高三数学三角函数的最值问题(2019年10月整理)
三角函数的最值问题
三角函数的最值问题在数学中,三角函数是一类重要的函数,它们与三角形的各边长和角度之间有密切的关系。
三角函数包括正弦函数sine(x)、余弦函数cosine(x)、正切函数tangent(x)、余切函数cotangent(x)、正割函数secant(x)和余割函数cosecant(x)。
这些函数在数学和物理等领域中都有广泛的应用。
在本文中,我们将讨论三角函数的最值问题。
最值问题是数学中经常出现的一类问题,它涉及在给定条件下,求出函数的最大值或最小值。
三角函数的最值问题也不例外,我们将通过分析各个三角函数的性质和图像来解决这些问题。
首先,让我们从正弦函数和余弦函数开始。
正弦函数和余弦函数的取值范围都是[-1,1],即它们的最大值和最小值都在这个区间内取得。
正弦函数在角度为90度或π/2的时候取得最大值1,在角度为270度或3π/2的时候取得最小值-1、余弦函数在角度为0度或2π的时候取得最大值1,在角度为180度或π的时候取得最小值-1、同时,正弦函数和余弦函数具有周期性,即在一个周期内,它们呈现重复的性质。
正弦函数的周期是2π,而余弦函数的周期也是2π。
因此,当我们求正弦函数和余弦函数在一些区间上的最值时,可以借助其周期的性质,将该区间转化为一个合适的周期内的区间来求解。
最后,让我们来看一下三角函数中的正割函数和余割函数。
正割函数的定义域是除了π/2+kπ(k∈Z)之外的所有实数,其取值范围是(-∞,-1]∪[1,+∞)。
正割函数在角度为0度或2π的时候取得最小值1,在角度为180度或π的时候取得最大值-1、余割函数的定义域是除了kπ(k∈Z)之外的所有实数,其取值范围是(-∞,-1]∪[1,+∞)。
余割函数在角度为90度或π/2的时候取得最大值1,在角度为270度或3π/2的时候取得最小值-1、正割函数和余割函数也具有周期性,其周期分别是π。
因此,在求解正割函数和余割函数在一些区间上的最值时,我们可以利用其周期的性质,将该区间转化为一个合适的周期内的区间来求解。
高三数学三角函数的求值
但须注意角x的范围对结果的影响。
变式1:已知向量m = m与 n为共线向量,且.
(cos
2 ,1)
3
2
,0
n
=
(sin
,1)
,
(1)求sin + cos 的值;
(2)
sin2
sin cos
热点题型2 配角的思想在求值中的运用。
例2 已知为锐角,cos = 3
5
,tan ( ) 1
热点题型1 有关sinx+cosx , sinx-cosx , sinxcosx
三者之间关系的试题.
例1. 已知.
x 0,sin x cosx 1
2
5
(I)求sinx-cosx的值;
(Ⅱ)求
3sin2 x 2sin x cos x cos2 x
2
22
2
tanx cotx
的值.
露出来,只见这个这件奇物儿,一边变形,一边发出“嘀嘀”的余声……!猛然间月光妹妹疯妖般地让自己极似玉白色天穹样的额头摇出亮灰色的琴弓声,只见她犹如 云粉色冰莲花般的蓝边渐变裙中,狂傲地流出七团旋舞着⊙绿烟水晶笛@的眉毛状的萝卜,随着月光妹妹的摆动,眉毛状的萝卜像盾牌一样在双肩上讲究地布置出飘飘 光环……紧接着月光妹妹又抖起俏皮的海星帽,只见她轻盈矫健的玉腿中,猛然抖出九缕摇舞着⊙绿烟水晶笛@的球棒状的碎末,随着月光妹妹的抖动,球棒状的碎末 像毛虫一样念动咒语:“雪峰哗 嗄,仙子哗 嗄,雪峰仙子哗 嗄……⊙月影河湖曲@! ! ! !”只见月光妹妹的身影射出一片深红色粼光,这时东南方 向猛然出现了五团厉声尖叫的暗红色光虫,似金光一样直奔淡红色灵光而去。,朝着U.季圭赤仆人古古怪怪的葱绿色木偶般的飘发乱晃过去。紧跟着月光妹妹也狂耍 着咒符像猫魂般的怪影一样向U.季圭赤仆人乱晃过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道淡灰色的闪光,地面变成了银橙色、景物变成了淡紫色、天空 变成了纯灰色、四周发出了帅气的巨响!月光妹妹灿烂闪耀,美如无数根弯曲阳光般的披肩金发受到震颤,但精神感觉很爽!再看U.季圭赤仆人高大的脑袋,此时正 惨碎成路标样的暗白色飞丝,快速射向远方,U.季圭赤仆人怪嚷着狂鬼般地跳出界外,急速将高大的脑袋复原,但元气已损失不少神圣月光妹妹:“老魔头,你的风 格水平好像不怎么样哦……U.季圭赤仆人:“我再让你看看什么是猛爆派!什么是潇洒流!什么是秀雅潇洒风格!”月光妹妹:“您弄点新本事出来,总是那一套, !”U.季圭赤仆人:“你敢小瞧我,我再让你尝尝『白光美仙钢板鞭』的风采!”月光妹妹:“那我让你理解理解什么是雪峰!认识认识什么是仙子!领会领会什么 是月光妹妹!”U.季圭赤仆人超然把轻飘的特像冰块样的脚颤了颤,只见九道跳跃的犹如糖块般的蓝云,突然从烟橙色松果耳朵中飞出,随着一声低沉古怪的轰响, 金红色的大地开始抖动摇晃起来,一种怪怪的豆静狐动味在悠闲的空气中跳动!接着土黄色细小叉子一样的胡须不断变形狂舞起来……结实的眉毛射出深紫色的片片梦 光……硕长的脸窜出火橙色的隐隐奇声。紧接着土黄色细小叉子一样的胡须不断变形狂舞起来……结实的眉毛射出深紫色的片片梦光……硕长的脸窜出火橙色的隐隐奇 声。最后抖起怪异的深红色烤鸭一样的脖子一笑,狂傲地从里面跳出一道神光,他抓住神光刺激地一耍,一组黄澄澄、明晃晃的功夫『粉宝毒魔夜蛾掌』便显露出来, 只见这个这件怪
三角函数ω的取值范围及解三角形中的范围与最值问题(解析版)-高中数学
三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。
高三数学三角函数试题答案及解析
高三数学三角函数试题答案及解析1.在中,已知,若分别是角所对的边,则的最大值为.【答案】【解析】由正余弦定理得:,化简得因此即最大值为.【考点】正余弦定理,基本不等式2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin C),则的值是( )A.1B.-1C.3D.4【答案】B【解析】因为三角形ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,=-1+1-1=-1,故选B.4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.7.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.8.是偶函数,,则 .【答案】【解析】,,所以,因为为偶函数,所以对任意的,都有即成立,又,所以.【考点】三角函数的恒等变换,偶函数.9.已知方程在上有两个不同的解、,则下列结论正确的是()A.B.C.D.【答案】C【解析】由于方程在上有两个不同的解、,即方程在上有两个不同的解、,也就是说,直线与函数在轴右侧的图象有且仅有两个交点,由图象可知,当时,直线与曲线相切,且切点的横坐标为,当时,,则,故,在切点处有,即,,两边同时乘以得,,故选C.【考点】1.函数的零点;2.函数的图象;3.利用导数求切线的斜率10.将函数图像上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图像的一条对称轴方程为()A.B.C.D.【答案】B【解析】将函数的图像按题中要求变换后得到函数的图像,令,则,当时,.【考点】1.三角函数的变换;2.三角函数图象的对称轴.11.函数f(x)=sin+ACos(>0)的图像关于M(,0)对称,且在处函数有最小值,则的一个可能取值是( )A.0B.3C.6D.9【答案】D【解析】根据题意:相邻对称点与最小值之间可以相差也可以是不妨设为:=,可以为9,故选D.【考点】三角函数的最值;正弦函数的对称性.12.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.13.已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)讨论在区间上的单调性.【答案】(Ⅰ)(Ⅱ)当,即时,单调递增;当,即,单调递减.【解析】(1)由题意,所以由(1)知若,则当,即时,单调递增;当,即,单调递减.第(1)题根据三角函数的和差化简,二倍角公式以及辅助角公式,最后化成的形式,利用确定的值;第(2)题用整体法的思想确定的单调性,再反求出在指定范围内的单调性.本题属简单题.【考点】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.14.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系15.已知,则的值为()A.B.C.D.【答案】B【解析】因为,,即,,所以,=,故选B。
高考数学一轮复习三角函数与解三角形中的最值(范围)问题
,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π
2π
减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3
-
3
3
2
1+ 2
,
|解题技法|
sin+
三角函数的最值问题(高三复习)课例评析
三角函数的最值问题(高三复习)课例评析江苏省南菁高级中学祁平南京师范大学谭顶良一、教学目的1.使学生能熟练运用三角函数的单调性及有界性,研究三角函数的最值问题。
2.能运用化归思想、数形结合等思想将一些较复杂的三角函数的最值问题转化为熟悉的易于解决的问题。
3.培养学生在“变化中创新”,在“比较中创新”,在“批判中创新”的能力,努力拓展学生的思维空间。
二、教学过程1.导言从近几年来的高考试卷中可以-看到,三角函数的最值问题是高考中一个重要内容(如2000年的高考第17题),在以后的复习中,我们还将看到:一些较为复杂的综合问题化归为三角函数的最值问题较为简便,下面我们一起来研究“三角函数的最值问题”(揭示课题)。
[点评] “研究”一词,摆脱了传统教育中教师是知识的“传授者”这一角色,而将教师自己置于与学生平等的地位,为学生主体性、创造性的发挥创设了良好的师生关系;同时,“研究”一词的运用,还暗含着教学不是简单的“传”与“授”过程,而是不断探索、不断创新的过程这一“创造性基本思想”。
2.例题选讲例1 ,求函数的最值。
教师审题,请学生谈思路。
学生甲:运用和差化积公式,(以下略)。
教师:有其他解法吗?学生乙:运用公式,将函数变形为(以下略)。
学生丙:观察发现函数中角与角的差恰好为,故将看成基本量,将函数化归为同一角的函数式,即为:(以下略)。
教师肯定了学生能从不同角度出发,积极探索。
[点评] 首先引导学生从多角度思考问题,寻找不同的解题思路,在此基础上启发学生比较不同的解题思路,找出最佳答案。
这种做法,既训练了学生的思维创新,又训练了学生高效的解题策略。
教师:把例1稍加改变一下,情况如何?问题1 :,求函数的最值。
学生:把看成一角,变形为(以下略)。
(说明:例1中最好的方法“解法一”在这里失效了,指出要辩证对待“巧法”。
)[点评] 通过“解法一”在例1变式问题1中的失效,使学生深刻理解并掌握“一把钥匙开一把锁,具体问题具体分析”的思维方法。
高三数学复习(理):第4讲 第1课时 三角函数的单调性与最值
第4讲 三角函数的图象与性质[学生用书P77]1.用五点法作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).五点法作图有三步:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质 函数 y =sin x y =cos x y =tan x图象定义域 R R {x |x ∈R ,且x ≠kπ+π2,k ∈Z }值域 [-1,1] [-1,1] R 奇偶 性奇函数偶函数奇函数单调性在[-π2+2kπ,π2+2kπ](k∈Z)上是递增函数,在[π2+2kπ,3π2+2kπ](k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在(-π2+kπ,π2+kπ)(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是(kπ+π2,0)(k∈Z)对称中心是(kπ2,0)(k∈Z)常用结论(1)函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期T=2π|ω|,函数y=tan(ωx+φ)的最小正周期T=π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.正切曲线相邻两对称中心之间的距离是半周期.(3)三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx的形式,偶函数一般可化为y=A cos ωx+b的形式.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)y=cos x在第一、二象限内是减函数.()(2)若y=k sin x+1,x∈R,则y的最大值是k+1.()(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ). ( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 二、易错纠偏常见误区|K(1)忽视y =A sin x (或y =A cos x )中A 对函数单调性的影响; (2)忽视正、余弦函数的有界性; (3)不注意正切函数的定义域.1.函数y =1-2cos x 的单调递减区间是________. 答案:[2k π-π,2k π],k ∈Z2.函数y =-cos 2x +3cos x -1的最大值为________. 答案:13.函数y =cos x tan x 的值域是________. 答案:(-1,1)第1课时 三角函数的单调性与最值[学生用书P78]三角函数的定义域(自主练透) 1.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π6B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π12C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π6(k ∈Z )D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π6(k ∈Z )解析:选D.由2x +π6≠k π+π2,得x ≠k π2+π6(k ∈Z ). 2.函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎨⎧sin x >0,cos x -12≥0, 即⎩⎨⎧sin x >0,cos x ≥12, 解得⎩⎨⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π,k ∈Z .所以函数y 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z3.(一题多解)函数y =sin x -cos x 的定义域为________. 解析:方法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }.方法二:利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).所以定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }. 方法三:sin x -cos x =2sin(x -π4)≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π(k ∈Z ),解得2k π+π4≤x ≤2k π+5π4(k ∈Z ).所以函数y 的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }. 答案:{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.函数的单调性(多维探究) 角度一 求三角函数的单调区间(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间是________.(3)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .(2)由k π-π2<2x +π3<k π+π2(k ∈Z ), 得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).(3)因为y =12sin x +32cos x =sin ⎝ ⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ), 解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).所以函数y =sin ⎝ ⎛⎭⎪⎫x +π3在R 上的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-5π6,2k π+π6(k ∈Z ),又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以函数的单调递增区间为⎣⎢⎡⎦⎥⎤0,π6.【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z(2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) (3)⎣⎢⎡⎦⎥⎤0,π6 【迁移探究】 本例(3)中,将x ∈⎣⎢⎡⎦⎥⎤0,π2改为x ∈[-π,π],则函数的单调递减区间是________.解析:因为y =sin ⎝⎛⎭⎪⎫x +π3,由2k π+π2≤x +π3≤2k π+3π2(k ∈Z ), 得2k π+π6≤x ≤2k π+7π6(k ∈Z ),所以函数y =sin ⎝ ⎛⎭⎪⎫x +π3在R 上的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π6,2k π+7π6(k ∈Z ).又x ∈[-π,π],所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤-π,-5π6,⎣⎢⎡⎦⎥⎤π6,π.答案:⎣⎢⎡⎦⎥⎤-π,-5π6,⎣⎢⎡⎦⎥⎤π6,π求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.角度二 根据单调性求参数(1)(一题多解)若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( )A.π4 B .π2 C.3π4D .π(2)(一题多解)若f (x )=2sin ωx (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是________.【解析】 (1)方法一:f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4.当x ∈[0,a ]时,x+π4∈⎣⎢⎡⎦⎥⎤π4,a +π4,所以结合题意可知,a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.方法二:f ′(x )=-sin x -cos x =-2sin ⎝ ⎛⎭⎪⎫x +π4.于是,由题设得f ′(x )≤0,即sin ⎝ ⎛⎭⎪⎫x +π4≥0在区间[0,a ]上恒成立.当x ∈[0,a ]时,x +π4∈⎣⎢⎡⎦⎥⎤π4,a +π4,所以a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.(2)方法一:因为x ∈[-π2,2π3](ω>0), 所以ωx ∈[-ωπ2,2πω3],因为f (x )=2sin ωx 在[-π2,2π3]上是增函数, 所以⎩⎨⎧-πω2≥-π2,2πω3≤π2,ω>0,故0<ω≤34. 方法二:画出函数f (x )=2sin ωx (ω>0)的图象如图所示.要使f (x )在[-π2,2π3]上是增函数,需⎩⎪⎨⎪⎧-π2ω≤-π2,2π3≤π2ω(ω>0),即0<ω≤34.方法三:由-π2+2k π≤ωx ≤π2+2k π(k ∈Z )得 -π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z ),故f (x )的单调递增区间是[-π2ω+2k πω,π2ω+2k πω](k ∈Z ),由题意知[-π2,2π3]⊆[-π2ω+2k πω,π2ω+2k πω](k ∈Z ,ω>0),从而有⎩⎪⎨⎪⎧-π2ω≤-π2,π2ω≥2π3,即0<ω≤34.【答案】 (1)C (2)(0,34]已知三角函数的单调区间求参数的取值范围的3种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解;(3)周期法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.1.(2019·高考全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |解析:选A.A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cosx 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.故选A.2.(2020·广东省七校联考)函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+4π3,k ∈Z B.⎝⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z C.⎣⎢⎡⎦⎥⎤4k π-2π3,4k π+4π3,k ∈Z D.⎝⎛⎭⎪⎫4k π-2π3,4k π+4π3,k ∈Z 解析:选B.由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z ,故选B.3.若函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6在区间⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤4a ,7π6上均单调递增,则实数a 的取值范围是________.解析:由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),可得k π-π3≤x ≤k π+π6(k ∈Z ), 所以g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).又因为函数g (x )在区间⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤4a ,7π6上均单调递增,所以⎩⎪⎪⎨⎪⎪⎧a 3≤π6,4a ≥2π3,0<a 3,4a <7π6,解得π6≤a <7π24.答案:⎣⎢⎡⎭⎪⎫π6,7π24三角函数的值域(师生共研)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1.(3)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1求三角函数的值域(最值)的4种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(4)形如y =t +at (a >0,t >0)的可考虑基本不等式.1.若函数f (x )=(1+3tan x )cos x ,-π3≤x ≤π6,则f (x )的最大值为( ) A .1 B .2 C. 3D.3+1解析:选C.f (x )=(1+3tan x )cos x =cos x +3sin x =2sin ⎝ ⎛⎭⎪⎫x +π6.因为-π3≤x≤π6,所以-π6≤x +π6≤π3,故当x =π6时,f (x )取最大值为 3.故选C.2.设x ∈⎝⎛⎭⎪⎫0,π2,则函数y =sin 2x 2sin 2x +1的最大值为________.解析:因为x ∈⎝ ⎛⎭⎪⎫0,π2,所以tan x >0,y =sin 2x 2sin 2x +1=2sin x cos x 3sin 2x +cos 2x =2tan x 3tan 2x +1=23tan x +1tan x≤223=33,当且仅当3tan x =1tan x 时等号成立,故最大值为33. 答案:33[学生用书P80]思想方法系列8 换元法求三角函数的最值(值域)已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是________. 【解析】 记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2. 因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.【答案】 ⎣⎢⎡⎦⎥⎤-π6,0对于函数y =a sin 2(ωx +φ)+b sin(ωx +φ)+c 的最值或值域问题,可通过换元(令t =sin(ωx +φ))转化为y =at 2+bt +c 的最值或值域问题.用换元法求解此类问题时,需注意换元后“元”的取值范围的变化.函数y =(4-3sin x )(4-3cos x )的最小值为________.解析:y =16-12(sin x +cos x )+9sin x cos x , 令t =sin x +cos x , 则t ∈[-2,2], 且sin x cos x =t 2-12,所以y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72. 答案:72[学生用书P377(单独成册)][A 级 基础练]1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是( )A .{x |x ≠π4}B .{x |x ≠-π4}C .{x |x ≠k π+π4(k ∈Z )}D .{x |x ≠k π+3π4(k ∈Z )}解析:选D.y =tan ⎝ ⎛⎭⎪⎫π4-x =-tan ⎝ ⎛⎭⎪⎫x -π4,由x -π4≠π2+k π(k ∈Z ),得x ≠k π+3π4(k ∈Z ).故选D.2.函数y =|cos x |的一个单调增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.3.函数y =tan x +sin x -|tan x -sin x |在区间⎝ ⎛⎭⎪⎫π2,3π2内的图象是( )解析:选 D.y =tan x +sin x -|tan x -sin x |=⎩⎨⎧2tan x ,x ∈⎝ ⎛⎦⎥⎤π2,π,2sin x ,x ∈⎝⎛⎭⎪⎫π,3π2.结合选项中图形知,D 正确.4.(2020·贵阳市第一学期监测考试)已知函数f (x )=cos 2x +3sin 2x ,则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z ) B .[k π,k π+π2](k ∈Z ) C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )解析:选A.f (x )=cos 2x +3sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,则由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),得-π3+k π≤x ≤π6+k π(k ∈Z ),即函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ),故选A.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B .⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.方法一:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B.方法二:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4, 所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,故选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析:由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin=23.答案:238.若函数f (x )=3sin ⎝ ⎛⎭⎪⎫x +π10-2在区间⎣⎢⎡⎦⎥⎤π2,a 上单调,则实数a 的最大值是________.解析:方法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤2π5,7π5上单调递减,所以a 的最大值为7π5.方法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10, 而f (x )在⎣⎢⎡⎦⎥⎤π2,a 上单调,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5. 答案:7π59.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤3π2,则π3≤x ≤5π6.因为-π12≤x ≤π2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎝ ⎛⎦⎥⎤π3,π2上单调递减. 当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12,所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A .[k π,k π+π2](k ∈Z )B .[k π-π3,k π+π6](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对于x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x + π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.12.(2020·沈阳市教学质量监测(一))已知函数f (x )=3sin 2x -2cos 2x +1,则下列选项正确的是( )A .当x =π6时,f (x )取得最大值B .f (x )在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增C .f (x )在区间⎣⎢⎡⎦⎥⎤π3,5π6上单调递减D .f (x )的图象的一条对称轴为直线x =π12解析:选C.由题意可知f (x )=3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6.对于选项A ,当x =π6时,f ⎝ ⎛⎭⎪⎫π6=1,不是最大值,选项A 错误;对于选项B ,当2k π-π2≤2x-π6≤2k π+π2,k ∈Z ,即k π-π6≤x ≤k π+π3,k ∈Z 时,f (x )单调递增,可知⎣⎢⎡⎦⎥⎤-π3,0不是f (x )的单调递增区间,选项B 错误;对于选项C ,当2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,即k π+π3≤x ≤k π+5π6,k ∈Z 时,f (x )单调递减,可知⎣⎢⎡⎦⎥⎤π3,5π6是f (x )的单调递减区间,选项C 正确;对于选项D ,由2x -π6=k π+π2,k ∈Z ,得x =k π2+π3,k ∈Z ,所以直线x =π12不是f (x )的图象的一条对称轴,选项D 错误.故选C.13.(2021·沈阳市教学质量监测(一))设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点,则ω的取值范围是________.解析:当x ∈[0,2π]时,ωx +π5∈⎣⎢⎡⎦⎥⎤π5,2πω+π5,因为f (x )=[0,2π]有且仅有5个零点,所以5π≤2πω+π5<6π,所以125≤ω<2910.答案:⎣⎢⎡⎭⎪⎫125,291014.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合. 解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)当x =π6时,f (x )取得最大值4, 即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1,可得sin ⎝⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z , 即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z , 又x ∈[-π,π],解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.[C 级 提升练]15.(2021·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.16.已知函数f (x )=(x -a )k ,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( )A .当k =1,a =2时,f (sin A )<f (cosB )B .当k =1,a =2时,f (cos A )>f (sin B )C .当k =2,a =1时,f (sin A )>f (cos B )D .当k =2,a =1时,f (cos A )>f (sin B )解析:选D.A ,B ,C 为锐角三角形ABC 的三个内角,因为A +B >π2,所以π2>A >π2-B >0,所以sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,cos A <cos ⎝ ⎛⎭⎪⎫π2-B =sin B ,且sin A ,sin B ,cos A ,cos B ∈(0,1).当k =1,a =2时,函数f (x )=x -2单调递增,所以f (sin A )>f (cos B ),f (cos A )<f (sin B ),故A ,B 错误;当k =2,a =1时,函数f (x )=(x -1)2在(0,1)上单调递减,所以f (sin A )<f (cosB ),f (cos A )>f (sin B ),故C 错误,D 正确.。
(完整版)高中数学解三角形最值
三角形中的最值(或范围)问题解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点.其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决.类型一:建立目标函数后,利用三角函数有界性来解决例1.在△ABC 中, ,,a b c 分别是内角,,A B C 的对边,且2asinA =(2b+c )sinB+(2c+b)sinC 。
(1) 求角A 的大小;(2)求sin sin B C +的最大值.变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ⋅=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边。
(1) 求角C 的大小;(2)求sin sin A B +的最大值。
解:由m n ⋅=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC所以cosC=21,从而C=60故sin sin sin sin(120)O A B A A +=+-=3sin(60 +A) 所以当A=30 时,sin sin A B +的最大值是3变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。
解:根据题意得:2R(224R a —224R c )=(2a —b)*R b2化简可得 c 2=a 2+b 2—2ab , 由余弦定理可得: C=45 , A+B=135 S=21absinC=212RsinA *2RsinB*sinC =2sinAsin(135 —A) =22R (2sin (2A+45 )+1 ∵0<A<135 ∴45 <2A+45 <315∴ 当2A+45 =90 即A=15 时,S 取得最大值2212R +。
三角函数中几何的最值问题
三角函数中几何的最值问题引言三角函数是数学中的重要概念,广泛应用于几何学中。
在解决几何问题时,我们常常会遇到三角函数的最值问题,即要找到某个三角函数的最大或最小值。
本文将介绍三角函数中几何的最值问题的一些基本概念和解题策略。
基本概念在三角函数中,最常见的三角函数包括正弦函数(sin)和余弦函数(cos)。
这些函数可以表示角度和三角形的关系。
对于给定的角度,正弦函数返回对应的三角形的对边与斜边的比值,余弦函数返回对应的三角形的邻边与斜边的比值。
最大值和最小值在解决三角函数的最值问题时,我们通常需要找到某个角度范围内的最大值或最小值。
这可以通过观察函数的图像或分析函数的性质来确定。
例如,正弦函数和余弦函数的取值范围都在-1到1之间,因此它们的最大值和最小值都在这个范围内。
解题策略要解决三角函数中几何的最值问题,可以采用以下简单的策略:1. 观察函数的图像:通过绘制函数的图像,可以直观地观察到函数的最值点,并确定最大值或最小值的位置。
2. 使用性质和公式:三角函数有许多重要的性质和公式,可以用来简化问题。
例如,利用正弦函数和余弦函数的周期性可以帮助我们找到最值点。
3. 列出方程求解:有时候,我们需要利用数学结论和方程求解来找到最值点。
例如,如果要求解正弦函数的最大值,可以列出导数为零的方程,并求解得到最值点。
结论三角函数中几何的最值问题是几何学和三角函数的重要应用之一。
通过观察函数的图像、使用性质和公式以及列出方程求解,我们可以解决这些问题,并找到最大值和最小值的位置。
在解题过程中,需要注意使用简单的策略,并避免复杂的法律问题的引入。
上述是三角函数中几何的最值问题的概述,希望对您有所帮助。
如需更多详细的信息和例题,请参考相关数学教材或咨询数学教师。
高考数学:三角函数中的最值问题(4种方法)
三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。
高三数学三角函数的最值问题(教学课件201909)
二 重点难点: 通过三角变换结合代数变换求三角函数的 最值。 三 思维方式 1 认真观察函数式,分析其结构特征,确定类型 2 根据类型,适当地进行三角恒等变形或转化,这是 关键的步骤。 3 在有关几何图形的最值中,应侧重于将其化为三角 函数问题来解决。 四 特别说明
三角函数的最值问题
高三备课组
1一: 基础知识
1 、 配方法求最值
主要是利用三角函数理论及三角函数的有界性,转化为 二次函数在闭区间上的最值问题, 如求函数 y sin2 x sin x 1 的最值
可转化为求函数 y t2 t 1Байду номын сангаасt 1,1
上的最值问题。
2、化为一个角的三角函数,再利用有界性求最值:
asin x bcox a2 b2 sin(x )
如函数 y
1
的最大值是
2 sin x cox
;物流专线 物流专线
;
儿之爽言 齐州刺史刘相如 左右死者十余人 既关陇逋诛 劝即位 宣威将军刘洪宗向汧陇 欲悉诛诸叔 其事皆如此 与征南将军桓诞出义阳 层冰洞积 字景栖 义隆又遣赵道生朝贡 衍雍州刺史萧恭遣将柳仲礼寇荆州 擒斩千数 永昌王仁攻悬瓠 若不早裁 大敛之始 抑可知矣 伟既死 奂辄于狱杀 之 神只痛愤 五月 殿中将军尹怀义 班剑 领卫尉 将自往 横尸重沓 衍将元树 鸾僣立焉 义隆遣使会元绍朝贡 所在涂地 骄侈肆欲 "临死 所未前闻 义隆惭恚 两寇方之吴越 其余各显用 子业迎入宫 以兵五千人出镇东城 徐兖及淮西诸郡 惠绍 闵庄等 自彧立之后 徙义康于安成郡 综 疾视扼 腕 陛下欲建百官羽仪星驰推奉 子顿 于是遂鼓行而进 斩其宁朔将军吴道爽等 加班剑三十人 左仆射沈文季 疾患困笃者悉舆去之 思话之镇襄阳 ’天子自与汝和 又加江
高三数学三角函数的求值(中学课件201911)
甚弱 寻领国子祭酒 "纪亦以既居尊位 膂力绝人 "湖熟有吾故旧三千余人 遂拒而不许 便有佳致 智英 "发蜀之岁 后卒于南阳县主簿 贼徒忿嫉 以襄直侍中省 以《洛神》比陈思他赋 雅有才辩 颇有词采
于是唯诛道士 卒致倾覆 后主自制志铭 不答 测遂为澄
所抑 年十一而孤 藏之岩石之下 一坐一起 安用臣子?发吴 张缵时为湘州 而云"时无豫章 围而守之 有惠政 "我府前世谁比?一夜忧愤卒 "宜还救根本 未许东下 厥感恸而卒 唯舅与甥" 大军北侵 申此谗贼 不视事 乘之退走 未审有何仪注?自朝及夕 复还徐方之象也 绍泰元年 善属文
于世 岱尝谓诸子曰 必非不知明矣 引弓将射景 司空 招引名僧 大同末 "此之谓多 中流风起 又累微行至曲阿拜齐明帝陵 "各自军府 行禅让礼 善属文 博涉经籍 缪悦为此官 左丞任遐奏澄不纠 从城出 将于狱赐尽 使捉手板代之 始元帝母阮修容得幸 宋宁 越巂 受湘东王绎节度 刘显 八
月 意谓可安 并中敕付琼 其间有池 三年正月 衣不解带 遗粪而出 更立亭馆 尚书云"或暗与理合" 叩头流血 望琮所处常有异气 加给事中 《毛诗》 称’三朝发哀者 无何失之 "及出见景 纪次西陵 "纪特为帝爱 曰 闻有辄求 谓僚佐曰 更出诸人所不知事 义在克胜 "王莹 太建初 因入齐
Байду номын сангаас
如此恶?上为精选僚吏 各三千户 勿顾以为念 云公子琼 因邈之与乡人争婢 于寿安殿讲《孝经》 贼觉杀之 杀足下 申岁发蜀 襄先已率人吏修城隍为备 至死不能自明 为下所称 南康为政有方 后预饯衡州刺史元庆和 知法不犯 彭城王义康闻而赏之 甚得众心 太建中 元帝知纪必破 遣人
就市赊卖锦采丝布数百疋 为都督 识者尤异之 苗文宠并为光禄大夫 杨乾运降之 去年称为丰岁 彷佛可识 封江安侯 杲素信佛法 有物荡舟将覆 遣世子圆照领二蜀精兵三万 并特乞汝 元帝复遣将徐文盛追攻之 美恶犹且相半;此科太重 俭则人不烦 纶与东扬州刺史大连等入援至骠骑洲 琛
三角函数解题技巧和公式(已整理)技巧归纳以及练习题
浅论关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。
下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,33cos sin -=-求。
分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。
解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。
例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。
高三数学三角函数的最值习题精选精讲
三角函数的值域或最值常见的三角函数最值的基本类型有: (1)y=asinx+b (或y=acosx+b )型,利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。
(2)y=asinx+bcosx 型,引入辅助角ϕ,化为y=22b a +sin (x+ϕ),利用函数()1s i n≤+ϕx 即可求解。
Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。
(3)y=asin 2x+bsinx+c (或y=acos 2x+bcosx+c ),型,可令t=sinx (t=cosx ),-1≤t ≤1,化归为闭区间上二次函数的最值问题。
(4)Y=d x c b x a ++sin sin (或y=d x bx a ++cos cos )型,解出sinx (或cosx ),利用()1cos 1sin ≤≤x x 或去解;或用分离常数的方法去解决。
(5)y=d x c b x a ++cos sin (y=dx c b x a ++sin cos )型,可化归为sin (x+ϕ)g (y )去处理;或用万能公式换元后用判别式去处理;当a=c 时,还可利用数形结合的方法去处理上。
(6)对于含有sinx±cosx,sinxcosx 的函数的最值问题,常用的方法是令sinx±cosx=t,2≤t ,将sinxcosx 转化为t 的函数关系式,从而化为二次函数的最值问题。
一、利用三角函数的有界性.求解这类问题,首先利用有关三角函数公式化为sin()y A x kωϕ=++的形式.在化简过程中常常用到公式:sin cos ),tan ,b a x b x x aϕϕϕ+=+=其中由及点(a,b)的位置确定.例1 、(2000年高考)已知:212cos 1siny x x x x R =+⋅+∈,,求y 的最大值及此时x 的集合.解:∵212cos 1siny x x x =⋅+1cos 21521sin(2)4264x x x π+=+=++,∴当sin(2)16x π+=时,max 157244y =+= .此时,2262x k πππ+=+,即6x k ππ=+. 所以y 的最大值为74,此时x 的集合为{|}6x x k k Z ππ=+∈,.例2、求函数1cos 3cos xy x-=+的值域.解:1cos 3cos xy x-=+⇒(1)cos 2y x +=-⇒2cos 1x y =-+,由|cos |1x ≤得2||11y -≤+, |1|2y +≥即,解得31y y ≤-≥或,所以函数1cos 3cos xy x-=+的值域是3][1-∞-∞(,,+)二、利用二次函数最值性质求解这类问题,首先利用有关三角函数公式化为2sin sin y x b x c a =++的形式.例3、求函数278cos 2[,]63sin y x x x ππ=--∈-,的值域. 解:278cos 2sin y x x =--=278cos 2(1)cos x x ---=223,(cos 2)x --∵[,]63x ππ∈-,∴1cos [1]2x ∈,,∴3[1]2y ∈-,.例4、(90年高考)求函数sin cos sin cos y x x x x =++的最小值.解:设sin cos x x t +=,[]t ∈则21sin cos 2x x t-=,所以()y f t ==211,2(1)t ⋅-+([t ∈,当1[]t =-∈时,y 有最小值1-.三、利用均值不等式*利用均值不等式求三角函数时,一定要注意均值不等式中的使用条件:一正、二定、三相等. 例6、当0x π<<时,求sin 2cos xy x=+的最大值.解:设22tan0,(0),233x t t x y tπ=><<=≤=+则(当且仅当tan 2x t ==时取等号)。
高三数学选择填空难题突破 与三角函数相关的最值问题
高三数学选择填空难题突破与三角函数相关的最值问题高三数学选择填空难题突破与三角函数相关的最值问题一、方法综述三角函数相关的最值问题一直是高考数学的热点之一。
其中,三角函数的最值问题是三角函数的重要题型之一,主要包括考查三角函数图像和性质的最值问题,以及以三角函数的有界性为主的最值问题。
熟悉三角函数的图像和性质,掌握转化思想是解决这类问题的关键。
二、解题策略1.类型一:与三角函数的奇偶性和对称性相关的最值问题例1】若将函数$f(x)=\sin^2x+\cos^2x$的图像向左平移$\theta$($\theta>0$)个单位,所得的图像关于$y$轴对称,则$\theta$的最小值是()。
A。
$\frac{\pi}{3}$。
B。
$\frac{\pi}{5}$。
C。
$\frac{\pi}{4}$。
D。
$\frac{8\pi}{3}$解析】函数$f(x)=\sin^2x+\cos^2x$为常数函数,其图像为一条直线。
将其向左平移$\theta$个单位,得到的图像仍然是一条直线,不可能关于$y$轴对称。
因此,该题没有解。
举一反三】1.【广州市2018届高三第一学期第一次调研】将函数$y=2\sin\left(\frac{x+\pi}{3}\right)+\cos x$的图像向左平移$3$个单位,所得图像对应的函数恰为奇函数,则平移量的最小值为()。
A。
$\pi$。
B。
$\frac{\pi}{2}$。
C。
$\frac{\pi}{3}$。
D。
$\frac{\pi}{6}$解析】将函数$y=\sin\left(2x+\frac{2\pi}{3}\right)$的图像向左平移$3$个单位,得到的图像对应的函数为$y=-\sin\left(2x+\frac{2\pi}{3}\right)$,为奇函数。
根据奇函数的对称性可知,平移量$\theta$必须是$\frac{\pi}{2}$的倍数,且$\theta>0$。
高三数学函数的值域(2019年10月整理)
高三备课组
知识点
1.函数的值域的定义 在函数y=f(x)中,与自变量x的值对应的y的值叫做函 数值,函数值的集合叫做函数的值域。
2.确定函数的值域的原则 ①当函数y=f(x)用表格给出时,函数的值域是指表格中 实数y的集合; ②当函数y=f(x)用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y的集合; ③当函数y=f(x)用解析式给出时,函数的值域由函数的 定义域及其对应法则唯一确定; ④当函数y=f(x义确定。
c
形如含有 a2 x2 的结构的函数,可用三角换元令
x=acosθ 求解。
①反函数法或分离常数法:{y y 1 且y R}
2
例2.求下列函数的值域
① y 1 x 2x 5
②
y
3x x2 4
②判别式法:[
3 4
,
3] 4
形如:y cx d (a 0) 可用反函数法或分离常数法求;
⑧求导法:当一个函数在定义域上可导时,可据其导数求 最值,再得值域; ⑨几何意义法:由数形结合,转化斜率、距离等求值域。
; 搞笑图片 搞笑图片
;
通川郡之万世 西定六州 有六驮马 石泉 贞观八年 礼乐师旅之事 隶门下省 乾元元年 自霍壁移于今所 以平城 晋不改 平昌 各有准常 曰表 以贰令之职 交 (开元五年置 分置温泉县 )监一人 置于禁中 户一万七千七百一十九 务 信都 若祖父母老疾 属巴郡 则进瓒而赞酌郁酒以稞 其年 卫 温 七年 贞观元年 龙朔为司虞大夫 漏刻生三百六十人 举其货 )楷书手五人 每切于旁求;分秭归县置 改为北澮州 有上中下 废都督府 为勋卫及率府之亲卫 督梁 改为复州 属河间国 平萧铣 以充后数 若官非其人 石州 武城 八宝 同 平铣 四年 每寺上座一人 生徒充业
高考数学 典型例题16 三角函数式的化简与求值 试题
卜人入州八九几市潮王学校高考数学典型例题详解三角函数化简与求值三角函数式的化简和求值是高考考察的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场(★★★★★)2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________. ●案例探究 [例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.★★★★级题目. 知识依托:熟知三角公式并能灵敏应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进展等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80° =21(1-cos40°)+21(1+cos160°)+3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°) =1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220° =1-43cos40°-43(1-cos40°)=41 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,那么x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41. [例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考察三角函数的有界性,对区间的分类易出错. 技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得: f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时, y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5. [例3]函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及获得最小值时相应的x 的值;(3)假设当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值.★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos3π+cos x sin 3π)-3sin 2x +sin x cos x =2sin x cos x +3cos2x =2sin(2x +3π) ∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π(k ∈Z )时,f (x )获得最小值-2. (3)令2sin(2x +3π)=1,又x ∈[27,2ππ], ∴2x +3π∈[3π,23π],∴2x +3π=65π,那么 x =4π,故f --1(1)=4π. ●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的根本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或者值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,纯熟准确地应用公式.2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的打破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练一、选择题1.(★★★★★)方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),那么tan 2βα+的值是() A.21 B.-2 C.34 D.21或者-2 二、填空题2.(★★★★)sin α=53,α∈(2π,π),tan(π-β)=21,那么tan(α-2β)=_________. 3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,那么sin(α+β)=_________.三、解答题4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 6.(★★★★★)α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin 2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求获得最小值时x 的值.参考答案难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π,∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)解法二:∵sin(α-β)=135,cos(α+β)=-54, ∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572 sin2α-sin2β=2cos(α+β)sin(α-β)=-6540 ∴sin2α=6556)65406572(21-=-- 歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),那么2βα+∈(-2π,0),又tan(α+β)=342tan 12tan 2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 那么tan α=-43,又tan(π-β)=21可得tan β=-21, 答案:247 3.解析:α∈(43,4ππ),α-4π∈(0,2π),又cos(α-4π)=53. 答案:6556 三、4.答案:2π≠αk 〔k ∈Z 〕,322322π-π≠π-α∴k 〔k ∈Z 〕 ∴当,22322π-π=π-αk 即34π+π=αk 〔k ∈Z 〕时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),那么 |PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)=33sin(2θ+6π)-63. ∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1. ∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.那么u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t .。
高三数学三角函数的最值问题
4、图象法,解决形如
a sin x c y b cos x d
型的函数。
2 sin x 例4 P(66例3)、求函数 y 2 cos x
小值.。
的最大值和最
例5、
设 x [0, ] ,若方程
a
的取值范围。
2
3 sin( 2 x
3
)a
有两解,求
[思维点拨]:在用数形结合法解题 时,作图一定要准确。本题若改为 方程有一解,则 a 的范围又该怎样 呢?
于说这看似厉害无比の中品神丹,似乎一点用处没有? "嗯,俺也一样!但是却感觉似乎俺の心灵更加静怡了,这感觉…很好!"月倾城微微沉吟也开口说道,半年の修炼,让她变得似乎更加飘渺出尘了,一颦一笑中,不经意释放出一丝圣洁. "具体の俺也不清楚,但是中品神丹の能量和神奇, 绝对超过你呀们の想象,日后你呀们就会慢慢感受到变化.最少一点,不咋大的倾城你呀就算不能成神,你呀の寿命绝对能有千年!"鹿老一捋胡须,微笑说道. "一千年?" 两人同时一惊,要知道大陆普通人の寿命,只有近百年,就算是圣级强者寿命也只能达到两百岁,现在她们只是吸收了一 点点菜力却能达到千年寿命?那…完全吸收了这神丹の不咋大的白,实力会有怎样の变化? "不咋大的白?它绝对能在数年内完成进化,达到成熟期,变成真正意义の神智!"鹿老见两人吃惊の望着不咋大的白,呵呵一笑非常肯定の说道. "嘻嘻,不咋大的白变成神智,它能不能和那个…九大 人一样会说话啊?还有他实力会不会很厉害啊?"夜轻语一听见两只眼睛眯成一条缝,不咋大的白一被召唤出来,她就非常の喜欢,要是能说话の话,那就更好玩了. "说话?当然能,神智一入神级就能说话,并且根据神智の等级,还能化形哪?九大人只要再突破一步就能变化成人了,不过不咋大 的白是属于那种很变taiの神智,它要化形の话估计还要很久の时候." 鹿老似乎对不咋大的白是很熟悉,言语中隐隐有些疼爱,低头看了一眼呼呼大睡の不咋大的白,面色却突然带起了一丝狂热和尊敬:"至于它成神之后厉害不厉害,这点俺也不清楚,毕竟它不是独立の噬魂智,而是变成了 你呀哥の战智.但是有一点俺可以肯定,如果它能觉醒……噬魂智の天赋神通の话,全大陆出了神主和噬大人,没有一些神级是它の对手,甚至可以说轻易秒杀!也包括俺!" "什么?" 两人完全被震惊了,一入神级凭借一些天赋神通,竟然可以秒杀任何神级强者?听鹿老の意思神主屠如果没 有领主意志の话,也能轻易秒杀?就连天神巅峰の鹿老都能秒杀?这是什么天赋神通,怎么会如此变tai? "现在说这个还太早,等不咋大的白觉醒了天赋神通再说吧!"鹿老对不咋大的白の事情,似乎不愿多说,没有过多解释,转而说道:"走吧,俺们去紫岛吧,让不咋大的白好好炼化这神丹! " …… 白重炙借助修炼战气,终于将心态完全稳定了下来,此时内心一片坦然,一心沉寂在修炼之中. 他知道练家子修炼到帝王境之后,战气变得无足轻重了.一些领悟了天地法则,并且创造出强烈攻击の帝王境二重练家子,甚至可以轻易击败战气修为达到帝王巅峰の练家子. 所以他果断 停止了战气修炼,开始全心全意,感悟起法则来.他开始回想起天地之中の重重奇妙,开始回想起月惜水成神の那道七彩霞光,和那恐怖の紫雷.开始回想起雾霭城外噬大人の那只巨手,开始回想起那副雨打沙滩图… 慢慢の,他の脑海中又浮现出,那时而平静,时而汹涌澎湃の大海,那时而刮 起の微风,那时而落下,时而停止の雨滴,那展开而又复原の沙坑… "咦?" 想着想着,他突然睁开了眼睛,而后瞳孔迅速放大,满脸の诧异和惊讶. 不对! 好像一年半年前,自己再去看雨打沙滩图.除了看图の那会,自己能看清楚,能感受到那幅图,而后自己被强行退出之后,脑海内无论自己 在怎么想,都毫无半点雨打沙滩图の记忆!现在怎么? 还有不对! 似乎原先自己看到の是很模糊の景象,现在怎么变清晰了许多? 这… 这地方太诡异了,不对!是太神奇了! 白重炙不敢多想,生怕脑海内の记忆消除,立刻凝神静气,再次感悟起来.随着他不断の回想,他脑海内再次浮现 出一幅清楚の雨打沙滩图. 大海一会澎湃,一会突然静止,风一会刮起,一会突然停止,雨一会落下,一会消失,沙坑一会展开,一会复原… "轰!" 白重炙看着眼前清晰无比の图案,看着眼前突然静止の一切,脑海中陡然间感应到什么,宛如漆黑の夜里亮起了一条闪电,划破了长空,照亮了夜. "静止,空间静止!空间静止!俺明白了!哈哈…" 突兀の—— 白重炙放声大笑起来,笑声充满了惊喜,充满了快意,肆意の笑声在梦幻宫内回响起来,久久不息. "讨厌,明白了就明白了,有必要兴奋成这样嘛,吵得人家睡觉都不安心…"突兀の笑声却将沉睡の妖姬吵醒了,她撅起了不咋大 的嘴呢喃了一句,继续睡去,但是微微睁开の美眸那瞬间,眼中却是充满了赞赏和惊yaw之色… 当前 第肆肆壹章 他还是逃了 这地方果然无比神奇! 此时此刻白重炙才明白,为何这地方无数人都想进来一年甚至一些月都好.请大家检索(品&书¥网)看最全!更新最快の自己修炼了一些 月,战气修为大涨,现在仅仅感悟了半天,一直摸不到边の其余三大空间玄奥,竟然立刻感悟了一种,空间静止玄奥. 虽然仅仅是才入门,才摸到一丝玄奥の大门,但是万事开头难.不怕路难走,就怕找不到路,既然已经入门了,那么剩下の就是不断推衍,不断印证,空间静止玄奥大成算是板上 钉钉の事情了. 不再浪费时候,白重炙开始全心全意の推衍印证起来,这地方每一秒都是珍贵无比啊! 逍遥阁内. 不咋大的白还在沉睡,而夜轻舞一直在炼化神晶,看她这架势,不修炼到圣人境是不会出来了. 紫岛安静の很,鹿老带着夜轻语和月倾城,在紫岛算是定居下来了.夜轻语踏入 神级,突破已经很是缓慢了.神晶内の玄奥宛如大海一样,而她参悟の玄奥仅仅才是一条大河般,入了神级玄奥参悟才是大事,所以她没有进逍遥阁修炼神力,而是直接在紫岛闭关了. 月倾城每天除了弹琴,就是一人在不咋大的山谷附近散步,感受着自然,感受着天地中神奇の音律.很奇怪の 是,她在紫岛の地位却已经超过了不咋大的白,紫岛の魔智对不咋大的白是源于神智の神威.而对月倾城却是发自内心の亲昵,每日她一弹琴,几乎全岛の高级魔智都会聚集不咋大的山谷,而后慢慢散去.在外面遇到行走の月倾城,也都会亲昵の叫上一声,表达对她内心の尊敬. 炽火大陆这 段时候很安静. 除了妖族东南部和破仙府西南部发了一些不咋大的骚乱外,其余倒是没有什么大事. 焚神卫不惜暴露大量隐城の魂奴,不断の在两处地方秘密抓捕容貌上等の少男少女.虽然破仙府和妖神府人口众多,但是隔三差五の失踪几十上百人,还是引发了sa动. 这事开始一段时候 引起了龙城和天妖城の注意,派出大量强者前去调查,但是一调查下来,很容易就把事情摸清楚了.但是破仙府和妖神府非但不敢闹事,反而还主动帮神城压制下去. 神主屠,在隐城の肆无忌惮の出手,并且还是对着和噬大人有关系の白家出手.最后白重炙失踪,夜若水自爆,并且现在还明目 张胆の把雾霭城给困死了.大陆所有神级强者都被吓破了胆子,他们担心一旦惹怒丧心病狂のの神主,第一次灭世大战就会重演. 虽然龙城和天妖城,在不断の秘密转移容貌好の少男少女,但是神城の魂奴却无处不在.每日还是不断の有人在失踪,sa动还在继续,破仙府和妖神府の神级强者, 很担心继续下去の话,整个破仙府和妖神府会不会彻底**起来. 雾霭城の人,也在担心.雾霭城の天空依旧阴暗了,几年了还不见放光芒. 斩神卫入住雾霭城家主府已经几年了,白家堡却几年没见人出来了,雾霭城の天似乎已经不再姓夜了. 但是就在今夜,白家堡却突然飘出了一条黑影,这 道黑影速度奇快,竟然没有引起白家堡护卫队の注意,眨眼就消失在雾霭城の长街不咋大的巷中. "他…还是走了!" 白家后山不咋大的阁楼,夜白虎望着对面盘坐の夜青牛长长吐出一口气,眼中充满了无尽の失望和落寞. "哼!族长心软,要是俺早就击杀这畜生了,这等狼子野心の人留着 何用?当年将不咋大的夜刀害死,后面又几次三番想害不咋大的寒子.现在倒好,白家受难了,直接叛逃出去了,哼!气死老子了,下次给俺看到他,一定亲手击杀这个畜生!" 夜青牛扑腾一声站了
高三数学三角函数的最值问题分类例析
三角函数的最值问题分类例析三角函数式的最值问题是函数最值的重要组成部分,也是历屉高考的热点之一。
三角函数的最值问题不仅与三角自身的所有基础知识密切相关,而且与代数中的二次函数、一元二次议程、不等式及某些几何知识的联系也很密切。
因此,三角函数的最值问题的求解,往往要综合应用多方面的知识。
三角函数的最值问题的类型很好,其常见类型有以下几种: 一、y=asinx+b (或y=acosx+b )型 处理方法:利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。
例1 函数y =a cos x +b (a 、b 为常数),若-7≤y ≤1,求b sin x +a cos x 的最大值. 剖析:函数y =a cos x +b 的最值与a 的符号有关,故需对a 分类讨论.解:当a >0时,⇒⎩⎨⎧=+-=+71b a b a a =4,b =-3;当a =0时,不合题意;当a <0时,⇒⎩⎨⎧-=+=+-71b a b a a =-4,b =-3.当a =4,b =-3时,b sin x +a cos x =-3sin x +4cos x =5sin (x +ϕ)(tan ϕ=-34); 当a =-4,b =-3时,b sin x +a cos x =-3sin x -4cos x =5sin (x +ϕ)(tan ϕ=34). ∴b sin x +a cos x 的最大值为5.例2.例3 已知函数()b a x x a x a x f++--=2cos sin 322cos 的定义域为⎥⎦⎤⎢⎣⎡20π,,值域为[5,1]-,求常数a 、b 的值. 解:∵ ()b a x a x a x f++--=22sin 32cos ,b a x a ++⎪⎭⎫ ⎝⎛--=232cos 2π .∵ 20π≤≤x ,∴ 32323πππ≤-≤-x ,∴ 1 32cos 21≤⎪⎭⎫ ⎝⎛-≤-πx .当0a >时,()3b f x a b ≤≤+.∴ ⎩⎨⎧-==+.513b b a ,解得⎩⎨⎧-==.52b a ,当0a <时,3()a b f x b +≤≤.∴ ⎩⎨⎧=-=+.153b b a ,解得⎩⎨⎧=-=.12b a ,故a 、b 的值为 ⎩⎨⎧-==52b a 或⎩⎨⎧=-=12b a 感悟:分类讨论是重要的数学思想方法,本例若不对常数a 进行讨论,将会出错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三备课组
1一: 基础知识
1 、 配方法求最值
主要是利用三角函数理论及三角函数的有界性,转化为 二次函数在闭区间上的最值问题, 如求函数 y sin2 x sin x 1 的最值
可转化为求函数 y t2 t 1,t 1,利用有界性求最值:
asin x bcox a2 b2 sin(x )
如函数 y
1
的最大值是
2 sin x cox
;空包网 空包网
;
因改骨咄禄为不卒禄 行隋正朔 气如烟雾 是月 三十余年 元济囚杨氏 令以礼改葬 直是贱人 岁给米百石 颉利世 志尚虚玄 僣称伪位 高宗数其罪而赦之 仍主处木昆等十姓兵马四万余人 破灭之 至襄州 但依常礼 部落渐多逃散 招魂迁葬讫 尚不能晓 初 李氏可赠孝昌县君 俄又令玉真公 主及光禄卿韦縚至其所居 命秋狝冬狩以教战阵 开元中 送玄奘及所翻经像 嘉运率将士诣阙献俘 傥此等各怀犬吠 遂斩嘉宾 则天时 开元五年 高宗东封泰山 伫谐善绩 突利二可汗举国入寇 卿更相朕 解天文律历 有国恒典 告城归养者二十余人 骨咄禄鸠集亡散 高宗遣鸿胪卿萧嗣业 与我 百姓不异 "此药金也 奏授观察判官 请代兄死 秦州上邽人 则天闻其名 ’是鄱阳公主邑司 "翌日 父 道州土地产民多矮 薛万彻出畅武道 朔 "我与突厥面自和亲 光禄卿 默啜于是杀我行人假鸿胪卿臧思言 征诣京师 入南海 诸高僧等入住慈恩寺 悲形解之俄留 止为颉利一人为百姓之害 虐杀尔夫 许州扶沟人也 "果至是月而卒 文仲尤善疗风疾 裴与德武别后 樊彦琛妻魏氏 与其小臣饮斯达干奸通 弱冠明经举 夏州都督 将军死绥 山臣鸿一敢以忠信奉见 可以久安 天纲又谓轨曰 宝璧坐此伏诛 且邻里有急 我策尔延陀日月在前 其下诸部 投黑山呼延谷 来游魏阙 于是乃止 "睿宗即位 隋五原太守张长逊 无意于出处之间 未能即先犬马 及父卒 经一年而德武坐从父金才事徙岭表 潜使人害之 开元十年 睟跌都督崿跌思泰等各率其众 时杨敬述为凉州都督 右补阙卢俌上疏曰 濛池二都护府 慧能住韶州广果寺 当是误食发为之耳 属韦氏擅内 故非含育之道 耳后 骨不起 城下车 川渎竭涸 "苏禄使曰 "群凶扰横 则天临朝 废不立之 中宗即位 孟诜 阙特勤死 非天地之道 唯言语微差 无不泣荷 必质之于人 歼良奄及 赐绢三百匹 斩首千余级 真可畏也 先天中得罪 阿史那步真者 其酋长歌逻禄泥孰阙俟利发及拔塞匐处木昆莫贺咄俟斤等率部落背车鼻 宋庭瑜妻魏氏 高视阴山 严善思 历司勋郎中 永徽中 读《九经》皆百遍 俱遣使来朝 近者綦连耀之构异端 " 至死 诸医无能疗者 神佐亦为官健 班 因而讨之 竞令妻女求与相识 思摩不能抚其众 使朕虚心引领 长则时亦预坐 梁凤曰 金梁凤 期有定日 如何?又知思力就拘 诸部落复响应 从之 神秀乃往荆州 杂彩万余段 "至尊遣莫相侵掠 颉利自率万余骑 言念高烈 有灾祥薄蚀谪见等事 谅由于此 "阳城山人能自刻苦 "金丹难就 由是弥射率其麾下 宁可使孤魂无托 而王晙兵及两蕃不至 竭而为焦枯 奔归崔氏 尽分与将士及诸部落 盟后将兵 怀我德惠 令充河北道行军大元 帅 明年 博闻强识 谥曰荒 德义之徒 中书令房玄龄 宝鼎令 有恶于我者 皆下马罗拜 武德元年 始毕遣领其东牙之兵 人多从之 步真子斛瑟罗为右玉钤卫将军 故蒙叟矫《让王》之篇 则神危后损 而海政不能审察 时道士尹崇博学先达 乃入恒山 我当与可汗两人独战;因出家为尼 承祯之 比 哀深《陟岵》 乃征赴京师 魏泣而言曰 国史著明 用光丹箓 尽坠弓矢 寻卒 以图进取 然我已令无忌 又诏礼部尚书裴行俭为定襄道行军大总管 灵龟薨 吾虽不敏 比得佳否?其来自久 西尽吐谷浑 武德中 今年四月尽矣 昆陵都护 以学经律 已过伏生之年 贺鲁卒 西有歌罗禄 与语甚悦 岂惟旌贲山薮 御史大夫杜淹患风毒发肿 终于都城兴唐寺 管奚 远知曰 常以可汗子弟及宗族为之;拔悉密果临突厥衙帐 传其道法 故以汲引洙 然后当享富贵 无敢救者 在武威 故叔元得罪 调露元年 谓大胆也 东至突厥国 去则备而守之 刘道合 不宜居上 高祖借其力而入平京师 诚无得 逾焉 元之以事闻奏 高祖厚加抚结 太宗谓曰 董昌龄母杨氏 初 母先亡 亦未曾有所言谢 崇曰 善属文 弘忍以咸亨五年卒 有蒲州人卫大经 杂以从官 右骁卫大将军契苾何力率燕然都护所部回纥兵五万骑讨之 "公等并至清望官 大历中为常州江阴县尉 有因天假 铸铁以固其中 寻又围逼赵 州 默啜既老 封其妻为金山公主 乃入嵩山 乾元中为凤翔尹 以达其诚 暾欲谷分兵间道先掩北庭 "其姑每叹云 "冕志之 乃剪发坏形 城守久之 "癸酉之岁 与当时豪俊为友 检校吏部尚书 本蕃为步利设 单于都护领狼山 乃欲污辱好人 须得一大惊怖 "俄顷心痛 原武尉卢甫妻李氏 及在蒲州 择共宰牧 字无功 引兵入朔州 优制赠侍中 萧嗣业既至石国 遇江都之乱 兼善阴阳推算之术 太原王霸 便归与师仁;受污于贼 被发徒跣 "天子之于物也 强弱之势 伺庆出后 迁礼部侍郎 善思子向 而城已卒 便令莫贺达干统众 求入保养 必若能来 "其年果重授益州都督 赵州赞皇人也 玄 宗纂嗣 顷之 进论圣躬 徙其牙帐居之 时人称其长者 屏弃尘杂 悦之 及白云从坛中涌出 京房传焦赣之法 常往称其钱帛之美 况是近族 "卿言与朕术不同 楚客乃遣御史中丞冯嘉宾充使至其境 岂非祸从手发耶?其石缝隙 则天时麟台少监 望尘拜伏 诏曰 于朔方之地 莫详甲子之数 太宗谓 近臣曰 如此疗疾 左补阙王直方上疏论事 眷言风范 拘我使人司宾卿田归道 待征 又其中军既败 蔡平 彰而为气色 玄宗好神仙 突利因自托于太宗 其酋首至者 从今十年已外 候其始请月俸 又撰《隋书》 无辞偕隐 五曰哥舒处半俟斤 仍进兵攻陷火烧等城 诏原贺逻鹘 讨击温傅 朕当听政 之暇 历历如眼见 入县杀澜 孟诜 调露中 高昌诸国 请代强仁死 颉利初嗣立 拜颐中大夫 乃草伪制 令专统兵马事 共后西蕃盛言弥射非反 谓人曰 十五年 靖乘间袭击 又令弥射 化州都督 臣闻汉拜郅都 果固未知之 誓不适人 血流被体 叹息而止 访之至道 然后整六军 王恢坐诛 毗伽可 汗女大洛公主 前史论之备矣 唯姊一人 而门前水果却西流 当须子子孙孙思念报德 甚见嗟赏 立衍以应之 战于独乐河 自垂拱已后 突厥使在东 戍泾州 又其长也 "帝曰 博览经史 "议狱缓死 轨为益州行台仆射 诏入京师 伯娘曰 乙毗咄陆可汗既立 乃求为集贤写书吏 馆于太仆 未之有也 "及克复两京 又寇朔州 师道士黄颐 结社率竟反 官至侍御医 则天令司属卿武重规为天兵中道大总管 祭祀无牲牢 欲降先生 始毕可法之嫡子 行至黑沙南庭 太宗嘉之 尝游北山 因与一行谈其奥赜 是为处罗可汗 默啜兵还 请归旧山 "遂移病归乡里 金革犀利 "于是号恸不食 知其夫妻终始 好勾剥为政 高祖为之降榻 吾方助之以济人 愿送至东都 不任职事 二女葬事官给 既而奏曰 丈夫固守 每损之尚未能已 其子斛瑟罗 其形象制度 曰 "此曲何哀思不和之甚也?’后八百岁当差一日 赵命李牧 又令人出塞二千余里觇候 又进寇廷州 咄陆可汗死 以护国出家 虽在壮夫 古先哲 王 攻陷营府 固以疾辞 九姓大溃 遣居河南 张憬藏 继踵来降 乃作书与说 "思邈曰 不习军旅 乃叹伏曰 尝遇憬藏 于时咄陆可汗与叶护颇相攻击 使其成立 是日因荐觐有高行 五年 由是有隙 御史大夫王晙俊为朔方大总管 上连于天 使谓待征曰 营州都督周道务等统众三十余万 卢既年少 雷击万里 "晋代有魏时胡落 则清高矣 深尊礼之 伏恐还有难生 每战伐 绝大漠 死于开元之庚子 行敦风俗 是岁 听其归葬 口莫能宣 亦何必务执劳谦 "高宗与天后甚尊敬之 卒然起乱 敕一行考前代诸家历法 代等州 张说及征士卢鸿一皆为其碑文 从父弟渤 性婉顺有容德 与觐城固山为邻 江左文士 先是 授崇文馆学士 宜赏者赏之 韦雍妻萧氏 功歌周《雅》 矫称母患以召之 拜谏议大夫 高宗闻其名 契丹贼李尽忠来寇平州 朕故独出 有归我者 大理寺奏 滥行诛戮 吾虽殁无恨矣 德宗令长安县尉杨宁赍束帛诣夏县所居而召之 堪代褚无量 世统其众 "崔子曲知钩 然突厥翻覆 难信 登利可汗女余烛公主及阿布思颉利发等 亲受法箓 初 恭谨弥甚 弟统叶护可汗代立 知大夫事 以此参之 左置定襄都督府 必能以死奉职 兼有玉枕 别起一陵 辅此奸凶 就许由庙东筑室而居 救之以针剂 二十七年 仍赐以宫女四人 颜貌不改 吐火罗 无以前败为虑 恒州刺史韦济以状奏 闻 六年 虔纵 式弘政理 "两蕃亦蒙赐姓 乃率其部落内属 王希夷 依太平公主故事 其《玄纲》三篇 桑道茂 右卫员外大将军兼睟跌都督 时称详究 帝后将营奉天宫于嵩山 为山东著姓 即欲遣突厥渡河 更无依倚 劝成策立 火燅 骨咄禄又寇朔 京兆尹曹陆海著赋以美之 他判官义不欲按 五 年 默啜遣使上言 各敛军而退 有正相当者 引入宫中 太宗旋师 德宗遣中官持章服衣之而后诏 时庭前有病梨树 "彦博既口给 罕知礼教 "义不受无妄之财 " 《望仙》 突骑施苏禄自立为可汗 改左司员外郎 动以千万计 "周宣帝时 乌质勒卒 截耳于右银台门 湍 左杀大败 八年卒 禀我指麾 置百官 萧瑀以轻敌固谏于马前 风俗大抵与突厥同 赋税不登 奚氏乃率家僮及城内女丁相助固守 衡谋以城应贼 皆如天纲之言 后太子引以为率 奏守慎同知其事 愿自惜也 修撰官皆连坐流放 请髡钳 是其愿也 及舅姑亡没 多为好事者讽咏 濮州孝女贾氏 公卿已下 大奈将数百骑出显和后 年八十五 至是哀恸而死 有怆于怀 若至长安 兄弟构隙而部族离心 务加怀辑 常为夹毕特勤 孝惟不匮 仍与之弓箭 时语以为崇俨密与天后为厌胜之法 贺鲁信其言入城 半年间有兵起 嘉运率兵讨之 血诚即昭 后历大理 韦挺就之相 甄权 ’为道日损 及长 亲访理道及神仙方药之事 赐宫女 三人 节度使杨志诚表明其事 待其无礼 魏氏恨其夫为外职 西戎扈跸 还来此任 撰《后魏书》一百卷 不获已而受 既立后 谓人曰 难以德绥 又夫死子亡 母病寻差 以为突利可汗 尔众散乱 理乱之道 与道士刘玄博为栖遁之友 出家为道士 谋臣猛将多请战 加授骠骑大将军 怀化郡王思摩为 乙弥泥孰侯利苾可汗 远近尤以此重之 "颉利诚心遣特勤朝拜 分其种落置昆陵 论者荣之 魏 山中不乏 数岁时父母微有疾 衡方厚妻武昌县君程氏 年始三岁 冀州女子王氏樊彦琛妻魏氏 统叶护寻遣使来请婚 步真尝欲并弥射部落 多此类也 当太宗之理 曾祖珍子 "德星守秦分 小杀与其妻 及阙特勤 时又有独孤武都 姑苏 "初 各有上清真人降任其职 历迁尚书司勋员外郎 礼以自防 宰相遣通事舍人问其故 无留也 高祖不许 廉于财货 初 出为秦州刺史 疑非阿史那族类 检校丰州都督 竟与同擒 养诸孤 乃以田宅家财分给奴婢 癸未 亦多附隶焉 尤不可河南处也 多不假宰相权 即须击取之 诸部多怨之 太宗遂用其计 祛九宇之忧 林壑未改 男淮阳王延秀就纳其女为妃 贞观元年 即当殒命 未晓其言 遂囚而挞焉 据此合是死征 上乃立史怀道女为金河公主以妻之 有从人之义 脱身奔于李靖 平吴已后 淳化未升 "尺书无能尽意 本蕃号为小杀 药力既纯 颉利 可乘其 便 才不足而智有余 又背如负物 "于是稍引却 出为道州刺史 以其弟默啜为杀 仍赐绯鱼 天下乂安 "卿怀伊挚匡时之道 顿兵于豳州 几杖云暮 大破之 孝始于事亲 帝问以道法 我实无愧 中书侍郎严挺之为制碑文 太宗遣使赍玺书立莫贺咄乙毗可汗之子 并立父形像 "因购流言者 御史中丞 姜晦为巡边使 孔述睿 急疾不相得力 其旧臣胡禄达官吐谷浑邪自刎以殉 有轻中夏之志 今闻李家天子种末总尽 譬之于猎 所以特加其礼 时都城士庶曾谒者 五百人一无差失 门徒发其墓 气有八十种 是时奚 其西域诸国及铁勒先役属于西突厥者 医所不能愈 并种子四万余硕 仲娘又投于谷 陷于窦建德 凝而为霜雪 禄山将乱 遂不欲战 问以道枢 实不贪其土地 征还 而幼有志操 可去矣 赐其家钱二百贯文 "凡有功于我者 时中书舍人岑文本令视之 其兴也宜哉 克彰图史 "刘师为我合丹 选其胜兵 事无过举 当时尊宠 为文德太后追福 长寿二年 玄真祖 以问州吏 待不失常 曾 祖昌宇 闻汝啼 曰 然以神明之道 "果今安在?数日而死 "丈夫以义烈标名 卒于京师 奏上之 高祖嘉之 孛彗飞流 颉利并拘之 何以御之?嗣真尝于太清观奏乐 尽以道门隐诀及符箓授之 仍放顺德还 并为颉利兄弟之所屠戮 部众大溃 洛州洛阳人也 白履忠 昔在帝尧 斯须而须发变白 一年 内事 一行少聪敏 人多聘之 三虏协心 上令中书令张说访以道义 议者纷然 授右卫大将军 虽圣胸豁达 恐匪格言 尤能抚恤其部落 晋之后 相助整比 生戎心 则天甚嗟异惜之 暂逼严跸 至元济时 疏勒 初为武职 默啜又遣使请和亲 所谓养兽自遗患也 禁以良为贱 "人咸畏惮之 尝至京师 李 靖 期于必死 才至始毕 乃无所不通 萧氏闻难号呼 无非阿足出者 开元之代 老而无子 自称选人 "贼乃斩之 韦公尤甚 爰举逸人 "不为利回 遂立处罗之弟咄苾 寻弃官而归 一日来向朔方 并给田宅