于x的方程中,一定是一元二次方程的是()A.ax2+bx+c=0 B.(x+2)(x﹣3)=(x﹣1)2C.x2+1=0 D.+x=12.(3分)下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1 B.2 C.3 D.43.(3分)方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=14.(3分)已知关于x的一元二次方程x2﹣3x+2=0两实数根为x1、x2,则x1+x2=()A.3 B.﹣3 C.1 D.﹣15.(3分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.﹣1 B.0 C.1 D.26.(3分)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切7.(3分)为了让某市的山更绿、水更清,2014年市委、市政府提出了确保到2016年实现全市森林覆盖率达到63%的目标,已知2014年该市森林覆盖率为60%.设从2014年起森林覆盖率的年平均增长率为x,则可列方程()A.60(1+2x)=63% B.60(1+2x)=63 C.60(1+x)2=63% D.60(1+x)2=63 8.(3分)如图,⊙O是△ABC的外接圆,∠BCO=40°,则∠A的度数等于()A.60°B.50°C.45°D.40°9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA 为半径的圆与AB交于点D,则AD的长为()A.B.C.D.10.(3分)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次 B.4次 C.5次 D.6次二、填空题:(本大题共8小题,每小题3分,共24分.)11.(3分)方程x2=4x的解是.12.(3分)若关于x的一元二次方程(k﹣1)x2+x﹣k2=0的一个根为1,则k的值为.13.(3分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是.14.(3分)已知x为实数,(x2+4x)2+5(x2+4x)﹣24=0,则x2+4x的值为.15.(3分)圆锥的母线为5cm,底面半径为3cm,则圆锥的表面积为.16.(3分)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为.(结果保留π)17.(3分)如图,ABCD是⊙O的内接四边形,∠B=140°,则∠AOC的度数是度.18.(3分)如图,点D是△ABC边AB上的一点,BD=2AD,P是△ABC外接圆上一点(点P在劣弧上),∠ADP=∠ACB,则=.三、解答题:(本大题共76分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(15分)解方程:(1)(x﹣1)2=9(2)x2﹣4x﹣621=0(3)﹣=.20.(6分)关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为1,求m的值及该方程的根.21.(6分)如图,AB是⊙O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.22.(8分)已知关于x的一元二次方程x2﹣2x+m=0有两个实数根.(1)求m的范围;(2)若方程两个实数根为x1、x2,且x1+3x2=8,求m的值.23.(8分)已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(k+3)x+3k=0的两个实数根.(1)求证:无论k为何值时,方程总有两个实数根;(2)当△ABC是等腰三角形时,求k的值.24.(8分)如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.25.(8分)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?26.(8分)如图,⊙O是△ABC的外接圆,∠ABC=45°,延长BC于D,连接AD,使得AD∥OC,AB交OC于E.(1)求证:AD与⊙O相切;(2)若AE=2,CE=2.求⊙O的半径和AB的长度.27.(10分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b >0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.2015-2016学年江苏省苏州市吴江市青云中学九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分)1.(3分)下列关于x的方程中,一定是一元二次方程的是()A.ax2+bx+c=0 B.(x+2)(x﹣3)=(x﹣1)2C.x2+1=0 D.+x=1【解答】解:A、a=0时,不是一元二次方程,选项错误;B、原式可化为:x﹣7=0,是一元一次方程,故选项错误;C、符合一元二次方程的定义,正确;D、是分式方程,选项错误.故选:C.2.(3分)下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1 B.2 C.3 D.4【解答】解:A、是圆周角定理的推论,故正确;B、根据轴对称图形和中心对称图形的概念,故正确;C、根据圆周角定理的推论知:同圆中,相等的圆周角所对的弧相等,再根据等弧对等弦,故正确;D、应是不共线的三个点,故错误.故选C.3.(3分)方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=1【解答】解:由原方程,得x2﹣4x=﹣3,配方,得x2﹣4x+4=﹣3+4,即(x﹣2)2=1故选:D.4.(3分)已知关于x的一元二次方程x2﹣3x+2=0两实数根为x1、x2,则x1+x2=()A.3 B.﹣3 C.1 D.﹣1【解答】解:∵关于x的一元二次方程x2﹣3x+2=0两实数根为x1、x2,∴x1+x2=﹣(﹣3)=3.故选:A.5.(3分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.﹣1 B.0 C.1 D.2【解答】解:将x=m代入方程得:m2﹣m﹣1=0,m2﹣m=1.故选:C.6.(3分)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选:A.7.(3分)为了让某市的山更绿、水更清,2014年市委、市政府提出了确保到2016年实现全市森林覆盖率达到63%的目标,已知2014年该市森林覆盖率为60%.设从2014年起森林覆盖率的年平均增长率为x,则可列方程()A.60(1+2x)=63% B.60(1+2x)=63 C.60(1+x)2=63% D.60(1+x)2=63【解答】解:2015年全市森林覆盖率为60%×(1+x),2016年全市森林覆盖率为60%×(1+x)×(1+x)=63%×(1+x)2,可列方程为60%×(1+x)2=63%,故选:D.8.(3分)如图,⊙O是△ABC的外接圆,∠BCO=40°,则∠A的度数等于()A.60°B.50°C.45°D.40°【解答】解:∵OC=OB,∠BCO=40°,∴∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=100°×=50°,故选:B.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA 为半径的圆与AB交于点D,则AD的长为()A.B.C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∵S△ABC∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.故选:C.10.(3分)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次 B.4次 C.5次 D.6次【解答】解:如图,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选:B.二、填空题:(本大题共8小题,每小题3分,共24分.)11.(3分)方程x2=4x的解是0或4.【解答】解:原方程可化为:x2﹣4x=0,∴x(x﹣4)=0解得x=0或4;故方程的解为:0,4.12.(3分)若关于x的一元二次方程(k﹣1)x2+x﹣k2=0的一个根为1,则k的值为0.【解答】解:∵x=1是(k﹣1)x2+x﹣k2=0的根,∴k﹣1+1﹣k2=0,解得k=0或1,∵k﹣1≠0,∴k≠1,∴k=0.故答案为:0.13.(3分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是k<且k≠0.【解答】解:∵kx2﹣x+1=0有两个不相等的实数根,∴△=1﹣4k>0,且k≠0,解得,k<且k≠0;故答案是:k<且k≠0.14.(3分)已知x为实数,(x2+4x)2+5(x2+4x)﹣24=0,则x2+4x的值为3.【解答】解:(x2+4x)2+5(x2+4x)﹣24=0,(x2+4x+8)(x2+4x﹣3)=0,∵x2+4x+8=(x+2)2+4>0,∴x2+4x﹣3=0,∴x2+4x=3,故答案为:3.15.(3分)圆锥的母线为5cm,底面半径为3cm,则圆锥的表面积为24π.【解答】解:圆锥表面积=π×32+π×3×5=24π.故答案为:24π.16.(3分)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为π.(结果保留π)【解答】解:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为=π.故答案为:π17.(3分)如图,ABCD是⊙O的内接四边形,∠B=140°,则∠AOC的度数是80度.【解答】解:∵四边形ABCD是⊙O的内接四边形,∠B=140°,∴∠D=180°﹣∠B=40°,∴∠AOC=2∠D=80°.故答案为:80°.18.(3分)如图,点D是△ABC边AB上的一点,BD=2AD,P是△ABC外接圆上一点(点P在劣弧上),∠ADP=∠ACB,则=.【解答】解:连接AP,∵∠APB与∠ACB是所对的圆周角,∴∠APB=∠ACB,∵∠ADP=∠ACB,∴∠APB=∠ACB=∠ADP,∵∠DAP=∠DAP,∴△APB∽△ADP,∴==,∴AP2=AD•AB=AD•(AD+2AD)=3AD2,∴===.故答案为:.三、解答题:(本大题共76分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(15分)解方程:(1)(x﹣1)2=9(2)x2﹣4x﹣621=0(3)﹣=.【解答】解:(1)(x﹣1)2=9,开方得:x﹣1=±3,解得:x1=4,x2=﹣2;(2)x2﹣4x﹣621=0,(x﹣27)(x+23)=0,x﹣27=0,x+23=0,x1=27,x2=﹣23;(3)﹣=,方程两边都乘以3(x+1)(x﹣1)得:3x(x+1)﹣6(x﹣1)=4(x+1)(x﹣1),即x2+3x﹣10=0,解得:x1=﹣5,x2=2,经检验都是原方程的解,所以原方程的解为:x1=﹣5,x2=2.20.(6分)关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为1,求m的值及该方程的根.【解答】解:mx2﹣(3m﹣1)x+2m﹣1=0,△=(3m﹣1)2﹣4m(2m﹣1)=1,整理得m2﹣2m=0,解得m1=0,m2=2,∵m≠0,∴m=2,原方程为2x2﹣5x+3=0,x=,∴x1=1,x2=.21.(6分)如图,AB是⊙O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.【解答】解:(1)△AOC是等边三角形…(1分)证明:∵=,∴∠1=∠COD=60° …(3分)∵OA=OC(⊙O的半径),∴△AOC是等边三角形;…(5分)(2)证法一:∵=,∴OC⊥AD …(7分)又∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AD …(9分)∴OC∥BD…(10分)证法二:∵=,∴∠1=∠COD=∠AOD …(7分)又∠B=∠AOD∴∠1=∠B …(9分)∴OC∥BD …(10分)22.(8分)已知关于x的一元二次方程x2﹣2x+m=0有两个实数根.(1)求m的范围;(2)若方程两个实数根为x1、x2,且x1+3x2=8,求m的值.【解答】解:(1)△=4﹣4m,∵有两个实数根,∴4﹣4m≥0,∴m≤1;(2)∵,解得,,∴m=x1x2=﹣3.23.(8分)已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(k+3)x+3k=0的两个实数根.(1)求证:无论k为何值时,方程总有两个实数根;(2)当△ABC是等腰三角形时,求k的值.【解答】(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2,∵(k﹣3)2,≥0,∴△≥0,∴无论k为何值时,方程总有两个实数根;(2)解:当AC=BC=5,把x=5代入方程x2﹣(k+3)x+3k=0得52﹣(k+3)×5+3k=0,解得k=5;当AB=AC,则方程x2﹣(k+3)x+3k=0的两个相等的实数根,∴△=(k﹣3)2,=0,∴k=3,∴k的值为3或5.24.(8分)如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.【解答】(1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC.∴∠BAC=∠OAC.即AC平分∠OAB.(2)解:∵OE⊥AB,∴AE=BE=AB=1.又∵∠AOE=30°,∠PEA=90°,∴∠OAE=60°.∴OE=AB•cos60°=2×=.25.(8分)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?【解答】解:(1)设售价应涨价x元,则:(16+x﹣10)(120﹣10x)=770,解得:x1=1,x2=5.又要尽可能的让利给顾客,则涨价应最少,所以x2=5(舍去).∴x=1.答:专卖店涨价1元时,每天可以获利770元.(2)设单价涨价x元时,每天的利润为w1元,则:w1=(16+x﹣10)(120﹣10x)=﹣10x2+60x+720=﹣10(x﹣3)2+810(0≤x≤12),即定价为:16+3=19(元)时,专卖店可以获得最大利润810元.设单价降价z元时,每天的利润为w2元,则:w2=(16﹣z﹣10)(120+30z)=﹣30z2+60z+720=﹣30(z﹣1)2+750(0≤z≤6),即定价为:16﹣1=15(元)时,专卖店可以获得最大利润750元.综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元.26.(8分)如图,⊙O是△ABC的外接圆,∠ABC=45°,延长BC于D,连接AD,使得AD∥OC,AB交OC于E.(1)求证:AD与⊙O相切;(2)若AE=2,CE=2.求⊙O的半径和AB的长度.【解答】(1)证明:连接OA;∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴OA⊥OC;又∵AD∥OC,∴OA⊥AD,∴AD是⊙O的切线.(2)解:设⊙O的半径为R,则OA=R,OE=R﹣2,AE=2,在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣2)2=(2)2,解得R=4,作OH⊥AB于H,如图,OE=OC﹣CE=4﹣2=2,则AH=BH,∵OH•AE=•OE•OA,∴OH===,在Rt△AOH中,AH==,∵OH⊥AB,∴AB=2AH=.27.(10分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b >0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.【解答】解:(1)①如图,∵∠COE=90°∴∠CFE=∠COE=45°,(圆周角定理)②方法一:如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,∴FG2=64×(1﹣b2)(4≤b<5)方法二:①如图,作OM⊥AB点M,连接OF,∵直线的函数式为:y=﹣x+b,∴B的坐标为(0,b),A的坐标为(b,0),∴AB==b,∴sin∠BAO===,∴sin∠MAO===,∴OM=b,∴在RT△OMF中,FM==∵FG=2FM,∴FG2=4FM2=4(42﹣b2)=64﹣﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,∴FG2=64×(1﹣b2)(4≤b<5)(2)如图,当b=5时,直线与圆相切,∵在直角坐标系中,∠COE=90°,∴∠CPE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴△APO∽△AOB,∴=,∵OP=r=4,OB=5,AO=,∴=即AP=,∵AB===,作PM⊥AO交AO于点M,设P的坐标为(x,y),∵△AMP∽△AOB,∴=∴=,∴y=,∴x=OM===∴点P 的坐标为(,).当b>5时,直线与圆相离,不存在P赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
苏州市2015—2016学年第一学期九年级数学期终模拟测试(一)及答案讲解
2015—2016学年第一学期期终模拟测试一九年级数学试卷(范围:苏科版 2013年九年级上下两册; 分值:130分;时间:120分钟)2016年1月 -、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个 是符合题意的•请将正确选项前的字母填在表格中相应的位置题号12345678910答案1.一元二次方程2x 2 -x - 3 =0的二次项系数、一次项系数、常数项分别是( )A • 2,1,3B • 2,1, -3C .2 1,3 2.下列图形是中心对称图形的是( )2 2 2 2A . y =x 2B . y =x -2C . y 二 x 2D . y 二 x-26 .已知扇形的半径为 6,圆心角为60,则这个扇形的面积为( )A . 9 二B . 6 二C . 3 二D . ■:7.用配方法解方程 x 2 4x =3,下列配方正确的是()2 2 2 2A . (x —2)=1B . (X —2) =7C . (x + 2)=7D. (x + 2)=1&已知二次函数 y =ax 2 • bx • c 的图象如图所示,则下列选 项中不正确的是()A . a :: 0b 彳D . 2,-1,-33.二次函数y =-(x+1)2 -2的最大值是()A . -2B . -1C . 1D . 24.已知O O 的半径是4, OP 的长为3,则点P 与O O 的位置关系是(A .点P 在圆内B .点P 在圆上C .点P 在圆外 )D .不能确定 5.将抛物线y = x 2沿y 轴向下平移2个单位,得到的抛物线的解析式为(A .B .C .D .C . 0 < 1B . c 0D . a b c ::02a9.如图,△ ABC 内接于O O,BD 是O O 的直径.若.DBC =33 •,则.匕A 等于()A . 33B . 57C . 67D . 66A . 7 分B . 6.5 分C . 6 分D . 5.5 分二、填空题(本题共18分,每小题3分) 11.方程x 2 -4 =0的解为 ____________________ .12•请写出一个开口向上且经过 (0, 1)的抛物线的解析式 __________ . 13 .若二次函数y=2x 2-5的图象上有两个点 A (2,a )、B (3,b ),则 a —b (填“ <”或“=”或“ >”).14 .如图,A 、B 、C 三点在O O 上,/ AOC=100 ° ,则/ ABC= _______15 .用一块直径为4米的圆桌布平铺在对角线长为 4米的正方形桌面上(如 示意图),若四周下垂的最大长度相等,则这个最大长度 x 为 _________ 米(.2 取 1.4).16 .如图,O 是边长为1的等边△ ABC 的中心,将 AB 、BC 、CA 分别 绕点A 、点B 、点C 顺时针旋转:-(0 ::: :- < 180 ),得到AB'、BC'、 CA',连接 A'B'、B'C'、A'C'、OA'、OB'.(1) X A'OB'= ______ ?;(2)当:•二 ______ ?时,△ A'B'C'的周长最大.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29 题8 分)17 .解方程:x 2 =3x 「2 .18 .若抛物线y = x 2 • 3x • a 与x 轴只有一个交点,求实数 a 的值.10•小明乘坐摩天轮转一圈,他离地面的高度y (米)与旋转时间x (分) x/分2.663.23 3.46y/米69.1669.6268.46之间的关系可以近似地用二次函数来刻画 •经测试得出部分数据如下表: F 列选项中,最接近摩天轮转一圈的时间的是( )19.已知点(3, 0)在抛物线y = -3x2 - (k - 3)x -k上,求此抛物线的对称轴.20.如图,AC是O O的直径, 的度数.PA, PB是O O的切线,A, B为切点,BAC =25〔求/ P21.已知x=1是方程x2 -5ax • a2 =0的一个根,求代数式3a2 -15a -7的值.22.一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m .由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,求水面下降的高度.23. 已知关于x 的方程3x2-(a - 3)x - a 二0(a - 0).(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根大于2,求a的取值范围.24. 在设计人体雕像时,若使雕像的上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比,则可以增加视觉美感•按此比例,如果雕像的高为2m,那么它的下部应设计为多高(.5取2.2 ).(1)函数y =£x —1)(x — 2)的自变量x 的取值范围是表描点画出了函数-2)图象的一部分,请补全函数图象;25. 已知 AB 是O O 直径,AC 、AD 是O O 的弦,AB=2, AC=-、2 , AD=1,求/ CAD 度数.226.抛物线y^x bx c 与直线y 2 =-2x • m 相交于A (-2,n)、B (2,-3)两点. (1) 求这条抛物线的解析式; (2) 若一 4兰X 兰1,则y 2_ y 1的最小值为 _______ .27•如图,AB 为O O 的直径,C 为O O 上一点,CD 丄AB 于点 D. P 为AB 延长线上一点,.PCD =2. BAC . (1) 求证:CP 为O O 的切线; (2) BP=1 , CP f j 5. ①求O O 的半径;②若M 为AC 上一动点,贝y OM + DM 的最小值为 ______________28•探究活动:利用函数y =(x -1)(x -2)的图象(如图1)和性质,探究函数 与性质•下面是小东的探究过程,请补充完整:y = , (x-1)(x-2)的图象图1(2)如图2,他列 7图y (x-1)解决问题:1设方程•(x _1)(x -2) -一x -b =0 的两根为x,、x2,且x, :::x2,方程42 1 —x -3x 2 x b 的两根为x3、x4,且x3:::x4.若1 :::b :::、. 2,则x,、x2、x3、x4的4大小关系为____________________________ (用“ <”连接).29.在平面直角坐标系xOy中,半径为1的O O与x轴负半轴交于点A,点M在O O上,将点M绕点A顺时针旋转60待到点Q.点N为x轴上一动点(N不与A重合),将点M 绕点N顺时针旋转60得到点P. PQ与x轴所夹锐角为:-.1(1)如图1,若点M的横坐标为—,点N与点O重合,则a = ______________ °;2(2)若点M、点Q的位置如图2所示,请在x轴上任取一点N,画出直线PQ,并求的度数;(3)当直线PQ与O O相切时,点M的坐标为____________ .图1 图2 备用图数学试卷参考答案、选择题(本题共 30分,每小题3 分) 题号1 2 3 4 5 6 7 8 9 10 答案D A A A B B C D B C、填空题(本题共 18分,每小题3 分) 题号 111213 14 1516答案X 1 =2, x 2 = -22y = x 2 +1(答案不唯一)<1300.6 120, 150三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8 分)217•解:X -3x 2=0. (X-1)(x-2)=0 -••• x — 1 = 0或 x —2 = 0 ••••捲=1,x 2 = 2.218. 解:•••抛物线 y =x 3x a 与x 轴只有一个交点,9 .•..:: = 0 ,即卩 9 —'4a = 0 . • a =.419. 解:•••点(3, 0)在抛物线 y = -3x 2 (k - 3)x-k 上,• 0 = —3 32 3(k 3) -k . • k =9. ...................... 3 分 •抛物线的解析式为 y = -3x 212x-9 .•••对称轴为 x=2 . (5)分• PA=PB. (1)分• • PAB = • PBA . ........................................................ 2 •/ AC 为O O 的直径,• CA 丄 PA . • PAC =90o . T BAC =25o , •乙PAB =65o . • . P =180 -2 PAB =50o .2221 .解:I x = 1是方程x -5ax a = 0的一个根,• 1 -5a a 2 = 0 . • a 2 - 5a - T . •原式=3(a 2 - 5a) - 7 = T0 .20 .解:T PA,PB 是O O 的切线,分22.解:如图,下降后的水面宽CD为1.2m,连接OA, OC ,过点O作ON丄CD于N,交AB于M . ONC = 90 o•••AB// CD ,••• . OMA 二/ONC =90o.•/ AB =1.6, CD -1.2 ,1 1• AM AB =0.8, CN CD =0.6 .2 2在Rt△ OAM 中,• OA =1 ,•- OM = ,OA2 - AM2 =0.6 .同理可得ON =0.8 . /. MN =ON —OM =0.2.答:水面下降了0.2米.2 223.( 1)证明:厶=(a - 3) -4 3 (-a) =(a 3).• a . 0 , • (a 3)20 . 即,0 .•方程总有两个不相等的实数根. ............................... 分 (2)a(2)解方程,得咅=-1, x2. ••方程有一个根大于2,23• — 2 . • a 6 . ........................................................... 5分3224.解:如图,雕像上部高度AC与下部高度BC应有AC : BC = BC : 2 ,即BC - 2AC .设BC为x m.依题意,得X = 2(2 —■ x) . ............................ 3分解得X1 =-1「5, x2- -1 - 5 (不符合题意,舍去). - V 1.2 .答:雕像的下部应设计为 1.2m . ..................................... 5 分25. 解:如图1,当点D、C在AB的异侧时,连接OD、BC. ................... 1分•/ AB 是O O 的直径,•••乙ACB =90o .在Rt△ ACB 中,•AB =2, AC = .2 ,• BC =、2 .•一BAC = 45o. • OA = OD = AD = 1,•. BAD =60o. .......................... 3分•CAD = BAD BAC =105o. .................................... 4 分当点D、C在AB的同侧时,如图2,同理可得• BAC =45 ,BAD =60 . • CAD "BAD - BAC =15o.•CAD 为15o或105o. ........................ 5分26. 解:(1)T直线y2二-2x m经过点B (2, -3),•一3 - -2 2 m . • m = 1 .图1•••直线 y 2 - _2x - m 经过点 A (-2, n ),2••• n =5 . T 抛物线y 1 -x bx c 过点A 和点B ,‘5 = 4-2b+c, • 'b = -2,-3=4 + 2b+c. c = —3.!U (2) -12.27. (1)证明:连接 OC. •••/ PCD=2/ BAC , / POC=2/ BAC ,•••/ POC=Z PCD. •/ CD 丄 AB 于点 D,•••/ ODC=90 . POC+Z OCD =90o .•••/ PCD+Z OCD =90o . OCF=90o .•半径OC 丄CP. • CP 为O O 的切线.(2)解:①设O O 的半径为r.在 Rt A OCP 中,OC 2 CP 2 =OP 2 .••• BP =1,CP =』5,• r 2 (、5)2 =(r 1)2 . 28.解:(1) x 二1 或 x 亠 2 ;捲:x 3 : x 4 : x 2.29•解:(1) 60. (2) 解得r = 2 . /.O O 的半径为(2)如图所示: /接MQ, MP .记MQ, PQ 分别交x 轴于巳F .• QFE "AMQ =60 .•••将点M 绕点A 顺时针旋转60得到点Q ,将点 • △ MAQ 和厶MNP 均为等边三角形. ..... • MA =MQ , MN =MP , . AMQ "NMP • AMN —QMP . • △ MAN ◎△ MQP . • MAN 二 MQP .••• • AEM 二■ QEF , M 绕点 -60 . N 顺时针旋转60得到点P, , -/P 二 yr = x 2 _2x _ 3 .2 14初中数学(九下)个性化辅导第13页共8页。
最新苏科版吴江市青云中学第一学期初三期中数学试卷及答案
一、选择题(10小题,每题3分,共30分) 1.方程x2-5x=0的解是 ( )A.x1=0,x2=-5 B.x=5C.x1=0,x2=5 D.x=02.用配方法解一元二次方程x2-4x=5时,此方程可变形为 ( )A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=93.已知(a2+b2)2-(a2+b2)-12=0,则a2+b2的值为 ( )A.-3 B.4 C.-3或4 D.3或-44.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是 ( )A.k<-2 B.k<2C.k>2 D.k<2且k≠15.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是 ( )A.5个B.6个C.7个D.8个6.若m是方程x2-2014x-1=0的根,则(m2-2014m+3) (m2-2014m+4)的值为 ( ) A.16 B.12 C.20 D.307.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是( )A.3 B.5 C.15D.178.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为 ( )A.135°B.122.5° C.115.5° D.112.5°9.圆外切等腰梯形的一腰长是8,则这个等腰梯形的上底与下底长的和为 ( )A.4 B.8 C.12 D.1610.如图,要拧开一个边长为a=6 cm的正六边形螺帽,扳手张开的开口b至少为 ( )A.62cm B.12 cm C.63cm D.43 cm二、填空题(8小题,每题3分,共24分)1.已知关于x的一元二次方程x2+bx+b-1=0有两个相等的实数根,则b的值是_______。
苏州市吴江区青云中学秋九年级上期中数学试题及答案
第9题图第5题图 第7题图第6题图初三数学期中测试卷-第一学期(考试时间120分钟 满分130分)一、选择题:本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项符合题目要求的,请将正确选项前的字母代号填在答题卡表格相应位置上........... 1.将一元二次方程x 2-4x -5=0化成b a x =-2)(的形式,则b 的值是( ▲ ). A .-1 B .1 C .-9 D .92.方程x x 32=的解是( ▲ ).A .x =0B .x =3C .x =-3或x =0D .x =3或x =03. 如图,四边形ABCD 内接于⊙O,若∠BOD=1600,则∠BCD=( ▲ ).A. 160°B. 100°C. 80°D. 20°4.某城市底已有绿化面积300公顷,计划经过两年绿化,使绿化面积逐年增加,到底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( ▲ ).A .300(1+x)=363B .300(1+x)2=363C .300(1+2x)=363D .363(1-x)2=300 5.如图,正方形ABCD 是⊙O 的内接正方形,点P 是劣弧BC 上不同于点B 的任意一点, 则∠BPA 的度数是( ▲ ).A .45°B .60°C .75°D .90°6.如图,⊙O 的直径CD =5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M , OM :OD =3:5,则AB 的长是( ▲ ).A .5B .8C .4D .67.如图,EB 、EC 是⊙O 的两条切线,B 、C 为切点,A 、D 是⊙O 上两点,∠E=46°, ∠DCF=33°。
求∠A 的度数( ▲ ).A .90°B .100°C .110°D . 67°8.如图,已知圆锥侧面展开图的扇形面积为65π cm 2,扇形的弧长为10π cm,则圆锥母线长是( ▲ ). A .5 cm B .10 cm C .12 cm D .13 cm9.如图,△ABC 是⊙O 的内接三角形,BD 为直径,若∠DBC=18°,则∠A 的度数是( ▲ ). A .36° B.72° C .60° D .无法确定第13题图 第14题图第12题图第15题图 第17题图第18题图10.已知α、β是方程x 2+x+1=0的两个根,则(1+α+α2)(1+β+β2)的值( ▲ ).A .B .-4C .4D .-二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上........... 11.已知两圆的半径分别为7cm 和1cm ,当它们外切时,圆心距d= ▲ cm .12.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为)4,4(,则该圆弧所在圆的圆心坐标为 ▲ 。
吴江市青云中学第一学期初三期中数学试卷及答案
吴江市青云中学第一学期初三期中数学试卷及答案一、选择题(10小题,每题3分,共30分)1.方程x2-5x=0的解是( )A.x1=0,x2=-5 B.x=5C.x1=0,x2=5 D.x=02.用配方法解一元二次方程x2-4x=5时,此方程可变形为( )A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=93.已知(a2+b2)2-(a2+b2)-12=0,则a2+b2的值为( )A.-3 B.4 C.-3或4 D.3或-44.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范畴是( )A.k<-2 B.k<2C.k>2 D.k<2且k≠15.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),打算安排21场竞赛,则参赛球队的个数是( )A.5个B.6个C.7个D.8个6.若m是方程x2-2014x-1=0的根,则(m2-2014m+3) (m2-20 14m+4)的值为( )A.16 B.12 C.20 D.30 7.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A.3B.5C.15D.178.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )A.135°B.122.5°C.115.5°D.112.5°9.圆外切等腰梯形的一腰长是8,则那个等腰梯形的上底与下底长的和为( )A.4 B.8 C.12D.1610.如图,要拧开一个边长为a=6 cm的正六边形螺帽,扳手张开的开口b至少为( )A.62cm B.12 cm C.63cm D.43cm二、填空题(8小题,每题3分,共24分)1.已知关于x的一元二次方程x2+bx+b-1=0有两个相等的实数根,则b的值是_______。
江苏省苏州市吴中、吴江区九年级上学期数学期中考试试卷附答案解析
九年级上学期数学期中考试试卷一、单项选择题1.以下方程中,属于一元二次方程的是〔〕A. x+1=0B. x2=2x﹣1C. 2y﹣x=1D. x2+3=2.方程x2=3x的解为〔〕A. x=3B. x=0C. x1=0,x2=﹣3D. x1=0,x2=33.如图,点、、在上,假设,那么的度数是〔〕A. 18°B. 36°C. 54°D. 72°4.九年级〔1〕班甲、乙、丙、丁四名同学几次数学测试成绩的平均数〔分〕及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选〔〕A. 甲B. 乙C. 丙D. 丁5.一元二次方程x2+kx﹣3=0的一个根是x=1,那么k的值为〔〕A. 2B. ﹣2C. 3D. ﹣36.圆锥的底面半径为3cm,母线长为6cm,那么圆锥的侧面积是〔〕A. 18cm2B.C. 27cm2D.7.如图,在边长为4的正方形中,以点为圆心,为半径画弧,交对角线于点,那么图中阴影局部的面积是〔结果保存〕〔〕A. B. C. D.8.10个大小相同的正六边形按如下列图方式紧密排列在同一平面内,A,B,C,D,E,O均是正六边形的顶点.那么点O是以下哪个三角形的外心〔〕.A. B. C. D.9.根据以下表格的对应值:判断方程x2+x-1=0一个解的取值范围是〔〕A. 0.59<x<0.60B. 0.60<x<0.61C. 0.61<x<0.62D. 0.62<x<0.6310.如图,菱形ABCD的边长为10,面积为80,∠BAD<90°,⊙O与边AB,AD都相切菱形的顶点A到圆心O的距离为5,那么⊙O的半径长等于〔〕A. 2.5B.C.D. 3二、填空题11.方程x2=9的解为12.假设⊙O的半径为3,点P为平面内一点,OP=2,那么点P在⊙O________〔填“上〞、“内部〞或“外部〞〕13.一组数据4,1,7,4,5,6那么这组数据的极差为________.14.三角形两边的长分别是3和4,第三边的长是方程的根,那么该三角形的周长为________.15.关于的一元二次方程有两个不相等的实数根,那么实数的取值范围是________.16.如图,△ABC内接于⊙O,∠BAC=30°,BC=2,那么⊙O的直径等于________.17.如图,AB是⊙O的直径,AB=20cm,弦BC=12cm,F是弦BC的中点.假设动点E以2cm/s的速度从A 点出发沿着AB方向运动,设运动时间为t〔s〕〔0≤t≤10〕,连接EF,当△BEF是直角三角形时,t〔s〕的值为________.18.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D -d.在平面直角坐标系xOy中,图形G为以原点O为圆心,2为半径的圆,那么点A(1,-1)到图形G的距离跨度是________.三、解答题19.解方程:〔1〕〔2〕20.〔1〕根据要求,解答以下问题:①方程的解为________;②方程的解为________;③方程的解为________;〔2〕根据以上方程特征及其解的特征,请猜想:①方程的解为________.②关于x的方程________的解为x1=1,x2=n;〔3〕请用配方法解方程,以验证猜想结论的正确性.21.为了了解某校八年级学生每周平均课外阅读时间的情况,随机抽取了50名八年级学生,对其每周平均课外阅读时间进行统计,并绘制成下面的统计图。
江苏省苏州市吴中区九年级数学上学期期中试卷(含解析) 苏科版
江苏省苏州市吴中区2016-2017学年九年级(上)期中数学试卷一、选择题1.下列方程中,是一元二次方程的是()A.x2+=0 B.ax2+bx+c=0C.(x﹣1)(x﹣2)=1 D.3x2﹣2xy﹣5y2=02.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60° B.80° C.40° D.50°3.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=74.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有一个实数根C.有两个相等的实数根D.没有实数根5.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,且AE:BE=1:4,则AB的长度为()A.10 B.5 C.12 D.56.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm27.在平面直角坐标系中,⊙O的半径为5,圆心O为坐标原点,则点P(3,﹣4)与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O外部C.点P在⊙O内部D.不能确定8.如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD的周长是36,则AP的长为()A.12 B.18 C.24 D.99.下列说法一定正确的是()A.三角形的内心是三内角角平分线的交点B.过三点一定能作一个圆C.同圆中,同弦所对的圆周角相等D.三角形的外心到三边的距离相等10.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN的长度为()A.π B.π C.πD.π二、填空题11.方程x2=x的解是.12.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为.13.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.14.一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为.15.直角三角形的两直角边长分别为6和8,它的外接圆的半径是.16.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB= .17.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B= 度.18.如图,P为⊙O的直径AB延长线上的一点,PC切⊙O于点C,弦CD⊥AB,垂足为点E,若PC=3,PB=2.则圆的半径为.19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n= .20.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.三、解答题(共70分)21.(8分)解下列方程:(1)x2﹣4x﹣3=0;(2)(x﹣1)(x+2)=2(x+2).22.(8分)已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.23.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.24.(9分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧.(1)画出圆弧所在圆的圆心P;(2)过点B画一条直线,使它与该圆弧相切;(3)连结AC,求线段AC和弧AC围成的图形的面积.25.(8分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(9分)如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.27.(10分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径;(3)若S△CMN:S△ADN=1:8,且AE=4,求CM.28.(10分)如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.2016-2017学年江苏省苏州市吴中区九年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列方程中,是一元二次方程的是()A.x2+=0 B.ax2+bx+c=0C.(x﹣1)(x﹣2)=1 D.3x2﹣2xy﹣5y2=0【考点】一元二次方程的定义.【分析】根据一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件进行解答.【解答】解:A、不是关于x的一元二次方程,故此选项错误;B、a=0时不是一元二次方程,故此选项错误;C、是一元二次方程,故此选项正确;D、不是一元二次方程,故此选项错误;故选:C.【点评】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60° B.80° C.40° D.50°【考点】三角形的外接圆与外心.【分析】由OB=OC,∠OCB=40°,根据等边对等角与三角形内角和定理,即可求得∠BOC的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,求得∠A的度数.【解答】解:∵OB=OC,∠OCB=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选D.【点评】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.3.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=7【考点】解一元二次方程-配方法.【分析】利用配方法解已知方程时,首先将﹣3变号后移项到方程右边,然后方程左右两边都加上一次项系数一半的平方1,左边化为完全平方式,右边合并为一个非负常数,即可得到所求的式子.【解答】解:x2﹣2x﹣3=0,移项得:x2﹣2x=3,两边都加上1得:x2﹣2x+1=3+1,即(x﹣1)2=4,则用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是(x﹣1)2=4.故选:B【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.4.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有一个实数根C.有两个相等的实数根D.没有实数根【考点】根的判别式.【分析】要判断方程x2﹣4x+4=0的根的情况就要求出方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:∵a=1,b=﹣4,c=4,∴△=16﹣16=0,∴方程有两个相等的实数根.故选C.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,且AE:BE=1:4,则AB的长度为()A.10 B.5 C.12 D.5【考点】垂径定理;勾股定理.【分析】连接OC,设AE=x,表示出半径,在Rt△OCE中,用勾股定理得出x的值,从而得出AB的长.【解答】解:连接OC,设AE=x,∵AE:BE=1:4,∴BE=4x,∴OC=2.5x,∴OE=1.5x,∵CD⊥AB,∴CE=DE,∵CD=8,∴CE=4,Rt△OCE中,OE2+CE2=OC2,∴(1.5x)2+42=(2.5x)2,∴x=2,∴AB=10,故选A.【点评】本题考查了勾股定理以及垂径定理,掌握勾股定理以及垂径定理的用法是解题的关键.6.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm2【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×5÷2=15π.故选D.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.7.在平面直角坐标系中,⊙O的半径为5,圆心O为坐标原点,则点P(3,﹣4)与⊙O的位置关系是()A.点P在⊙O上B.点P在⊙O外部C.点P在⊙O内部D.不能确定【考点】点与圆的位置关系;坐标与图形性质.【分析】先根据勾股定理求出OP的长,再与⊙P的半径为5相比较即可.【解答】解:∵圆心P的坐标为(3,﹣4),∴OP==5.∵⊙P的半径为5,∴原点O在⊙P上.故选A.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.8.如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD的周长是36,则AP的长为()A.12 B.18 C.24 D.9【考点】切线的性质.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解即可.【解答】解:∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=36,∴PA=PB=18,故选B.【点评】此题主要考查了切线长定理的应用,能够将△PCD的周长转换为切线PA、PB的长是解答此题的关键.9.下列说法一定正确的是()A.三角形的内心是三内角角平分线的交点B.过三点一定能作一个圆C.同圆中,同弦所对的圆周角相等D.三角形的外心到三边的距离相等【考点】三角形的内切圆与内心;角平分线的性质;三角形的外接圆与外心.【分析】分别根据确定圆的条件、垂径定理、三角形的外心与内心的定义对各选项进行逐一分析即可.【解答】解:A、符合内心的定义,故本选项正确.B、不在同一直线上的三点确定一个圆,故本选项错误;C、同圆中,同弦所对的圆周角不一定相等,故本选项错误;D、不符合外心的定义,故本选项错误;故选A.【点评】本题考查的是三角形的内切圆与内心,熟知三角形三个内角角平分线的交点叫三角形的内心是解答此题的关键.10.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN的长度为()A.π B.π C.πD.π【考点】正多边形和圆;切线的性质;弧长的计算.【分析】连接OM,ON,首先根据切线的性质和正五边形的性质求得圆心角的度数,然后利用弧长公式进行计算.【解答】解:如图:连接OM,ON,∵⊙O与正五边形ABCDE的边AB、AE相切于点M、N,∴OM⊥AB,ON⊥AC,∵∠A=108°,∴∠MON=72°,∵半径为1,∴劣弧MN的长度为: =π,故选B.【点评】本题考查了正多边形和圆的知识,解题的关键是能够连接OM和ON,从而求得劣弧所在扇形的圆心角,利用扇形弧长公式求解.二、填空题11.方程x2=x的解是x1=0,x2=1 .【考点】解一元二次方程-因式分解法.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.12.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为﹣2 .【考点】根与系数的关系.【分析】设关于x的方程x2+3x+a=0的两根分别为m、n,由根与系数的关系可得出m+n=﹣3,结合m=﹣1,即可得出结论.【解答】解:设关于x的方程x2+3x+a=0的两根分别为m、n,由已知得:,解得:n=﹣2.故答案为:﹣2.【点评】本题考查了根与系数的关系以及解一元一次方程,解题的关键是得出方程两根之和为﹣3.本题属于基础题,难度不大,解决该题型题目时,由根与系数的关系得出两根之和与两根之积是关键.13.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是相离.【考点】直线与圆的位置关系.【分析】先求出⊙O的半径,再根据圆心O到直线l的距离为3即可得出结论.【解答】解:∵⊙O的直径是4,∴⊙O的半径r=2,∵圆心O到直线l的距离为3,3>2,∴直线l与⊙O相离.故答案为:相离.【点评】本题考查的是直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d >r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.14.一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为60(1﹣x)2=48.6 .【考点】由实际问题抽象出一元二次方程.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降价的百分率)=48.6,把相应数值代入即可求解.【解答】解:第一次降价后的价格为60×(1﹣x),二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1﹣x)×(1﹣x),所以可列方程为60(1﹣x)2=48.6.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15.直角三角形的两直角边长分别为6和8,它的外接圆的半径是 5 .【考点】三角形的外接圆与外心.【分析】首先根据勾股定理,得斜边是10,再根据其外接圆的半径是斜边的一半,得出其外接圆的半径.【解答】解:∵直角边长分别为6和8,∴斜边是10,∴这个直角三角形的外接圆的半径为5.故答案为:5.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.16.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB= 90°.【考点】圆周角定理;坐标与图形性质.【分析】由经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.【解答】解:∵∠AOB=90°,∴∠ACB=∠AOB=90°.故答案为:90°.【点评】此题考查了圆周角的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等.17.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B= 70 度.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】首先连接BD,由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB 的度数,继而求得∠ABD的度数,由圆的内接四边形的性质,求得∠C的度数,然后由点C为的中点,可得CB=CD,即可求得∠CBD的度数,继而求得答案.【解答】解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠A=40°,∴∠ABD=90°﹣∠A=50°,∠C=180°﹣∠A=140°,∵点C为的中点,∴CD=CB,∴∠CBD=∠CDB=20°,∴∠ABC=∠ABD+∠CBD=70°.故答案为:70°.【点评】此题考查了圆周角定理、圆的内接四边形的性质以及弧与弦的关系.注意准确作出辅助线是解此题的关键.18.如图,P为⊙O的直径AB延长线上的一点,PC切⊙O于点C,弦CD⊥AB,垂足为点E,若PC=3,PB=2.则圆的半径为.【考点】切线的性质;勾股定理;垂径定理.【分析】首先连接OC,由PC切⊙O于点C,OC⊥PC,然后设圆的半径为x,由勾股定理可得方程:x2+32=(x+2)2,解此方程即可求得答案.【解答】解:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴OC2+PC2=OP2,设圆的半径为x,则OC=x,OP=OB+PB=x+2,∴x2+32=(x+2)2,解得:x=,∴圆的半径为:.故答案为:.【点评】此题考查了切线的性质以及勾股定理的应用.注意准确作出辅助线,利用方程思想求解是解此题的关键19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n= 8 .【考点】根与系数的关系;一元二次方程的解.【分析】根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=8故答案为:8.【点评】此题主要考查了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.20.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24 .【考点】一次函数综合题.【分析】根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4,∴k(x﹣3)=y﹣4,∵k有无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.【点评】此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.三、解答题(共70分)21.解下列方程:(1)x2﹣4x﹣3=0;(2)(x﹣1)(x+2)=2(x+2).【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)将方程的左边配成完全平方式即可求解;(2)移项然后提取公因式即可求解.【解答】解:(1)∵x2﹣4x﹣3=0,∴x2﹣4x+4﹣4﹣3=0,∴(x﹣2)2=7,∴x﹣2=±∴x1=2﹣,x2=2+;(2)∵(x﹣1)(x+2)=2(x+2),∴(x+2)(x﹣1﹣2)=0,∴x+2=0或x﹣3=0,∴x1=﹣2,x2=3.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.【考点】解一元二次方程-因式分解法;根的判别式;三角形三边关系.【分析】(1)若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,即可求出k的取值范围.(2)由于AB=2是方程kx2﹣4x+2=0,所以可以确定k的值,进而再解方程求出BC的值.【解答】解:(1)∵方程有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×k×2=16﹣8k≥0,解得:k≤2,又因为k是二次项系数,所以k≠0,所以k的取值范围是k≤2且k≠0.(2)由于AB=2是方程kx2﹣4x+2=0,所以把x=2代入方程,可得k=,所以原方程是:3x2﹣8x+4=0,解得:x1=2,x2=,所以BC的值是.【点评】本题主要考查了一元二次方程的根的判别式的应用,容易出现的错误是忽视根的判别式应用的前提条件:二次项系数k≠0.23.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.【考点】圆周角定理;勾股定理;垂径定理.【分析】(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD 中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.【解答】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AOD=∠B=70°,∴∠CAB=90°﹣∠B=90°﹣70°=20°,∵OA=OD,∴∠DAO=∠ADO===55°,∴∠CAD=∠DAO ﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC 中,BC===2,∵OE ⊥AC ,∴AE=EC ,又∵OA=OB ,∴OE=BC=. 又∵OD=AB=4,∴DE=OD ﹣OE=4﹣.【点评】本题主要考查了圆周角定理以及三角形的中位线定理,正确证明OE 是△ABC 的中位线是解答此题的关键.24.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧.(1)画出圆弧所在圆的圆心P ;(2)过点B 画一条直线,使它与该圆弧相切;(3)连结AC ,求线段AC 和弧AC 围成的图形的面积.【考点】作图—复杂作图;垂径定理;切线的判定;扇形面积的计算.【分析】(1)连接BC ,作BC 的垂直平分线,交坐标轴与P ,P 即为圆心;(2)先连接BP ,再过B 点作BP 的垂线即为所求过点B 且与该弧相切的直线;(3)首先得出∠APC=90°,进而利用扇形面积以及三角形面积公式求出即可.【解答】解:(1)连接BC ,作BC 的垂直平分线,再利用网格得出AB 的垂直平分线,即可得出交点P 的位置;(2)如图所示:EF即为所求;(3)连接AP,PC,AC,∵AP=,PC=,AC=,∴AP2+PC2=AC2,∴△APC是直角三角形,∴∠APC=90°,∴S扇形APC==,S△APC=××=,∴线段AC和弧AC围成的图形的面积为:﹣.【点评】本题主要考查作图﹣复杂作图以及等腰直角三角形的判定和扇形面积与三角形面积求法等知识,关键是根据题意确定出圆心P的位置.25.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?【考点】一元二次方程的应用.【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【解答】解:设购买了x件这种服装且多于10件,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=20时,80﹣2(20﹣10)=60元>50元,符合题意;当x=30时,80﹣2(30﹣10)=40元<50元,不合题意,舍去;答:她购买了20件这种服装.【点评】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.26.如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.【考点】圆的综合题.【分析】(1)根据四边形ABCD是⊙O内接四边形,可得∠DCE=∠BAD,根据弧BD=弧AD,可得∠BAD=∠ACD,等量代换得到∠DCE=∠ACD,从而求解;(2)直线ED与⊙O相切.连接OD.根据圆的性质和等边对等角可得∠ODC=∠OCD,等量代换得到∠DCE=∠ODC,根据平行线的判定和性质得到∠ODE=∠DEC,再根据垂直的定义和性质可得OD⊥DE,根据切线的判定即可求解;(3)延长DO交AB于点H.根据三角形中位线定理可得HO=BC=3,根据勾股定理可得OD,得到HD,再根据矩形的判定和性质得到BE=HD=8,从而得到CE的长.【解答】解:(1)∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,又∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵弧BD=弧AD,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE.(2)直线ED与⊙O相切.连接OD.∵OC=OD,∴∠ODC=∠OCD,又∵∠DCE=∠ACD,∴∠DCE=∠ODC,∵OD∥BE,∴∠ODE=∠DEC,又∵DE⊥BC,∴∠DEC=90°,∴∠ODE=90°∴OD⊥DE,∴ED与⊙O相切.(3)延长DO交AB于点H.∵OD∥BE,O是AC的中点,∴H是AB的中点,∴HO是△ABC的中位线,∴HO=BC=3,又∵AC为直径,∴∠ADC=90°,又∵O是AC的中点∴OD=AC=×=5,∴HD=3+5=8,∵∠ABC=∠DEC=∠ODE=90°,∴四边形BEDH是矩形,∴BE=HD=8,∴CE=8﹣6=2.【点评】考查了圆的综合题,涉及的知识点有:内接四边形的性质,等弧对等角,圆的性质和等边对等角,平行线的判定和性质,垂直的定义和性质,切线的判定,三角形中位线定理,勾股定理,矩形的判定和性质.综合性较强,有一定的难度.27.(10分)(2016秋•吴中区期中)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径;(3)若S△CMN:S△ADN=1:8,且AE=4,求CM.【考点】相似三角形的判定与性质;勾股定理;垂径定理.【分析】(1)先根据圆周角定理得出∠BAD=∠BCD,再由直角三角形的性质得出∠ANE=∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出结论;(2)先根据垂径定理求出AE的长,设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1,连结AO,则AO=OD=2x﹣1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论;(3)根据线段垂直平分线的判定得到AE平分ND,于是得到S△AEN=S△ADE通过△CMN∽△AEN,即可得到结论.【解答】(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,,∴△ANE≌△ADE,∴AD=AN;(2)解:∵AB=4,AE⊥CD,∴AE=2,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3;(3)解:∵AD=AN,AB⊥CD,∴AE平分ND,∴S△AEN=S△ADE∵S△CMN:S△AND=1:8,∴S△CMN:S△AEN=1:4,又∵△CMN∽△AEN,∴()2=,∵AE=4,∴CM=2.【点评】本题考查的是垂径定理,相似三角形的判定和性质,勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.28.(10分)(2016秋•吴中区期中)如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.【考点】圆的综合题.【分析】(1)三角形的内切圆的性质即可;(2)先判断出∠C=∠PHA=90°,进而得出,△AHP∽△ACB,得出的比例式建立方程即可;(3)分当点P在线段AC上时和当点P在AC的延长线上时两种情况讨论计算.【解答】解:(1)⊙O的半径r=(AC+BC﹣AB)=(4+3﹣5)=1;∴AD=3(2)①如图1,若点P在线段AC上时.在Rt△ABC中,AB=5,AC=4,BC=3,∵∠C=90°,PH⊥AB,∴∠C=∠PHA=90°,∵∠A=∠A,∴△PAH∽△BAC,∴∴y=﹣x+4,即y与x的函数关系式是y=﹣x+4(0≤x≤2.4);②同理,当点P在线段AC的延长线上时,△AHP∽△ACB,∴y=x﹣4,即y与x的函数关系式是y=x﹣4(x>2.4),(3)①当点P在线段AC上时,如图2,P′H′与⊙O相切.∵∠OMH′=∠MH′D=∠H′DO=90°,OM=OD,∴四边形OMH′D是正方形,∴MH′=OM=1;由(1)知,四边形CFOE是正方形,CF=OF=1,∴P′H′=P′M+MH′=P′F+FC=P′C,即x=y;又由(2)知,y=﹣x+4,解得,y=.②当点P在AC的延长线上时,如图,P″H″与⊙O相切.此时y=1.【点评】此题是圆的综合题,主要考查了圆的性质,正方形的判定和性质,相似三角形的判定和性质,解本题的关键是判断出,△AHP∽△ACB.。
江苏省苏州市吴中区2016届九年级数学上学期期中试题(含解析) 苏科版
江苏省苏州市吴中区2016届九年级数学上学期期中试题一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.在下列方程中,一元二次方程是( )A.x2﹣2xy+y2=0 B.x(x+3)=x2﹣1 C.x2﹣2x=3 D.x+=02.数据50,20,50,30,25,50,55的众数和中位数分别是( )A.50,30 B.50,40 C.50,50 D.50,553.已知两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,那么点P在( ) A.小圆内B.大圆内C.小圆外大圆内 D.大圆外4.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A.B.C.D.5.方程2x2﹣3x+1=0经过配方化为(x+a)2=b的形式,正确的是( )A.B.C.D.6.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB7.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工王师傅2013年月退休金为1800元,2015年达到2460元.设王师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为( ) A.2460(1﹣x)2=1800B.1800(1+x)2=2460C.1800(1﹣x)2=2460D.1800+1800(1+x)+1800(1+x)2=24608.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ) A.2.5 B.5 C.10 D.159.关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为( ) A.6 B.5 C.4 D.310.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.把答案填在答题卷相应位置上.)11.方程x2=9的解为__________.12.方程:①x2+3x﹣1=0,②x2﹣6x+5=0,③2y2﹣3y+4=0,④x2+5=2x中,有实数解的共有__________个.13.已知⊙O的内接正六边形周长为12cm,则这个圆的半经是__________cm.14.已知2+是关于x的方程x2﹣4x+c=0的一个根,则c的值是__________.15.数据:10,15,10,17,18,20的方差是__________.16.如图,正方形网格中每个小正方形边长都是l,则△ABC的外接圆的圆心坐标为__________.17.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=__________度.18.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是__________.三、解答题(本大题共10小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.计算(1)﹣+20160(2)(﹣)÷.20.解下列方程(1)x2+8=4x(2)2(x﹣3)2=﹣x(3﹣x)21.关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为4,求m的值.22.一次期中考试中,A、B、C、D、E五位同学的数学、语文成绩等有关信息如下表所示:标准差(1)填写表格中的空档;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合埋的选择,标准分的计算公式是:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A同学在本次考试中,数学与语文哪个学科考得更好?23.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?24.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.25.阅读下列材料,然后回答问题.先阅读下列第(1)题的解答过程,再解第(2)题.(1)已知实数a、b满足a2=2﹣2a,b2=2﹣2b,且a≠b,求+的值.解:由已知得:a2+2a﹣2=0,b2+2b﹣2=0,且a≠b,故a、b是方程:x2+2x﹣2=0的两个不相等的实数根,由根与系数的关系得:a+b=﹣2,ab=﹣2.∴+===﹣4(2)已知p2﹣2p﹣5=0,且 p、q为实数,①若q2﹣2q﹣5=0,且p≠q,则:p+q=__________,pq=__________;②若5q2+2q﹣1=0,且pq≠1,求的值.26.如图,AB是⊙O的直径,∠ABT=45°,AT=AB(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,若⊙O的半径是2,求TC及AC2.27.己知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0.(1)若这个方程有实数解,求k的取值范围;(2)若这个方程的解是直线y=3x+1与x轴的交点的横坐标.是否存在k使反比例函数y=的图象在第2、4象限?如果存在求出k,如果不存在,说明理由.28.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).(1)求C点的坐标;(2)求直线AC的函数关系式;(3)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?2015-2016学年江苏省苏州市吴中区九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.在下列方程中,一元二次方程是( )A.x2﹣2xy+y2=0 B.x(x+3)=x2﹣1 C.x2﹣2x=3 D.x+=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、方程含有两个未知数,故不是;B、方程的二次项系数为0,故不是;C、符合一元二次方程的定义;D、不是整式方程.故选C.【点评】一元二次方程必须满足的条件:首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.数据50,20,50,30,25,50,55的众数和中位数分别是( )A.50,30 B.50,40 C.50,50 D.50,55【考点】众数;中位数.【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:20,25,30,50,50,50,55,众数为:50,中位数为:50.故选C.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.已知两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,那么点P在( ) A.小圆内B.大圆内C.小圆外大圆内 D.大圆外【考点】点与圆的位置关系.【分析】根据点与圆的位置关系确定方法,d>r,在圆外,d=r,在圆上,d<r,在圆内,即可得出点P与圆的位置关系.【解答】解:∵两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,∴r<OP<R,∴点P在小圆外大圆内.故选C.【点评】此题主要考查了点与圆的位置关系,正确运用点与圆位置关系是解决问题的关键.4.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A.B.C.D.【考点】概率公式.【分析】用黄球的个数除以球的总个数即可得到答案.【解答】解:∵一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球,∴从该盒子中任意摸出一个球,摸到黄球的概率是=,故选A.【点评】此题主要考查了概率公式的应用,关键是掌握概率公式:概率=所求情况数与总情况数之比.5.方程2x2﹣3x+1=0经过配方化为(x+a)2=b的形式,正确的是( )A.B.C.D.【考点】解一元二次方程-配方法.【分析】首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.【解答】解:移项得2x2﹣3x=﹣1,把二次项系数化为1,x2﹣x=﹣,配方得x2﹣x+=﹣即(x﹣)2=,故选C.【点评】用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.6.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB【考点】菱形的判定;垂径定理.【专题】压轴题.【分析】利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.【解答】解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.【点评】此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.7.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工王师傅2013年月退休金为1800元,2015年达到2460元.设王师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为( ) A.2460(1﹣x)2=1800B.1800(1+x)2=2460C.1800(1﹣x)2=2460D.1800+1800(1+x)+1800(1+x)2=2460【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设王师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意可用x表示2015年的月退休金,然后根据已知可以得出方程.【解答】解:设王师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得2015年的月退休金为:1800(1+x)2,列出方程为:1800(1+x)2=2460.故选:B.【点评】考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ) A.2.5 B.5 C.10 D.15【考点】圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故选C.【点评】本题的关键是明白侧面展开后得到一个半圆就是底面圆的周长.9.关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为( ) A.6 B.5 C.4 D.3【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣5)2﹣4k>0,解不等式得k<,然后在此范围内找出最大整数即可.【解答】解:根据题意得:△=(﹣5)2﹣4k>0,解得:k<.所以k可取的最大整数为6.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )A.B.C.D.【考点】动点问题的函数图象.【分析】根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→D运动时;(3)当点P沿D→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x (单位:秒)的关系图是哪个即可.【解答】解:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.【点评】(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.二、填空题(本大题共8小题,每小题3分,共24分.把答案填在答题卷相应位置上.)11.方程x2=9的解为±3.【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】此题直接用开平方法求解即可.【解答】解:∵x2=9,∴x=±3.【点评】解决本题的关键是理解平方根的定义,注意一个正数的平方根有两个,这两个数互为相反数.12.方程:①x2+3x﹣1=0,②x2﹣6x+5=0,③2y2﹣3y+4=0,④x2+5=2x中,有实数解的共有3个.【考点】根的判别式.【分析】分别求出四个方程的根的判别式△=b2﹣4ac与0的关系,进而作出判断.【解答】解:①x2+3x﹣1=0,△=b2﹣4ac=9+4=13>0;②x2﹣6x+5=0,△=b2﹣4ac=36﹣20=16>0;③2y2﹣3y+4=0,△=b2﹣4ac=9﹣32=﹣23<0;④x2+5=2x,△=b2﹣4ac=20﹣20=0;四个方程中①②④有实数解.故答案为3.【点评】本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.已知⊙O的内接正六边形周长为12cm,则这个圆的半经是2cm.【考点】正多边形和圆.【分析】首先求出∠AOB=×360°,进而证明△OAB为等边三角形,问题即可解决.【解答】解:如图,∵⊙O的内接正六边形ABCDEF的周长长为12cm,∴边长为2cm,∵∠AOB=×360°=60°,且OA=OB,∴△OAB为等边三角形,∴OA=AB=2,即该圆的半径为2,故答案为:2.【点评】本题考查了正多边形和圆,以正多边形外接圆、正多边形的性质等几何知识点为考查的核心构造而成;灵活运用有关定理来分析、判断、推理或解答是关键.14.已知2+是关于x的方程x2﹣4x+c=0的一个根,则c的值是1.【考点】一元二次方程的解;二次根式的化简求值.【分析】把2+代入方程,即可得到一个关于c的方程,求得c的值.【解答】解:把2+代入方程x2﹣4x+c=0得:(2+)2﹣4(2+)+c=0解得:c=1.故答案是:1.【点评】本题主要考查了方程的解的定义,正确求解c的值是解决本题的关键.15.数据:10,15,10,17,18,20的方差是.【考点】方差.【分析】先由平均数的公式计算出平均数的值,再根据方差的公式计算.【解答】解:平均数=(10+15+10+17+18+20)÷6=15,方差=[2(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+2]=.故答案为:.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.如图,正方形网格中每个小正方形边长都是l,则△ABC的外接圆的圆心坐标为(8.5,2).【考点】三角形的外接圆与外心;坐标与图形性质.【分析】由题意得出△ABC的外接圆的圆心在BC的垂直平分线上,得出圆心的纵坐标为2,设圆心的坐标为(x,2),由两点间的距离公式得出方程,解方程即可.【解答】解:∵△ABC的外接圆的圆心在BC的垂直平分线上,∴圆心D的纵坐标为2,设圆心的坐标为(x,2),∵圆心到点A和B的距离相等,∴(x﹣2)2+(2﹣4)2=(x﹣3)2+(2﹣6)2,解得:x=8.5,∴△ABC的外接圆的圆心坐标为(8.5,2).故答案为:(8.5,2).【点评】本题考查了三角形的外接圆与外心、坐标与图形性质、三角形的外接圆的性质、两点间的距离公式;熟练掌握三角形的外心性质,两点间的距离公式得出方程是解决问题的关键.17.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60度.【考点】圆周角定理;平行四边形的性质.【专题】计算题.【分析】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD+∠OCD的度数.【解答】解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60.【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.18.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是2﹣.【考点】二次函数的最值;坐标与图形性质;相似三角形的性质.【专题】动点型.【分析】根据三角形的面积公式,△ABE底边BE上的高AO不变,BE越小,则面积越小,可以判断当AD与⊙C相切时,BE的值最小,根据勾股定理求出AD的值,然后根据相似三角形对应边成比例列式求出OE的长度,代入三角形的面积公式进行计算即可求解.【解答】解:如图所示,当AD与⊙C相切时,线段BE最短,此时△ABE面积的最小,∵A(2,0),C(﹣1,0),⊙C半径为1,∴AO=2,AC=2+1=3,CD=1,在Rt△ACD中,AD===2,∵CD⊥AD,∴∠D=90°,∴∠D=∠AOE,在△AOE与△ADC中,,∴△AOE∽△ADC,∴=,即=,解得EO=,∵点B(0,2),∴OB=2,∴BE=OB﹣OE=2﹣,∴△ABE面积的最小值=×BE×AO=(2﹣)×2=2﹣.故答案为:2﹣.【点评】本题考查了坐标与图形的性质,勾股定理,相似三角形的判定与性质,根据相似三角形对应边成比例列式求出OE的长度是解题的关键.三、解答题(本大题共10小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.计算(1)﹣+20160(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算;零指数幂.【专题】计算题.【分析】(1)利用零指数幂的意义和分母有理化得到原式=2﹣+1,然后合并即可;(2)先把括号内通分,再进行通分母得减法运算,然后把除法运算化为乘法运算后约分即可.【解答】解:(1)原式=2﹣+1=+1;(2)原式=[﹣]•=•=•=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了分式的混合运算.20.解下列方程(1)x2+8=4x(2)2(x﹣3)2=﹣x(3﹣x)【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题.【分析】(1)先把方程化为一般式,然后利用配方法解方程;(2)先把方程变形为2(x﹣3)2﹣x(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣4x+8=0,x2﹣4x+(2)2=0,(x﹣2)2=0,所以x1=x2=2;(2)2(x﹣3)2﹣x(x﹣3)=0,(x﹣3)(2x﹣6﹣x)=0,x﹣3=0或2x﹣6﹣x=0,所以x1=3,x2=6.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.也考查了配方法解一元二次方程.21.关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为4,求m的值.【考点】根的判别式.【分析】首先把原方程整理成一般形式,再根据判别式的定义得到△=(3m﹣1)2﹣4m(2m ﹣1)=4,解方程求出m的值即可.【解答】解:一元二次方程mx2﹣(3m﹣1)x=1﹣2m的一般形式是mx2﹣(3m﹣1)x+2m﹣1=0,∵根的判别式的值为4,∴△=(3m﹣1)2﹣4m(2m﹣1)=4,整理得:m2﹣2m﹣3=0,解得:m=3,或m=﹣1.即m的值为3或﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.22.一次期中考试中,A、B、C、D、E五位同学的数学、语文成绩等有关信息如下表所示:标准差(1)填写表格中的空档;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合埋的选择,标准分的计算公式是:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A同学在本次考试中,数学与语文哪个学科考得更好?【考点】标准差;算术平均数;极差.【分析】(1)由平均数、标准差的公式计算即可;(2)代入公式:标准分=(个人成绩﹣平均成绩)÷成绩标准差,再比较即可.【解答】解:(1)极差=72﹣68=4,平均分=(71+72+…+70)÷5=70,标准差=6,故答案为:4;6;(2)∵数学标准分=,英语标准分=0.5,∴数学更好.【点评】计算标准差需要先算出方差,计算方差的步骤是:(1)计算数据的平均数;(2)计算偏差,即每个数据与平均数的差;(3)计算偏差的平方和;(4)偏差的平方和除以数据个数.标准差即方差的算术平方根;注意标准差和方差一样都是非负数.23.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)直接根据题意先求出增加的租金是6个5000,从而计算出租出多少间;(2)设每间商铺的年租金增加x万元,直接根据收益=租金﹣各种费用=275万元作为等量关系列方程求解即可.【解答】解:(1)∵(130000﹣100000)÷5000=6,∴能租出30﹣6=24(间).(2)设每间商铺的年租金增加x万元,则每间的租金是(10+x)万元,5000元=0.5万元,有间商铺没有出租,出租的商铺有(30﹣)间,出租的商铺需要交(30﹣)×1万元费用,没有出租的需要交×0.5万元的费用,则(30﹣)×(10+x)﹣(30﹣)×1﹣×0.5=2752x2﹣11x+5=0解得:x1=5,x2=0.55+10=15万元; 0.5+10=10.5万元∴每间商铺的年租金定为10.5万元或15万元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题中的等量关系题目中已经给出,相对降低了难度.24.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.【考点】扇形面积的计算;线段垂直平分线的性质;解直角三角形.【分析】(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=AO=OE,解直角三角形求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.【解答】解:(1)∵直径AB⊥DE,∴CE=DE=.∵DE平分AO,∴CO=AO=OE.又∵∠OCE=90°,∴sin∠CEO==,∴∠CEO=30°.在Rt△COE中,OE===2.∴⊙O的半径为2.(2)连接OF.在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=×π×22=π.∵∠EOF=2∠D=90°,OE=OF=2,∴S Rt△OEF=×OE×OF=2.∴S阴影=S扇形OEF﹣S Rt△OEF=π﹣2.【点评】此题综合考查了垂径定理和解直角三角形及扇形的面积公式.25.阅读下列材料,然后回答问题.先阅读下列第(1)题的解答过程,再解第(2)题.(1)已知实数a、b满足a2=2﹣2a,b2=2﹣2b,且a≠b,求+的值.解:由已知得:a2+2a﹣2=0,b2+2b﹣2=0,且a≠b,故a、b是方程:x2+2x﹣2=0的两个不相等的实数根,由根与系数的关系得:a+b=﹣2,ab=﹣2.∴+===﹣4(2)已知p2﹣2p﹣5=0,且 p、q为实数,①若q2﹣2q﹣5=0,且p≠q,则:p+q=2,pq=﹣5;②若5q2+2q﹣1=0,且pq≠1,求的值.【考点】根与系数的关系.【专题】阅读型.【分析】①把p、q看作方程x2﹣2x﹣5=0的两根,根据•根与系数的关系得到p+q=2,pq=﹣5;②先把5q2+2q﹣1=0变形为()2﹣2•﹣5=0,则p、可看作方程x2﹣2x﹣5=0的两根,根据根与系数关系得到p+=2,p•=﹣5,再利用完全平方公式变形得=(p+)2﹣2p•,然后利用整体代入的方法计算.【解答】解:①∵p2﹣2p﹣5=0,q2﹣2q﹣5=0,p≠q,∴p、q可看作方程x2﹣2x﹣5=0的两根,∴p+q=2,pq=﹣5;故答案为2,﹣5;②∵5q2+2q﹣1=0,∴()2﹣2•﹣5=0,而pq≠1,∴p、可看作方程x2﹣2x﹣5=0的两根,∴p+=2,p•=﹣5,∴=(p+)2﹣2p•=22﹣2×(﹣5)=14.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.26.如图,AB是⊙O的直径,∠ABT=45°,AT=AB(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,若⊙O的半径是2,求TC及AC2.【考点】切线的判定.【分析】(1)根据等腰直角三角形的性质求出∠BAT=90°,根据切线的判定定理证明即可;(2)根据勾股定理求出TC的长;作CD⊥AT于D,根据平行线分线段成比例定理求出CD、AD的长,根据勾股定理计算即可.【解答】(1)证明:∵∠ABT=45°,AT=AB,∴∠ATB=∠ABT=45°,∴∠BAT=90°,∴AT是⊙O的切线;(2)解:∵⊙O的半径是2,∴AT=AB=4,∵∠OAT=90°,∴OT==2,∴TC=OT﹣OC=2﹣2,作CD⊥AT于D,则AO∥CD,∴==,即==,解得,CD=,AD=,由勾股定理得,AC2=CD2+AD2=.【点评】本题考查的是切线的判定和平行线分线段成比例定理的应用,掌握经过半径的外端且垂直于这条半径的直线是圆的切线、灵活运用平行线分线段成比例定理是解题的关键.27.己知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0.(1)若这个方程有实数解,求k的取值范围;(2)若这个方程的解是直线y=3x+1与x轴的交点的横坐标.是否存在k使反比例函数y=的图象在第2、4象限?如果存在求出k,如果不存在,说明理由.【考点】根的判别式;一次函数图象上点的坐标特征;反比例函数的性质.【分析】(1)根据判别式的意义得出△=[﹣2(k﹣3)]2﹣4×1×(k2﹣4k﹣1)≥0,解不等式即可;(2)先求出直线y=3x+1与x轴的交点坐标为﹣,再代入一元二次方程得出关于k的方程,解方程求出k的值,然后代入反比例函数检验即可.【解答】解:(1)根据题意得:△=[﹣2(k﹣3)]2﹣4×1×(k2﹣4k﹣1)≥0,整理得:﹣2k+10≥0,解得:k≤5.即若这个方程有实数解,k的取值范围为k≤5;(2)存在;理由如下:∵直线y=3x+1,当y=0时,3x+1=0,解得:x=﹣,∴直线y=3x+1与x轴的交点坐标为﹣,∴(﹣)2﹣2(k﹣3)×(﹣)+k2﹣4k﹣1=0.整理得:9k2﹣30k﹣26=0,解得:k=,或k=,当k=时,3k+2=3×+2=7+>0,此时不符合题意;当k=时,3k+2=3×+2=7﹣<0,此时符合题意;∴当k=时,反比例函数y=的图象在第2、4象限.【点评】此题主要考查了一元二次方程跟的判别式、一次函数图象上点的坐标特征、反比例函数的性质;熟练掌握一元二次方程跟的判别式,求出直线与x轴的交点横坐标得出关于k 的方程是解决问题(2)的关键.28.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).(1)求C点的坐标;(2)求直线AC的函数关系式;(3)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?【考点】圆的综合题.【分析】(1)在Rt△AOD中,根据OA的长以及∠BAD的正切值,即可求得OD的长,从而得到D点的坐标,然后由菱形的邻边相等和对边相互平行来求点C的坐标;。
江苏省苏州市吴江区苏科版九年级(上)期中数学试卷(含解析)
24.(8 分)在⊙O 中,AB 为直径,C 为⊙O 上一点. (1)如图①,过点 C 作⊙O 的切线,与 AB 的延长线相交于点 P,若∠CAB=28°,求∠P 的大小; (2)如图②,D 为 的中点,连接 OD 交 AC 于点 E,连接 DC 并延长,与 AB 的延长线相交于点 P, 若∠CAB=12°,求∠P 的大小.
C.三角形的内心到各顶点的距离相等
D.长度相等的弧是等弧
8.若正方形的外接圆半径为 2,则其内切圆半径为( )
A.
B.2
C.
D.1
9.如图,AB 是⊙O 的直径,直线 PA 与⊙O 相切于点 A,PO 交⊙O 于点 C,连接 BC.若∠P=40°,则 ∠ABC 的度数为( )
A.20°
B.25°
C.40°
(1)对角线 AC 的长是
在 OB 的延长线上,当扇形 AOB 的半径为 时,阴影部分的面积为
.
18.如图,在平面直角坐标系中,已知点 A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点 P 在以 D(3,
4)为圆心,1 为半径的圆上运动,且始终满足∠BPC=90°,则 a 的最大值是
.
三、解答题:本大题共 10 小题,共 76 分.把解答过程写答题卡相应位置上,解答时应写出必要的计算过
11.方程 x2=1 的解是
.
12.已知关于 x 的方程(m﹣2)x|m|+(2m+1)x﹣m=0 是一元二次方程,则 m=
.
13.如图,已知 DE∥BC,S△ADE:S△ABC=4:25,则 AD:AB=
.
14.已知圆锥的底面半径为 3cm,母线长为 4cm,则该圆锥的侧面展开图的面积为
cm2.
江苏省2016-2017学年九年级上期中数学试题(含答案)
第一学期九年级期中考试数学学科试题注意事项:1.本试卷包含选择题(第1题~第10题,共10题)、非选择题(第11题~第28题,共18题)两部分.本卷满分130分,考试时间为120分钟.2.答题前,考生务必将本人的班级、姓名、学号填写在试卷的装订线内.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.方程x 2-4x =0的根是………………………………………………… ( ▲ ) A .x =4 B .x =0 C .x 1=0,x 2=4 D .x 1=0,x 2=-42.下列一元二次方程中,有实数根的是 ………………………………………………( ▲ )A .x 2-x +1=0B .x 2-2x +3=0C .x 2+x -1=0D .x 2+4=03.已知m ,n 是方程x 2-2x -2016=0的两个实数根,则n 2+2m 的值为于…………( ▲ )A . 1010B .2012C .2016D .20204.如图,在△ABC 中,若DE ∥BC ,AD = 5, BD = 10,DE = 4,则BC 的值为 ( ▲ )A .8B .9C .10D .12OBCA第4题 第8题 第9题 第10题5. 已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2), 以点B 为位似中心,且位似比为1:2将△ABC 放大得△A 1BC 1 ,则点C 1 的坐标为( ▲ ) A .(1,0)B .(5,8)C .(4,6)或(5,8)D .(1,0)或(5,8)6. 已知P 为⊙O 内一点,OP =1,如果⊙O 的半径是2,那么过P 点的最短弦长是 ( ▲ )A.1B.2C.3D.237.下列说法中,正确的是 ( ▲ ) A .垂直于半径的直线一定是这个圆的切线 B .任何三角形有且只有一个内切圆 C .三点确定一个圆 D .三角形的内心到三角形的三个顶点的距离相等 8.如图,在△ABC 中,点O 为重心,则S △DOE :S △BOC = (▲) A .1:4 B . 1:3C . 1:2D . 2:3MFADBCE NOBAC9.如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为 (▲) A. 15° B. 18° C. 20° D. 28°10. 如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2016次操作后得到的折痕D 2015E 2015到BC 的距离记为h 2016.若h 1=1,则h 2016的值为 ( ▲ ) A.201521 B.201421 C. 2015211-D.2015122-二、填空题:(本大题共8小题,每空2分,共16分)11.在Rt△ABC 中,∠C = 90°,AB = 2BC ,则cos A 的值为 ▲ .12.已知(m −3)x 2−3x + 1 = 0是关于x 的一元二次方程,则m 的取值范围是 ▲ .13.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是 ▲ 米.14.某公司4月份的利润为160万元,由于经济危机,6月份的利润降到90万元,则平均每月减少的百分率是 ▲ .15.如图,∠ABC = 140°,D 为圆上一点,则∠ADC 的度数为 ▲ .第15题 第16题 第17题 第18题16.如图,已知△ABC ,AB =AC =2,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ▲ . 17.如图,平行四边形ABCD 中,AB=28,E 、F 是对角线AC 上的两点,且AE:EF:FC=1:2:3,DE 交AB 于点M ,MF 交CD 于点N ,则CN= ▲ .18.如图,△ABC 是等腰直角三角形,AC =BC =2a ,以斜边AB 上的点O 为圆心的圆分别与AC ,BC 相切与点E ,F , 与AB 分别交于点G ,H ,且 EH 的延长线和 CB 的延长线交于点D ,则CD 的长为 ▲ .三、解答题:(本大题共9小题,共84分)19.解方程:(本题共有2小题,每小题4分,共8分)(1) x 2-2x -4=0 (2) (x +3)(x -1)=1220.(6分)如图,在Rt △ABC 中,∠ACB=90°.(1)先作∠ABC 的平分线交AC 边于点O ,再以点O 为圆心,OC 为半径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB 与⊙O 的位置关系,并证明你的结论.21.(7分)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是 45°,向前走8m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°。
【其中考试】江苏省苏州市吴江区九年级(上)期中数学试卷答案与详细解析
江苏省苏州市吴江区九年级(上)期中数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1. 下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x−1C.2y−x=1D.x2+3=2. 方程x2=3x的解为()A.x=3B.x=0C.x=−3或x=0D.x=3或x=03. 如图,点A,B,C在⊙O上,若∠BOC=72∘,则∠BAC的度数是()A.18∘B.36∘C.54∘D.72∘4. 九年级(1)班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选()A.甲 B.乙 C.丙 D.丁5. 一元二次方程x2+kx−3=0的一个根是x=1,则k的值为()A.2B.−2C.3D.−36. 已知圆锥的底面半径为3cm,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.36πcm2D.54πcm27. 如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()πA.8−πB.16−2πC.8−2πD.8−128. 10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AEDB.△ABDC.△BCDD.△ACD9. 根据下列表格的对应值:判断方程x+x−1=0一个解的取值范围是()A.0.59<x<0.61B.0.60<x<0.61C.0.61<x<0.62D.0.62<x<0.6310. 如图,菱形ABCD的边长为10,面积为80,∠BAD<90∘,⊙O与边AB,AD都相切,菱形的顶点A到圆心O的距离为5,则⊙O的半径长等于()A.2.5B.C.2D.3二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)方程x2=9的解为________.若⊙O的半径为3,点P为平面内一点,OP=2,那么点P在⊙O内部(填“上”、“内部”或“外部”)一组数据4,1,7,4,5,6,则这组数据的极差为________.三角形两边的长是3和4,第三边的长是方程x2−12x+35=0的根,则该三角形的周长为________.关于x的一元二次方程x2−2x−k=0有两个不相等的实数根,则k的取值范围是________.如图,△ABC内接于⊙O,∠BAC=30∘,BC=2,则⊙O的直径等于________.如图,AB是⊙O的直径,AB=20cm,弦BC=12cm,F是弦BC的中点,若动点E以2cm/s的速度从A点出发沿AB方向运动,设运动时间为t(s)(0<t<10),连接EF,当△BEF是直角三角形时,t的值为________.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D−d.在平面直角坐标系xOy中,图形G为以原点O为圆心,2为半径的圆,则点A(1, −1)到图形G的距离跨度是________.三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)解方程:(1)x2+4x+4=0;(2)3(x−2)2=x(x−2).(1)根据要求,解答下列问题:①方程x2−2x+1=0的解为________;②方程x2−3x+2=0的解为________;③方程x2−4x+3=0的解为________;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2−10x+9=0的解为________;②关于x的方程________的解为x1=1,x2=n;(3)请用配方法解方程x2−10x+9=0,以验证猜想结论的正确性.为了了解某校八年级学生每周平均课外阅读时间的情况,随机抽取了50名八年级学生,对其每周平均课外阅读时间进行统计,并绘制成下面的统计图.(1)这50名同学每周阅读时间的众数为________小时,中位数为________小时;(2)求出这组数据的平均数.“疫情”期间,某小区准备搭建一个面积为12平方米的矩形临时隔离点ABCD,如图所示,矩形一边利用一段已有的围墙(可利用的围墙长度仅有5米),另外三边用9米长的建筑材料围成,为方便进出,在与围墙平行的一边要开一扇宽度为1米的小门EF,求AB的长度为多少米?̂如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120∘,点E在AD上.(1)求∠E的度数;(2)连接OD、OE,当∠DOE=90∘时,AE恰好为⊙O的内接正n边形的一边,求n的值.已知关于x的一元二次方程x2−4mx+2m2=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若x=1是该方程的根,求代数式2(m−1)2+3的值.国强在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)用含售价x(元/件)的代数式表示每天能售出该工艺品的件数为________件;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②2020年10月17日为第7个国家扶贫日,国强决定每销售一件该工艺品便通过网络平台自动向某扶贫捐赠基金会捐款0.5元,求国强每天通过销售该工艺品捐款的数额.如图,在Rt△ABC中,∠ABC=90∘,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.已知:△ABC内接于⊙O,∠BAC的角平分线AD交⊙O于点D.(1)如图①,以点D为圆心,DB长为半径作弧,交AD于点I.求证:点I是△ABC的内心;(2)如图②,在(1)的条件下,若AD与BC交于点E.求证:;(3)探究:如图③,△ABC内接于⊙O,若BC=8,∠BAC=120∘,求△ABC内切圆半径的最大值.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动,设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示:(1)AD边的长为________.(2)如图③,动点P到达点D后从D点出发,沿着DB方向以1个单位长度/秒的速度匀速运动,以点P为圆心,PD长为半径的⊙P与DB、DC的另一个交点分别为M、N,与此同时,点Q从点C出发,沿着CD方向也以1个单位长度/秒的速度匀速运动,以点Q为圆心、2为半径作⊙Q.设运动时间为t秒(0<t≤5).①当t为何值时,点Q与点N重合?②当⊙P与BC相切时,求点Q到BD的距离.参考答案与试题解析江苏省苏州市吴江区九年级(上)期中数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.【答案】B【考点】一元二次方程的定义【解析】利用一元二次方程的定义进行分析即可.【解答】A、x+1=0是一元一次方程,故此选项不合题意;B、x2=2x−1是一元二次方程,故此选项符合题意;C、含有2个未知数,2y−x=1不是一元二次方程,故此选项不合题意;D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.2.【答案】D【考点】解一元二次方程-因式分解法【解析】因式分解法求解可得.【解答】解:∵x2−3x=0,∴x(x−3)=0,则x=0或x−3=0,解得:x=0或x=3.故选D.3.【答案】B【考点】圆周角定理【解析】由点A,B,C在⊙O上,∠BOC=72∘,直接利用圆周角定理求解即可求得答案.【解答】∵点A,B,C在⊙O上,∠BOC=72∘,∴∠BAC=∠BOC=36∘.4.【答案】D【考点】方差算术平均数【解析】根据方差的定义,方差越小数据越稳定.【解答】从平均数看,成绩最好的是乙和丁,从方差看,丁方差小,所以老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选丁;5.【答案】A【考点】一元二次方程的解【解析】x2+kx−3=0的一个根是x=1,那么就可以把x=1代入方程,从而可直接求k.【解答】把x=1代入x2+kx−3=0中,得1+k−3=0,解得k=2,6.【答案】A【考点】圆锥的计算【解析】已知底面半径即可求得底面周长,即展开图中,扇形的弧长,然后根据扇形的面积公式即可求解.【解答】解:底面周长是2×3π=6π,×6π×6=18π(cm2).则圆锥的侧面积是:12故选A.7.【答案】C【考点】扇形面积的计算正方形的性质【解析】根据S阴=S△ABD−S扇形BAE计算即可.【解答】S阴=S△ABD−S扇形BAE=12×4×4−45⋅π⋅42360=8−2π,8.【答案】D【考点】三角形的外接圆与外心【解析】根据三角形外心的性质,到三个顶点的距离相等,进行判断即可.【解答】解:∵三角形的外心到三角形的三个顶点的距离相等,∴从O点出发,确定点O分别到A,B,C,D,E的距离,只有OA=OC=OD,∴点O是△ACD的外心.故选D.9.【答案】C【考点】估算一元二次方程的近似解【解析】由于x=0.61时,x2+x−1=−0.0179;x=0.62时,x2+x−1=0.0044,则在0.61和0.62之间有一个值能使x2+x−1的值为0,于是可判断方程x2+x−1=0一个解x的范围为0.61<x<0.62.【解答】∵x=0.61时,x2+x−1=−0.0179;x=0.62时,x2+x−1=0.0044,∴方程x2+x−1=0一个解x的范围为0.61<x<0.62.10.【答案】B【考点】切线的性质菱形的性质圆周角定理【解析】根据菱形的边长和面积可求出高BF,进而求出CF、DF,再根据勾股定理求出BD,最后根据相似三角形求出半径即可.【解答】如图,连接BD交AC于点O′,作BF⊥CD于F,过点O作OE⊥AB,垂足为E,∵菱形ABCD的边长为10,面积为80,∴CD⋅BF=80,∴BF=8,∴FC===6,∴DF=CD−FC=10−6=4,∴BD===4,∴O′D=O′B=BD=2,∵∠AEO=∠AO′B=90∘,∠OAE=∠BAO′,∴△AOE∽△ABO′,∴=,即:=,∴OE=,二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)【答案】±3【考点】解一元二次方程-直接开平方法【解析】此题直接用开平方法求解即可.【解答】解:∵(±3)2=9,x2=9.故答案为:±3.【答案】内部【考点】点与圆的位置关系【解析】根据点和圆的位置关系得出即可.【解答】∵⊙O的半径r=3,∵OP=2,∴点P在⊙O内部,【答案】6【考点】极差【解析】根据极差的定义即可求得.这组数据的极差为:7−1=6;【答案】12【考点】三角形三边关系解一元二次方程-因式分解法【解析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2−12x+35=0,得x1=5,x2=7,∵1<第三边<7,∴第三边长为5,∴周长为3+4+5=12.故答案为:12.【答案】k>−1【考点】根的判别式一元二次方程的定义轴对称图形【解析】根据判别式的意义得到△=(−2)2+4k>0,然后解不等式即可.【解答】∵关于x的一元二次方程x2−2x−k=0有两个不相等的实数根,∴△=(−2)2+4k>0,解得k>−1.【答案】4【考点】三角形的外接圆与外心圆周角定理【解析】作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30∘,∠BCD=90∘,根据直角三角形的性质解答.【解答】作直径BD,连接CD,由圆周角定理得,∠D=∠BAC=30∘,∠BCD=90∘,∴BD=2BC=4,【答案】5或8.2勾股定理圆周角定理相似三角形的性质与判定【解析】求出BF和AO的长,分为两种情况,①∠EFB=90∘,②∠FEB=90∘,求出AE和BE的长,再求出t即可.【解答】解:∵AB是⊙O的直径,∴∠C=90∘,∵AB=20cm,弦BC=12cm,F是弦BC的中点,∴BF=12BC=6cm,AO=10cm,有两种情况:①当∠EFB=90∘时,如图∵AB是⊙O的直径,∴∠C=90∘,∵∠EFB=90∘,∴AC // EF,∵F为BC的中点,∴E为AB的中点,即E和O重合,∵AB=20cm,∴AE=AO=10cm,∴t=102=5;②当∠FEB=90∘时,如图∵∠B=∠B,∠FEB=∠C=90∘,∴△FEB∽△ACB,∴BEBC =BFAB∴BE12=620,解得:BE=3.6(cm),∵AB=20cm,∴AE=AB−BE=16.4cm,∴t=16.42=8.2.故答案为:5或8.2.【答案】2【考点】坐标与图形性质线段的性质:两点之间线段最短【解析】先根据跨度的定义先确定出点到圆的最小距离d和最大距离D,即可得出跨度.【解答】∵图形G为以O为圆心,2为半径的圆,∴直径为4,∵A(1, −1),OA=,∴点A到⊙O的最小距离d=MA=OM−OA=2−,点A到⊙O的最大距离D=AN=ON+OM=2+,∴点A到图形G的距离跨度R=D−d=2+−2+=2;三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)【答案】∵x2+4x+4=0,∴(x+2)2=0,解得x1=x2=−2;∵3(x−2)2−x(x−2)=0,∴(x−2)(2x−6)=0,则x−2=0或2x−6=0,解得x1=2,x2=−3.【考点】解一元二次方程-因式分解法【解析】利用因式分解法求解可得答案.【解答】∵x2+4x+4=0,∴(x+2)2=0,解得x1=x2=−2;∵3(x−2)2−x(x−2)=0,∴(x−2)(2x−6)=0,则x−2=0或2x−6=0,解得x1=2,x2=−3.【答案】x1=x2=1,x1=1,x2=2,x1=1,x2=3x1=1,x2=9,x2−(1+n)x+n=0x2−10x=−9,x2−10x+25=16,(x−5)2=16,x−5=±4,所以x1=1,x2=9.【考点】解一元二次方程-因式分解法根与系数的关系解一元二次方程-配方法【解析】(1)利用因式分解法解各方程即可;(2)①利用(1)中各方程解的特征求解;②利用根与系数的关系确定一次项系数和常数项即可;(3)利用配方法得到(x−5)2=16,然后用直接开平方法解方程.【解答】①x1=1,x2=1;②x1=1,x2=2;③x1=1,x2=3;①x1=1,x2=9;②x2−(1+n)x+n=0;故答案为x1=1,x2=1;x1=1,x2=2;x1=1,x2=3;x1=1,x2=9;x2−(1+ n)x+n=0;x2−10x=−9,x2−10x+25=16,(x−5)2=16,x−5=±4,所以x1=1,x2=9.【答案】3,3这组数据的平均数:1×8+2×16+3×20+4×4+5×250=12650=2.52(小时).【考点】中位数众数加权平均数【解析】(1)直接利用众数以及中位数的定义得出答案;(2)直接利用平均数的求法得出答案.【解答】数据3小时出现了20次,出现次数最多,所以众数是3小时;这组数据总数为50,所以中位数是第25、26位数的平均数,即(3+3)÷2=3小时.故答案为:3,3;这组数据的平均数:1×8+2×16+3×20+4×4+5×250=12650=2.52(小时).【答案】AB的长度为3米【考点】一元二次方程的应用【解析】根据临时隔离点ABCD总长度是10米,AB=x米,则BC=(10−2x)米,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】设AB=x米,则BC=(9+1−2x)米,根据题意可得,x(10−2x)=12,解得x1=3,x2=2,当x=3时,AD=4<5,当x=2时,AD=6>5,∵可利用的围墙长度仅有5米,∴AB的长为3米.【答案】解:(1)连接BD,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180∘,∵∠C=120∘,∴∠BAD=60∘,∵AB=AD,∴△ABD是等边三角形,∴∠ABD=60∘,∵四边形ABDE是⊙O的内接四边形,∴ ∠AED +∠ABD =180∘,∴ ∠AED =120∘;(2)连接OA ,∵ ∠ABD =60∘,∴ ∠AOD =2∠ABD =120∘,∵ ∠DOE =90∘,∴ ∠AOE =∠AOD −∠DOE =30∘,∴ n =360∘30∘=12.【考点】圆内接四边形的性质正多边形和圆【解析】(1)首先连接BD ,由在⊙O 的内接四边形ABCD 中,∠C =120∘,根据圆的内接四边形的性质,∠BAD 的度数,又由AB =AD ,可证得△ABD 是等边三角形,则可求得∠ABD =60∘,再利用圆的内接四边形的性质,即可求得∠E 的度数;(2)首先连接OA ,由∠ABD =60∘,利用圆周角定理,即可求得∠AOD 的度数,继而求得∠AOE 的度数,继而求得答案.【解答】解:(1)连接BD ,∵ 四边形ABCD 是⊙O 的内接四边形,∴ ∠BAD +∠C =180∘,∵ ∠C =120∘,∴ ∠BAD =60∘,∵ AB =AD ,∴ △ABD 是等边三角形,∴ ∠ABD =60∘,∵ 四边形ABDE 是⊙O 的内接四边形,∴ ∠AED +∠ABD =180∘,∴ ∠AED =120∘;(2)连接OA ,∵ ∠ABD =60∘,∴ ∠AOD =2∠ABD =120∘,∵ ∠DOE =90∘,∴ ∠AOE =∠AOD −∠DOE =30∘,∴ n =360∘30∘=12.【答案】证明:由题意得,△=(4m)2−4⋅2m 2=8m 2≥0,所以不论m 为何值,该方程总有两个实数根;把x =1代入方程得1−4m +2m 2=0,则2m 2−4m =−1,所以2(m −1)2−3=2m 2−4m +2+3=−1+2+3=4.【考点】根的判别式【解析】(1)进行判别式的值得到△=8m 2,从而可判断△≥0,于是得到结论;(2)利用一元二次方程根的定义得到2m 2−4m =1,再利用完全平方公式得到2(m −1)2+3=2m 2−4m +2+3,然后利用整体代入的方法计算.【解答】证明:由题意得,△=(4m)2−4⋅2m 2=8m 2≥0,所以不论m 为何值,该方程总有两个实数根;把x =1代入方程得1−4m +2m 2=0,则2m 2−4m =−1,所以2(m −1)2−3=2m 2−4m +2+3=−1+2+3=4.【答案】(180−3x)该商品的售价为30元/件.②0.5×(180−3×30)=45(元).【考点】一元二次方程的应用【解析】(1)由该商品的售价结合售价每降低1元就会多售出3件,即可得出每天售出该工艺品的件数;(2)①根据总利润=每件工艺品的利润×销售数量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;②根据每天通过销售该工艺品面捐款的数额=0.5×每天销售的数量,即可得出结论.【解答】∵ 该商品的售价为x 元/件(20≤x ≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴ 每天能售出该工艺品的件数为60+3(40−x)=(180−3x)件,故答案为:(180−3x).①依题意,得:(x −20)(180−3x)=900,整理,得:x 2−80x +1500=0,解得:x 1=30,x 2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180−3×30)=45(元).答:国强每天通过销售该工艺品捐款的数额为45元.【答案】证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≅△OCD(SSS),∴∠ODC=∠OBC=90∘,∴OD⊥DC,∴DC是⊙O的切线;设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(4−r)2=r2+22,∴r=1.5,∵tan∠E=OBEB =CDDE,∴ 1.52=CD4,∴CD=BC=3,在Rt△ABC中,AC=√AB2+BC2=√32+32=3√2.∴圆的半径为1.5,AC的长为3√2.【考点】圆周角定理直线与圆的位置关系【解析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(4−r)2=r2+22,推出r=1.5,由tan∠E=OBEB =CDDE,推出1.52=CD4,可得CD=BC=3,再利用勾股定理即可解决问题;【解答】证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≅△OCD(SSS),∴∠ODC=∠OBC=90∘,∴OD⊥DC,∴DC是⊙O的切线;设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(4−r)2=r2+22,∴r=1.5,∵tan∠E=OBEB =CDDE,∴ 1.52=CD4,∴CD=BC=3,在Rt△ABC中,AC=√AB2+BC2=√32+32=3√2.∴圆的半径为1.5,AC的长为3√2.【答案】证明:如图①中,连接BI.∵DB=DI,∴∠DBI=∠DIB,∵∠DIB=∠IAB+∠IBA,∠DBI=∠IBC+∠DBC,又∵∠DBC=∠DAC=∠DAB,∴∠DBC=∠IAB,∴∠IBA=∠IBC,即BI平分∠ABC,∴点I是△ABC的内心.证明:如图②中,∵∠BDA=∠BCA,∠DBC=∠DAC,∴△BDE∽△ACE,∴=,∵DB=DI,∴=.如图③中,作∠BAC的角平分线AD交⊙O于D,连接BD,DC,以D为圆心,DB为半径作作弧,交AD于点I,由(1)点I是△ABC的内心.∵IH⊥AC,∴IH是△ABC的内切圆的半径,在△AIH中,∠IAH=∠BAC=60∘,∴IH=AI,故欲求IH的最大值只要求出AI的最大值,∵∠DBC=∠DAC=60∘,∠DCB=∠DAB=60∘,∴△BDC是等边三角形,∴DB=CB=8,即DI=8,作直径DF,在Rt△BDF中,∠DFB=60∘,DB=8,∴DF=,即直径为,∴AI的最大值为−8,∴△ABC的内切圆的半径的最大值为8−4.【考点】圆的综合题【解析】(1)如图①中,连接BI.证明BI平分∠ABC即可.(2)证明△BDE∽△ACE,推出=,可得结论.(3)如图③中,作∠BAC的角平分线AD交⊙O于D,连接BD,DC,以D为圆心,DB为半径作作弧,交AD于点I,由(1)点I是△ABC的内心.IH=AI,故欲求IH的最大值只要求出AI的最大值.【解答】证明:如图①中,连接BI.∵DB=DI,∴∠DBI=∠DIB,∵∠DIB=∠IAB+∠IBA,∠DBI=∠IBC+∠DBC,又∵∠DBC=∠DAC=∠DAB,∴∠DBC=∠IAB,∴∠IBA=∠IBC,即BI平分∠ABC,∴点I是△ABC的内心.证明:如图②中,∵∠BDA=∠BCA,∠DBC=∠DAC,∴△BDE∽△ACE,∴=,∵DB=DI,∴=.如图③中,作∠BAC的角平分线AD交⊙O于D,连接BD,DC,以D为圆心,DB为半径作作弧,交AD于点I,由(1)点I是△ABC的内心.∵IH⊥AC,∴IH是△ABC的内切圆的半径,在△AIH中,∠IAH=∠BAC=60∘,∴IH=AI,故欲求IH的最大值只要求出AI的最大值,∵∠DBC=∠DAC=60∘,∠DCB=∠DAB=60∘,∴△BDC是等边三角形,∴DB=CB=8,即DI=8,作直径DF,在Rt△BDF中,∠DFB=60∘,DB=8,∴DF=,即直径为,∴AI的最大值为−8,∴△ABC的内切圆的半径的最大值为8−4.【答案】8①由题意:DP=PM=t,CQ=t,由△DMN∽△DBC,可得=,即=,∴DN=t.当Q与N点重合时,CQ+DN=6,∴t+t=6,∴t=.②如图③中,设⊙P与BC相切于点H,连接PH,则PH⊥BC,过点Q作QF⊥BD于F.由题意PH=PD=t,∵PH // CD,∴△PHB∽△DCB,∴=,∴=,∴t=,∴CQ=t=,QD=6−CD=,∵∠QFD=∠C=90∘,∠QDF=∠CDB,∴△QDF∽△BDC,∴=,∴=,∴QF=,∴点Q到线段BD的距离为.【考点】圆的综合题【解析】(1)当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为12,得到AB与BC的积为48,当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为14,得到AB与BC的和为14,构造关于AB的一元二方程可求解.(2)①由△DMN∽△DBC,可得=,即=,推出DN=t.当Q与N点重合时,推出CQ+DN=6,由此构建方程即可解决问题.②如图③中,设⊙P与BC相切于点H,连接PH,则PH⊥BC,过点Q作QF⊥BD于F.证明△PHB∽△DCB,可得=,推出=,推出t=,CQ=t=,QD=6−CD=,再证明△QDF∽△BDC,推出=,求出QF即可.【解答】当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为12.∴•AB•BC=12,即AB⋅BC=48当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为14,∴AB+BC=14则BC=14−AB,代入AB⋅BC=48,得AB2−14AB+48=0,解得AB=6或8,∵AB<AD,即AB<BC,∴AB=6,BC=8.即AD=BC=8.故答案为:8.①由题意:DP=PM=t,CQ=t,由△DMN∽△DBC,可得=,即=,∴DN=t.当Q与N点重合时,CQ+DN=6,∴t+t=6,∴t=.②如图③中,设⊙P与BC相切于点H,连接PH,则PH⊥BC,过点Q作QF⊥BD于F.由题意PH=PD=t,∵PH // CD,∴△PHB∽△DCB,∴=,∴=,∴t=,∴CQ=t=,QD=6−CD=,∵∠QFD=∠C=90∘,∠QDF=∠CDB,∴△QDF∽△BDC,∴=,∴=,∴QF=,∴点Q到线段BD的距离为.。
吴江初三期中试卷数学答案
一、选择题(每题5分,共50分)1. 若a、b是实数,且a+b=0,则a²+b²的值为()A. 0B. 1C. -1D. 不确定答案:A解析:由题意得,a+b=0,即a=-b。
代入a²+b²得:a²+b² = (-b)²+b² = b²+b² = 2b²由于a和b互为相反数,b²≥0,所以2b²≥0,即a²+b²≥0。
当a=b=0时,a²+b²=0。
因此,a²+b²的值为0。
2. 若x²-5x+6=0,则x的值为()A. 2或3B. 1或4C. 2或-3D. 1或-2答案:A解析:这是一个一元二次方程,可以通过因式分解求解。
将方程x²-5x+6=0因式分解得:(x-2)(x-3)=0根据零因子定理,当两个数的乘积为0时,至少有一个数为0。
因此,x-2=0或x-3=0,解得x=2或x=3。
3. 若sinα=1/2,则α的值为()A. 30°B. 45°C. 60°D. 90°答案:A解析:在单位圆上,sinα表示圆上一点的y坐标。
当sinα=1/2时,对应的角度是30°,因为在这个角度下,单位圆上的点的y坐标为1/2。
4. 若a²+b²=10,ab=3,则a+b的值为()A. 5B. 2C. 1D. -5答案:A解析:由题意得,a²+b²=10,ab=3。
根据平方和公式,(a+b)²=a²+2ab+b²,代入已知条件得:(a+b)² = 10 + 23 = 16开平方得a+b=±4。
但由于a²+b²=10,a和b不能同时为正或同时为负,因此a+b=4。
【其中考试】江苏省苏州市某校九年级(上)期中数学试卷答案与详细解析
江苏省苏州市某校九年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案填在答题纸相对应的位置上)1. 下面的函数是二次函数的是()A.y=3x+1B.y=x2+2xC.y=D.y=2. 若二次函数y=2x2的图象经过点P(1, a),则a的值为()A.2B.1C.D.43. 一元二次方程x2−2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4. 把二次函数y=−x2−2x+3配方化为y=a(x−ℎ)2+k形式是()A.y=−(x−1)2−4B.y=−(x+1)2+4C.y=−(x−1)2+3D.y=−(x+1)2−35. 在平面直角坐标系中,抛物线y=(x+5)(x−3)经变换后得到抛物线y=(x+3)(x−5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位6. 已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示,点A(x1, y1),B(x2, y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y27. 我们知道方程x2+2x−3=0的解是x1=1,x2=−3,现给出另一个方程(2x+3)2+2(2x+3)−3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=−3C.x1=−1,x2=3D.x1=−1,x2=−38. 已知函数y=(x−a)(x−b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()A. B.C. D.9. 当−2≤x≤1时,二次函数y=−(x−m)2+m2+1有最大值4,则实数m的值为( )A.−74B.√3或−√3 C.2或−√3 D.2或−√3或−7410. 如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合,现将△ABC沿着直线l向右移动,直至点B与点F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为( )A. B.C. D.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题纸相对应的位置.上.)关于x的方程ax2−3x−6=0是一元二次方程,则a满足的条件是________.方程(x−1)(x−3)=0的解为________.若x1,x2是方程x2−4x−2020=0的两个实数根,则代数式2x1+2x2−x1x2的值等于________.一个三角形的两边长分别为3和5,第三边长是方程x2−6x+8=0的根,则三角形的周长为________.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为________∘C.某型号的手机连续两次降价,单价由原来的5200元降到了1300元.设平均每次降价的百分率为x,则可以列出的一元二次方程是________.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①4ac−b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠−1),其中正确的结论有________.如图,已知二次函数y=-x2+x+2的图象交x轴于A(−1, 0),B(4, 0),交y轴于点C,点P是直线BC上方抛物线上一动点(不与B,C重合),过点P作PE⊥BC,PF // y轴交BC与F,则△PEF面积的最大值是________.三、解答题:(本大题共9小题,共76分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省苏州市吴江市青云中学九年级(上)期中数学试卷一、选择题:(本大题共10小题,每小题3分,共30分)1.(3分)下列关于x的方程中,一定是一元二次方程的是()A.ax2+bx+c=0 B.(x+2)(x﹣3)=(x﹣1)2C.x2+1=0 D.+x=12.(3分)下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1 B.2 C.3 D.43.(3分)方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=14.(3分)已知关于x的一元二次方程x2﹣3x+2=0两实数根为x1、x2,则x1+x2=()A.3 B.﹣3 C.1 D.﹣15.(3分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.﹣1 B.0 C.1 D.26.(3分)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切7.(3分)为了让某市的山更绿、水更清,2014年市委、市政府提出了确保到2016年实现全市森林覆盖率达到63%的目标,已知2014年该市森林覆盖率为60%.设从2014年起森林覆盖率的年平均增长率为x,则可列方程()A.60(1+2x)=63% B.60(1+2x)=63 C.60(1+x)2=63% D.60(1+x)2=63 8.(3分)如图,⊙O是△ABC的外接圆,∠BCO=40°,则∠A的度数等于()A.60°B.50°C.45°D.40°9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA 为半径的圆与AB交于点D,则AD的长为()A.B.C.D.10.(3分)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次 B.4次 C.5次 D.6次二、填空题:(本大题共8小题,每小题3分,共24分.)11.(3分)方程x2=4x的解是.12.(3分)若关于x的一元二次方程(k﹣1)x2+x﹣k2=0的一个根为1,则k的值为.13.(3分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是.14.(3分)已知x为实数,(x2+4x)2+5(x2+4x)﹣24=0,则x2+4x的值为.15.(3分)圆锥的母线为5cm,底面半径为3cm,则圆锥的表面积为.16.(3分)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为.(结果保留π)17.(3分)如图,ABCD是⊙O的内接四边形,∠B=140°,则∠AOC的度数是度.18.(3分)如图,点D是△ABC边AB上的一点,BD=2AD,P是△ABC外接圆上一点(点P在劣弧上),∠ADP=∠ACB,则=.三、解答题:(本大题共76分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(15分)解方程:(1)(x﹣1)2=9(2)x2﹣4x﹣621=0(3)﹣=.20.(6分)关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为1,求m的值及该方程的根.21.(6分)如图,AB是⊙O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.22.(8分)已知关于x的一元二次方程x2﹣2x+m=0有两个实数根.(1)求m的范围;(2)若方程两个实数根为x1、x2,且x1+3x2=8,求m的值.23.(8分)已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(k+3)x+3k=0的两个实数根.(1)求证:无论k为何值时,方程总有两个实数根;(2)当△ABC是等腰三角形时,求k的值.24.(8分)如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.25.(8分)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?26.(8分)如图,⊙O是△ABC的外接圆,∠ABC=45°,延长BC于D,连接AD,使得AD∥OC,AB交OC于E.(1)求证:AD与⊙O相切;(2)若AE=2,CE=2.求⊙O的半径和AB的长度.27.(10分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b >0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.2015-2016学年江苏省苏州市吴江市青云中学九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分)1.(3分)下列关于x的方程中,一定是一元二次方程的是()A.ax2+bx+c=0 B.(x+2)(x﹣3)=(x﹣1)2C.x2+1=0 D.+x=1【解答】解:A、a=0时,不是一元二次方程,选项错误;B、原式可化为:x﹣7=0,是一元一次方程,故选项错误;C、符合一元二次方程的定义,正确;D、是分式方程,选项错误.故选:C.2.(3分)下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1 B.2 C.3 D.4【解答】解:A、是圆周角定理的推论,故正确;B、根据轴对称图形和中心对称图形的概念,故正确;C、根据圆周角定理的推论知:同圆中,相等的圆周角所对的弧相等,再根据等弧对等弦,故正确;D、应是不共线的三个点,故错误.故选C.3.(3分)方程x2+3=4x用配方法解时,应先化成()A.(x﹣2)2=7 B.(x+2)2=1 C.(x+2)2=2 D.(x﹣2)2=1【解答】解:由原方程,得x2﹣4x=﹣3,配方,得x2﹣4x+4=﹣3+4,即(x﹣2)2=1故选:D.4.(3分)已知关于x的一元二次方程x2﹣3x+2=0两实数根为x1、x2,则x1+x2=()A.3 B.﹣3 C.1 D.﹣1【解答】解:∵关于x的一元二次方程x2﹣3x+2=0两实数根为x1、x2,∴x1+x2=﹣(﹣3)=3.故选:A.5.(3分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.﹣1 B.0 C.1 D.2【解答】解:将x=m代入方程得:m2﹣m﹣1=0,m2﹣m=1.故选:C.6.(3分)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选:A.7.(3分)为了让某市的山更绿、水更清,2014年市委、市政府提出了确保到2016年实现全市森林覆盖率达到63%的目标,已知2014年该市森林覆盖率为60%.设从2014年起森林覆盖率的年平均增长率为x,则可列方程()A.60(1+2x)=63% B.60(1+2x)=63 C.60(1+x)2=63% D.60(1+x)2=63【解答】解:2015年全市森林覆盖率为60%×(1+x),2016年全市森林覆盖率为60%×(1+x)×(1+x)=63%×(1+x)2,可列方程为60%×(1+x)2=63%,故选:D.8.(3分)如图,⊙O是△ABC的外接圆,∠BCO=40°,则∠A的度数等于()A.60°B.50°C.45°D.40°【解答】解:∵OC=OB,∠BCO=40°,∴∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=100°×=50°,故选:B.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA 为半径的圆与AB交于点D,则AD的长为()A.B.C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∵S△ABC∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.故选:C.10.(3分)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次 B.4次 C.5次 D.6次【解答】解:如图,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选:B.二、填空题:(本大题共8小题,每小题3分,共24分.)11.(3分)方程x2=4x的解是0或4.【解答】解:原方程可化为:x2﹣4x=0,∴x(x﹣4)=0解得x=0或4;故方程的解为:0,4.12.(3分)若关于x的一元二次方程(k﹣1)x2+x﹣k2=0的一个根为1,则k的值为0.【解答】解:∵x=1是(k﹣1)x2+x﹣k2=0的根,∴k﹣1+1﹣k2=0,解得k=0或1,∵k﹣1≠0,∴k≠1,∴k=0.故答案为:0.13.(3分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是k<且k≠0.【解答】解:∵kx2﹣x+1=0有两个不相等的实数根,∴△=1﹣4k>0,且k≠0,解得,k<且k≠0;故答案是:k<且k≠0.14.(3分)已知x为实数,(x2+4x)2+5(x2+4x)﹣24=0,则x2+4x的值为3.【解答】解:(x2+4x)2+5(x2+4x)﹣24=0,(x2+4x+8)(x2+4x﹣3)=0,∵x2+4x+8=(x+2)2+4>0,∴x2+4x﹣3=0,∴x2+4x=3,故答案为:3.15.(3分)圆锥的母线为5cm,底面半径为3cm,则圆锥的表面积为24π.【解答】解:圆锥表面积=π×32+π×3×5=24π.故答案为:24π.16.(3分)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为π.(结果保留π)【解答】解:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为=π.故答案为:π17.(3分)如图,ABCD是⊙O的内接四边形,∠B=140°,则∠AOC的度数是80度.【解答】解:∵四边形ABCD是⊙O的内接四边形,∠B=140°,∴∠D=180°﹣∠B=40°,∴∠AOC=2∠D=80°.故答案为:80°.18.(3分)如图,点D是△ABC边AB上的一点,BD=2AD,P是△ABC外接圆上一点(点P在劣弧上),∠ADP=∠ACB,则=.【解答】解:连接AP,∵∠APB与∠ACB是所对的圆周角,∴∠APB=∠ACB,∵∠ADP=∠ACB,∴∠APB=∠ACB=∠ADP,∵∠DAP=∠DAP,∴△APB∽△ADP,∴==,∴AP2=AD•AB=AD•(AD+2AD)=3AD2,∴===.故答案为:.三、解答题:(本大题共76分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(15分)解方程:(1)(x﹣1)2=9(2)x2﹣4x﹣621=0(3)﹣=.【解答】解:(1)(x﹣1)2=9,开方得:x﹣1=±3,解得:x1=4,x2=﹣2;(2)x2﹣4x﹣621=0,(x﹣27)(x+23)=0,x﹣27=0,x+23=0,x1=27,x2=﹣23;(3)﹣=,方程两边都乘以3(x+1)(x﹣1)得:3x(x+1)﹣6(x﹣1)=4(x+1)(x﹣1),即x2+3x﹣10=0,解得:x1=﹣5,x2=2,经检验都是原方程的解,所以原方程的解为:x1=﹣5,x2=2.20.(6分)关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为1,求m的值及该方程的根.【解答】解:mx2﹣(3m﹣1)x+2m﹣1=0,△=(3m﹣1)2﹣4m(2m﹣1)=1,整理得m2﹣2m=0,解得m1=0,m2=2,∵m≠0,∴m=2,原方程为2x2﹣5x+3=0,x=,∴x1=1,x2=.21.(6分)如图,AB是⊙O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.【解答】解:(1)△AOC是等边三角形…(1分)证明:∵=,∴∠1=∠COD=60° …(3分)∵OA=OC(⊙O的半径),∴△AOC是等边三角形;…(5分)(2)证法一:∵=,∴OC⊥AD …(7分)又∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AD …(9分)∴OC∥BD…(10分)证法二:∵=,∴∠1=∠COD=∠AOD …(7分)又∠B=∠AOD∴∠1=∠B …(9分)∴OC∥BD …(10分)22.(8分)已知关于x的一元二次方程x2﹣2x+m=0有两个实数根.(1)求m的范围;(2)若方程两个实数根为x1、x2,且x1+3x2=8,求m的值.【解答】解:(1)△=4﹣4m,∵有两个实数根,∴4﹣4m≥0,∴m≤1;(2)∵,解得,,∴m=x1x2=﹣3.23.(8分)已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(k+3)x+3k=0的两个实数根.(1)求证:无论k为何值时,方程总有两个实数根;(2)当△ABC是等腰三角形时,求k的值.【解答】(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2,∵(k﹣3)2,≥0,∴△≥0,∴无论k为何值时,方程总有两个实数根;(2)解:当AC=BC=5,把x=5代入方程x2﹣(k+3)x+3k=0得52﹣(k+3)×5+3k=0,解得k=5;当AB=AC,则方程x2﹣(k+3)x+3k=0的两个相等的实数根,∴△=(k﹣3)2,=0,∴k=3,∴k的值为3或5.24.(8分)如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求OE的长.【解答】(1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC.∴∠BAC=∠OAC.即AC平分∠OAB.(2)解:∵OE⊥AB,∴AE=BE=AB=1.又∵∠AOE=30°,∠PEA=90°,∴∠OAE=60°.∴OE=AB•cos60°=2×=.25.(8分)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?【解答】解:(1)设售价应涨价x元,则:(16+x﹣10)(120﹣10x)=770,解得:x1=1,x2=5.又要尽可能的让利给顾客,则涨价应最少,所以x2=5(舍去).∴x=1.答:专卖店涨价1元时,每天可以获利770元.(2)设单价涨价x元时,每天的利润为w1元,则:w1=(16+x﹣10)(120﹣10x)=﹣10x2+60x+720=﹣10(x﹣3)2+810(0≤x≤12),即定价为:16+3=19(元)时,专卖店可以获得最大利润810元.设单价降价z元时,每天的利润为w2元,则:w2=(16﹣z﹣10)(120+30z)=﹣30z2+60z+720=﹣30(z﹣1)2+750(0≤z≤6),即定价为:16﹣1=15(元)时,专卖店可以获得最大利润750元.综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元.26.(8分)如图,⊙O是△ABC的外接圆,∠ABC=45°,延长BC于D,连接AD,使得AD∥OC,AB交OC于E.(1)求证:AD与⊙O相切;(2)若AE=2,CE=2.求⊙O的半径和AB的长度.【解答】(1)证明:连接OA;∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴OA⊥OC;又∵AD∥OC,∴OA⊥AD,∴AD是⊙O的切线.(2)解:设⊙O的半径为R,则OA=R,OE=R﹣2,AE=2,在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣2)2=(2)2,解得R=4,作OH⊥AB于H,如图,OE=OC﹣CE=4﹣2=2,则AH=BH,∵OH•AE=•OE•OA,∴OH===,在Rt△AOH中,AH==,∵OH⊥AB,∴AB=2AH=.27.(10分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b >0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.【解答】解:(1)①如图,∵∠COE=90°∴∠CFE=∠COE=45°,(圆周角定理)②方法一:如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,∴FG2=64×(1﹣b2)(4≤b<5)方法二:①如图,作OM⊥AB点M,连接OF,∵直线的函数式为:y=﹣x+b,∴B的坐标为(0,b),A的坐标为(b,0),∴AB==b,∴sin∠BAO===,∴sin∠MAO===,∴OM=b,∴在RT△OMF中,FM==∵FG=2FM,∴FG2=4FM2=4(42﹣b2)=64﹣﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,∴FG2=64×(1﹣b2)(4≤b<5)(2)如图,当b=5时,直线与圆相切,∵在直角坐标系中,∠COE=90°,∴∠CPE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴△APO∽△AOB,∴=,∵OP=r=4,OB=5,AO=,∴=即AP=,∵AB===,作PM⊥AO交AO于点M,设P的坐标为(x,y),∵△AMP∽△AOB,∴=∴=,∴y=,∴x=OM===∴点P的坐标为(,).当b>5时,直线与圆相离,不存在P赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。