中考数学热身训练相似三角形含解析0623136含答案

合集下载

初三数学相似三角形典型例题(附含答案解析)

初三数学相似三角形典型例题(附含答案解析)

2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。

2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。

3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。

4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。

本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。

相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。

(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 ab c (a : bc :d )中, a 、 d 叫外项,db 、c 叫内项, a 、c 叫前项, b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、 d 的比例中项。

把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。

2. 比例性质:①基本性质: ac b d②合比性质:acb dad bca b c d bd③等比性质:a c⋯b dm (b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ nb3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。

AB 则BCDE , ABEF AC DE , BCDF AC EF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

相似三角形(包含答案和解析)

相似三角形(包含答案和解析)

相似三角形综合检测题一、选择题(共18小题)1.(2011•深圳)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:l B.:l C.5:3 D.不确定2.(2012•鄂州)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为()A.B.C.D.3.(2012•攀枝花)如图,△ABC≌△ADE且∠ABC=∠ADE,∠ACB=∠AED,BC、DE交于点O.则下列四个结论中,①∠1=∠2;②BC=DE;③△ABD∽△ACE;④A、O、C、E四点在同一个圆上,一定成立的有()A.1个B.2个C.3个D.4个4.(2010•威海)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x 轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2010个正方形的面积为()A.B.C.D.5.(2000•天津)以下有四个结论:①顺次连接对角线相等的四边形各边中点,所得的四边形是菱形;②等边三角形是轴对称图形,但不是中心对称图形;③顶点在圆上的角叫做圆周角;④边数相同的正多边形都是相似形.其中正确的有()A.1个B.2个C.3个D.4个6.(1999•哈尔滨)如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是()A.1个B.2个C.3个D.4个7.(2010•江汉区)如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE等于()A.B.C.D.8.(2007•天门)如图所示,O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则下列结论:①OH∥BF;②∠CHF=45°;③GH=BC;④FH2=HE•HB,正确的是()A.①②③B.②③④C.①②④D.①③④9.(2002•十堰)如图,若DC∥FE∥AB,则有()A.B.C.D.10.(2005•太原)如图,在正方形ABCD中,点E、F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于()A.B.C.D.11.(2002•烟台)如图,△ABC中,已知MN∥BC,DN∥MC.小红同学由此得出了以下四个结论:(1);(2);(3);(4).其中正确结论的个数为()A.1B.2C.3D.412.(2000•绍兴)如图,梯形ABCD中,AD∥BC,∠ABC=Rt∠,对角线AC⊥BD于P点.已知AD:BC=3:4,则BD:AC的值是()A.B.C.D.13.(2004•杭州)如图,在Rt△ABC中,AF是斜边上的高线,且BD=DC=FC=1,则AC的长为()A.B.C.D.14.(2010•鄂州)如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF交直线CD于点G,AC=2,则AG•AF是()A.10 B.12 C.8D.1615.(2010•聊城)如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC 的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定16.(2010•鸡西)在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有()①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE=DE.A.2个B.3个C.4个D.5个17.(2002•杭州)1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米,此时,若某电视塔的影长为100米,则此电视塔的高度应是()A.80米B.85米C.120米D.125米18.(2000•重庆)如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB的延长线于E,则下列结论正确的是()A.△AED∽△ACB B.△AEB∽△ACD C.△BAE∽△ACE D.△AEC∽△DAC二、填空题(共10小题)(除非特别说明,请填准确值)19.(2004•海淀区)如图所示,在圆O中,弧AB=弧AC=弧CD,AB=3,AE•ED=5,则EC 的长为_________.20.(2003•上海)在△ABC中,点D、E分别在边AB、AC上,CD平分∠ACB,DE∥BC.如果AC=10,AE=4,那么BC=_________.21.(2010•江津区)已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ 交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是_________.22.(2004•襄阳)如图,梯形ABCD中,AD∥BC,AC、BD相交于点O,且AD=1,BC=3,则S△AOD:S△AOB=_________.23.(2005•重庆)如图,四边形ABCD是⊙O的内接正方形,P是弧AB的中点,PD与AB交于E点,则=_________.24.(2001•江西)如图,在△ABC中,AB>AC,过AC上一点D作直线DE,交AB于E,使△ADE和△ABC相似,这样的直线可作_________条.25.(2000•河南)如图,在△ABC中,点D在线段BC上,∠BAC=∠ADC,AC=8,BC=16,那么CD=_________.26.(2002•济南)在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°到Rt△DEF,则旋转前后两个直角三角形重叠部分的面积为_________cm2.27.(2006•绵阳)如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为_________.28.(2006•河南)如图,要拼出和图中的菱形相似的较长对角线为88cm的大菱形(如图)需要图1中的菱形的个数为_________.相似三角形综合检测题参考答案与试题解析一、选择题(共20小题)1.(2011•深圳)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:l B.:l C.5:3 D.不确定考点:相似三角形的判定与性质;等边三角形的性质。

中考数学 相似三角形题型训练(含答案)

中考数学 相似三角形题型训练(含答案)

2020中考数学 相似三角形题型训练(含答案)一、选择题1.如图,在方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( )A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形4.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。

已知这本书的长为20cm ,则它的宽约为( )A .12.36cm B.13.6cm C.32.36cm D.7.64cm5.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O 、准星A 、目标B 在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA=0.2米,OB=40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的55DBCA NM O长度BB ′为 ( )A .3米B .0.3米C .0.03米D .0.2米6.如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( )A .12mB .10mC .8mD .7m7.在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( )A .8,3B .8,6C .4,3D .4,6 二、填空题1.在平面直角坐标系中,顶点的坐标为,若以原点O 为位似中心,画的位似图形,使与的相似比等于,则点的坐标为 .2.如图,中,直线交于点交于点交于点若则.3.如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三ABC △DEF △22AB DE AC DF A D ==∠=∠,,ABC △DEF △ABC △A (23),ABC △A B C '''△ABC △A B C '''△12A 'Rt ABC △90ACB ∠=°,EF BD ∥,AB E ,AC G ,AD F ,13AEG EBCG S S =△四边形,CFAD=AE F D G C B第2题角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 .4.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .5.如图,两处被池塘隔开,为了测量两处的距离,在外选一适当的点,连接,并分别取线段的中点,测得=20m ,则=__________m .三、解答题1.如图,在ABC 中,已知DE ∥BC ,AD =4,DB =8,DE =3, (1)求的值,(2)求BC 的长2.如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.AB 、A B 、ABC AC BC 、AC BC 、E F 、EF ABD ADABC第5题图E(第4题图)A B ′FBA BDE3.如图1,在中,,于点,点是边上一点,连接交于,交边于点.(1)求证:; (2)当为边中点,时,如图2,求的值; (3)当为边中点,时,请直接写出的值.4.如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,且DM 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG ,如果α=45°,AB =AF =3,求FG 的长.Rt ABC △90BAC ∠=°AD BC ⊥D O AC BO AD F OE OB ⊥BC E ABF COE △∽△O AC 2AC AB =OFOE O AC AC n AB =OFOEBBAA COE D DEO F图1图2F ABMFGDEC第4题图5.如图,⊙中,弦相交于的中点,连接并延长至点,使,连接BC 、.(1)求证:; (2)当时,求的值6.如图,梯形ABCD 中,,点在上,连与的延长线交于点G . (1)求证:;(2)当点F 是BC的中点时,过F 作交于点,若,求的长.O AB CD 、AB E AD F DF AD =BF CBE AFB △∽△58BE FB =CBADAB CD ∥F BC DF AB CDF BGF △∽△EF CD ∥AD E 6cm 4cm AB EF ==,CD 第5题图FB DC F E ABG6题【参考答案】 选择题 1. D 2. B 3. C 4. A5. B6. A7. A 填空题 1. (4,6) 2.3. 1444.或2; 5. 40 解答题1. 解:(1)∵∴ ∴(2)∵,所以∴∵∴1271248AD DB ==,4812AB AD DB =+=+=41123AD AB ==DE BC ∥ADE ABC △∽△DE ADBC AB=3DE =313BC =∴2. △ABE 与△ADC 相似.理由如下: 在△ABE 与△ADC 中∵AE 是⊙O 的直径, ∴∠ABE =90o , ∵AD 是△ABC 的边BC 上的高, ∴∠ADC =90o , ∴∠ABE =∠ADC . 又∵同弧所对的圆周角相等, ∴∠BEA =∠DCA . ∴△ABE ~△ADC .3. 解:(1),.. , ,. ;(2)解法一:作,交的延长线于.,是边的中点,.由(1)有,,.,,又,.,. ,,,,. 9BC =AD BC ⊥90DAC C ∴∠+∠=°90BAC BAF C ∠=∴∠=∠ °,90OE OB BOA COE ∴∠+∠= ⊥,°90BOA ABF ∠+∠= °ABF COE ∴∠=∠ABF COE ∴△∽△OG AC ⊥AD G 2AC AB = O AC AB OC OA ∴==ABF COE △∽△ABF COE ∴△≌△BF OE ∴=90BAD DAC ∠+∠= °90DAB ABD DAC ABD ∠+∠=∴∠=∠°,90BAC AOG ∠=∠=°AB OA =ABC OAG ∴△≌△2OG AC AB ∴==OG OA ⊥AB OG ∴∥ABF GOF ∴△∽△OF OG BF AB ∴=2OF OF OGOE BF AB===BADE OF G解法二:于,.. 设,则,. ,. 由(1)知,设,,. 在中,..(3). 4. (1)证:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM (写出两对即可)以下证明△AMF ∽△BGM .∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B ∴△AMF ∽△BGM .(2)解:当α=45°时,可得AC ⊥BC 且AC =BC∵M 为AB 的中点,∴AM =BM =又∵AMF ∽△BGM ,∴902BAC AC AB AD BC ∠== °,,⊥D Rt Rt BAD BCA ∴△∽△2AD ACBD AB ∴==1AB =2AC BC BO ===,12AD BD AD ∴===90BDF BOE BDF BOE ∠=∠=∴ °,△∽△BD BO DF OE∴=BF OE =OE BF x ===x ∴=DFB △2211510x x =+x ∴=OF OB BF ∴=-==2OF OE ∴==OFn OE=AF BMAM BG=BADE OF∴ 又,∴, ∴5. (1)证明:是的中位线,又(2)解:由(1)知,又. 6. (1)证明:∵梯形,, ∴, ∴. (2) 由(1), 又是的中点, ∴, ∴ 又∵,,∴,得.83AM BM BG AF === 454AC BC ===84433CG =-=431CF =-=53FG ===,,AE EB AD DF == ED ∴ABF △ED ∴,BF ∥,CEB ABF ∴∠=∠,C A ∠=∠,CBE AFB ∴△∽△CBE AFB △∽△,5.8CB BE AF FB ∴==2,AF AD =54CB AD ∴=ABCD AB CD ∥CDF FGB DCF GBF ∠=∠∠=∠,CDF BGF △∽△CDF BGF △∽△F BC BF FC =CDF BGF △≌△DF FG CD BG ==,EF CD ∥AB CD ∥EF AG ∥2EF BG AB BG ==+D C F E ABG6题图∴, ∴.22462BG EF AB =-=⨯-=2cm CD BG ==。

初三数学相似三角形典型例题 含答案

初三数学相似三角形典型例题 含答案

初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。

2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。

3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。

4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。

本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。

相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。

(二)重要知识点介绍:1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。

把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。

2. 比例性质:3. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。

②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方【典型例题】例1. (1)在比例尺是1:8000000的《中国行政区》地图上,量得A 、B 两城市的距离是7.5厘米,那么A 、B 两城市的实际距离是__________千米。

初三数学相似三角形典型例题(含答案)

初三数学相似三角形典型例题(含答案)

2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。

2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。

3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。

4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。

本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。

相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。

(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 abc (a : b c :d )中, a 、 d 叫外项, db 、c 叫内项, a 、c 叫前项, b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、 d 的比例中项。

把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。

2. 比例性质:①基本性质:a cb d②合比性质:acb dad bca b c d b d③等比性质:a c ⋯bdm(b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ n b3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。

AB 则BCDE ,ABEF ACDE , BC DF ACEF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

初三数学相似三角形试题答案及解析

初三数学相似三角形试题答案及解析

初三数学相似三角形试题答案及解析1.如图,铁道口的栏杆短臂OA长1m,长臂OB长8m,当短臂外端A下降0.5m时,长臂外端B升高()A.2mB.4mC.4.5mD.8m【答案】B【解析】设长臂外端B升高xm,根据三角形相似得,∴x=4,故选B.2.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案,把镜子放在离树(AB)8.7m的点E 处,然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE =2.7m,观测者目高CD=1.6m,则树高AB约是________.(精确到0.1m)【答案】5.2米【解析】由题意知∠CED=∠AEB,∠CDE=∠ABE=90°,∴△CED∽△AEB.∴,即,∴AB≈5.2,即树高约是5.2米.3.课外活动小组测量学校旗杆的高度.如图,在地面上C处放一小镜子,当镜子离旗杆AB底端6米时,小明站在离镜子3米的E处,恰好能看到镜子中旗杆的顶端,测得小明眼睛D离地面1.5米,则旗杆AB的高度是________米.【答案】3【解析】由题意知∠ACB=∠DCE,∠B=∠CED=90°,∴△ABC∽△DEC,∴,即,解得AB=3,即旗杆的高度是3米.4.如图,王华在晚上由路灯A走向路灯B,当他走到点P时,发现身后的影子的顶部刚好接触到路灯A的底部;当他向前走12m到达Q时,发现身前他的影子的顶部刚好接触到路灯B的底部.已知王华的身高为1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离AB;(2)当王华走到路灯B时,他在路灯A照射下的影长为多少?【答案】(1)18m (2)3.6m【解析】解析(1)设AP=QB=xm,由题意知△APM∽△ABD,∴,即.解得x=3.∴两个路灯之间的距离为3+12+3=18(m).(2)设当王华走到路灯B时,他在路灯A照射下的影长为ym,由相似关系可得:,解得y=3.6.即当王华走到路灯B时,他在路灯A照射下的影长为3.6m.5.两相似三角形对应高的比为3︰4,则对应中线的比为()A.3︰4B.9︰16C.D.4︰3【答案】A【解析】相似三角形对应线段的比等于相似比.6.两个相似三角形的相似比是1︰2,其中较小的三角形的周长为5cm,则较大的三角形的周长为()A.3cmB.6cmC.9cmD.12cm【答案】D【解析】设较大的三角形的周长为xcm,根据题意可得6︰x=1︰2,解得x=12,故选D.7.如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=4,BD=2,则BC=________.【答案】8【解析】∵AD⊥BC,∴∠ADC=∠ADB=90°.∵∠BAC=90°,∠B=∠B,∴△ABD∽△CBA,∴,即,解得BC=8.8.(2014湖南长沙)如图,在△ABC中,DE∥BC,,△ADE的面积是8,则△ABC面积为________.【答案】18【解析】∵DE∥BC,∴△ADE∽△ABC.∵,∴.∵△ADE的面积是8,∴△ABC的面积为18.9.已知△ABC和△DEF相似,且△ABC的三边长分别为3、4、5,如果△DEF的周长为6,那么下列选项不可能是△DEF一边长的是()A.1.5B.2C.2.5D.3【答案】D【解析】∵△ABC的三边长分别为3、4、5,∴△ABC的周长为12,∴两三角形的相似比为2︰1.选项A:1.5×2=3,与△ABC一边长相符;选项B:2×2=4,与△ABC一边长相符;选项C:2.5×2=5,与△ABC一边长相符;选项D:3×2=6,无对应边长.故选D.10.若△ABC与△A′B′C′相似,一组对应边的长为AB=6cm,A′B′=8cm,那么△ABC与△A′B′C′的相似比为________.【答案】【解析】相似三角形的对应边的比叫做相似比,即相似比为.11.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.5【答案】B【解析】∵a∥b∥c,∴,即.∴.∴BF=BD+DF=3+4.5=7.5.12.如图,E为平行四边形ABCD的边BC延长线上一点,连接AE,交边CD于点F.在不添加辅助线的情况下,请写出图中一对相似三角形:________.【答案】△AFD∽△EFC(或△EFC∽△EAB或△EAB∽△AFD)【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC.∴△AFD∽△EFC∽△EAB.13.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5B.8C.10.5D.14【答案】B【解析】∵DE∥BC,∴.∵AE=6,∴,∴AC=14.∴EC=8.故选B.14.如图,点P是△ABC的边AC上一点,连接BP,以下条件中,不能判定△ABP∽△ACB的是()A.B.C.∠ABP=∠CD.∠APB=∠ABC【答案】B【解析】△ABP和△ACB有公共角∠A,故添加,由“两边成比例且夹角相等的两个三角形相似”可得△ABP∽△ACB;添加∠ABP=∠C或∠APB=∠ABC,由“两角分别相等的两个三角形相似”可得△ABP∽△ACB;只有添加不能得出△ABP∽△ACB.故选B.15.如图,在△ABC中,D是边AC上一点,连接BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD·AC;③AD·BC=AB·BD;④AB·BC=AC·BD.其中单独能够判定△ABD∽△ACB的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】△ABD与△ACB中,∠A是公共角,①∠ABD=∠ACB,由“两角分别相等的两个三角形相似”可证△ABD∽△ACB;②AB2=AD·AC,由“两边成比例且夹角相等的两个三角形相似”可证△ABD∽△ACB;③如图,作DF⊥AB于F,BE⊥AC于E,可证Rt△ADF∽Rt△ABE,得出,再由AD·BC=AB·BD,可得,故△BDF∽△CBE,得∠ABD=∠C,即可得出△ABD∽△ACB:④AB·BC=AC·BD,无法判定△ABD∽△ACB.故选C.16.(2014贵州贵阳)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P4【答案】C【解析】由题图可知,∠E=∠A=90°,要使△ABC∽△EPD,则,所以EP=2AB=6,所以点P所在的格点为P,故选C.317.(2014河北)在研究相似问题时,甲、乙同学的观点如下:对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【答案】A【解析】由题意知新三角形与原三角形的对应角相等,对应边的比也相等,所以两个三角形相似,甲的观点正确;新矩形与原矩形的对应角相等,但对应边的比并不相等,所以新矩形与原矩形不相似,乙的观点也正确.故选A.18.(2014湖南邵阳)如图,在□ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形________.【答案】答案不唯一,如:△DCF∽△EBF【解析】在□ABCD中,由DC∥AB,得△DCF∽△EBF,由AD∥BC,得△EBF∽△EAD,∴△DCF∽△EAD.∵BP∥DF,∴△EAD∽△BAP,∴△BAP∽△EBF∽△DCF.综上,图中相似的三角形有△DCF∽△EBF,△EBF∽△EAD,△DCF∽△EAD,△EAD∽△BAP,△BAP∽△EBF,△BAP∽△DCF,共6对,写出其中任意一对即可.19.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长为________时,△ADP和△ABC相似.【答案】4或9【解析】当△ADP∽△ACB时,需有,∴,解得AP=9.当△ADP∽△ABC时,需有,∴,解得AP=4.∴当AP的长为4或9时,△ADP和△ABC相似.20.如图,点A,B的坐标分别是(0,8),(6,0),过边OA上的点P(0,4)作直线PQ与△OAB的另一边相交于点Q,当点Q的坐标为________时,形成的新三角形与△OAB相似.【答案】(3,4)或(3,0)或(1.92,5.44)或(,0)【解析】由已知得OA=8,OB=6,OP=4,由勾股定理可得AB=10.①当PQ∥x轴时,△APQ∽△AOB,此时Q是AB的中点,可得Q(3,4).②当PQ∥AB时,△OPQ∽△OAB,此时点Q是OB的中点,可得Q(3,0).③当PQ⊥AB于Q时,由,可得△APQ∽△ABO,则,解得AQ=3.2.此时,作QC⊥OA于C,可得△AQC∽△ABO,,即,解得AC=2.56,QC=1.92,∴OC=8-2.56=5.44,∴点Q(1.92,5.44).④当时,△OPQ∽△OBA,则,解得,∴Q(,0).故点Q的坐标为(3,4)或(3,0)或(1.92,5.44)或(,0).。

相似三角形测试题及答案

相似三角形测试题及答案

相似三角形测试题及答案### 相似三角形测试题及答案#### 测试题一:基础概念题题目:下列哪组三角形是相似的?A. 等腰三角形和直角三角形B. 两个等腰直角三角形C. 两个等边三角形D. 两个不同形状的三角形答案:B、C解析:相似三角形的定义是两组对应角相等,且两组对应边的比相等的两个三角形。

选项B中的两个等腰直角三角形,它们的两个锐角相等,且两组对应边的比相等,因此是相似的。

选项C中的两个等边三角形,它们的三个角都相等,并且三组对应边的比也相等,因此也是相似的。

#### 测试题二:计算题题目:已知三角形ABC与三角形DEF相似,且AB:DE = 3:2,求AC:EF 的比值。

答案:AC:EF = 3:2解析:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,它们的对应边的比值是相等的。

因此,AC与EF作为对应边,它们的比值也应该是3:2。

#### 测试题三:应用题题目:在平面直角坐标系中,三角形PQR的顶点坐标分别为P(1,2),Q(4,6),R(1,6)。

点S(2,4)是否在以PQ为斜边的相似三角形PQS的内部?答案:是的,点S(2,4)在以PQ为斜边的相似三角形PQS的内部。

解析:首先计算PQ的长度,使用距离公式得到PQ = √[(4-1)² + (6-2)²] = √13。

然后计算PS和QS的长度,PS = √[(2-1)² + (4-2)²] = √2,QS = √[(2-4)² + (4-6)²] = √13。

由于PS < PQ < QS,根据三角形的不等式定理,点S在以PQ为斜边的三角形PQS 的内部。

#### 测试题四:证明题题目:若三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,请证明∠C = ∠F。

答案:根据相似三角形的性质,如果两个三角形相似,那么它们的对应角相等。

已知∠A = ∠D,∠B = ∠E,根据三角形内角和定理,三角形ABC的内角和为180°,即∠A + ∠B + ∠C = 180°。

初三数学相似三角形典型例题(含答案)

初三数学相似三角形典型例题(含答案)

初三数学相似三角形典型例题(含答案)本节复的目标是理解相似三角形的概念和性质,并能应用其定理解决实际问题。

其中包括线段的比、成比例线段的概念,黄金分割,平行线分线段成比例定理等重要知识点。

相似三角形是平面几何的重要内容之一,常与四边形、圆的知识相结合构成高分值的综合题。

在中考试题中,相似三角形题型常以填空、选择、简答或综合出现,分值一般在10%左右。

相似三角形题目有利于培养学生的综合素质,形成创新与探索型试题。

重要知识点包括比例线段的有关概念、黄金分割、比例性质等。

比例线段的比例式中,a、d叫外项,b、c叫内项,a、c叫前项,b、d叫后项,d叫第四比例项。

黄金分割是把线段AB分成两条线段AC和BC,使AC=AB·BC,C叫做线段AB的黄金分割点。

比例性质包括基本性质、合比性质和等比性质。

平行线分线段成比例定理是相似三角形中的重要定理。

该定理指出,三条平行线截两条直线,所得的对应线段成比例。

同时,平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段也成比例。

如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

相似三角形的判定有五种情况。

其中,两角对应相等、两边对应成比例且夹角相等、三边对应成比例、直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例、平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

AEF=45°同理,∠CEA=45°XXX和△XXX都是等腰直角三角形,且∠AEF=∠CEAAEF∽△CEA2)∵四边形ABEG、GEFH、HFCD都是正方形AFB=∠EFG=90°同理,∠ACB=∠DCH=90°AFB+∠ACB=180°又因为四边形ABCD是平行四边形AFB+∠ACB=180°-∠BAC又因为△ABC是等边三角形BAC=60°AFB+∠ACB=180°-60°=120°AFB+∠ACB=45°+75°=120°AFB+∠ACB=45°+∠BAC=120°AFB+∠ACB=45°已知:在△ABC中,D为BC边上的一点,∠CAD=∠B,AD=6,AB=8,BD=7,求DC的长。

初三相似三角形练习题含答案

初三相似三角形练习题含答案

初三相似三角形练习题含答案1. 某个角的度数是60°。

它的补角和它的和是多少?解答:补角是90°减去该角的度数,即90°- 60° = 30°。

和角是该角的度数加上补角的度数,即60° + 30° = 90°。

2. 给出三角形ABC,其中∠ABC = 90°, AB = 6cm,AC = 8cm。

根据比例的性质,我们可以得出DE = ? (ADE与ABC相似,DE = x cm)解答:由三角形相似的性质可知,AB/DE = AC/AD。

代入已知条件可得6/DE = 8/AD。

交叉相乘得到8DE = 6AD,进一步可以得到4DE = 3AD。

根据题意可知AD = AE + DE,即8 = AE + x。

将此代入前面的等式中,可以得到4x = 3(8-x)。

解这个方程可以得到x = 6。

所以DE = 6cm。

3. 已知两个三角形ABC和DEF相似。

已知BC = 12cm,EF = 8cm,且BC/EF = 3/2。

求AB的长度。

解答:根据相似三角形的性质,AB/DE = BC/EF。

代入已知条件得到AB/8 = 12/8。

交叉相乘可得到8AB = 12 × 8,即AB = 12 × 8 ÷ 8 =12cm。

所以AB的长度为12cm。

4. 两个三角形相似,已知小三角形的面积为25cm²,大三角形的面积是多少?解答:根据相似三角形的性质,如果两个三角形相似,它们对应边的比例的平方等于对应高的比例的平方。

假设小三角形的面积为S,大三角形的面积为T,对应边的比例为k,对应高的比例为h,那么我们可以得到:T/S = (k² × h²)/(k² × h²) = (k² × h²)/(1) = k² × h²根据题意,已知小三角形的面积为25cm²,所以S = 25。

中考数学专题训练:相似三角形(附参考答案)

中考数学专题训练:相似三角形(附参考答案)

中考数学专题训练:相似三角形(附参考答案)1.若a3=b2,则a+bb的值为( )A.32B.53C.52D.232.如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为( )A.3 B.4C.5 D.63.如图,AD∥BE∥FC,直线l1,l2分别与三条平行线交于点A,B,C和点D,E,F.若AB=3,BC=5,DF=12,则EF的长为( )A.4.5 B.6C.7.5 D.84.如图,小雅同学在利用标杆BE测量建筑物的高度时,测得标杆BE高1.2 m,又知AB∶BC=1∶8,则建筑物CD的高是( )A.9.6 m B.10.8 mC.12 m D.14 m5.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2).现以原点O为位似中心,在第一象限内作与△ABC的相似比为2的位似图形△A′B′C′,则顶点C′的坐标是( )A.(2,4) B.(4,2)C.(6,4) D.(5,4)6.如图(单位:mm),小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5 m时,标准视力表中最大的“E”字高度为72.7 mm,当测试距离为3 m时,最大的“E”字高度为( )A.121.17 mm B.43.62 mmC.29.08 mm D.4.36 mm7.如图,AC是□ABCD的对角线,点E在CD的延长线上,连接BE分别交AC,AD 于点F,G,则下列式子一定正确的是( )A.AFCF =AGDGB.ABCE=CFAFC.BFFG =EFBFD.ADDG=ABDE8.如图,在△ABC中,D,E分别为边AB,AC上的点,试添加一个条件:________________________,使得△ADE与△ABC相似.(任意写出一个满足的条件即可)9.如图,已知在梯形ABCD中,AD∥BC,S△ABDS△BCD =12,则S△BOCS△BCD=______.10.如图,在矩形ABCD中,若AB=3,AC=5,AFFC =14,则AE的长为_____.11.如图,为了测量山坡的护坡石坝高,把一根长为4.5 m 的竹竿AC斜靠在石坝旁,量出竿上AD长为1 m时,它离地面的高度DE为0.6 m,则坝高CF为________m.12.已知在平面直12角坐标系中,△AOB的顶点分别为A(2,1),B(2,0),O(0,0).若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为__________________________.13.如图,在△ABC中,点D,E分别是AB,AC的中点.若S△ADE=2,则S△ABC=_____.14.如图,在平面直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是____________.15.如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC∶S△DEC=4∶9,BC=6,求EC的长.16.如图,在△ABC中,AB=4,BC=5,点D,E分别在BC,AC上,CD=2BD,CE =2AE,BE交AD于点F,则△AFE面积的最大值是______.17.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布前形成倒立的实像CD(点A,B的对应点分别是C,D).若物体AB的高为6 cm,小孔O到物体和实像的水平距离BE,CE分别为8 cm,6 cm,则实像CD的高度为________cm.18.如图,在正方形ABCD中,点E是边CD上一点,连接BE,以BE为对角线作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连接AF,有以下五个结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF⊥BD;④2BG2=BH·BD;⑤若CE∶DE=1∶3,则BH∶DH=17∶16.你认为其中正确的是____________.(填写序号)19.已知,如图1,若AD是△ABC中∠BAC的内角平分线,通过证明可得ABAC =BDCD,同理,若AE是△ABC中∠BAC的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在△ABC中,BD=2,CD=3,AD是△ABC的内角平分线,则△ABC的BC边上的中线长l的取值范围是_____________.20.如图,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB 上,且CF=BE,AE2=AQ·AB.求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ.21.在等腰三角形ABC中,AB=AC,点D是边BC上一点(不与点B,C重合),连接AD.(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连接AE,DE,则∠BDE=________.(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连接BE.①在图2中补全图形;②探究CD与BE的数量关系,并证明.(3)如图3,若ABBC =ADDE=k,且∠ADE=∠C,试探究BE,BD,AC之间满足的数量关系,并证明.参考答案1.C 2.B 3.C 4.B 5.C 6.B 7.C8.ADAB =AEAC(答案不唯一) 9.2310.1 11.2.712.(4,2)或(-4,-2)13.8 14.(4,2) 15.(1)证明略(2)EC=916.43 17.4.5 18.①②③④ 19.12<l<25220.(1)证明略(2)证明略21.(1)30°(2)①图略②CD与BE的数量关系为CD=BE,证明略(3)AC=k(BD+BE),证明略。

中考复习:相似三角形专练(附答案)

中考复习:相似三角形专练(附答案)

中考复习:相似三角形专练(附答案)中考复习:相似三角形专练一、单选题1.若且周长之比1:3,则与的面积比是()A.1:3 B.C.1:9 D.3:1 2.如图,已知是三角形中的边上的一点,,的平分线交边于,交于,那么下列结论中错误的是()A.三角形相似于三角形B.三角形相似于三角形C.三角形相似于三角形D.三角形相似于三角形3.如图中,,D为上任意点,且,则值为()A.B.C.3 D.4.如图,在中,,若,则长为()A.6 B.8 C.9 D.12 5.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,DC、AE交于点F,则S△DEF:S△ACF=()A.B.C.D.6.如图,点为的平分线上一点,的两边分别与射线交于两点,绕点旋转时始终满足,若,则的度数为()A.153° B.144° C.163° D.162° 7.如图,在中,、为边的三等分点,,点为与的交点.若,则为()A.1 B.2 C.D.3 8.如图,知形ABCD中,AB=6,BC=4,对角线AC、BD相交于点O,CE平分OB,且与AB交于点E.若F为CE中点,则△BEF的周长是()A.+2 B.2+2 C.2+2 D.6 9.如图,中,,分别是,边上的高,且,,则的值为()A.B.2 C.D.10.已知在中,是边上的一点,,过点作于点,将沿着过点的直线折叠,使点落在边的点处(不与点重合),折痕交边于点,则的长为()A.或B.C.D.或11.△ABC的边长AB=2,面积为1,直线PQBC,分别交AB、AC于P、Q,设AP=t,△APQ面积为S,则S关于t的函数图象大致是()A.B.C.D.12.如图,已知双曲线和,直线与双曲线交于点,将直线向下平移与双曲线交于点,与轴交于点,与双曲线交于点,,,则的值为()A.-4 B.-6 C.-8 D.-10 13.如图,在Rt△OAB中,∠OBA =90°,OA在轴上,AC平分∠OAB,OD平分∠AOB,AC与OD相交于点E,且OC=,CE=,反比例函数的图象经过点E,则的值为()A.B.C.D.14.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连接AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣15.几千年来,在勾股定理的多种证明方法中,等面积法是典型的一种证法,清代数学家李锐运用这一方法借助三个正方形也证明了勾股定理.如图,四边形,四边形,四边形均为正方形,交于点交于点K,点在同条直线上,若,,记四边形的面积为,四边形的面积为,则的值为()A.B.C.D.16.如图,等腰中,于D,的平分线分别交于两点,M为的中点,延长交于点N,连接下列结论:①;②;③是等腰三角形;④,其中正确的是()A.①② B.①④ C.①③ D.②③ 17.如图,在等腰中,,.点和点分别是边和边上两点,连接.将沿折叠,得到,点恰好落在的中点处设与交于点,则()A.B.C.D.18.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF 相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH·PC;其中正确的有()A.①②③④ B.②③ C.①②④ D.①③ 二、填空题19.如图,已知DC为∠ACB的平分线,DE∥BC.若AD=8,BD=10,BC=15,求EC的长=_____.20.如图,在平行四边形中,,,的平分线交于E,交的延长线于F,于G,,则的长______,为的长为______.21.如图,在ABC 中,D、E分别是AC、AB上的点,=,若S四边形DEBC,则=_____.22.如图,在中,,,,D,E分别是边AC,BC上的两动点,将沿着直线DE翻折,点C的对应点为F,若点F落在AB边上,使为直角三角形,则BF的长度为______ .23.如图,在矩形中,,,平分,点在线段上,,过点作交边于点,交边于点,则___.24.如图,在矩形OAA1B 中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形____1,连接OA2交A1B于点C;以OA2为边,作矩形__,__2,连接OA3交A2B1于点C1;以OA3为边,作矩形__,__3,连接OA4交A3B2于点C2;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形一、选择题1.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.2.在△ABC与△A′B′C′中,有下列条件:(1);(2);(3)∠A=∠A′;(4)∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有多少组()A.1 B.2 C.3 D.43.如图,在△ABC中,若DE∥BC,,DE=4cm,则BC的长为()A.8cm B.12cm C.11cm D.10cm二、填空题5.相似三角形的判定方法(1)若DE∥BC(A型(图1)和X型(图2))则.(2)射影定理:若CD为Rt△ABC斜边上的高(双直角图形)图3则Rt△ABC∽Rt△ACD∽Rt△CBD 且AC2= ,CD2= ,BC2= .10.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为,周长之比为,面积之比为.11.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为.12.如图,若△ABC∽△DEF,则∠D的度数为.13.在Rt△ABC中,∠C为直角,CD⊥AB于点D.BC=3,AB=5,写出其中的一对相似三角形是和;并写出它的面积比.三、解答题14.在△ABC(图1)和△DEF(图2)中,已知∠A=∠D,AB=4,AC=3,DE=1,当DF等于多少时,这两个三角形相似.15.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.16.一般的室外放映的电影胶片上每一个图片的规格为3.5cm×3.5cm,放映的银幕规格为2m×2m,若影机的光源距胶片20cm时,问银幕应在离镜头多远的地方,放映的图象刚好布满整个银幕?17.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.2014年中考数学课时热身训练30:相似三角形参考答案与试题解析一、选择题1.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.【点评】此题主要考查了相似三角形的性质与判定,关键是掌握判断三角形相似的方法和相似三角形的性质.2.在△ABC与△A′B′C′中,有下列条件:(1);(2);(3)∠A=∠A′;(4)∠C=∠C′.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有多少组()A.1 B.2 C.3 D.4【考点】相似三角形的判定.【分析】根据相似三角形的判定定理:三组对应边的比相等的两个三角形相似、两组对应边的比相等且夹角对应相等的两个三角形相似与有两组角对应相等的两个三角形相似,即可得能判断△ABC ∽△A′B′C′的有:(1)(2),(2)(4),(3)(4),继而求得答案.【解答】解:能判断△ABC∽△A′B′C′的有:(1)(2),(2)(4),(3)(4),∴能判断△ABC∽△A′B′C′的共有3组.故选C.【点评】此题考查了相似三角形的判定.此题比较简单,注意两组对应边的比相等且夹角对应相等的两个三角形相似定理中的夹角.3.如图,在△ABC中,若DE∥BC,,DE=4cm,则BC的长为()A.8cm B.12cm C.11cm D.10cm【考点】相似三角形的判定与性质.【分析】根据已知DE∥BC,可得△ADE∽△ABC,利用,可求AD:AB=1:3=DE:BC,再求BC 的长.【解答】解:若DE∥BC,,∴△ADE∽△ABC,∵,则AD:AB=1:3=DE:BC,DE=4cm,所以BC=12.故选:B.【点评】本题考查相似三角形的性质,本题的关键是理解已知条件的比不是相似比,由此从给出的已知条件中求出线段的长.二、填空题5.相似三角形的判定方法(1)若DE∥BC(A型(图1)和X型(图2))则△ADE∽△ABC .(2)射影定理:若CD为Rt△ABC斜边上的高(双直角图形)图3则Rt△ABC∽Rt△ACD∽Rt△CBD 且AC2= AB•AD,CD2= AD•BD,BC2= AB•BD.【考点】相似三角形的判定与性质;射影定理.【分析】(1)根据相似三角形的判定定理填空即可;(2)由Rt△ABC∽Rt△ACD∽Rt△CBD,利用相似三角形对应边成比例即可求得结论.【解答】解:(1)∵DE∥BC,∴△ADE∽△ABC,故答案为:△ADE∽△ABC;(2)∵Rt△ABC∽Rt△ACD,∴AB:AC=AC:AD,∴AC2=AB•AD,同理:CD2=AD•BD,BC2=AB•BD,故答案为:AB•AD;AD•BD;AB•BD.【点评】此题主要考查相似三角形的判定与性质,比较简单,都是一些基础知识,要求学生熟练掌握.10.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为3:2 ,周长之比为3:2 ,面积之比为9:4 .【考点】相似三角形的性质.【分析】根据相似三角形对应中线的比等于相似比,对应高的比、周长的比等于相似比,面积的比等于相似比的平方解答.【解答】解:∵两个相似三角形对应边上中线的比等于3:2,∴它们的相似比为3:2,∴对应边上的高的比为3:2,周长之比为3:2,面积之比为9:4.故答案为3:2;3:2;9:4.【点评】本题考查了相似三角形的性质,熟记性质是解题的关键,要注意先求出两三角形的相似比.11.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为20,25 .【考点】相似三角形的性质.【分析】根据比例设两三角形的周长分别为4k、5k,然后列式求出k值,再解答即可.【解答】解:∵两个相似三角形的周长的比为4:5,∴设两三角形的周长分别为4k、5k,由题意得,4k+5k=45,解得k=5,∴4k=4×5=20,5k=5×5=25,即两个三角形的周长分别为20,25.故答案为:20,25.【点评】本题考查了相似三角形的性质,利用“设k法”求解更加简便.12.如图,若△ABC∽△DEF,则∠D的度数为30°.【考点】相似三角形的性质.【分析】相似三角形的对应角相等.【解答】解:∵△ABC∽△DEF,∴∠D=∠A=30°故应填30°.【点评】要掌握相似三角形的性质.13.在Rt△ABC中,∠C为直角,CD⊥AB于点D.BC=3,AB=5,写出其中的一对相似三角形是△BCD 和△CAD ;并写出它的面积比9:16 .【考点】相似三角形的判定与性质.【专题】开放型.【分析】因为直角三角形斜边上的高,把直角三角形分成的两个三角形与原三角形相似,根据相似三角形的面积比等于相似比的平方即可求解.【解答】解:∵∠C=90°,CD⊥AB∴△CDB∽△ADC∴BC:AC=3:4∴面积比为9:16.(答案不唯一,也可以填:①△CDB∽△ACB,面积比为9:25;②△ACD∽△ABC,面积比为16:25.)【点评】此题主要考查的是相似三角形的性质:相似三角形的面积比等于相似比的平方;找准相似三角形的对应边是解题的关键.三、解答题14.在△ABC(图1)和△DEF(图2)中,已知∠A=∠D,AB=4,AC=3,DE=1,当DF等于多少时,这两个三角形相似.【考点】相似三角形的判定.【分析】根据已知利用相似三角形的判定方法即可得到所缺的条件.【解答】解:∵∠A=∠D,∴当△ABC∽△DEF时,∴AB:DE=AC:DF,∵AB=4,AC=3,DE=1,∴DF=;当△ABC∽△DFE时,则:AB:DF=AC:DE,∴4:DF=3:1,∴DF=,∴当DF等于或时,这两个三角形相似.【点评】此题考查了相似三角形的判定的应用,注意:相似三角形的判定定理有:①如果两个三角形的三边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似,④平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.15.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.【考点】相似三角形的应用.【专题】应用题.【分析】设正方形的边长为x,表示出AI的长度,然后根据相似三角形对应高的比等于相似比列出比例式,然后进行计算即可得解.【解答】解:设正方形的边长为xmm,则AI=AD﹣x=80﹣x,∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴=,即=,解得x=48mm,所以,这个正方形零件的边长是48mm.【点评】本题主要考查了相似三角形的应用,主要利用了相似三角形对应高的比等于对应边的比,表示出AI的长度,然后列出比例式是解题的关键.16.一般的室外放映的电影胶片上每一个图片的规格为3.5cm×3.5cm,放映的银幕规格为2m×2m,若影机的光源距胶片20cm时,问银幕应在离镜头多远的地方,放映的图象刚好布满整个银幕?【考点】位似变换.【专题】计算题.【分析】由题可知此题是一道利用位似知识来解答的题,先根据胶片和银幕边之比,求出位似比,从而借助位似比来求问题的答案【解答】解:如图,O为位似中心,先计算位似比K=.设银幕距镜头xcm,则,解得:x=.答:银幕应在离镜头,放映的图象刚好布满整个银幕.【点评】先根据胶片和银幕边之比,求出位似比,从而借助位似比来求问题的答案.17.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.【考点】相似三角形的判定;矩形的性质.【专题】证明题.【分析】根据两角对应相等的两个三角形相似可解.【解答】证明:∵矩形ABCD中,AB∥CD,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D=90°.(5分)∴△ABF∽△EAD.(6分)【点评】考查相似三角形的判定定理,关键是找准对应的角.11。

相关文档
最新文档