人教版八年级数学上册 三角形填空选择单元达标训练题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册三角形填空选择单元达标训练题(Word版
含答案)
一、八年级数学三角形填空题(难)
1.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.
【答案】10
【解析】
【分析】
以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.
【详解】
解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,
故答案为:10.
【点睛】
本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.
2.如图,在平面直角坐标系xOy中,点A、B分别在x轴的正半轴、y轴的正半轴上移动,点M在第二象限,且MA平分∠BAO,做射线MB,若∠1=∠2,则∠M的度数是_______。

【答案】45
【解析】
【分析】
根据三角形内角与外角的关系可得2M MAB ∠∠∠=+
由角平分线的性质可得MAB MAO ∠∠=
根据三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒
易得∠M 的度数。

【详解】
在ABM 中,2∠是ABM 的外角
∴2M MAB ∠∠∠=+
由三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒
∵BOA 90∠=︒
∴OBA OAB 90∠∠+=︒
∵MA 平分BAO ∠
∴BAO 2MAB ∠∠=
由三角形内角与外角的关系可得12BAO BOA 90BAO ∠∠∠∠∠+=+=︒+ ∵12∠∠=
∴2290BAO ∠∠=︒+
又∵2M MAB ∠∠∠=+
∴222M 2MAB 2M BAO ∠∠∠∠∠=+=+
∴90BAO 2M BAO ∠∠∠︒+=+
2M 90∠=︒
M 45∠=︒
【点睛】
本题考查三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和。

3.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,S △ACE =3cm 2,则S △ABC =_____cm 2.
【答案】12cm 2.
【解析】
【分析】
根据三角形的面积公式,得△ACE 的面积是△ACD 的面积的一半,△ACD 的面积是△ABC 的面积的一半.
【详解】
解:∵CE 是△ACD 的中线,
∴S △ACD =2S △ACE =6cm 2.
∵AD 是△ABC 的中线,
∴S△ABC=2S△ACD=12cm2.
故答案为12cm2.
【点睛】
此题主要是根据三角形的面积公式,得三角形的中线把三角形的面积分成了相等的两部分.
4.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为_______.
【答案】22
【解析】
【分析】
先根据非负数的性质列式求出a、b再根据等腰三角形和三角形三边关系分情况讨论求解即可.
【详解】
解:根据题意得,a-4=0,b-9=0,
解得a=4,b=9,
①若a=4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形,
②若b=9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长
=9+9+4=22.
【点睛】
本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.
5.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.
【答案】5:4:3
【解析】
试题解析:设此三角形三个内角的比为x,2x,3x,
则x+2x+3x=180,
6x=180,
x=30,
∴三个内角分别为30°、60°、90°,
相应的三个外角分别为150°、120°、90°,
则三个外角的度数比为:150°:120°:90°=5:4:3,
故答案为5:4:3.
6.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.
【答案】45°
【解析】
【分析】
根据正多边形的外角度数等于外角和除以边数可得.
【详解】
∵硬币边缘镌刻的正多边形是正八边形,
∴它的外角的度数等于360÷8=45°.
故答案为45°.
【点睛】
本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.
7.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.
【答案】74°
【解析】
【分析】
【详解】
试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.
∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,
∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣
∴∠ACE=1
2
∠CDA=50°.
∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣
∠DCF=75°.
考点:三角形内角和定理.
8.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.
【答案】80°.
【解析】
【分析】
根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.
【详解】
∵a ∥b ,
∴∠4=∠l=60°,
∴∠3=180°-∠4-∠2=80°,
故答案为80°.
【点睛】
本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.
9.如图所示,请将1
2A ∠∠∠、、用“>”排列__________________.
【答案】21A ∠∠∠>>
【解析】
【分析】
根据三角形的外角的性质判断即可.
【详解】
解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A
∴∠2>∠1>∠A ,
故答案为:∠2>∠1>∠A .
【点睛】
本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.
10.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
【答案】40°
【解析】
【分析】
直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
【详解】
如图所示:
∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案为40°.
【点睛】
主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.
二、八年级数学三角形选择题(难)
11.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()
A.104条B.90条C.77条D.65条
【答案】C
【解析】
【分析】
n边形的内角和是(2)180
n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求
出多边形的边数,在根据多边形的对角线总条数公式
()3
2
n n-
计算即可.
【详解】
解:
2
210018011
3
÷=,则正多边形的边数是11+2+1=14.
∴这个多边形的对角线共有
()()
314143
==77
22
n n--
条.
故选:C.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形
对角线总条数公式
()3
2
n n-

12.在多边形内角和公式的探究过程中,主要运用的数学思想是()
A.化归思想B.分类讨论C.方程思想D.数形结合思想
【答案】A
【解析】
【分析】
根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.
【详解】
解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.
故答案为A.
【点睛】
本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.
13.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )
A.7B.8C.7或8D.无法确定
【答案】C
【解析】
【分析】
n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.
【详解】
设少加的2个内角和为x度,边数为n.
则(n-2)×180=830+x,
即(n-2)×180=4×180+110+x,
因此x=70,n=7或x=250,n=8.
故该多边形的边数是7或8.
故选C.
【点睛】
本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.
14.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()
①△ABE的面积与△BCE的面积相等;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH
A.①②③B.②③④C.①③④D.①②③④
【答案】A
【解析】
根据三角形中线的性质可得:△ABE的面积和△BCE的面积相等,故①正确,
因为∠BAC=90°,所以∠AFG+∠ACF=90°,因为AD是高,所以∠DGC+∠DCG=90°,
因为CF是角平分线,所以∠ACF=∠DCG,所以∠AFG=∠DGC,又因为∠DGC=∠AGF,所以
∠AFG=∠AGF,故②正确,
因为∠FAG+∠ABC=90°,∠ACB+∠ABC=90°,所以∠FAG=∠ACB,又因为CF是角平分线,所以
∠ACB=2∠ACF,所以∠FAG=2∠ACF,故③正确,
④假设BH=CH,∠ACB=30°,则∠HBC=∠HCB =15°,∠ABC=60°,
所以∠ABE=60°-15°=45°,因为∠BAC=90°,所以AB=AE,因为AE=EC,所以AB=1
2
AC,这与在直
角三角形中30°所对直角边等于斜边的一半相矛盾,所以假设不成立,故④不一定正确,故选A.
15.一个多边形的内角和是1260°,这个多边形的边数是()
A.6 B.7 C.8 D.9
【答案】D
【解析】
试题解析:设这个多边形的边数为n,
由题意可得:(n-2)×180°=1260°,
解得n=9,
∴这个多边形的边数为9,
故选D.
16.一正多边形的内角和与外角和的和是1440°,则该正多边形是()
A.正六边形B.正七边形C.正八边形D.正九边形
【答案】C
【解析】
【分析】
依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.
【详解】
解:设多边形的边数为n,根据题意列方程得,
(n﹣2)•180°+360°=1440°,
n﹣2=6,
n=8.
故这个多边形的边数为8.
故选:C.
【点睛】
考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.
17.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A.7 B.8 C.9 D.10
【答案】A
【解析】
设这个多边形的边数为x,根据题意可得:
x-=⨯+,
180(2)2360180
x=.
解得:7
故选A.
18.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()
244
∠=,则1
α-
A.14B.16C.90α
-D.44
【答案】A
【解析】
分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得
∠3=∠1+30°,进而得出结论.
详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:
∠3=∠1+30°,∴∠1=44°﹣30°=14°.
故选A.
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.
19.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()
A.4B.5C.6D.9
【答案】C
【解析】
【分析】
根据三角形的三边关系可判断x的取值范围,进而可得答案.
【详解】
解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.
因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.
4,5,9都不符合不等式5<x<9,只有6符合不等式,
故选C.
【点睛】
本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.
20.若一个凸多边形的内角和为720°,则这个多边形的边数为()
A.4 B.5 C.6 D.7
【答案】C
【解析】
【分析】
设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.
【详解】
设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.
【点睛】
本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.。

相关文档
最新文档