(完整版)初三数学相似三角形典型例题(附含答案解析)
初三数学相似三角形典型例题(附含答案解析)
2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 ab c (a : bc :d )中, a 、 d 叫外项,db 、c 叫内项, a 、c 叫前项, b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、 d 的比例中项。
把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。
2. 比例性质:①基本性质: ac b d②合比性质:acb dad bca b c d bd③等比性质:a c⋯b dm (b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ nb3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。
AB 则BCDE , ABEF AC DE , BCDF AC EF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
初三数学相似三角形经典题(含答案)
相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。
初中数学经典相似三角形练习题(附参考答案)
经典练习题相似三角形(附答案) .解答题(共30小题)1.如图,在△A中Q DE// BC, EF // AB,求证:△ ADE EFC .2 .如图,梯形ABCD中,AB // CD, 点F在BC上,连 DF与AB的延长线交于点 G.(1 )求证:△CDFBGF;(2)当点F是BC的中点时,过 F作EF // CD交AD于点E,若AB=6cm , EF=4cm,求CD的长.3.如图,点 D , E在 BC 上,且 FD // AB, FE // AC.求证:△ ABC s\ FDE .4.如图,已知 E是矩形 ABCD的边CD上一点,BF丄AE于F,试说明:△ ABF s\ EAD .5.已知:如图①所示,在△和念BCD中,AB=AC , AD=AE,/ BAC= / DAE ,且点3, A , D在一条直线上,连接 BE, CD, M , N分别为BE, CD的中点.(1 )求证:①BE=CD :②厶 A是等腰三角形;(2 )在图①的基础上,将△绕点DE按顺时针方向旋转180。
,其他条件不变,得到图②所示的图形.请直接写出(1 )中的两个结论是否仍然成立;(3)在(2 )的条件下,请你在图②中延长ED交线段BC于点P.求证:△ PBDAMN.图①6.如图,E是?ABCD的边BA延长线上一点,连接 EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4 X3的正方形方格中,△和A B CDE的顶点都在边长为1的小正方形的顶点上.(1 )填空:/ ABC=(2)判断△ ABC^ DE是否相似,并证明你的结论.8.如图,已知矩形 ABCD的边长AB=3cm , BC=6cm .某一时刻,动点M从A点出发沿 AB方向以1cm/s(1)经过多少时间,△的面积等于矩形ABCD面积的十的速度向B点匀速运动;同时,动点 N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(2)是否存在时刻t,使以A,M,N为顶点的三角形与△相似D若存在,求t的值;若不存在,请说明理由.9 .如图,在梯形 ABCD中,若AB // DC, AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1 )列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.•4E10 .如图△ABC, D 为 AC 上一点,CD=2DA,/ BAC=45。
初三数学相似三角形典型例题 含答案
初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍:1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。
把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
2. 比例性质:3. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 5. 相似三角形的性质 ①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比 ⑤相似三角形面积的比等于相似比的平方 【典型例题】例1. (1)在比例尺是1:8000000的《中国行政区》地图上,量得A 、B 两城市的距离是7.5厘米,那么A 、B 两城市的实际距离是__________千米。
初中相似三角形经典习题(附答案)
一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
分析:根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.考点:相似三角形的判定;三角形中位线定理;梯形。
菁优网版权所有专题:几何综合题。
分析:(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.分析:由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,则这两个三角形相似.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。
初三数学相似三角形典例及练习题含答案
初三数学相似三角形典例及练习题含答案典例典例1已知三角形ABC中,∠B=90°,AC=6cm,BD垂直AC于D点,BD=3cm,求BC的长度。
解析:根据勾股定理可得:BC^2 = AB^2 + AC^2 = BD^2 + AD^2 + AC^2因为∆ABC与∆ABD相似,所以可以得到:\frac{AD}{AB}=\frac{AB}{AC}即:AD = \frac{AB^2}{AC}将公式代入原式中,得到:BC^2 = BD^2 + \frac{AB^4}{AC^2} + AC^2因为AC=6,BD=3,所以代入可得:BC^2 = 3^2 + \frac{AB^4}{6^2} + 6^2化简得:BC^2 = AB^4 \cdot \frac{1}{36} + 45AB^4 = 36(BC^2 - 45)因此,我们可以得到:AB = \sqrt[4]{36(BC^2 - 45)}典例2已知两个三角形ABC和DEF,且它们相似,已知AC=20cm,EF=12cm,AB=15cm,计算DE的长度。
解析:由于两个三角形相似,所以可以得到:\frac{AB}{DE}=\frac{AC}{EF}将已知条件带入即可得到:\frac{15}{DE}=\frac{20}{12}解得:DE = \frac{36}{4} = 9因此,DE的长度为9cm。
典例3已知三角形ABC和DEF相似,且AB=5cm,DE=2.5cm,BC=6cm,计算EF的长度。
解析:由于两个三角形相似,所以可以得到:\frac{AB}{DE}=\frac{BC}{EF}将已知条件带入即可得到:\frac{5}{2.5}=\frac{6}{EF}解得:EF = 12因此,EF的长度为12cm。
练习题练习题1已知三角形ABC中,∠B=90°,AB=3cm,AC=4cm,D、E、F分别是BC、AC、AB上的点,且∆DEF与∆ABC相似。
初三数学相似三角形典型例题 含答案
初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍:1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。
把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
2. 比例性质:3. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方【典型例题】例1. (1)在比例尺是1:8000000的《中国行政区》地图上,量得A 、B 两城市的距离是7.5厘米,那么A 、B 两城市的实际距离是__________千米。
九年数学经典相似三角形练习题(附参考答案)
(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.
27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.
解答:
证明:∵FD∥AB,FE∥AC,
∴∠B=∠FDE,∠C=∠FED,
∴△ABC∽△FDE.
点评:
本题很简单,考查的是相似三角形的判定定理:
(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;
初中数学经典相似三角形练习题(附参考答案)
一.解答题(共30小题)
1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.
2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.
(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点Байду номын сангаас,若AB=6cm,EF=4cm,求CD的长.
16.如图,∠ACB=∠ADC=90°,AC= ,AD=2.问当AB的长为多少时,这两个直角三角形相似.
17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.
18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?
初三数学相似三角形试题答案及解析
初三数学相似三角形试题答案及解析1.如图,铁道口的栏杆短臂OA长1m,长臂OB长8m,当短臂外端A下降0.5m时,长臂外端B升高()A.2mB.4mC.4.5mD.8m【答案】B【解析】设长臂外端B升高xm,根据三角形相似得,∴x=4,故选B.2.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案,把镜子放在离树(AB)8.7m的点E 处,然后观测者沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE =2.7m,观测者目高CD=1.6m,则树高AB约是________.(精确到0.1m)【答案】5.2米【解析】由题意知∠CED=∠AEB,∠CDE=∠ABE=90°,∴△CED∽△AEB.∴,即,∴AB≈5.2,即树高约是5.2米.3.课外活动小组测量学校旗杆的高度.如图,在地面上C处放一小镜子,当镜子离旗杆AB底端6米时,小明站在离镜子3米的E处,恰好能看到镜子中旗杆的顶端,测得小明眼睛D离地面1.5米,则旗杆AB的高度是________米.【答案】3【解析】由题意知∠ACB=∠DCE,∠B=∠CED=90°,∴△ABC∽△DEC,∴,即,解得AB=3,即旗杆的高度是3米.4.如图,王华在晚上由路灯A走向路灯B,当他走到点P时,发现身后的影子的顶部刚好接触到路灯A的底部;当他向前走12m到达Q时,发现身前他的影子的顶部刚好接触到路灯B的底部.已知王华的身高为1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离AB;(2)当王华走到路灯B时,他在路灯A照射下的影长为多少?【答案】(1)18m (2)3.6m【解析】解析(1)设AP=QB=xm,由题意知△APM∽△ABD,∴,即.解得x=3.∴两个路灯之间的距离为3+12+3=18(m).(2)设当王华走到路灯B时,他在路灯A照射下的影长为ym,由相似关系可得:,解得y=3.6.即当王华走到路灯B时,他在路灯A照射下的影长为3.6m.5.两相似三角形对应高的比为3︰4,则对应中线的比为()A.3︰4B.9︰16C.D.4︰3【答案】A【解析】相似三角形对应线段的比等于相似比.6.两个相似三角形的相似比是1︰2,其中较小的三角形的周长为5cm,则较大的三角形的周长为()A.3cmB.6cmC.9cmD.12cm【答案】D【解析】设较大的三角形的周长为xcm,根据题意可得6︰x=1︰2,解得x=12,故选D.7.如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=4,BD=2,则BC=________.【答案】8【解析】∵AD⊥BC,∴∠ADC=∠ADB=90°.∵∠BAC=90°,∠B=∠B,∴△ABD∽△CBA,∴,即,解得BC=8.8.(2014湖南长沙)如图,在△ABC中,DE∥BC,,△ADE的面积是8,则△ABC面积为________.【答案】18【解析】∵DE∥BC,∴△ADE∽△ABC.∵,∴.∵△ADE的面积是8,∴△ABC的面积为18.9.已知△ABC和△DEF相似,且△ABC的三边长分别为3、4、5,如果△DEF的周长为6,那么下列选项不可能是△DEF一边长的是()A.1.5B.2C.2.5D.3【答案】D【解析】∵△ABC的三边长分别为3、4、5,∴△ABC的周长为12,∴两三角形的相似比为2︰1.选项A:1.5×2=3,与△ABC一边长相符;选项B:2×2=4,与△ABC一边长相符;选项C:2.5×2=5,与△ABC一边长相符;选项D:3×2=6,无对应边长.故选D.10.若△ABC与△A′B′C′相似,一组对应边的长为AB=6cm,A′B′=8cm,那么△ABC与△A′B′C′的相似比为________.【答案】【解析】相似三角形的对应边的比叫做相似比,即相似比为.11.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.5【答案】B【解析】∵a∥b∥c,∴,即.∴.∴BF=BD+DF=3+4.5=7.5.12.如图,E为平行四边形ABCD的边BC延长线上一点,连接AE,交边CD于点F.在不添加辅助线的情况下,请写出图中一对相似三角形:________.【答案】△AFD∽△EFC(或△EFC∽△EAB或△EAB∽△AFD)【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC.∴△AFD∽△EFC∽△EAB.13.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5B.8C.10.5D.14【答案】B【解析】∵DE∥BC,∴.∵AE=6,∴,∴AC=14.∴EC=8.故选B.14.如图,点P是△ABC的边AC上一点,连接BP,以下条件中,不能判定△ABP∽△ACB的是()A.B.C.∠ABP=∠CD.∠APB=∠ABC【答案】B【解析】△ABP和△ACB有公共角∠A,故添加,由“两边成比例且夹角相等的两个三角形相似”可得△ABP∽△ACB;添加∠ABP=∠C或∠APB=∠ABC,由“两角分别相等的两个三角形相似”可得△ABP∽△ACB;只有添加不能得出△ABP∽△ACB.故选B.15.如图,在△ABC中,D是边AC上一点,连接BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD·AC;③AD·BC=AB·BD;④AB·BC=AC·BD.其中单独能够判定△ABD∽△ACB的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】△ABD与△ACB中,∠A是公共角,①∠ABD=∠ACB,由“两角分别相等的两个三角形相似”可证△ABD∽△ACB;②AB2=AD·AC,由“两边成比例且夹角相等的两个三角形相似”可证△ABD∽△ACB;③如图,作DF⊥AB于F,BE⊥AC于E,可证Rt△ADF∽Rt△ABE,得出,再由AD·BC=AB·BD,可得,故△BDF∽△CBE,得∠ABD=∠C,即可得出△ABD∽△ACB:④AB·BC=AC·BD,无法判定△ABD∽△ACB.故选C.16.(2014贵州贵阳)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P4【答案】C【解析】由题图可知,∠E=∠A=90°,要使△ABC∽△EPD,则,所以EP=2AB=6,所以点P所在的格点为P,故选C.317.(2014河北)在研究相似问题时,甲、乙同学的观点如下:对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【答案】A【解析】由题意知新三角形与原三角形的对应角相等,对应边的比也相等,所以两个三角形相似,甲的观点正确;新矩形与原矩形的对应角相等,但对应边的比并不相等,所以新矩形与原矩形不相似,乙的观点也正确.故选A.18.(2014湖南邵阳)如图,在□ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形________.【答案】答案不唯一,如:△DCF∽△EBF【解析】在□ABCD中,由DC∥AB,得△DCF∽△EBF,由AD∥BC,得△EBF∽△EAD,∴△DCF∽△EAD.∵BP∥DF,∴△EAD∽△BAP,∴△BAP∽△EBF∽△DCF.综上,图中相似的三角形有△DCF∽△EBF,△EBF∽△EAD,△DCF∽△EAD,△EAD∽△BAP,△BAP∽△EBF,△BAP∽△DCF,共6对,写出其中任意一对即可.19.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长为________时,△ADP和△ABC相似.【答案】4或9【解析】当△ADP∽△ACB时,需有,∴,解得AP=9.当△ADP∽△ABC时,需有,∴,解得AP=4.∴当AP的长为4或9时,△ADP和△ABC相似.20.如图,点A,B的坐标分别是(0,8),(6,0),过边OA上的点P(0,4)作直线PQ与△OAB的另一边相交于点Q,当点Q的坐标为________时,形成的新三角形与△OAB相似.【答案】(3,4)或(3,0)或(1.92,5.44)或(,0)【解析】由已知得OA=8,OB=6,OP=4,由勾股定理可得AB=10.①当PQ∥x轴时,△APQ∽△AOB,此时Q是AB的中点,可得Q(3,4).②当PQ∥AB时,△OPQ∽△OAB,此时点Q是OB的中点,可得Q(3,0).③当PQ⊥AB于Q时,由,可得△APQ∽△ABO,则,解得AQ=3.2.此时,作QC⊥OA于C,可得△AQC∽△ABO,,即,解得AC=2.56,QC=1.92,∴OC=8-2.56=5.44,∴点Q(1.92,5.44).④当时,△OPQ∽△OBA,则,解得,∴Q(,0).故点Q的坐标为(3,4)或(3,0)或(1.92,5.44)或(,0).。
初三数学相似三角形试题答案及解析
初三数学相似三角形试题答案及解析1.(2013广西柳州)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处竖立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米【答案】A【解析】如图,由太阳光近似于平行光线可得△BAE∽△ACD,∴,即,解得BE=10,即楼高10米.2.(2013山东济宁)如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为________cm.【答案】18【解析】如图,过A作AN⊥BC,交DE于M.∵DE∥BC,∴△ADE∽△ABC,AM⊥DE,∴.设屏幕上图形的高度是xcm,则,解得x=18.故答案为18.3.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.【答案】22.5【解析】设河的宽度为x米,由题意,得,∴x=22.5.4.如图,小明在打网球时,球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h为________米.【答案】【解析】由题意得题图中的两个三角形相似,所以,解得,即球拍击球的高度为米.5.课外活动小组测量学校旗杆的高度.如图,在地面上C处放一小镜子,当镜子离旗杆AB底端6米时,小明站在离镜子3米的E处,恰好能看到镜子中旗杆的顶端,测得小明眼睛D离地面1.5米,则旗杆AB的高度是________米.【答案】3【解析】由题意知∠ACB=∠DCE,∠B=∠CED=90°,∴△ABC∽△DEC,∴,即,解得AB=3,即旗杆的高度是3米.6.(2012山东烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′设B点的最大高度为h1点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1C.h2=h1D.【答案】C【解析】如图所示,过B点作BD⊥AD.∵OC⊥AD,BD⊥AD,∴OC∥BD.∴△AOC∽△ABD.∵O为AB的中点,∴h1=2OC.将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,同理,h2=2OC,∴h2=h1.故选C.7.(2014浙江绍兴)课本中有一道作业题:小颖解得此题的答案为48mm.小颖善于反思,她又提出了如下的问题.(1)如果原题中所要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成的,如图,此时,这个矩形零件的两条边长又分别为多少mm?请你计算;(2)如果原题中所要加工的零件只是一个矩形,如图,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】见解析【解析】(1)设PQ =xmm ,∵△APN ∽△ABC ,∴,∴,解得,∴(mm ). ∴这个矩形零件的两条边长分别为mm ,mm .(2)设PQ =xmm ,∵△APN ∽△ABC ,∴,∴, 解得mm ,∴,∴当x =40,即PQ =40mm ,PN =60mm 时,矩形面积最大.8. 两相似三角形对应高的比为3︰4,则对应中线的比为( ) A .3︰4 B .9︰16C .D .4︰3【答案】A【解析】相似三角形对应线段的比等于相似比.9. 若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为1︰2,则△ABC 与△DEF 的周长比为( ) A .1︰4 B .1︰2 C .2︰1D .【答案】B【解析】相似三角形周长的比等于相似比.10. 已知△ABC ∽△A′B′C′,且S △ABC ︰S △A′B′C′=16︰9,若AB =2,则A′B′=________. 【答案】【解析】由S △ABC ︰S △A′B′C′=16︰9可得AB ︰A′B′=4︰3,即2︰A′B′=4︰3,∴.11. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3、4及x ,那么x 的值为( ) A . B .5C .或5D .无数个【答案】C【解析】若8为直角边长,则斜边长为10,由于,此时4对应为直角边长,则,可得x =5;若8是斜边长,则另一条直角边长为,由于,此时4对应为斜边长,则,解得.故选C.12.如图,直线y=kx+b与坐标轴交于点A(0,8),B(6,0),与双曲线交于P(m,6),Q(a,b)两点,分别过点P、Q作直线与y、x轴平行,两直线交于点C.(1)求一次函数与反比例函数的解析式;(2)求点C的坐标.【答案】见解析【解析】(1)把(0,8),(6,0)代入y=kx+b,得解得∴一次函数的解析式为.由点(m,6)在直线上,可得,解得.把(,6)代入,得,∴反比例函数的解析式为.(2)由点(a,b)在反比例函数上,可得ab=9,∴.由题意可知:△PCQ∽△AOB,∴,∴,解得b1=2,b2=6.可得,.∴点Q的坐标为(,2).∴点C的坐标为(,2).13.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.5【答案】B【解析】∵a∥b∥c,∴,即.∴.∴BF=BD+DF=3+4.5=7.5.14.下列四个三角形,与图中的三角形相似的是()A.B.C.D.【答案】B【解析】设正方形网格中,小正方形的边长为1.由勾股定理可得,题图中三角形的三边长分别为,,,因为,故题图中的三角形为直角三角形,故可排除A和D.B中三角形的两直角边长分别为2,4,且,故B中三角形与题图中三角形相似.而C中三角形的两直角边长分别为2,3,且,故C中三角形与题图中三角形不相似.综上所述,选B.15.在△ABC与△A′B′C′中,AB︰AC=A′B′︰A′C′,∠B=∠B′,则这两个三角形()A.相似,但不全等B.全等或相似C.不相似D.无法判定是否相似【答案】D【解析】因为AB︰AC=A′B′︰A′C′,∠B=∠B′,条件中相等的角不是成比例的两边的夹角,所以无法判定是否相似,故选D.16.如图,E为平行四边形ABCD的边BC延长线上一点,连接AE,交边CD于点F.在不添加辅助线的情况下,请写出图中一对相似三角形:________.【答案】△AFD∽△EFC(或△EFC∽△EAB或△EAB∽△AFD)【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC.∴△AFD∽△EFC∽△EAB.17.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且.图中相似三角形共有________对.【答案】3【解析】∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB.∵DE=CE,,∴,∴△ADE∽△ECF.∴,∠DAE=∠CEF,∴.∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.18.如图,直线AD∥BE∥CF,,DE=4,那么EF的值是________.【答案】2【解析】∵AD∥BE∥CF,,DE=4,∴,∴,解得EF=2.19.(2014天津)如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF︰FC等于()A.3︰2B.3︰1C.1︰1D.1︰2【答案】D【解析】平行四边形ABCD中,AD∥BC且AD=BC,因为E为AD的中点,所以,因为AD∥BC,所以△DEF∽△BCF,所以EF︰FC=DE︰BC=1︰2,故选D.20.(2014内蒙古包头)如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A.B.C.D.【答案】A【解析】∵AD=2BD,DE∥BC,∴.∵EF∥AB,∴.。
初中数学经典相似三角形练习题(附参考答案)
经典练习题相似三角形(附答案)一.解答题(共30 小题)1 .如图,在△ABC中,DE∥ BC, EF ∥ AB,求证:△ADE∽△EFC .2 .如图,梯形ABCD 中,AB∥ CD,点F 在 BC 上,连 DF 与 AB 的延长线交于点G.( 1 )求证:△CDF∽△BGF;( 2 )当点 F 是 BC 的中点时,过 F 作 EF ∥ CD交 AD 于点 E,若 AB=6cm,EF=4cm,求CD的长.3.如图,点 D , E 在 BC 上,且 FD∥ AB, FE∥ AC.求证:△ABC∽△FDE .4 .如图,已知 E 是矩形 ABCD 的边 CD 上一点,BF ⊥ AE于 F,试说明:△ABF ∽△EAD.5 .已知:如图①所示,在△和△ABCADE中, AB=AC , AD=AE ,∠ BAC= ∠ DAE,且点B,A ,D 在一条直线上,连接 BE, CD ,M , N 分别为 BE, CD 的中点.( 1 )求证:①BE=CD ;②△AMN是等腰三角形;( 2 )在图①的基础上,将△绕点ADE 按顺时针方向旋转 180 °,其他条件不变,得到图②所示的图形.请直接写出( 1)中的两个结论是否仍然成立;( 3 )在( 2 )的条件下,请你在图②中延长ED 交线段 BC 于点 P.求证:△PBD∽△ AMN.6 .如图, E 是 ? ABCD 的边 BA 延长线上一点,连接EC,交 AD 于点 F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7 .如图,在 4 ×3的正方形方格中,△和ABC△DEF的顶点都在边长为 1 的小正方形的顶点上.(1 )填空:∠A BC= _________ °,BC= _________ ;(2 )判断△ ABC与△ DEC是否相似,并证明你的结论.8 .如图,已知矩形 ABCD 的边长 AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB 方向以 1cm/s 的速度向 B 点匀速运动;同时,动点N 从 D 点出发沿 DA 方向以 2cm/s 的速度向 A 点匀速运动,问:( 1 )经过多少时间,△的AMN面积等于矩形 ABCD 面积的?( 2 )是否存在时刻 t ,使以 A , M , N 为顶点的三角形与△相ACD似?若存在,求t 的值;若不存在,请说明理由.39 .如图,在梯形ABCD 中,若 AB∥ DC,AD=BC ,对角线BD 、 AC 把梯形分成了四个小三角形.(1 )列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2 )请你任选一组相似三角形,并给出证明.10 .如图△ABC中, D 为 AC 上一点, CD=2DA,∠BAC=45 °,∠B DC=60 °,CE于⊥E,BD连接 AE .(1 )写出图中所有相等的线段,并加以证明;(2 )图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3 )求△ BEC与△ BEA的面积之比.11 .如图,在△ABC中, AB=AC=a,M为底边BC上的任意一点,过点M 分别作 AB 、 AC 的平行线交AC于P,交 AB 于 Q.(1 )求四边形 AQMP 的周长;(2 )写出图中的两对相似三角形(不需证明);( 3 ) M 位于 BC 的什么位置时,四边形AQMP为菱形并证明你的结论.12 .已知: P 是正方形ABCD 的边 BC 上的点,且BP=3PC , M 是 CD 的中点,试说明:△ADM∽△MCP.13 .如图,已知梯形ABCD 中,AD∥ BC,AD=2 , AB=BC=8,CD=10.(1 )求梯形 ABCD 的面积 S;(2 )动点 P 从点 B 出发,以 1cm/s 的速度,沿 B? A ? D ? C 方向,向点 C 运动;动点 Q 从点 C 出发,以1cm/s的速度,沿C? D? A 方向,向点 A 运动,过点Q 作 QE⊥ BC 于点 E.若 P、Q 两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点 P 在 B? A 上运动时,是否存在这样的t ,使得直线PQ 将梯形 ABCD 的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t ,使得以P、 A、 D 为顶点的三角形与△相CQE似?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t ,使得以 P、D、Q 为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.614 .已知矩形ABCD ,长 BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P 自点 A 出发,以 1cm/s的速度沿AB 方向运动,同时,Q 自点 B 出发以 2cm/s的速度沿BC 方向运动,问经过几秒,以 P、 B、 Q 为顶点的三角形与△相BDC似?15 .如图,在△ABC中, AB=10cm,BC=20cm,点P从点A 开始沿AB边向B点以2cm/s的速度移动,点 Q 从点 B 开始沿 BC 边向点 C 以 4cm/s的速度移动,如果P、Q 分别从 A 、 B 同时出发,问经过几秒钟,△PBQ与△ ABC相似.16 .如图,∠ACB= ∠ ADC=90 AC=°,,AD=2.问当AB的长为多少时,这两个直角三角形相似.17 .已知,如图,在边长为 a 的正方形 ABCD 中,M 是 AD 的中点,能否在边AB 上找一点N(不含 A 、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18 .如图在△ABC中,∠C=90 °BC=8cm,, AC=6cm ,点 Q 从 B 出发,沿 BC 方向以 2cm/s的速度移动,点 P 从 C 出发,沿 CA 方向以 1cm/s的速度移动.若Q 、 P 分别同时从B、 C 出发,试探究经过多少秒后,以点 C、 P、 Q 为顶点的三角形与△相CBA似?19 .如图所示,梯形ABCD 中,AD∥ BC,∠A=90 °AB=7,,AD=2 ,BC=3 ,试在腰AB 上确定点P 的位置,使得以P, A , D 为顶点的三角形与以P, B, C 为顶点的三角形相似.20 .△ABC和△D EF是两个等腰直角三角形,∠A= ∠ D=90 °的,顶△点 DEF位于边 BC 的中点上.( 1 )如图 1 ,设 DE 与 AB 交于点 M , EF 与 AC 交于点 N ,求证:△BEM∽△CNE;8( 2 )如图 2 ,将△DEF绕点 E 旋转,使得DE 与 BA 的延长线交于点M , EF 与AC 交于点 N ,于是,除( 1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21 .如图,在矩形 ABCD 中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点 Q 沿 DA 边从点 D 开始向点 A 以 1cm/s的速度移动.如果P、Q 同时出发,用t(秒)表示移动的时间,那么当 t 为何值时,以点Q 、 A 、 P 为顶点的三角形与△相ABC似.22 .如图,路灯(P 点)距地面8 米,身高 1.6 米的小明从距路灯的底部(O 点) 20 米的 A 点,沿 OA 所在的直线行走14 米到 B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?23 .阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1 )所需的测量工具是:_________ ;(2 )请在下图中画出测量示意图;( 3 )设树高AB 的长度为 x,请用所测数据(用小写字母表示)求出x.24 .问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图 1 ,测得一根直立于平地,长为80cm 的竹竿的影长为 60cm .乙组:如图 2 ,测得学校旗杆的影长为 900cm .丙组:如图 3 ,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm ,影长为156cm .任务要求:( 1 )请根据甲、乙两组得到的信息计算出学校旗杆的高度;( 2 )如图 3 ,设太阳光线NH 与⊙O 相切于点M .请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图 3 ,景灯的影长等于线段NG 的影长;需要时可采用等式156 2+2082=2602)25 .阳光通过窗口照射到室内,在地面上留下 2.7m 宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m ,窗口高AB=1.8m,求窗口底边离地面的高BC.26 .如图,李华晚上在路灯下散步.已知李华的身高AB=h ,灯柱的高 OP=O′ P′ =l两灯,柱之间的距离 OO′ =m.( 1 )若李华距灯柱 OP 的水平距离 OA=a ,求他影子 AC 的长;( 2 )若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC )是否是定值请说明理由;( 3 )若李华在点 A 朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v 2.27 .如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明 S1=S 2+S 3.( 1 )如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S1, S2,S3表示,那么( 2 )如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S1、S2、 S3表示,请你确定 S1,S2, S3之间的关系并加以证明;( 3 )若分别以直角三角形ABC 三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2, S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;( 4 )类比( 1 ),( 2 ),( 3 )的结论,请你总结出一个更具一般意义的结论.28 .已知:如图,△ABC∽△ AB=15ADE,, AC=9 , BD=5 .求 AE .29 .已知:如图Rt △ ABC∽ Rt △ BDC,AB=3若, AC=4 .(1)求 BD、CD 的长;(2)过 B 作 BE⊥ DC于 E,求 BE 的长.30 .( 1 )已知,且3x+4z﹣2y=40,求x,y,z的值;( 2 )已知:两相似三角形对应高的比为 3 : 10 ,且这两个三角形的周长差为560cm ,求它们的周长.参考答案与试题解析一.解答题(共30 小题)1 .如图,在△ABC中,DE∥ BC, EF ∥ AB,求证:△ADE∽△EFC .考点:相似三角形的判定;平行线的性质。
初三数学相似三角形典型例题含答案
初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍:1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。
把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
2. 比例性质:3. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方【典型例题】例1. (1)在比例尺是1:8000000的《中国行政区》地图上,量得A、B两城市的距离是7.5厘米,那么A、B两城市的实际距离是__________千米。
初中数学经典相似三角形练习题(附参考答案)
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠A BC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;。
初三相似三角形练习题含答案
初三相似三角形练习题含答案1. 某个角的度数是60°。
它的补角和它的和是多少?解答:补角是90°减去该角的度数,即90°- 60° = 30°。
和角是该角的度数加上补角的度数,即60° + 30° = 90°。
2. 给出三角形ABC,其中∠ABC = 90°, AB = 6cm,AC = 8cm。
根据比例的性质,我们可以得出DE = ? (ADE与ABC相似,DE = x cm)解答:由三角形相似的性质可知,AB/DE = AC/AD。
代入已知条件可得6/DE = 8/AD。
交叉相乘得到8DE = 6AD,进一步可以得到4DE = 3AD。
根据题意可知AD = AE + DE,即8 = AE + x。
将此代入前面的等式中,可以得到4x = 3(8-x)。
解这个方程可以得到x = 6。
所以DE = 6cm。
3. 已知两个三角形ABC和DEF相似。
已知BC = 12cm,EF = 8cm,且BC/EF = 3/2。
求AB的长度。
解答:根据相似三角形的性质,AB/DE = BC/EF。
代入已知条件得到AB/8 = 12/8。
交叉相乘可得到8AB = 12 × 8,即AB = 12 × 8 ÷ 8 =12cm。
所以AB的长度为12cm。
4. 两个三角形相似,已知小三角形的面积为25cm²,大三角形的面积是多少?解答:根据相似三角形的性质,如果两个三角形相似,它们对应边的比例的平方等于对应高的比例的平方。
假设小三角形的面积为S,大三角形的面积为T,对应边的比例为k,对应高的比例为h,那么我们可以得到:T/S = (k² × h²)/(k² × h²) = (k² × h²)/(1) = k² × h²根据题意,已知小三角形的面积为25cm²,所以S = 25。
相似三角形(含练习有答案、 例题和知识点)
第27章:相似一、基础知识(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:(2)合比定理:(3)等比定理:3.黄金分割:如图,若,则点P为线段AB的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定(1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
4.相似三角形的性质(1)对应边的比相等,对应角相等.(2)相似三角形的周长比等于相似比.(3)相似三角形的面积比等于相似比的平方.(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.5.三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半.7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式);2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
如求河的宽度、求建筑物的高度等。
(三)位似:位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。
这个点叫做位似中心.这时的相似比又称为位似比.位似性质:位似图形上任意一对对应点到位似中心的距离之比等于位似位似比二、经典例题例1.如图在4×4的正方形方格中,△ABC和△DEF的顶点都在长为1的小正方形顶点上.(1)填空:∠ABC=______,BC=_______.(2)判定△ABC与△DEF是否相似?[考点透视]本例主要是考查相似的判定及从图中获取信息的能力.[参考答案] ①135°,2 ②能判断△ABC与△DEF相似,∵∠ABC=∠DEF=135°,=【点评】注意从图中提取有效信息,再用两对应边的比相等且它们两夹角相等来判断.例2. 如图所示,D、E两点分别在△ABC两条边上,且DE与BC不平行,请填上一个你认为适合的条件_________,使得△ADE∽△ABC.[考点透视]本例主要是考查相似的判定[参考答案] ∠1=∠B或∠2=∠C,或点评:结合判定方法补充条件.例3. 如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走2米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度等于( )A.4.5米 B.6米 C.7.2米 D.8米[考点透视]本例主要是考查相似的应用[参考答案] B【点评】在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中“”.例4. 如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?[考点透视]本例主要是考查相似的实际应用[参考答案] 48mm【点评】解决有关三角形的内接正方形(或矩形)的计算问题,一般运用相似三角形“对应高之比等于相似比”这一性质来解答.例5.如图所示,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;(2)如果∠BAC的度数为α,∠DAE的度数为β,当α、β满足怎样的关系式时,(1)中y与x之间的函数关系式还成立,试说明理由.[考点透视]本例主要是考查相似与函数的综合运用.[参考答案]解:在△ABC中,AB=AC=1,∠BAC=30°,∠ABC=∠ACB=75°,∠ABD=∠ACE=105°.又∠DAE=105°,∴∠DAB+∠CAE=75°.又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC,∴,∴y=.当α1β满足β- =90°,y=仍成立.此时∠DAB+∠CAE=β-α,∴∠DAB+∠ADB=β-α,∴∠CAE=∠ADB.又∵∠ABD=∠ACE,∴△ADB∽△EAC,∴y=.【点评】确定两线段间的函数关系,可利用线段成比例、找相等关系转化为函数关系.例6. 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm×3.5cm,放映的荧屏的规格为2m×2m,若放映机的光源距胶片20cm时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?解析:胶片上的图象和荧屏上的图象是位似的,镜头就相当于位似中心,因此本题可以转化为位似问题解答.[考点透视]本例主要是考查位似的性质.[参考答案] m【点评】位似图形是特殊位置上的相似图形,因此位似图形具有相似图形的所有性质.三.适时训练(一)精心选一选1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为( )(A) (B) (C) (D)2.如图,在正三角形ABC中,D,E分别在AC,AB上,且=,AE=BE,则( )(A)△AED∽△BED(B)△AED∽△CBD(C)△AED∽△ABD(D)△BAD∽△BCD题2 题4 题53.P是Rt△ABC斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )(A)1条 (B)2条 (C)3条 (D)4条4.如图,∠ABD=∠ACD,图中相似三角形的对数是( )(A)2 (B)3 (C)4 (D)55.如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是( )(A)∠APB=∠EPC (B)∠APE=90°(C)P是BC的中点(D)BP ︰BC=2︰36.如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有( )(A)3个 (B)2个 (C)1个 (D)0个题6 题7 题87.如图,将△ADE绕正方形ABCD顶点A顺时针旋转90°,得△ABF,连结EF交AB于H,则下列结论中错误的是( )(A)AE⊥AF (B)EF︰AF=︰1(C)AF2=FH·FE (D)FB ︰FC=HB︰EC8.如图,在矩形ABCD中,点E是AD上任意一点,则有( )(A)△ABE的周长+△CDE的周长=△BCE的周长(B)△ABE的面积+△CDE的面积=△BCE的面积(C)△ABE∽△DEC(D)△ABE∽△EBC9.如图,在□ABCD中,E为AD上一点,DE︰CE=2︰3,连结AE、BE、BD,且AE、BD交于点F,则S△DEF︰S△EBF︰S△ABF等于( )(A)4︰10︰25 (B)4︰9︰25 (C)2︰3︰5 (D)2︰5︰25题9 题10 题1110.如图,直线a∥b,AF︰FB=3︰5,BC︰CD=3︰1,则AE︰EC为( ).(A)5︰12 (B)9︰5 (C)12︰5 (D)3︰2 11.如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=AB,连结EM并延长,交BC的延长线于D,此时BC︰CD为( )(A)2︰1 (B)3︰2 (C)3︰1 (D)5︰212.如图,矩形纸片ABCD的长AD=9 cm,宽AB=3 cm,将其折叠,使点D与点B重合,那么折叠后DE的长和折痕EF的长分别为( )(A)4 cm、cm (B)5 cm、cm(C)4 cm、2 cm (D)5 cm、2 cm题12(二)细心填一填13.已知线段a=6 cm,b=2 cm,则a、b、a+b的第四比例项是_____cm,a+b与a-b的比例中项是_____cm.14.若===-m2,则m=______.15.如图,在△ABC中,AB=AC=27,D在AC上,且BD=BC=18,DE∥BC交AB于E,则DE=_______.16.如图,□ABCD中,E是AB中点,F在AD上,且AF=FD,EF交AC于G,则AG︰AC=______.题16 题17 题1817.如图,AB∥CD,图中共有____对相似三角形.18.如图,已知△ABC,P是AB上一点,连结CP,要使△ACP∽△ABC,只需添加条件______(只要写出一种合适的条件).19.如图,AD是△ABC的角平分线,DE∥AC,EF∥BC,AB=15,AF =4,则DE的长等于________.题19 题20 题2120.如图,△ABC中,AB=AC,AD⊥BC于D,AE=EC,AD=18,BE =15,则△ABC的面积是______.21.如图,直角梯形ABCD中,AD∥BC,AC⊥AB,AD=8,BC=10,则梯形ABCD面积是_________.22.如图,已知AD∥EF∥BC,且AE=2EB,AD=8 cm,AD=8 cm,BC=14 cm,则S梯形AEFD︰S梯形BCFE=____________.(三)认真答一答23.方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在图示的10×10的方格纸中,画出两个相似但不全等的格点三角形,并加以证明(要求所画三角形是钝角三角形,并标明相应字母).24.如图,△ABC中,CD⊥AB于D,E为BC中点,延长AC、DE相交于点F,求证=.25.如图,在△ABC中,AB=AC,延长BC至D,使得CD=BC,CE⊥BD交AD于E,连结BE交AC于F,求证AF=FC.26.已知:如图,F是四边形ABCD对角线AC上一点,EF∥BC,FG∥AD.求证:+=1.27.如图,BD、CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F、H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.28.如图,∠ABC=∠CDB=90°,AC=a,BC=b.(1)当BD与a、b之间满足怎样的关系时,△ABC∽△CDB?(2)过A作BD的垂线,与DB的延长线交于点E,若△ABC∽△CDB.求证四边形AEDC为矩形(自己完成图形).29.如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC(AB>AE).(1)△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由;(2)设=k,是否存在这样的k值,使得△AEF∽△BFC,若存在,证明你的结论并求出k的值;若不存在,说明理由.30.如图,在Rt△ABC中,∠C=90°,BC=6 cm,CA=8 cm,动点PC出发,以每秒2 cm的速度沿CA、AB运动到点B,则从C点出发多少秒时,可使S△BCP=S△ABC31. 如图,小华家(点A处)和公路(L)之间竖立着一块35m长且平 行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路设为BC.一辆以60km/h匀速行驶的汽车经过公路段BC的时间是3s,已知广告牌和公路的距离是40m,求小华家到公路的距离(精确到1m).32. 某老师上完“三角形相似的判定”后,出了如下一道思考题:如图所示,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,试问:△AOB和△DOC是否相似?某学生对上题作如下解答:答:△AOB∽△DOC.理由如下:在△AOB和△DOC中,∵AD∥BC,∴,∵∠AOB=∠DOC,∴△AOB∽△DOC.请你回答,该学生的解答是否正确?如果正确,请在每一步后面写出根据;如果不正确,请简要说明理由.33. 如图:四边形ABCD中,∠A=∠BCD=90°,①过C作对角线BD的垂线交BD、AD于点E、F,求证:;②如图:若过BD上另一点E作BD的垂线交BA、BC延长线于F、G,又有什么结论呢?你会证明吗?34.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.35. (1)如图一,等边△ABC中,D是AB上的动点,以CD为一边,向上作等边△EDC,连结AE。
初三数学相似三角形典型例题(含答案)
初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
相似三角形经典练习题及答案
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 ab c (a : bc :d )中, a 、 d 叫外项,db 、c 叫内项, a 、c 叫前项, b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、 d 的比例中项。
把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。
2. 比例性质:①基本性质: ac b d②合比性质:acb dad bca b c d bd③等比性质:a c⋯b dm (b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ nb3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。
AB 则BCDE , ABEF AC DE , BCDF AC EF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方【典型例题】例 1. (1)在比例尺是1:8000000 的《中国行政区》地图上,量得A、B 两城市的距离是7.5 厘米,那么A、B 两城市的实际距离是千米。
( 2)小芳的身高是 1.6m,在某一时刻,她的影子长2m,此刻测得某建筑物的影长是18 米,则此建筑物的高是米。
解:这是两道与比例有关的题目,都比较简单。
( 1)应填600 ( 2)应填14.4 。
例 2. 如图,已知DE∥ BC,EF∥ AB,则下列比例式错误的是:A. AD AEAB ACCE EAB.CF FBC. DE ADBC BD D.EF CFAB CB分析:由DE∥ BC,EF∥ AB 可知, A、B、D都正确。
而不能得到DEBCAD,BD故应选 C。
利用平行线分线段成比例定理及推论求解时,一定要分清谁是截线、谁是被截x 线, C 中 DE 很显然是两平行线段的比,因此应是利用三角相似后对应边成比BC例这一性质来写结论,即 DEBC AD AEAB AC例 3. 如图,在等边△ ABC 中, P 为 BC 上一点, D 为 AC 上一点,且∠ APD=60 ,BP 1, CD2,求△ 3ABC 的边长解: ∵△ ABC是等边三角形 ∴∠ C=∠ B=60又∵∠ PDC=∠ 1+∠ APD=∠1+60 ∠ APB=∠ 1+∠ C=∠ 1+60 ∴∠ PDC=∠ APB ∴△ PDC ∽△ APB∴PC CD AB PB设 PC=x , 则 AB=BC=1+x2∴ 1 x3 ,∴ x 2, 1∴ AB=1+x=3。
∴△ ABC 的边长为 3。
例 4. 如图:四边形 ABEG 、GEFH 、HFCD 都是边长为a 的正方形,( 1)求证:△ AEF∽△ CEA ( 2)求证:∠ AFB+∠ ACB=45分析: 因为△ AEF、△ CEA有公共角∠ AEF故要证明△ AEF∽△ CEA只需证明两个三角形中,夹∠ AEF 、∠ CEA 的两边对应成比例即可。
证明:( 1)∵四边形 ABEG 、GEFH 、HFCD 是正方形 ∴ AB=BE=EF=FC=,a ∠ ABE=90∴AE 2a , EC 2a∴AEEF 2a2,EC 2a2 a AE 2a∴AE EC EF AE又∵∠ CEA=∠ AEF∴△ CEA∽△ AEF( 2)∵△ AEF∽△ CEA∴∠ AFE=∠ EAC∵四边形ABEG是正方形∴ AD∥BC, AG=G,E AG⊥GE∴∠ ACB=∠ CAD,∠ EAG=45∴∠ AFB+∠ ACB=∠ EAC+∠CAD=∠ EAG∴∠ AFB+∠ ACB=45例 5. 已知:如图,梯形ABCD中,AD∥ B C,A C、BD交于点O,EF经过点O且和两底平行,交 AB 于 E,交 CD 于 F求证: OE=OF证明:∵AD∥ EF∥BCOE ∴BC AE,OE EB AB AD AB∴OEBC∴1 BC同理:∴1 1OE OF1∴ OE=OF从本例的证明过程中,我们还可以得到以下重要的结论:① AD ∥ EF ∥BC 1 1 1 AD BC OE② AD ∥ EF ∥ BC OE OF 1 EF2③ AD ∥ EF ∥BC1 1 1 1 2即1 1 2AD BC OE 1EFOF2AD BC EFOE AD AEABEBABABAB1 1AD 1 OE1 1BC AD OF2这是梯形中的一个性质,由此可知,在 AD 、B C 、EF 中,已知任何两条线段的长度,都可以求出第三条线段的长度。
例 6. 已知:如图,△ ABC 中, AD⊥BC于 D ,DE⊥ AB 于 E , DF⊥ AC 于 F求证:AEAC AF AB分析: 观察 AE 、AF 、A C 、 AB 在图中的位置不宜直接通过两个三角形相似加以解决。
因此可根据图中直角三角形多,因而相似三角形多的特点,可设法寻求中间量进行代换,通过△ ABD ∽△ ADE ,可得: ABAD AD,于是得到 AEAD 2 AE AB ,同理 可得到 AD 2AFAC ,故可得: AE AB AF AC ,即 AEAC AFAB证明: 在△ ABD和△ ADE中, ∵∠ ADB=∠ AED=90 ∠ BAD=∠ DAE ∴△ ABD∽△ ADE∴ AB AD ADAE2∴AD=AE AB 同理:△ ACD∽△ ADF 可得: AD=AF AC ∴AE AB=AF AC ∴ AE AC AF AB例 7. 如图,D 为△ ABC 中 BC 边上的一点, ∠ CAD=∠ B ,若 AD=6,AB=8,BD=7,求 DC 的长。
分析: 本题的图形是证明比例中项时经常使用的“公边共角” 的基本图形,我们可以由基本图形中得到的相似三角形,从而得到对应边成比例,从而构造出关于所求线段的方程, 使问题得以解决。
解: 在△ ADC和△ BAC中 ∵∠ CAD=∠ B ,∠ C=∠ C ∴△ ADC ∽△ BAC22∴ AD DC ACAB AC BC又∵ AD=6, AD=8, BD=7∴ DC ACAC3 7 DC 4DC3即 AC 4AC 3解得: DC=97 DC4例 8. 如图,在矩形 ABCD 中, E 是 CD 的中点, BE⊥ AC 于 F ,过 F 作 FG∥ AB 交 AE 于 G ,求证: AG=AFFC证明: 在矩形 ABCD 中, AD=BC , ∠ ADC=∠ BCE=90又∵ E 是 CD 的中点,∴ DE=CE ∴ Rt △ADE≌ Rt△ BCE ∴ AE=BE ∵ FG∥AB∴ AEAG BEBF∴ AG=BF在 Rt△ ABC中, BF⊥ AC于 F ∴ Rt △BFC≌ Rt△ AFB∴ AFFBBF FC2∴ BF =AF FC∴ AG=AFFC例 9. 如图,在梯形 ABCD 中, AD ∥ BC ,若∠ BCD 的平分线CH ⊥ AB 于点 H , BH=3AH ,且四边形 AHCD 的面积为 21,求△ HBC 的面积。
分析:因为问题涉及四边形AHCD,所以可构造相似三角形。
把问题转化为相似三角形的面积比而加以解决。
解:延长 BA、CD交于点 P∵CH⊥AB, CD平分∠ BCD∴CB=CP,且 BH=PH∵BH=3AH∴ PA:AB=1:2∴ PA:PB=1:3∵AD∥BC∴△ PAD∽△ PBC∴S△ PAD :S△PBC1:9∵S △PCH12S△PBC∴S△PAD S四边形AHCD2:7∵S四边形AHCD21∴S△PAD6∴ S△PBC∴S△ HBC 541S△2 PBC27a 2b 9一、填空题1. 已知2a b 5 ,则a:b2. 若三角形三边之比为3: 5:7,与它相似的三角形的最长边是21cm,则其余两边之和是cm3. 如图,△ ABC中, D、E 分别是AB、AC的中点, BC=6,则DE= ;△ ADE与△ABC的面积之比为:。
4. 已知线段a=4cm, b=9cm,则线段a、 b 的比例中项 c 为cm。
5. 在△ ABC 中,点D、E 分别在边AB、AC 上,DE∥ BC,如果AD=8, DB=6, EC=9,那么AE=6. 已知三个数1, 2, 3 ,请你添上一个数,使它能构成一个比例式,则这个数是7. 如图,在梯形ABCD中, AD∥BC, EF∥BC,若AD=12cm, BC=18cm, AE: EB=2:3,则EF=8. 如图,在梯形 ABCD中,AD∥ BC,∠ A=90 , BD⊥ CD,AD=6,BC=10,则梯形的面积为:二、选择题1. 如果两个相似三角形对应边的比是3: 4,那么它们的对应高的比是A. 9 :16B. 3 : 2C. 3 : 4D. 3 : 72. 在比例尺为1:m的某市地图上,规划出长 a 厘米,宽 b 厘米的矩形工业园区,该园区2的实际面积是米10 4 mA.ab104 m2B.ababmC.104abm 2D.1043. 已知,如图,DE∥ BC,EF∥ AB,则下列结论:①AE BEEC FCAD AB②BF BC ③EF DEAB BCCE EA④CF BF其中正确的比例式的个数是A. 4 个B. 3 个C. 2 个D. 1 个4. 如图,在△ ABC中, AB=24, AC=18,D 是 AC上一点, AD=12,在AB上取一点E,使 A、D、E 三点为顶点组成的三角形与△ABC相似,则AE的长是A. 16B. 14C. 16 或 14D. 16 或 95. 如图,在Rt △ ABC中,∠ BAC=90 , D是 BC的中点,AE⊥AD,交 CB的延长线于点E,则下列结论正确的是A. △AED∽△ ACBB. △ AEB∽△ ACDC. △BAE∽△ ACED. △ AEC∽△ DAC三、解答题: 1. 如图,AD∥E G∥ BC, AD=6, BC=9, AE: AB=2: 3,求 GF的长。