Relativistic QFTH - Couplings on the Worldline

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :h e p -t h /9611044v 1 7 N o v 1996
Relativistic QFTH-Couplings on the Worldline ∗
Michael G.Schmidt a ),Christian Schubert b )
a )
Institut f¨u r Theoretische Physik,Universit¨a t Heidelberg,Philosophenweg 16,D-69120Heidelberg,Germany b )
Institut f¨u r Theoretische Physik,Humboldt-Universit¨a t zu Berlin,
Invalidenstr.110,D-10115Berlin,Germany
Abstract
In the framework of the worldline path integral approach to QFTH we dis-cuss spin and relativistic couplings,in particular Yukawa and axial couplings to spin 1

Talk presented by M.G.Schmidt at the Dubna Joint Meeting:International Seminar on Path Integrals:Theory and Applications,and 5th International Conference on Path Integrals from meV to MeV,Dubna,Russia,27-31May 1996
Introduction
Interacting relativistic particles are usually described by relativistic local quan-tumfield
moving on a space-time worldline xµ(τ)and interacting with backgroundfields.We here restrict our discussion to effective1-loop actions,i.e.the particles are running on a closed loop.
For a massive complex scalar in the loop one has(euclidean action;singularity at T=0to be renormalized)
Γscalar=−log det(−D2+V(x)+m2)
= ∞0dT
4
+ig˙xµ(τ)Aµ(x(τ))+V(φ(x(τ))(2)
if one has an(possibly nonabelian,matrix valued in color space)gauge background field and a“potential”(the second derivative of the QFTH-potential),e.g.∼φ,φ2 forφ3,φ4theory resp.Indeed this“first quantization”and the backgroundfield method were used intensively in modern string theory.In particular the recurrence to relativistic particles helped to write down nonlinearσ-models for xµ(σ,τ)on the “world sheet”[2].In the limit string tension1
T
.(3) It fulfils
1
∂τ2G B(τ,τ′)=δ(τ−τ′)−
1
mass”-coordinate of the
loop.More general background charges ρ(τ)instead of
1
T
e −m
2T

n =0
(−1)
n
4
(6)
×
τ1=T 0
dτ2...
τn −1 0
dτn
n
j =1
e y (τj )·D V (x (0))+ig ˙y µj (τj )y ρj (τj )
1
dηj ηj e ηj y (τj )·D F ρj µj (x (0))
.
In the case where only the potential is present this immediately leads to the minimal number of invariants.Also for the case of gauge interactions it is the most efficient form for obtaining the heat kernel expansion.Such expansions can be used in the calculation of fluctuation corrections around quasiclassical configurations.
The effective action (euclidean notation)for gauge fields A µcoupling minimally
to Dirac particles L =¯ψ
O ψwith O =O +=(∂µ+ig A µ)γµis ΓDirac =log det O =
1
2
Tr log(−D 2
µ1+gσµνF µν).
(7)
This contains a Dirac matrix valued potential but otherwise is similar to the scalar
theory (“second order formalism”).One can substitute the Dirac matrix trace by a Grassmann variable integration over ψ(τ)[6,5,9]
ΓDirac =−2

dT
2
ψµ˙ψ
µ(τ)−igψµ(τ)ψν(τ)F µν(x (τ))(9)
with a corresponding Green function
ψµ(τ)ψν(τ′) =
1
2
δµνsign(τ−τ′).
(10)
2
Surprisingly L D W L is supersymmetric(a remnant of local SUSY),i.e.invariant un-derδxµ=−2ηψµ,δψµ=η˙xµwith a constant Grassmann parameterη,though the boundary conditions break the SUSY.Introducing superfields in superspace ˆτ(τ,θ)( dθθ=1):Xµ(ˆτ)=xµ(τ)+√∂θ−θ∂
4
DXµD2Xµ−igDXµAµ(X) .(11) Thus the formalism is manifestly supersymmetric[6,8,10]and one can get the effective action with Dirac particles in the loop from the one with scalars by just substituting super Green functions
ˆG(ˆτ,ˆτ′)=G
B
(τ,τ′)+θθ′G F(τ,τ′)(12) in the bosonic calculation.This also explains the so-called“chain”-rule:substitute (index-)closed chains of˙G B(τ,τ′)=∂
2
couplings
Curiously the Yukawa coupling L Yuk=¯ψ(−iλφ)ψwas not translated to the worldline formulation until our recent work with M.Mondrag´o n and L.Nellen[11]. In a dimensional reduction approach it can be interpreted as a gauge coupling in a fifth dimension(after some redefinition ofγµ).Introducing a new superfield X5=˜x5+

2DX5=

4¯XD¯X+iλφ(X
µ
)¯X(ˆτ)
=x25
2
ψ5˙ψ5+iλ(x5φ(x)−2ψ5ψµ∂µφ(x)).(14)
Integrating out the auxiliaryfield x5we obtain
1
by
Γ=Tr log O=1
2
Tr(log O−log O+)(17)
with
OO+=−D2+gσµνVµν+g5γ5σµνAµν+iλγµ∂µφ
−λ′γ5γµ∂µφ′+2(im+iλφ−γ5λ′φ′)ig5γ5γµAµ+m2
+2mλφ+λ2φ2+λ′2φ′2(18) where Vµν,Aµνare thefield strengths.The derivative of the second term in(17) with respect to the backgroundfield U(U=A,φ′in the following)can be written as
δ
δU
O+−OδO+OO+ .(19) This“second order”formalism can be translated to the worldline formulation with a purely Grassmann even Lagrangian if one introduces two additional superfields¯X and X′appearing in the coupling to scalars/pseudoscalars as in(14).The new piece of the worldline action is particularly simple if expressed in superfields.We proposed[13]
S W L= dτdθ 14¯XD¯X+1
eθχgaugefixed to e= 2,χ=0on the circle.The form of the axial coupling with both¯X,X′involved is surprising.Written out in components this is a lengthy expression[13].
The imaginary part(19)can be worked out and also translated to worldline language
Γ′U=δ
T [DXµ][D¯X][DX′](−1)FΩU e−S W L(21)
with
Ωφ′=−iλ′√
4
D2XµDXµ+
1
We have tested our worldline action by calculating[13]a collection of ampli-tudesfirst in the conventional Dirac-Feynman,then in second order,andfinally in the worldline formalism.In particular,we could reproduce PCAC and the axial anomaly;we can also derive higher order terms in the1-loop effective action.
In recent publications[14,16]it was argued that O and O+can be arranged in a8×8spinor matrix corresponding to a6-dimensional space,thus explaining the need for ourfields¯X,X′.The6-dimensionalγ-matrices can be substituted by Grassmannψ’s and our worldline Lagrangian is reproduced and generalized in an elegant way.There is a subtle technical point[13,17]about either integrating out the auxiliaryfields x5,x6belonging to¯X,X′or contracting them in Green functions if the correctfield theory results are to be obtained.
Spin1in the loop
The case of massless spin1gauge bosons coupling to a gauge boson background is particularly important in QCD applications.In the covariant’t Hooft-Feynman background gauge the1-loop action has the Schwinger form
Γ(A)=1
T
Tr exp(−ˆhT)(23)
with the(color and Lorentz)matrix valued Hamiltonian
ˆh ab
µν
=−D acρD cbρδµν−2ig F abµν(x).(24) One can evaluate this by a“bosonized”worldline path integral including a matrix valued potential but motivated by the spin1
∂xµ
,ˆ¯ψ=∂
2
lim
C→∞ ∞0dT2
antiper.− per. [Dψµ][D¯ψµ]
×Tr P exp − T0dτ ˙x2µ
and fermionic Green functions
G C per.
=− θ(−τ)±θ(τ)e−CT e Cτ/(1∓e−CT)(27) antiper.
similar but not identical to the expressions in[5].We should stress that(26)is the result of a rigorous derivation,will lead to correct gluon amplitudes,and thus is a good starting point for deriving Bern-Kosower type1-loop rules.As a simple application we have rederived[18]the1-loop action in a constant pseudo-abelian background.
Considering the multiloop case it is not so obvious that introducing Grassmann variables to represent spin is an equally efficient way as it is for spin1
References
[1]R.P.Feynman,Phys.Rev.80(1950)440
[2]E.S.Fradkin,A.A.Tseytlin,Phys.Lett.B163(1985)123
[3]R.R.Metsaeev,A.A.Tseytlin,Nucl.Phys.B298(1988)109
[4]Z.Bern,D.A.Kosower,Phys.Rev.Lett.66(1991)1669;Nucl.Phys.B379
(1992)451
[5]M.J.Strassler,Nucl.Phys.B385(1992)145;SLAC-PUB-5978(1992)
[6]A.M.Polyakov,Gauge Fields and Strings(Harwood,1987)
[7]M.G.Schmidt,C.Schubert,Phys.Lett.B318(1993)438;
D.Fliegner,M.G.Schmidt,C.Schubert,Z.f.Phys.C64(1994)111;
D.Fliegner,P.Haberl,M.G.Schmidt,C.Schubert,Discourses in Mathematics
and its Applications,Texas A+M Univ.,Dep.of Math.(1995),p.87(hep-th/9411177)
[8]O.D.Andreev,A.A.Tseytlin,Phys.Lett.B207(1988)157
[9]D.G.C.McKeon,A.Rebhan,Phys.Rev.D48(1993)2891
[10]M.G.Schmidt,C.Schubert,Phys.Rev.D53(1996)2150
[11]M.Mondrag´o n,L.Nellen,M.G.Schmidt,C.Schubert,Phys.Lett.B351(1995)
200
[12]L.Brink,P.Di Vecchia,P.Howe,Nucl.Phys.B118(1977)76
[13]M.Mondrag´o n,L.Nellen,M.G.Schmidt,C.Schubert,Phys.Lett.B366(1996)
212
[14]E.D’Hoker,D.G.Gagn´e,UCLA/95/TEP/22(hep-th/9508131);
UCLA/95/TEP/35(hep-th/9512080)
[15]L.Alvarez-Gaum´e,Comm.Math.Phys.90(1983)161;
L.Alvarez-Gaum´e,E.Witten,Nucl.Phys.B234(1983)269
[16]J.W.van Holten,NIKHEF-H/95-050(hep-th/9508136)
[17]D.G.Gagn´e,UCLA/96/TEP/13(hep-th/9604199)
[18]M.Reuter,M.G.Schmidt,C.Schubert,IASSNS-HEP-96/90(hep-th/9610191)
[19]K.Roland,Phys.Lett.B289(1992)148;
K.Roland,H.-T.Sato,NBI-HE-96-19(hep-th/9604152);
P.Di Vecchia,A.Lerda,L.Magnea,K.Marotta,Phys.Lett.351B(1995)445 (hep-th/9502156);and with R.Russo,Nordita95/86P(hep-th/9601143)
7。

相关文档
最新文档