山西省运城市名校2016年中考数学模拟质量检测试题(二)
山西中考模拟示范数学考试卷(二)(解析版)(初三)中考模拟.doc
![山西中考模拟示范数学考试卷(二)(解析版)(初三)中考模拟.doc](https://img.taocdn.com/s3/m/a5c83faa0b4e767f5bcfce44.png)
山西中考模拟示范数学考试卷(二)(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列各数中,小于﹣2的数是().A.2 B.1 C.﹣1 D.﹣4【答案】D.【解析】试题分析:根据题意,结合有理数大小比较的法则,从符号和绝对值两个方面分析可得答案.比﹣2小的数应该是负数,且绝对值大于2的数,分析选项可得,只有D符合.故选D.考点:有理数大小比较.【题文】若将两个立方体图形按如图所示的方式放置,则所构成的几何体的左视图可能是().A. B. C. D.【答案】C.【解析】试题分析:根据左视图就是从物体的左边进行观察得到的图形.左视图是上面两个长方形,下面是一个长方形,中间是实线,故选C.考点:简单组合体的三视图.【题文】下列各式计算结果正确的是().A.x+x=x2 B.(2x)2=4x C.(x+1)2=x2+1 D.x•x=x2【答案】D.【解析】试题分析:根据合并同类项的法则,积的乘方的性质,完全平方公式,同底数幂的乘法的性质,对各选项计算后利用排除法求解.A、应为x+x=2x,故本选项错误;B、应为(2x)2=4x2,故本选项错误;C、应为(x+1)2=x2+2x+1,故本选项错误;D、x•x=x2,正确;故选D.考点:1.完全平方公式;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.【题文】太行山又名五行山、王母山、女娲山,是中国东部地区的重要山脉和地理分界线,绵延400余公评卷人得分里,400公里可以用科学记数法表示为().A.4×104米 B.4×105米 C.0.4×106米 D.4×106米【答案】B.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.400公里=400000米=4×105米,故选:B.考点:科学记数法—表示较大的数.【题文】化简:的结果是().A.2 B. C. D.【答案】B.【解析】试题分析:先把括号中的第二个分式约分,再利用乘法分配律把(x﹣3)分别与括号中的式子相乘可使计算简便.原式=(﹣)•(x﹣3)=•(x﹣3)﹣•(x﹣3)=1﹣=.故选B.考点:分式的混合运算.【题文】在两个不透明的口袋中分别装有三个颜色分别为红色、白色、绿色的小球,这三个小球除颜色外其余都相同,若分别从两个口袋中随机取出一个小球,则取出的两个小球颜色相同的概率为().A. B. C. D.【答案】C.【解析】试题分析:首先根据题意画出表格,然后由表格即可求得所有等可能的结果与取出的两个小球颜色相同的情况,再利用概率公式求解即可求得答案.根据题意列表如下:红白绿红(红,红)(白,红)(绿,红)白(红,白)(白,白)(绿,白)绿(红,绿)(白,绿)(绿,绿)所有的等可能有9种情况,颜色相同的占了3种,则P颜色相同==.故选C.考点:列表法与树状图法.【题文】将2×2的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k≠0)与正方形ABCD有公共点,则k不可能是().A.3 B.2 C.1 D.【答案】A.【解析】试题分析:先求出A、C两点的坐标,再求出直线过A、C两点时k的值,进而可得出结论.∵由图可知,A(1,2),C(2,1),∴当直线y=kx过点A时,k=2;当直线过点C时,2k=1,即k=,∴≤k≤2,∴k 不可能是3.故选A.考点:一次函数图象上点的坐标特征.【题文】有这样的一列数,第一个数为x1=﹣1,第二个数为x2=﹣3,从第三个数开始,每个数都等于它相邻两个数之和的一半(如:x2=),则x2015等于().A.﹣2015 B.﹣4027C.﹣4029 D.﹣4031【答案】C.【解析】试题分析:根据x2=,可得x2﹣x1=x3﹣x2,所以这列数是以﹣1为首项的等差数列,据此求出x2015等于多少即可.∵x2=,∴x2﹣x1=x3﹣x2,∵﹣3﹣(﹣1)=﹣2,∴这列数是以﹣1为首项,以﹣2为公差的等差数列,∴x2015=﹣1+2014×(﹣2)=﹣1﹣4028=﹣4029,故选:C.考点:规律型:数字的变化类.【题文】如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为( )A. 5aB. 4aC. 3aD. 2a【答案】B【解析】试题分析:如图所示可将正六边形分为6个全等的三角形,阴影部分由两个三角形组成,剩余部分由4个三角形组成,故此可求得剩余部分的面积.如图所示:将正六边形可分为6个全等的三角形,∵阴影部分的面积为2a,∴每一个三角形的面积为a,∵剩余部分可分割为4个三角形,∴剩余部分的面积为4a.故选:B.考点:图形的剪拼.【题文】若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1<x2,则下列结论中错误的是().A.当m=0时,x1=2,x2=3B.m>﹣C.当m>0时,2<x1<x2<3D.二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0)【答案】C.【解析】试题分析:根据方程的解的定义可以判定A正确;根据二次函数的最值问题,且结合题意可以判定B正确;根据二次函数与x轴交点的有关性质可以判定C错误;根据二次函数的定义可以判定D正确.①∵m=0时,方程为(x﹣2)(x﹣3)=0,∴x1=2,x2=3,故A正确;②设y=(x﹣2)(x﹣3)=x2﹣5x+6=(x﹣)2﹣,∴y的最小值为﹣,∵一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1<x2,∴m>﹣,故B正确;③∵m>O时,y=(x﹣2)(x﹣3)>0,函数y′=(x﹣2)(x﹣3)﹣m与x轴交于(x1,0),(x2,0),∴x1<2<3<X2,故C错误;④∵y=(x﹣x1)(x﹣x2)+m=(x﹣2)(x﹣3)﹣m+m=(x﹣2)(x﹣3),∴函数与x轴交于点(2,0),(3,0).故D正确.故选C.考点:1.抛物线与x轴的交点;2.解一元二次方程-因式分解法;3.根的判别式;4.根与系数的关系.【题文】计算:2﹣7=.【答案】﹣5.【解析】试题分析:利用减去一个数等于加上这个数的相反数将减法运算化为加法运算,计算即可得到结果.2﹣7=2+(﹣7)=﹣(7﹣2)=﹣5.故答案为:﹣5.考点:有理数的减法.【题文】如图,点B是AD延长线上的一点,DE∥AC,AE平分∠CAB,∠C=50°,∠E=30°,则∠CDA的度数等于.【答案】70°.【解析】试题分析:先根据平行线的性质得出∠CAE的度数,再由角平分线的性质求出∠CAD的度数,根据三角形内角和定理即可得出结论.∵DE∥AC,∠E=30°,∴∠CAE=∠E=30°.∵AE平分∠CAB,∴∠CAD=2∠CAE=60°.在△ACD中,∵∠C=50°,∠CAD=60°,∴∠CDA=180°﹣∠C﹣∠CAD=180°﹣50°﹣60°=70°.故答案为:70°.考点:平行线的性质.【题文】若a、b是一元二次方程x2+2x﹣1=0的两个根,则的值是.【答案】1.【解析】试题分析:根据一元二次方程的根与系数的关系求得a+b、ab的值,然后将其代入所求的代数式并求值.∵a,b是一元二次方程x2+2x﹣1=0的两个根,∴由韦达定理,得a+b=﹣2,ab=﹣1,∴=1.故答案为:1.考点:根与系数的关系.【题文】如果实数x、y满足方程组,那么x2﹣y2的值为.【答案】﹣.【解析】试题分析:方程组中第二个方程整理后求出x+y的值,原式利用平方差公式变形,将各自的值代入计算即可求出值.方程组整理得:,则原式左右两边分别相乘,即(x+y)(x﹣y)=x2﹣y2=﹣,故答案为:﹣.考点:二元一次方程组的解.【题文】如图,AB是⊙O的直径,C,D两点在⊙O上,∠BCD=25°,则∠AOD的度数为.【答案】130°.【解析】试题分析:由∠BCD=25°,根据圆周角定理得出∠BOD=50°,再利用邻补角的性质即可得出∠AOD的度数.∵∠BCD=25°,∴∠BOD=50°,∴∠BCD=180°﹣50°=130°.故答案为130°.考点:圆周角定理.【题文】如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=.【答案】1.【解析】试题分析:根据旋转性质可得∠APB=∠CP’B=135°、∠ABP=∠CBP’、BP=BP’、AP=CP’,由∠ABP+∠PBC=90°知△BPP’是等腰直角三角形,进而根据∠CP’B=135°可得∠PP’C=90°,由此可利用勾股定理即可CP的值,则AP的长也可求出.∵△BP’C是由△BPA旋转得到,∴∠APB=∠CP’B=135°,∠ABP=∠CBP’,BP=BP’,AP=CP’,∵∠ABP+∠PBC=90°,∴∠CBP’+∠PBC=90°,即∠PBP’=90°,∴△BPP’是等腰直角三角形,∴∠BP’P=45°,∵∠APB=∠CP’B=135°,∴∠PP’C=90°,∵BP=2,∴PP′==2,∵PC=3,∴CP’===1,∴AP=CP′=1,故答案为:1.考点:1.旋转的性质;2.正方形的性质.【题文】(1)计算:|﹣|+(π﹣3)0+()﹣1﹣2cos45°(2)解不等式组,并把它的解集在数轴上表示出来.【答案】(1)3;(2)2<x<3.在数轴上表示参见解析.【解析】试题分析:(1)先去掉绝对值,用零指数幂,负指数幂,三角函数,化简,最后用实数的运算法则计算即可.(2)分别解出不等式①,②的解集,确定出公共部分,并在数轴上表示即可.试题解析:(1)先去掉绝对值,用零指数幂,负指数幂,三角函数,化简,原式|﹣|+(π﹣3)0+()﹣1﹣2cos45°=+1+2﹣2×=+1+2﹣=3;(2)分别解出两个不等式,解不等式①,得,x>2,解不等式②,得,x<3,∴原不等式组的解集为2<x<3.∴原不等式组的解集在数轴上表示如下:.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.在数轴上表示不等式的解集;5.解一元一次不等式组;6.特殊角的三角函数值.【题文】如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.【答案】(1)作图参见解析;(2)π.【解析】试题分析:(1)先找到圆心,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆即可;(2)先利用等腰直角三角形的性质求出AB的长,那么OB=OA=AB,又∠BOC=90°,将它们代入弧长公式计算即可.试题解析:(1)如图,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆,⊙O即为所作;(2)∵在等腰直角△ABC中,∠ACB=90°,AC=1,∴AB=AC=,∵线段AB的垂直平分线交AB于O点,∴∠BOC=90°,OB=OA=AB=,∴劣弧BC的长=π.考点:1.弧长的计算;2.作图—复杂作图.【题文】如图,直线AB与反比例函数的图象交于A(﹣4,m)、B(2,n)两点,点C在x轴上,AO=AC,△OAC的面积为8.(1)求反比例函数的解析式.(2)求cos∠OBA的值.【答案】(1)y=﹣;(2).【解析】试题分析:(1)因为△ACO是等腰三角形,根据三角形面积公式即可求出m,得点A坐标,用待定系数法可以求出反比例函数的解析式.(2)作OE⊥AB于E,欲求cos∠OBA,因为cos∠OBA=,只要求出OB、BE即可,利用两点间距离公式可求出OB、BE.试题解析:(1)设反比例函数为y=,∵△OAC的面积为8,AO=AC,A(﹣4,m),∴点C(﹣8,0),•8•m=8,∴m=2,∴点A(﹣4,2),∵反比例函数的图象经过A(﹣4,2)、B(2,n)两点,∴k=﹣8,n=﹣4,∴点B坐标(2,﹣4),∴反比例函数解析式为y=﹣;(2)如图作OE⊥AB于E,由(1)可利用勾股定理求得,OA=OB=2,AB=6,∵OA=OB,OE⊥AB,∴AE=EB=3,∴cos∠OBA===.考点:反比例函数与一次函数的交点问题.【题文】某大型超市的采购人员先后购进两批晋祠大米,购进第一批大米共花费5400元,进货单价为m元/千克,该超市将其中3000千克优等品以进货单价的两倍对外出售,余下的二等品则以1.5元/千克的价格出售.当第一批大米全部售出后,花费5000元购进了第二批大米,这一次的进货单价比第一批少了0.2元.其中优等品占总重量的一半,超市以2元/千克的单价出售优等品,余下的二等品在这批进货单价的基础上每千克加价0.6元后全部卖完,若不计其他成本,则售完第二批大米获得的总利润是4000元(总售价﹣总进价=总利润)(1)用含m的代数式表示第一批大米的总利润.(2)求第一批大米中优等品的售价.【答案】(1)6000m+﹣9900;(2)2.4元.【解析】试题分析:(1)用总销售额减去成本即可求出毛利润;(2)设第一批进货单价为m元/千克,则第二批的进货单价为(m﹣2)元/千克,根据第二批大米获得的毛利润是4000元,列方程求解.试题解析:(1)由题意得,总利润为:3000×2m+1.5×(﹣3000)﹣5400=6000m+﹣9900;(2)设第一批进货单价为m元/千克,由题意得,××2+××(m﹣0.2+0.6)﹣5000=4000,解得:m=1.2,经检验:m=1.2是原分式方程的解,且符合题意.则优等品的售价为:2m=2.4.所以第一批大米中优等品的售价是2.4元.考点:1.一元一次方程的应用;2.列代数式.【题文】2015年10月29日,党的十八届五种全会胜利闭幕,某中学七、八年级各选派10名选手参加“党的十八届五中全会知识竞赛”计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7m3.4190%n八年级7.17.51.6980%10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m=,n=;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.【答案】(1)a=5,b=1;(2)5,20%;(3)①八年总成绩比七年级的总成绩好. ②八年级半数以上的学生比七年级半数以上的成绩好.【解析】试题分析:(1)根据题意可以得到关于a、b的方程组,从而求得a、b的值;(2)根据表格可以得到m 的值和n的值;(3)说明理由根据表格中的平均数和中位数进行说明即可解答本题.试题解析:(1)由题意和表格中的数据可得,,解得,,即a的值是5,b的值是1;(2)∵a的值是5,b的值是1,参与调查的七年级学生10人,∴中位数m=6,优秀率n=×100%=20%,故答案为:5,20%;(3)八年级队成绩好的理由:①平均分八年级比七年级高,说明八年总成绩比七年级的总成绩好;②中位数七年是6,八年级是7.5,说明八年级半数以上的学生比七年级半数以上的成绩好.考点:1.条形统计图;2.中位数;3.方差.【题文】如图1所示的是一种置于桌面上的简易台灯,将其结构简化成图2,灯杆AB与CD交于点O(点O 固定),灯罩连杆CE始终保持与AB平行,灯罩下方FG处于水平位置,测得OC=20cm,∠COB=70°,∠F=40°,EF=EG,点G到OB的距离为12cm.(1)求∠CEG的度数.(2)求灯罩的宽度(FG的长;结果精确到0.1cm,可用科学计算器).(参考数据:sin40°≈0.643,cos40°≈0.766,sin70°≈0.940,cos70°≈0.342)【答案】(1)130°;(2)13.6cm.【解析】试题分析:(1)由EF=EG可知∠G=∠F=40°,由三角形的内角和为180°可求出∠FEG的大小,根据已知条件可得知∠CEF=∠CEG,由∠CEF+∠FEG+∠GEC为周角可得出结论;(2)延长FG交AB于点N,过点C作CM⊥AB于点M,延长CE交FG于点H,可知四边形CHNM为长方形,在Rt△CMO中由三角函数值求出CM的长度,再结合点G到OB的距离为12cm可求出HG的长度,由△EFG为等腰三角形可得知FG=2HG,从而得出结论.试题解析:(1)如上图2:∵EF=EG,∠F=40°,∴∠G=40°,∠FEG=180°﹣∠F﹣∠G=100°,∵灯罩连杆CE始终保持与AB平行,灯罩下方FG处于水平位置,∴∠CEG=∠CEF===130°;(2)如图所示.延长FG交AB于点N,过点C作CM⊥AB于点M,延长CE交FG于点H,∵CE∥AB,FG处于水平位置,CM⊥AB,∴四边形CHNM为长方形,CH⊥FG,∴CM=HN.在Rt△OMC中,OC=20cm ,∠COM=70°,∠OMC=90°,∴CM=OC•sin∠COM≈20×0.940=18.8(cm),∵GN=12cm,HN=CM,∴HG=CM﹣GN=6.8(cm).∵EF=EG,CH⊥FG,∴FH=HG=FG,∴FG=2×6.8=13.6(cm).所以灯罩的宽度为13.6cm .考点:解直角三角形的应用.【题文】操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM ,∵MN是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE ,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN ;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE ,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF ,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.【题文】如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=.(1)求抛物线的对称轴和点P的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D的坐标;如果不存在,请说明理由.【答案】(1)对称轴是直线x=-2,P点坐标为(﹣2,﹣1);(2)存在,D1(﹣2,),D2(﹣2,2),D3(﹣2,1);D4(﹣2,).【解析】试题分析:(1)根据自变量与函数值的对应关系,可得B点坐标,根据正切函数,可得A点坐标,根据待定系数法,可得函数解析式,根据配方法,可得抛物线的对称轴和顶点坐标;(2)根据勾股定理,可得AD2=1+m2,AB2=12+32=10,BD2=4+(m﹣3)2,根据勾股定理的逆定理,可得关于m的方程,根据解方程,可得答案.试题解析:(1)当x=0时,y=3,即B(0,3).tan∠ABO===,AO=1,即A点坐标为(﹣1,3).将A点坐标代入,得1﹣b+3=0,解得b=4.抛物线的解析式为y=x2+4x+3,y=(x+2)2﹣1,即P点坐标为(﹣2,﹣1);(2)在抛物线的对称轴上存在这样的点D,使△ABD为直角三角形.设D点坐标为D (﹣2,m),因为A(﹣1,0),B(0,3).由勾股定理,得AD2=1+m2,AB2=12+32=10,BD2=4+(m﹣3)2.①当AD2+AB2=BD2时,即1+m2+10=4+(m﹣3)2,解得m=,即D1(﹣2,);②当AD2+BD2=AB2时,即1+m2+4+(m﹣3)2=10,解得m=2或m=1,即D2(﹣2,2),D3(﹣2,1);③当AB2+BD2=AD2时,即10+4+(m﹣3)2=1+m2,解得m=,即D4(﹣2,),综上所述:在抛物线的对称轴上存在这样的点D,使△ABD 为直角三角形.其坐标为D1(﹣2,),D2(﹣2,2),D3(﹣2,1);D4(﹣2,).考点:1.二次函数性质;2.勾股定理及逆定理.。
2016中考模拟试题(2016年山西省百校联考二整编)分析
![2016中考模拟试题(2016年山西省百校联考二整编)分析](https://img.taocdn.com/s3/m/81238f83d15abe23482f4dfb.png)
2016年中考模拟试题5姓名:_______________班级:_______________成绩:_______________一、选择题(每题2分,共20分)1.关于高速公路上正常行驶的小汽车,下列估测最接近实际的是( )A.行驶速度约为100m/sB.发动机的最大功率约为0.1kwC.车的质量约为1.5×103kgD.车身的长度约为50m2.小明在动物世界节目中,知道大象可以发出次声波,通知远方的同伴,隔天他到动物园却听到大象响亮的叫声。
关于大象发出的次声波与小明在动物园听见的大象叫声进行比较,下列说法正确的是()A.前者不是由振动产生的B.前者的传播不需要介质C.在空气中,前者的传播速度比后者快D.前者的频率比后者小3.如图所示是某一物质发生物态变化时,吸热与放热的情形,甲乙丙代表物质的三种状态。
则那一种状态时,物质具有固定的体积,且具有固定的形状()A.甲B.乙C.丙D.无法确定4.蹦床是集艺术性和竞技性于一身的运动,是我国奥运新兴优势项目,也是深受广大青少年喜爱的健身运动。
如图所示是蹦床运动员运动到最高点后数值下落的情景。
不计空气的阻力,下列分析正确的是()A.运动员在最高点时,只受到重力并且不具有惯性B.运动员在接触蹦床前下落过程中,重力势能转化为动能C.运动员下落压缩蹦床过程中,运动员的动能不变D.运动员静止站立在蹦床上时,他的重力与对蹦床的压力是一对平衡力5.如图所示,在水平放置足够长的平板上,重为5N的铁块在水平向左的拉力F的作用下铁块沿直线水平向左一对,此时铁块受到的摩擦力为1.2N。
铁块一对过程中速度的大小随时间t变化的图像如图乙所示.下列说法正确的是()A.0—2s内,铁块做匀速直线运动B.2—6s内,铁块处于静止状态C.0—2s内,拉力等于1.2ND.2—6s内,拉力等于1.2N6.下列哪种现象是由光的折射形成的()A.看见水中的鱼B.树木在水中的倒影C.光遇到不透明的物体形成的影子D.路边建筑物的玻璃幕墙造成的光污染7.如图所示的天气预报的信息图片.关于图片中信息的解释正确的是()A.预报的最低气温读作“摄氏零下2度”B.雪形成属于凝华现象C.雨形成汽化现象D.雪熔化时需要放热8.甲乙是用相同滑轮组成的滑轮组,如图所示,用它们分别将重物G提高相同的高度,不计绳重和摩擦,下列说法中正确的是()A.乙滑轮组比甲滑轮组更省力B.拉力F1、F2做的总功相同C.甲滑轮组的机械效率比乙大D.以定滑轮为参照物,重物总是静止的9.把质量为0.5kg、体积为6×104m3的物体投入水中,当物体静止时,物体的状态和所受浮力分析正确的是()A.物体漂浮,F浮=5NB.物体悬浮,F浮=5NC.物体漂浮,F浮=6ND.物体沉在水底,F浮=6N10.如图所示是一科技创新小组同学们设计的水位计工作电路图,绝缘浮子随水位计的升降带动滑动变阻器R金属滑片P升降,通过水位计来显示水位升降情况。
运城市中考模拟考试数学试题含答案
![运城市中考模拟考试数学试题含答案](https://img.taocdn.com/s3/m/a7b34e7dff00bed5b9f31dca.png)
第6题图ABCDE第7题图图②图①120°1234120°第10题图图1图22中学数学二模模拟试卷一、选择题(3分×10=30分) 1. 下列各数中,是5的相反数的是( )A . -5B . 5C .0.5D . 0.22.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .3. 人类已知最大的恒星是盾牌座UY ,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km .那么这个数的原数是( ) A .143 344 937 km B . 1 433 449 370 km C . 14 334 493 700 km D . 1.43344937 km4.下列计算正确的是( )A .2a -3a =-1B .(a 2b 3)3=a 5b 6C .a 2 ·a 3=a 6D .a 2+3a 2=4a 2 5. 已知关于x 的分式方程mx +1x=2有解,则m 的取值范围是( ) A .m ≤1且m ≠0 B . m ≤1 C . m ≥-1 D . m ≥-1 且m ≠0 6. 如图所示,该物体的主视图为( )A .B .C .D .7. 如图所示,在Rt △ABC 中∠A =25°,∠ACB =90°,以点C 为圆心,BC 为半径的圆交AB 于一点D ,交AC 于点E ,则∠DCE 的度数为( ) A . 30° B . 25° C . 40° D . 50°8. 不等式组101103x x +>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .9. 如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示 数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对 应的圆心角也是120°,则转得的两个数之积为偶数的概率为( )A .12B .29C . 79D .3410. 如图1所示,小明(点P )在操场上跑步,B CD E 123第12题图A E B C D第14题图A EFM A 'B C D 第15题图A 弯道和两段直道构成,若小明从点A (右侧弯道起点) 出发以顺时针方向沿着跑道行进.设行进的路程为x , 小明到右侧半圆形弯道的圆心O 的距离PO 为y ,可绘制出如图2所示函数图象,那么a -b 的值应为( ) A .4 B .52π-1 C .D .π二、填空题(3分×5=15分)11. (-3)0= .12. 如图所示,直线ABCD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= .13.二次函数y =x 2-2mx +1在x ≤1时y 随x 增大而减小,则m 的取值范围是 .14. 如图所示,在平行四边形ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E . 连接CE ,则阴影部分的面积是 .(结果保留π)15.如图所示,正方形ABCD 中,AB =8,BE =DF =1,M 是射线AD 上的动点,点A 关于直线EM 的对称点为A ,,当△A ,FC 为以FC 为直角边的直角三角形时,对应的MA 的长为 .三、解答题(本大题共8小题,满分75分)16. (8分)先化简22442x x x x -+-÷(x -4x),然后从xx的值代入求值.17.(9分) 陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ⑴陈老师一共调查了多少名同学? ⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A 类学生中随机选取一位同学,再从D 类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.D18.(9分)如图所示,⊙O 是等腰三角形ABC 的外接圆,AB =AC ,延长BC 至点D ,使CD =AC ,连接AD 交⊙O 于点E ,连接BE 、CE ,BE 交AC 于点F .⑴求证:CE =AE ⑵填空: ①当∠ABC = 时,四边形AOCE 是菱形;②若AE,AB =则DE 的长为 .19. (9分) 如图所示,放置在水平桌面上的台灯的灯臂AB 长 为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与 底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,求此时灯罩顶端C 到桌面的 高度CE 的长?(结果精确到0.1cm 1.732)20.(9分)如图所示,直线y =ax +1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =kx(x >0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0). ⑴求双曲线的解析式;⑵若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴 于H ,当以点Q 、C 、H 为顶点的三角与△AOB 相似 时,求点Q 的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋. 其G F E B C DA 图1图2图3AD CBE F G GF E B CD A中甲、乙两种运动鞋的进价和售价如下表已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同. ⑴求m 的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.22.(10分)等腰直角三角形ABC 中,AC =BC E 为AC 中点,以CE 为斜边作如图所示等腰直角三角形CED .(1)观察猜想: 如图1所示,过D 作DF ⊥AE 于F ,交AB 于G ,线段CD 与BG 的关系为 ;(2)探究证明:如图2所示,将△CDE 绕点C 顺时针旋转到如图所示位置,过D 作DF ⊥AE 于F ,过B 作DE 的平行线与直线FD 交于点G ,(1)中结论是否成立?请说明理由; (3)拓展延伸: 如图3所示,当E 、D 、G 共线时,直接写出DG 的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0), D (8,8).抛物线y =ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2动点P 从点A 出发,沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为1个单位长度,运动时间为t 秒.①如图1所示,过点P 作PE ⊥AB 交AC 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G ,点G 关于抛物线对称轴的对称点为H ,求当t 为何值时,△HAC 的面积为16;②如图2所示,连接EQ ,过Q 作QM ⊥AC 于M ,在点P 、Q 运动的过程中,是否存在某个t ,使得∠QEM =2∠QCE ,若存在请直接写出相应的t参考答案一、选择题(3分×10=30分) 1.A 2.C 3.B 4.D 5.B 6.B 7.C 8.A 9.C 10.D二、填空题(3分×5=15分)11.-2 12.80° 13.m ≥1 14.3-3π 15. 三、解答题(本大题共8小题,满分75分)16.解:224442x x x x x x-+÷--()= ()22(24)2x x x x x --÷-= ()()222x x x x x -⨯+-= 12x + 当x =1时,原式=1132x =+ (名),又AB =AC ,∴∠ABC =∠ACB ,∴∠CED =∠ACB ,又∠AEB 和∠ACB 都为AB 所对的圆周角,∴∠AEB =∠ACB ,∴∠CED =∠AEB ,∵AB =AC ,CD =AC ,∴AB =CD ,在△ABE 和△CDE 中,BAEDCE AEB CED ABCD∠∠∠∠⎧⎪⎨⎪⎩===∴△ABE ≌△CDE (AAS ) (2)①60当△QCH ∽△BA中学数学二模模拟试卷一、选择题(3分×10=30分) 1. 下列各数中,是5的相反数的是( )A . -5B . 5C .0.5D . 0.22.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .3. 人类已知最大的恒星是盾牌座UY ,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中第6题图ABCDE第7题图图②图①120°1234120°第10题图图1图22BCDE 123第12题图AE FM A 'BCDA心,它的表面将接近土星轨道,半径约等于1.43344937×109km .那么这个数的原数是( ) A .143 344 937 km B . 1 433 449 370 km C . 14 334 493 700 km D . 1.43344937 km 4.下列计算正确的是( )A .2a -3a =-1B .(a 2b 3)3=a 5b 6C .a 2 ·a 3=a 6D .a 2+3a 2=4a 2 5. 已知关于x 的分式方程mx +1x=2有解,则m 的取值范围是( ) A .m ≤1且m ≠0 B . m ≤1 C . m ≥-1 D . m ≥-1 且m ≠0 6. 如图所示,该物体的主视图为( )A .B .C .D .7. 如图所示,在Rt △ABC 中∠A =25°,∠ACB =90°,以点C 为圆心,BC 为半径的圆交AB 于一点D ,交AC 于点E ,则∠DCE 的度数为( ) A . 30° B . 25° C . 40° D . 50°8. 不等式组101103x x +>⎧⎪⎨->⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .9. 如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示 数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对 应的圆心角也是120°,则转得的两个数之积为偶数的概率为( )A .12B .29C . 79 D .3410. 如图1所示,小明(点P )在操场上跑步,弯道和两段直道构成,若小明从点A (右侧弯道起点) 出发以顺时针方向沿着跑道行进.设行进的路程为x , 小明到右侧半圆形弯道的圆心O 的距离PO 为y ,可绘制出如图2所示函数图象,那么a -b 的值应为( )A .4B .52π-1 C . D .π二、填空题(3分×5=15分)11. (-3)0= .12. 如图所示,直线ABCD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= .E B C D第14题图AD13.二次函数y =x 2-2mx +1在x ≤1时y 随x 增大而减小,则m 的取值范围是 .14. 如图所示,在平行四边形ABCD 中,AD =2,AB =4,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E . 连接CE ,则阴影部分的面积是 .(结果保留π)15.如图所示,正方形ABCD 中,AB =8,BE =DF =1,M 是射线AD 上的动点,点A 关于直线EM 的对称点为A ,,当△A ,FC 为以FC 为直角边的直角三角形时,对应的MA 的长为 .三、解答题(本大题共8小题,满分75分)16. (8分)先化简22442x x x x -+-÷(x -4x),然后从x x的值代入求值.17.(9分) 陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: ⑴陈老师一共调查了多少名同学? ⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A 类学生中随机选取一位同学,再从D 类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图所示,⊙O 是等腰三角形ABC 的外接圆,AB =AC ,延长BC 至点D ,使CD =AC ,连接AD 交⊙O 于点E ,连接BE 、CE ,BE 交AC 于点F .⑴求证:CE=AE⑵填空:①当∠ABC= 时,四边形AOCE是菱形;②若AE,AB=则DE的长为.19. (9分)如图所示,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,求此时灯罩顶端C到桌面的高度CE的长?(结果精确到0.1cm 1.732)(x>0)相交20.(9分)如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=kx于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0).⑴求双曲线的解析式;⑵若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角与△AOB相似时,求点Q的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋. 其中甲、乙两种运动鞋的进价和售价如下表已知:用元购进乙种运动鞋的数量相同.⑴求m的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.G F E B C DA 图1图2图3AD CBE F G GF E B CD A22.(10分)等腰直角三角形ABC 中,AC =BC E 为AC 中点,以CE 为斜边作如图所示等腰直角三角形CED .(1)观察猜想: 如图1所示,过D 作DF ⊥AE 于F ,交AB 于G ,线段CD 与BG 的关系为 ;(2)探究证明:如图2所示,将△CDE 绕点C 顺时针旋转到如图所示位置,过D 作DF ⊥AE 于F ,过B 作DE 的平行线与直线FD 交于点G ,(1)中结论是否成立?请说明理由; (3)拓展延伸: 如图3所示,当E 、D 、G 共线时,直接写出DG 的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0), D (8,8).抛物线y =ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2动点P 从点A 出发,沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为1个单位长度,运动时间为t 秒.①如图1所示,过点P 作PE ⊥AB 交AC 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G ,点G 关于抛物线对称轴的对称点为H ,求当t 为何值时,△HAC 的面积为16;②如图2所示,连接EQ ,过Q 作QM ⊥AC 于M ,在点P 、Q 运动的过程中,是否存在某个t ,使得∠QEM =2∠QCE ,若存在请直接写出相应的t参考答案一、选择题(3分×10=30分) 1.A 2.C 3.B 4.D 5.B 6.B 7.C 8.A 9.C 10.D二、填空题(3分×5=15分)11.-2 12.80° 13.m ≥1 14.3-3π 15. 三、解答题(本大题共8小题,满分75分)16.解:224442x x x x x x-+÷--()= ()22(24)2x x x x x --÷-= ()()222x x x x x -⨯+-= 12x + 当x =1时,原式=1132x =+ (名),从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=36= 1218.(1)证明:∵四边形ABCE 为圆O 的内接四边形,∴∠ABC =∠CED ,又AB =AC ,∴∠ABC =∠ACB ,∴∠CED =∠ACB ,又∠AEB 和∠ACB 都为AB 所对的圆周角,∴∠AEB =∠ACB ,∴∠CED =∠AEB ,∵AB =AC ,CD =AC ,∴AB =CD ,在△ABE 和△CDE 中,BAEDCE AEB CED ABCD∠∠∠∠⎧⎪⎨⎪⎩===∴△ABE ≌△CDE (AAS ) (2)①60当△QCH ∽△BA中学数学二模模拟试卷一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.在-2,0,1这四个数中,最小的数是( ) A .-2B .0C .1D 2.2018年河南省全年生产总值48055.86亿元,数据“48055.86亿”用科学记数法表示为( ) A .4.805586×104 B .0.4805586×105 C .4.805586×1012D .4.805586×10133.如图是由5个小立方块搭建而成的几何体,它的俯视图是( )A .B .C .D .4.下列计算正确的是( ) A .a+a=a2B .(2a )3=6a3C .a3×a3=2a3D .a3÷a=a25.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则列方程组为( )A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩ B .15022503y y x x ⎧+=⎪⎪⎨⎪+=⎪⎩ C .15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .15022503y y x x ⎧-=⎪⎪⎨⎪-=⎪⎩6.为鼓励同学们阅读经典,了解同学们课外阅读经典名著的情况,在某年级随机抽查了20名同学每期的课外阅读名著的情况,调查结果如下表:则关于这20名同学课外阅读经典名著的情况,下列说法正确的是( ) A .中位数是10本 B .平均数是10.25本 C .众数是12本D .方差是07.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号和为4的概率是( )A.16 B .13 C .12 D .238.关于x 的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .m >0且m≠1B .m >0C .m≥0且m≠1D .m≥09.如图,在平面直角坐标系中,A (0,),B (-2,0),C (2,0),过点B 作AC 的垂直平分线于点D ,则点D 的坐标为( )A .(1,1)B .(1C .1)D .(110.如图1,在△ABC 中,∠C=90°,动点P 从点C 出发,以1cm/s 的速度沿折线CA→AB 匀速运动,到达点B 时停止运动,点P 出发一段时间后动点Q 从点B 出发,以相同的速度沿BC 匀速运动,当点P 到达点B 时,点Q 恰好到达点C ,并停止运动,设点P 的运动时间为ts ,△PQC 的面积为Scm2,S 关于t 的函数图象如图2所示(其中0<t≤3,3≤t≤4时,函数图象均为线段(不含点O ),4<t <8时,函数图象为抛物线的一部分)给出下列结论:①AC=3cm ; ②当S=65时,t=35或6.下列结论正确的是( )A .①②都对B .①②都错C .①对②错D .①错②对二.填空题(每小题3分,共15分)11.计算:(13)0−|−2|=12.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为13.若不等式组11x x m <⎧⎨>-⎩没有解,则m 的取值范围是14.如图,在△ABC 中,∠ABC=90°,∠ACB=30°,BC=2,BC 是半圆O 的直径,则图中阴影部分的面积为15.如图,在△ABC 中,∠C=90°,AC=4,BC=6,点D 是BC 上一动点,DE ⊥AB ,DF ⊥BC ,将△BDE 沿直线DF 翻折得到△B'E'D ,连接AB',AE',当△AB'E'是直角三角形时,则BD=三.解答题(本大题共8个小题,满分75分)16.先化简,再求值:22113263x x x x x x ++-⎛⎫÷- ⎪--⎝⎭,其中x. 17.随着手机普及率的提高,有些人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.某校学生会为了解学校初三年级学生使用手机情况,随机调查了部分学生的使用手机时间,将调查结果分成五类:A .基本不用;B .平均每天使用手机1~2小时;C .平均每天使用手机2~4小时;D .平均每天使用手机4~6小时;E .平均每天使用手机超过6小时.并根据统计结果绘制成了如下两幅不完整的统计图.(1)学生会一共调查了多少名学生.(2)此次调查的学生中属于E 类的学生有 名,并补全条形统计图. (3)若一天中使用手机的时间超过6小时,则患有严重的“手机瘾”.该校初三年级共有900人,估计该校初三年级中约有多少人患有严重的“手机瘾”.18.如图.平行四边形AOBC 的顶点为网格线的交点,反比例函数y=kx (x >0)的图象过格点A ,点B .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出△ABC 沿CO 所在直线平移,使得点C 与点O 重合,得到△A′B′O (不写画法).①点A′,点B′ (填“是”或“不是”)都在反比例函数图象上;②四边形A′B′BA是(特殊四边形),它的面积等于.19.如图,AB是半圆O的直径,点C为半圆O右侧上一动点,CD⊥AB于点D,∠OCD的平分线交AB的垂直平分线于点E,过点C作半圆O的切线交AB的垂直平分线于点F.(1)求证:OC=OE;(2)点C关于直线EF的对称点为点H,连接FH,EH,OH.填空:①当∠E的度数为时,四边形CFHE为菱形.②当∠E的度数为时,四边形CFHO为正方形.20.小亮家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角为37°,此时把手端点A、出水口点B和落水点C在同一直线上.洗手盆及水龙头示意图如图2,其相关数据为AM=10cm,MD=6cm,DE=22cm,EH=38cm.求CH的长.(参考数据:sin37°=35,cos37°=45,tan37°=34≈1.7)21.某网店经市场调查,发现进价为40元的某新型文具每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是 (填“一次函数”“反比例函数”或“二次函数”),求这个函数关系式;(2)当售价为 元时,当月的销售利润最大,最大利润是 元; (3)若获利不得高于进价的80%,那么售价定为多少元时,月销售利润达到最大? 22.(1)问题发现如图1,在等腰直角三角形ABC 中,∠CAB=90°,点D 在AC 上,过点D 作DE ⊥BC 于点E ,以DE ,BE 为边作▱DEBF ,连接AE ,AF . 填空:线段AE 与AF 的关系为 ;(2)类比探究将图1中△CDE 绕点C 逆时针旋转,其他条件不变,如图2,(1)的结论是否成立?并说明理由.(3)拓展延伸在(2)的条件下,将△CDE 绕点C 在平面内旋转,若AC=5,,请直接写出当点A ,D ,E 三点共线时BE 的长.23.如图,抛物线y=ax2+94x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=-34x+3经过点B ,C .(1)求抛物线的解析式;(2)点P 从点O 出发以每秒2个单位的速度沿OB 向点B 匀速运动,同时点E 从点B 出发以每秒1个单位的速度沿BO 向终点O 匀速运动,当点E 到达终点O 时,点P 停止运动,设点P 运动的时间为t 秒,过点P 作x 轴的垂线交直线BC 于点H ,交抛物线于点Q ,过点E 作EF ⊥BC 于点F .①当PQ=5EF时,求出t值;②连接CQ,当S△CBQ:S△BHQ=5:2时,请直接写出点Q的坐标.参考答案与试题解析1. 【分析】根据正数大于0,0大于负数,可得答案.【解答】解:-2<1<0,故选:A.【点评】本题考查了有理数比较大小,正数大于零,零大于负数.2. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:48055.86亿用科学记数法表示为4.805586×1012.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3. 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该几何体的俯视图是故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4. 【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5. 【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6. 【分析】根据中位数,平均数,众数,方差的意义解答即可.【解答】解:A.中位数是10+112=10.5 (本),故A错误;B.平均数120x=(8×3+9×3+10×4+11×6+12×4)=10.25(本),正确;C.众数是10本,故C错误;D.显然方差不为0,D错误,故选:B.【点评】本地考察了中位数平均数,众数以及方差,正确理解中位数,平均数,众数,方差的意义是解题的关键.7. 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号和为4的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两次摸出的小球标号和为4的有2种情况,∴两次摸出的小球标号和为4的概率是:21 = 63.故选:B.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.8. 【分析】根据一元二次方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,∴△=(-2)2-4×1×[-(m-1)]=4m>0,∴m>0.故选:B.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9. 【分析】先确定D为AC的中点,根据中点坐标公式可得结论.【解答】解:∵BD是AC的垂直平分线,∴D是AC的中点,∵A(0,,C(2,0),∴D(1),故选:B.【点评】本题考查了线段垂直平分线的定义和点的坐标,熟练掌握中点坐标公式是关键.10. 【分析】①由函数图象可知当0<t≤3时,点Q未动,点P在AC上移动,移动时间t=3,然后依据路程=时间×速度求解即可;②求出求S关于t的函数关系式,由S=65列出关于t的方程,从而可求得t的值.【解答】解:由函数图象可知当0<t≤3时,点Q未动,点P在AC上移动,∴AC=t×1=3×1=3cm.故①正确;在Rt△ABC中,S△ABC=12BC•AC=6,即12BC×3=6,解得BC=4.由勾股定理可知:AB=5.当0<t≤3时,点Q未动,点P在AC上运动.如图1所示:S=12BC•PC=12×4t=2t.当3≤t≤4时,由题意可知,点Q未动,点P在AB上运动.如图2所示:PB=AB-AP=5-(t-3)=8-t.过点P作PH⊥BC,垂足为H,则35 PH ACPB AB==,33(8)551136484(8)22555PH PB t S BC PH t t ∴==-∴=⋅=⨯⨯-=-+, 由函数图象可知当4<t <8时,点Q 在BC 上,点P 在AB 上,如图3所示:过点P 作PH ⊥BC ,垂足为H .同理:PH=35(8-t ).QC=BC-BQ=4-(t-4)=8-t .∴S 2211332496(8)2251055QC PH t t t =⋅=⨯-=-+ 综上所述,S=22(03)648(34)5532496(48)1055t t t t t t t ⎧⎪<⎪⎪-+⎨⎪⎪-+<<⎪⎩…剟,当0<t ≤3时,2t=65,解得t =35,当3≤t ≤4时,−65t+485=65,解得:t=7(舍去),当4<t <8时,232496610555t t -+=,解得t=6或t=10(舍去),综上所述,当t 为35或6时,△PQC 的面积为65.故②正确.∴①②都对.故选:A .【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了三角形的面积公式,依据函数图象求得AC、BC的长是解题的关键.11. 【分析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=1-2=-1.故答案为:-1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12. 【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+58°=148°,∵直尺的两边互相平行,∴∠2=∠3=148°.故答案为:148°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13. 【分析】利用不等式组取解集的方法判断即可求出m的范围.【解答】解:∵不等式组没有解,∴m-1≥1,解得m≥2.故答案为:m≥2.【点评】此题考查了不等式的解集,熟练掌握不等式取解集的方法是解本题的关键.14. 【分析】根据S阴=(S扇形OFC-S△OFC)+(S△ABC-S△OFC-S扇形OBF),计算即可.【解答】解:如图,连接OF.S阴=(S扇形OFC-S△OFC)+(S△ABC-S△OFC-S扇形OBF),22 12011111160123602223223603666πππππ⋅⋅⋅⋅=-+⨯⨯--=-=+故答案为:6π.【点评】本题考查扇形的面积公式,三角形的面积公式等知识,解题的关键是学会用分割法求阴影部分的面积,属于中考常考题型.15. 【分析】分两种情形画出图形:如图1中,当∠AB′E′=90°时,设BD=DB′=x .如图2中,当∠AE′B′=90°时,易证:A ,E′,D 共线,设BD=AD=x .分别构建方程求解即可.【解答】解:如图1中,当∠AB′E′=90°时,设BD=DB′=x .∵DF ∥AC , ∴DF BD AC BC =, 4623DF x DF x ∴=∴=, ∵∠ACB′=∠AB′F=∠FDB′=90°,∴∠AB′C+∠FB′D=90°,∠CAB′+∠AB′C=90°,∴∠CAB′=∠FB′D ,∴△ACB′∽△B′DF ,46223AC CB DB DFx x x ''∴=-∴=,解得x=53.如图2中,当∠AE′B′=90°时,易证:A ,E′,D 共线,设BD=AD=x .在Rt△ACD中,则有x2=42+(6-x)2,解得x=13 3,综上所述,满足条件的BD的值为53或133.【点评】本题考查翻折变换,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.16. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=222(1)313(1)31 2(3)32(3)(1)(1)2(1) x x x x x x xx x x x x x+--++-+÷=⋅= ---+--当时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17. 【分析】(1)根据使用手机时间为C的人数和所占的百分比即可求出总人数;(2)用总人数减去A、B、C、D类的人数,求出E类的人数,从而补全统计图;(3)用全校的总人数乘以一天中使用手机的时间超过6小时的学生人数所占的百分比,即可求出答案.【解答】解:(1)20÷40%=50(人),答:学生会一共调查了50名学生.(2)此次调查的学生中属于E类的学生有:50-4-12-20-9=5 (名),补全条形统计图如图:(3)900×550=90(人),答:该校初三年级中约有90人患有严重的“手机瘾”.故答案为:(2)5.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18. 【分析】(1)求出点A坐标,利用待定系数法解决问题即可.(2)①根据要求画出图形即可,利用图象法判断即可.②根据矩形的判定方法即可解决问题.【解答】解:(1)由题意A(1,4),∵反比例函数y=kx经过点A(1,4),∴k=4,∴反比例函数的解析式为y=4 x.(2)①△A′B′O如图所示.观察图象可知A′(-4,-1),B′(-1,-4),∴A′,B′均在y=4x的图象上.。
山西省2016年中考模拟数学试题及答案
![山西省2016年中考模拟数学试题及答案](https://img.taocdn.com/s3/m/28b73b35af45b307e87197f6.png)
山西省2016年中考模拟数学试题2015.12.10一、填空题(每小題3分,共计30分)1.下列四个数中绝对值最大的数是( )• (A)-3 (B)0 (C)l (D)22.下列计算正确的是( ).(A)931-2-=)( (B)6234)(-2a a = (C) 2)2(2-=-a (D)236a a a =÷ 3.“珍惜生命,注意安全”是一个永恒的话题.在现代化的城市,交通安全万万不能被忽视,下列四个图形是国际通用的四种交通标志,其中不是中心对称图形的是().4、已知A(x 1,y 1)、B(x 2,y 2)均在反比例函数xy 2=的图象上,若x 1<0 <x 2,则y 1、y 2 的大小关系为( )(A)y 1<0<y 2 (B)y 2<0<y 1 (C) y 1<y 2<0 (D) y 2<y 1<05.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是( )6.如图,为了测量河两岸A 、B 两点间的距离,只需在与AB 垂直方向的点C 处测得AC=a ,∠ACB=a,那么AB 等于( )(A)a.tana (B) a.sina (C)a.cosa(D)aatan7.如图,在平行四边形ABCD 中, E 是BC 延长线上一点, AE 交CD 于F.且CE=错误!未找到引用源。
BC ,则=∆∆EBAADFS S ( ) A 41 B 21 C 错误!未找到引用源。
D 94 8.某商品原价为200元,经过连续两次降价后售价为148元,禁止驶入F ED CBA设平均每次降价为a%,则下面所列方程正确的是(〉. (A) 200 (l+a%)2 =148 (B) 200 (l-a% )2=148(C) 200 (l-2a% ) =148 (D) 200 (1-a 2%)= l4B9.如图,△ABC 为等腰直角三角形,∠ACB=90°,将△ABC 绕点 A 逆时针 旋转75°,得到△AB ′C ′、过点B ′作B ′D ⊥CA,交CA 的延长线于点D, 若AC=6,则AD 的长为( ) (A) 2 (B) 3 (C)32(D) 2310、笔直的海岸线上依次有A 、B 、C 三个港口,甲船从A 港 口出发,沿海岸线勻速驶向C 港,1小时后乙船从B 港口 出发,沿海岸线匀速驶向A 港,两船同时到达目的地。
山西省2016年名校联考中考模拟数学试题(含答案)
![山西省2016年名校联考中考模拟数学试题(含答案)](https://img.taocdn.com/s3/m/61d22fb0f524ccbff12184e5.png)
启用前*绝密万安中学中考数学总复习绝密资料山西省2016年名校联考中考模拟数学试题时间120分钟满分120分2016.4.10一、选择题(每小题3分,共36分)1.﹣的倒数是()A.﹣3 B.3 C.﹣D.2.某市2014年末,全州普查登记常住人口约为403.25万人.将403.25万用科学记数法表示正确的是()A.4.0325×104B.4.0325×106C.4.0325×108D.4.0325×1073.要使式子﹣有意义,字母x的取值必须满足()A.x≤B.x≥﹣C.x≥且x≠3 D.x≥4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°5.数据1,2,4,2,3,3,2,5的中位数是()A.1 B.2 C.3 D.2.56.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B. C. D.7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.248.如图,矩形ABCD的外接圆O与水平地面相切于点A,圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了98π,则此时与地面相切的弧为()A.B.C.D.9.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.10.将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是()A. cm B. cm C. cm D.2cm11.α为锐角,且关于x的一元二次方程有两个相等的实数根,则α=()A.30°B.45°C.30°或150°D.60°12.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A.1 B.C.D.二、填空题(每小题3分,共12分)13.因式分解:xy2﹣4xy+4x= .14.已知,A、B、C、D、E是反比例函数y=(x>0)图象上五个整数点(横,纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示).15.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.16.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,动点P从点B开始沿边BC向点C 以每秒2个单位长度的速度运动,动点Q从点C开始沿C﹣A﹣B向点B以每秒1个单位长度的速度运动,连接PQ,点P、Q分别从点B、C同时出发,当P点到达C点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)当t= 秒时,PQ∥AB.(2)在整个运动过程中,线段PQ的中点所经过的路程长为.三、解答题(本大题共8小题,共66分)17(6分).计算: +.18(6分).如图方格中,有两个图形.(1)画出图形(1)向右平移7个单位的图形a;(2)画出图形a关于直线AB轴对称的图形b;(3)将图形b与图形(2)看成一个整体图形,请写出这个整体图形的对称轴的条数.19(6分).商场销售A,B两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A种衬衣降价20%出售,B种衬衣按原价出售,调整后,一周内A种衬衣的销售量增加了20件,B种衬衣销售量没有变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?20(8分).卫生部修订的《公共场所卫生管理条例实施细则》从今年5月1日开始正式实施,这意味着“室内公共场所禁止吸烟”新规正式生效.为配合该项新规的落实,某校组织了部分同学在“城阳社区”开展了“你最支持哪种戒烟方式”的问卷调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人?(2)请你把两种统计图补充完整;(3)求以上五种戒烟方式人数的众数.21(10分).已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB边上一点,求证:(1)△ACE≌△BCD;(2)AD2+AE2=DE2.22(10分).如图,已知⊙O的直径AB=8cm,直线DM与⊙O相切于点E,连接BE,过点B作BC⊥DM于点C,BC交⊙O于点F,BC=6cm.求:(1)线段BE的长;(2)图中阴影部分的面积.23(8分).将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中.(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和小于4的概率(用树状图或列表法求解).24(14分).如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N (2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P 为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.参考答案一、选择题1.故选:A.2.故选B.3.故选:C.4.故选:A.5.故选D.6.故选:C.7.故选B.8.故选B.9.故选C.10.故选:B.11.故选B.12.故选C.二、填空题13.故答案为:x(y﹣2)2.14故答案为:13π﹣26.15.故答案为:20.16.故答案为:(1);(2)+.三、解答题17.【解答】解:原式=+==.18.【解答】解:(1)(2)所作图形如下:(3)从图知,共2条.19.【解答】解:设A种品牌的衬衣有x件,B种品牌的衬衣有y件.依题意可得解得答:A种品牌的衬衣有100件,B种品牌的衬衣有200件.20.【解答】解:(1)这次调查中同学们调查的总人数为20÷10%=200(人);(2)由(1)可知,总人数是200人.药物戒烟:200×15%=30(人);警示戒烟:200×30%=60,强制戒烟:70÷200=35%.完整的统计图如图所示:(3)∵五种戒烟方式中有两种是20人,其余均为1种,∴以上五种戒烟方式人数的众数是20.21.【解答】证明:(1)∵△ACB和△DCE都是等腰直角三角形,∴CE=CD,AC=CB,∠ACB=∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠ACE=∠DCB,在△ACE和△BCD中∴△ACE≌△BCD(SAS).(2)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴在Rt△AED中,由勾股定理得:AD2+AE2=DE2.22.【解答】解:(1)连接AE.∵AB 是⊙O 的直径,∴∠AEB=90°,又∵BC ⊥DM ,∴∠ECB=90°,∴∠AEB=∠ECB ,∵直线DM 与⊙O 相切于点E ,∴∠CEB=∠EAB ,∴△AEB ∽△ECB ,∴,∴BE 2=AB •BC ,∴BE=(cm );(2)连接OE ,过点O 作OG ⊥BE 于点G . ∴BG=EG ,在Rt △ABE 中,cos ∠ABE=, ∴∠ABE=30°,在Rt △OBG 中,∠ABE=30°,BO=4, ∴OG=2,∴, ∵OE=OB ,∴∠OEB=∠OBE=30°,∴∠BOE=120°,∴S 扇形OBE =,∴S 阴影=S 扇形OBE ﹣S △EOB =()cm 2.23.【解答】解:(1)从口袋中随机摸出一个,其标号为奇数的概率为;(2)列举所有等可能的结果,画树状图(列表法略):∴一共有9种情况,摸出的两个球上数字之和小于4的有3种;∴摸出的两个球上数字之和小于4的概率为=24.【解答】解:(1)因为二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、B(3,0)、N(2,3)所以,可建立方程组:,解得:所以,所求二次函数的解析式为y=﹣x2+2x+3,所以,顶点M(1,4),点C(0,3).(2)直线y=kx+d经过C、M两点,所以,即k=1,d=3,直线解析式为y=x+3.令y=0,得x=﹣3,故D (﹣3,0)∴CD=,AN=,AD=2,CN=2∴CD=AN ,AD=CN∴四边形CDAN 是平行四边形.(3)假设存在这样的点P ,使以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切, 因为这个二次函数的对称轴是直线x=1,故可设P (1,y 0),则PA 是圆的半径且PA 2=y 02+22,过P 做直线CD 的垂线,垂足为Q ,则PQ=PA 时以P 为圆心的圆与直线CD 相切. 由第(2)小题易得:△MDE 为等腰直角三角形,故△PQM 也是等腰直角三角形,由P (1,y 0)得PE=y 0,PM=|4﹣y 0|,,由PQ 2=PA 2得方程:,解得,符合题意,所以,满足题意的点P 存在,其坐标为(1,)或(1,).。
山西省2016年中考数学模拟试题及答案
![山西省2016年中考数学模拟试题及答案](https://img.taocdn.com/s3/m/d7901044580216fc700afd95.png)
山西省2016年中考数学模拟试题时间120分钟满分120分 2015.8.24一、选择题(每小题3分,共30分)1.下列四个有理数:1,﹣2,0,.其中最小的一个有理数是()A. 1 B.﹣2 C. 0 D.2.式子在实数范围内有意义,则x的取值范围是()A.x≥5B. x>﹣5 C.x≥﹣5 D. x>53.分解因式:ax2﹣a,正确的结果是()A. a(x2﹣1)B. a(x﹣1)2C. a(x+1)(x﹣1)D. ax24.某中学随机调查了15名学生一天在家里做作业的时间,列表如下:做作业时间(小时)0.5 1 2 2.5人数 3 5 4 3则这15名同学这一天在家里做作业时间的中位数与众数分别为()A. 1,1 B. 1,2 C. 1,3 D. 2,15.下列计算中,正确的是()A. a2+a3=a5B.(a+b)2=a2+b2C. ab﹣2ab=﹣ab D. a6÷a3=a26.如图,直角坐标系中,线段AB两端点坐标分别为A(4,2)、B(8,0),以原点O为位似中心,将线段AB缩小后得到对应线段A1B1,若B1的坐标为(﹣4,0),则A1的坐标为()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣4,﹣2)7.一机器零件如图,其主视图为()A.B.C.D.8.武汉市统计局统计了今年第一季度每月人均GDP的增长情况,并绘制了如图所示的统计图.下列结论:①1月份的人均GDP增长率最高;②2月份的人均GDP 比1月份低;③这三个月的人均GDP都在增长.其中正确的结论是()A.①②③B.①②C.①③D.②③ 10题图9.将大小相同的小正方体木块按如图方式摆放于一墙角,图①中摆放有1个小正方体,图②中摆放有4个小正方体,图③中摆有9个小正方体,…,按此规律,图⑥中摆放的小正方体个数为()A. 25 B. 36 C. 49 D. 5010.如图,直角坐标系中,P点坐标为(0,4),M为线段OP上(不含O、P)一动点,以OM为直径作⊙A,PN切⊙A于N,设PN﹣PM=m,则m的值()A.为定值1 B. 0<m≤1C. 0<m≤2D.≤m≤1二、填空题(每小题3分,共18分)11.计算:2﹣(﹣1)= .12.近年来,我国高速铁路建设发展迅猛,截止今年五月,全国高速铁路总长接近12000千米.12000这个数据用科学记数法表示为.13.掷一枚均匀的硬币,前两次抛掷的结果都是正面朝上,那么第三次抛掷的结果正面朝上的概率为.14.甲、乙两车从A地出发以各自的速度匀速开往450km外的B地,甲车先行0.5h后乙车出发,乙车到达B地后原地休息.甲、乙两车的距离s与乙车行驶的时间t之间的函数关系如图,则此次行程中,甲、乙两车两次相遇的时间间隔为h.14题图 15题图 16题图15.如图,点A、B在双曲线y=上,AB的延长线交x轴于C,连OA.若AB=2BC,S△OAC=12,则k= .16.如图,等腰Rt△ABC中,AC=BC,AB=2,将线段AB绕A点逆时针方向旋转,B点的对应点为D,若CD∥AB,则CD的长为.三、解答题(共8小题,共72分)17.已知直线y=x+b经过点(2,3),求不等式x+b<1的解集.18.如图1,▱ABCD中,点E、F在对角线BD上,且BE=DF.(1)求证:△AED≌△CFB;(2)如图2,连AF、CE,请你判断四边形AECF的形状,并证明你的结论.19.如图所示的两张图片形状完全相同,把两张图片全部从中间剪断,再把4张形状相同的小图片混合在一起.从4张图片中随机地摸取一张,接着再随机地摸取一张.(1)用树状图法或列表法求摸取的两张小图片恰好合成一张完整图片的概率;(2)老师将四张小图片洗均匀后先由小明随机抽出两张,剩下的给小亮,谁手中的两张图片恰好能合成一张完整图片谁就可获取老师发给的一张游戏卡,经过若干轮这样的游戏后,小明与小亮谁获得的游戏卡多?请直接写出结果.20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立了平面直角坐标系后,△ABC的三个顶点都在格点上,将△ABC绕(0,1)点逆时针方向旋转90°,得到△A′B′C′.(1)请画出△A′B′C′,并直接写出A′的坐标;(2)在旋转变换中,点A所经路径的长为;(3)在x轴上存在点P,使PA+PB′最小,请直接写出P点坐标.21.如图1,AB为⊙O的直径,C为⊙O上一点,AD与过C点的切线垂直,垂足为D,连AC.(1)求证:AC平分∠DAB;(2)如图2,延长AB,交直线DC于E,若=,求tan∠E.22.商场经营的某品牌童装,其成本为每件80元.4月的销售额(销售额=销售量×售价)为20000元,5月份商场对这种童装售价打9折销售,结果销售量增加了50件,销售额增加了7000元.(1)求该童装4月份的销售单价;(2)在“六一儿童节”商场在4月份售价基础上打折促销,在不亏本的前提条件下,销售的数量y(件)与打折的折数x满足一次函数y=﹣50x+600.试求商场打几折时利润最大,最大利润是多少?(3)在(2)的条件下,6月份商场市场调研发现打了m折销售时,其利润与原价销售的利润相同,求m的值.23.如图,△ABC中,AB=AC,AD∥BC,CD⊥AC,连BD,交AC于E.(1)如图(1),若∠BAC=60°,求的值;(2)如图(2),CF⊥AB于F,交BD于G,求证:CG=FG;(3)若AB=13,tan∠ABC=,直接写出EC的长为.24.已知如图1,抛物线y=ax2+4ax+交x轴于A、B(A在B的左侧),过A点的直线y=kx+3k(k>)交抛物线于另一点C(x1,y1),交y轴于M.(1)直接写出A点坐标,并求a的值;(2)连BC,作BD⊥BC交AC于D,若CB=5BD,求k的值;(3)设P(﹣1,﹣2),中图2连CP交抛物线于另一点E(x2,y2),连AE交y 轴于N.请你探究OM•ON的值的变化情况,若变化,求其变化范围;若不变,求其值.参考答案一、选择题1.故选B. 2.故选A. 3.故选C4.故选:A.5. C. 6. B. 7.A. 8. C. 9.B. 10. B.二、填空题11. 3 . 12. 1.2×104. 13..14. 6 h. 15.﹣6 . 16.+1或﹣1 .三、解答题17.解答:解:把(2,3)代入y=x+b中得:3=1+b,解得:b=2,把b=2代入x+b<1得:x<﹣2.18.解答:证明:(1)在▱ABCD中,AD∥CB,且AD=CB,∴∠ADB=∠CBD,∵BE=FD,∴BE+EF=DF+EF,∴BF=DE,在△AED和△CFB中,,∴△AED≌△CFB(SAS);(2)四边形AECF为平行四边形.理由如下:由(1)△AED≌△CFB,∴AE=CF,∠AEF=∠CFE,∴AE∥CF,∴四边形AECF为平行四边形.19.解答:解:(1)设:一张图片分为1和2两部分,列表如下:1 2 1 21 ﹣﹣﹣(1,2)(1,1)(1,2)2 (2,1)﹣﹣﹣(2,1)(2,2)1 (1,1)(1,2)﹣﹣﹣(1,2)2 (2,1)(2,2)(2,1)﹣﹣﹣由图表知共有12种等可能结果,其中能合成的有4种,∴P(合成)==;(2)∵两张小图片恰好合成一张完整图片的概率是,∴他们获得的游戏卡一样多,故答案为:一样多.20.解答:解:(1)所作图形如图所示:A′(﹣1,4);(2)点A所经路径的长==π;(3)P点如图所示,坐标为(﹣1,0).故答案为:(﹣1,4);π;(﹣1,0).21.解答:(1)证明:连结OC,如图1,∵CD为⊙O的切线,∴OC⊥CD,而AD⊥CD,∴OC∥AD,∴∠1=∠2,∵OA=OC,∴∠1=∠2,∴∠2=∠3,∴AC平分∠DAB;(2)解:连结OC,如图2,由=,可设AD=4x,AB=5x,则OC=OA=x,∵OC∥AD,∴△EOC∽△EAD,∴=,即=,解得EO=x,在Rt△OCE中,CE===x,∴tanE===.22.解答:解:(1)设四月份的销售单价为a元,销量为b件,则 ab=20000,a(b+50)=27000,解得a=200,b=100.答:四月份的销售单价为200元.(2)设利润为W,则W═(×200﹣80)(﹣50x+600),=﹣1000x2+16000x﹣48000=﹣1000(x﹣8)2+16000,∵﹣1000<0,∴当x=8时,W最大,值为16000,答:当商场打8折时,利润最大,最大利润为16000元,(3)由(1)知4月份利润为100(200﹣80)=12000元,依题意:(×200﹣80)(﹣50m+600)=12000,解得m1=10(舍) m2=6.23.解答:(1)解:∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵AD∥BC,∴∠DAC=∠ACB=60°,∵CD⊥AC,∴∠ACD=90°,∴∠ADC=30°,∴AD=2AC,∴AD=2BC,∵AD∥BC,∴=2,∴=;(2)证明:作CQ∥AB于Q,如图1所示:则,,∵AD∥BC,∴,∠ACB=∠DAC,∴,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠DAC,∵CF⊥AB,∴∠BFC=90°=∠ACD,∴△CFB∽△DCA,∴,∴,∴CQ=BF,∴=1,∴CG=FG;(3)解:作AM⊥BC于M,如图2所示:∵AC=AB=13,∴BM=CM,∠ACB=∠ABC,∵tan∠ABC=,∴tan∠ACM=tan∠ABC==,设AM=3x,则CM=2x,根据勾股定理得:(2x)2+(3x)2=132,解得:x=,∴CM=2,∴BC=2CM=4,∵∠DAC=∠ACM,tan∠CAD==,∴CD=AC=,∴AD===,∵AD∥BC,∴,即,解得:EC=.故答案为:.24.解答:解:(1)∵直线y=kx+3k(k>)过点A,∴y=0时,0=kx+3k,解得:x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得:a=;(2)联立直线和抛物线解析式得:解得C(4k﹣1,4k2+2k),如图1,作DF⊥x轴于F,CG⊥x轴于G,则△BDF∽△CBG,∵CB=5BD,∴CG=5BF,BG=5DF,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k1=﹣(舍去),k2=1;(3)直线PC解析式为y=ax+a﹣2,与抛物线y=x2+x+联立消去y得:x2﹣4(a ﹣1)x+11﹣4a=0,∴x1+x2=4a﹣4,x1x2=11﹣4a,∵===(x1+1)(x2+1)=(11﹣4a+4a﹣4+1)=,∴OM•ON=OA2=.。
2016年山西省运城市市区中学中考模拟联考数学试题及答案
![2016年山西省运城市市区中学中考模拟联考数学试题及答案](https://img.taocdn.com/s3/m/06b4dd5a852458fb770b5671.png)
2016年山西省运城市市区中学中考联考数学试题时间120分钟满分120分 2016.4.22一、选择题(每小题3分,共42分)1.计算30的零次幂的结果是()A.3 B.30 C.1 D.02.如图,∠1+∠2等于()A.60°B.90°C.110° D.180°3.下列运算中,正确的是()A.2x﹣x=1 B.x+x4=x5 C.(﹣2x)3=﹣6x3 D.x2y÷y=x24.一次函数y=6x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.有如下图形:①函数y=x+1的图形;②函数y=的图象;③一段弧;④平行四边形.其中一定是轴对称图形的有()A.1个B.2个C.3个D.4个6.如图所示的几何体的俯视图是()A.B.C.D.7.我国第二颗月球探测卫星“嫦娥二号”于2011年6月9日奔向距地球1500000km的深空.用科学记数法表示1500000为()A.1.5×106 B.0.15×107 C.1.5×107 D.15×1068.函数中,自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.全体实数9.把多项式x3﹣4x分解因式所得的结果是()A.x(x2﹣4)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.(x+2)(x ﹣2)10.若双曲线的图象经过第二、四象限,则k的取值范围是()A.k>B.k<C.k=D.不存在11.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为()A.6 B.13 C.D.12.如图,将边长为的正方形ABCD沿对角线AC平移,使点A 移至线段AC的中点A′处,得新正方形A′B′C′D′,新正方形与原正方形重叠部分(图中阴影部分)的面积是()A. B.C.1 D.13.下列图象中,能反映函数y随x增大而减小的是()A.B.C.D.14.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A.B.C.D.二、填空题(每小题4分,共16分)15.分解因式:8a2﹣2= ().16.要使式子有意义,则a的取值范围为().17.如图:点A在双曲线上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k=().18.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是()°.三、解答题(本题满分62分)19.(1)计算:(2)解不等式组并在数轴上表示出解集:.20.某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部分学生进行问卷调查为迎接“五一”国际劳动节,某公司机床车间举行“车工技能竞赛”活动,竞赛规则:先车好240个零件的选手获胜.小李为了这次比赛刻苦训练、积极准备,在比赛中,小李每小时比原来多车10个零件,结果比原来提前2小时完成任务,荣获第一名.问小李比赛中每小时车多少个零件?22.如图,两座建筑物AB及CD,其中A,C距离为50米,在AB的顶点B处测得CD的顶部D的仰角β=30°,测得其底部C的俯角α=60°,求两座建筑物AB及CD的高度(精确到0.1米).23.如图,已知E是平行四边形ABCD的边BC上的一点,F是BC延长线上一点,且BE=CF,BD与AE相交于点G.求证:(1)△ABE≌△DCF;(2)BE•DF=BF•GE.24.已知:在平面直角坐标系中,抛物线y=ax2﹣x+3(a≠0)交x轴于A、B 两点,交y轴于点C,且对称轴为直线x=﹣2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t•S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax2+bx+c(a≠0)对称轴是直线x=)参考答案一、选择题1.故选C.2.故选B.3.故选D.4.故选:D.5.故选:B.6.故选:D.7.故选:A.8.故选B.9.故选C.10.故选:B.11.故选C.12.故选B.13.故选D.14.故选:D.二、填空题15. 2(2a+1)(2a﹣1).16. a≥﹣2且a≠0.17.﹣4.18. 60.三、解答题19.【解答】解:(1)原式=2﹣4×+1=2﹣2+1=1;(2)解:,解①得x≤5;解②得x>﹣1,所以不等式组的解集为﹣1<x≤5,用数轴表示为:.20.【解答】解:设小李比赛中每小时车x个零件,则小李原来每小时车(x﹣10)个零件.由题意,得;化简,得 x2﹣10x﹣1200=0;(x﹣40)(x+30)=0,x1=40,x2=﹣30;经检验x1=40,x2=﹣30都是原方程的根,但x2=﹣30不合题意,舍去.答:小李比赛中每小时车40个零件.22.【解答】解:由图可知:∠α=60°,∠β=30°,∵四边形ABEC是平行四边形∴BE=AC=50,AB=CE,在Rt△BCE中,∵tanα=,∴CE=BE•tanα==,∴AB=≈86.6(米)在Rt△BDE中,∵tanβ=,∴DE=BE•tanβ=50×=,∴CD=CE+DE=+≈115.5(米)答:建筑物AB的高度约为86.6米,建筑物CD的高度约为115.5米.23.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠ABE=∠FCD,又∵BE=CF,∴△ABE≌△DCF.(2)∵△ABE≌△DCF,∴∠AEB=∠F.∴AE∥DF.∴△BGE∽△BDF.∴BE:BF=GE:DF,即:BE•DF=GE•BF.24.【解答】解:(1)∵抛物线y=ax2﹣x+3(a≠0)的对称轴为直线x=﹣2.∴,∴,∴.∴D(﹣2,4).(2)探究一:当0<t<4时,W有最大值.∵抛物线交x轴于A、B两点,交y轴于点C,∴A(﹣6,0),B(2,0),C(0,3),∴OA=6,OC=3.当0<t<4时,作DM⊥y轴于M,则DM=2,OM=4.∵P(0,t),∴OP=t,MP=OM﹣OP=4﹣t.∵S三角形PAD=S梯形OADM﹣S三角形AOP﹣S三角形DMP===12﹣2t∴W=t(12﹣2t)=﹣2(t﹣3)2+18∴当t=3时,W有最大值,W最大值=18.探究二:存在.分三种情况:①当∠P1DA=90°时,作DE⊥x轴于E,则OE=2,DE=4,∠DEA=90°,∴AE=OA﹣OE=6﹣2=4=DE.∴∠DAE=∠ADE=45°,,∴∠P1DE=∠P1DA﹣∠ADE=90°﹣45°=45度.∵DM⊥y轴,OA⊥y轴,∴DM∥OA,∴∠MDE=∠DEA=90°,∴∠MDP1=∠MDE﹣∠P1DE=90°﹣45°=45度.∴P1M=DM=2,.此时,又因为∠AOC=∠P1DA=90°,∴Rt△ADP1∽Rt△AOC,∴OP1=OM﹣P1M=4﹣2=2,∴P1(0,2).∴当∠P1DA=90°时,存在点P1,使Rt△ADP1∽Rt△AOC,此时P1点的坐标为(0,2)②当∠P2AD=90°时,则∠P2AO=45°,∴,∴.∵,第11页(共11页)∴.∴△P2AD 与△AOC 不相似,此时点P2不存在.,过程1分) ③当∠AP3D=90°时,以AD 为直径作⊙O1,则⊙O1的半径,圆心O1到y 轴的距离d=4.∵d >r ,∴⊙O1与y 轴相离.不存在点P3,使∠AP3D=90度.∴综上所述,只存在一点P (0,2)使Rt △ADP 与Rt △AOC 相似.。
山西省运城市名校2016年中考模拟考试数学试题及(三)及答案
![山西省运城市名校2016年中考模拟考试数学试题及(三)及答案](https://img.taocdn.com/s3/m/fb06ed4f804d2b160b4ec03a.png)
山西省运城市名校2016年中考模拟数学试题(三)时间120分钟满分120分2015.8.28一、选择题(每小题3分,共30分)1.在2,﹣2,0,﹣3中,最大的数是()A. 2 B.﹣2 C. 0 D.﹣32.若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥3 B. x>3 C. x<3 D.x≤3 3题图3.如图,在直角坐标系中,△OAB和△OCD是位似图形,O为位似中心,若A点的坐标为(1,1),B点的坐标为(2,1),C点的坐标为(3,3),那么点D的坐标是() A.(4,2) B.(6,3) C.(8,4) D.(8,3)4.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数 342 163 165 45 227 163则这组数据的中位数和众数分别是()A. 164和163 B. 105和163 C. 105和164 D. 163和1645.下列运算正确的是()A. a3﹣a2=a B. a2•a3=a6 C.(a3)2=a6 D.(3a)3=9a36.下列运算正确的是()A.=2 B.=﹣3 C. 2﹣3=8 D. 20=07.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A. B. C. D.8.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款()A. 30元 B. 33元 C. 36元 D. 35元9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A. 50 B. 64 C. 68 D. 729题图 10题图10.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径的最小值为()A. B. 2 C. D.二、填空题(每小题3分,共18分)11.分解因式:2a2﹣8b2= .12.据报道,我市今年开工及建设启动的四条轨道交通线路,总投资约82 000 000 000元.将82 000 000 000 用科学记数法表示为.13.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是.13题图 14题图 15题图14.甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A、B两地之间的距离为千米.15.如图,等腰△ABC中,AB=AC,BC∥x轴,点A.C在反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,则△ABC的面积为.16.如图,E是正方形ABCD的边DC上的一点,过点A作AF⊥AE,交CB延长线于点F,AE的延长线交BC的延长线于点G.若AF=7,DE=2,则EG的长是.三、解答题(共8小题,共72分)17(5分).在平面直角坐标系中,直线y=kx﹣4经过点P(2,﹣8),求关于x的不等式kx ﹣4≥0的解集.18(5分).如图,在△ABC和△DCB中,AB=DC,AC=DB,求证:△ABC≌△DCB.19(8分).在平面直角坐标系中有线段AB和点A′,已知A点的坐标为(﹣2,1),B点的坐标为(﹣3,﹣2),A′点的坐标为(1,2),分别按下列要求完成各题.(1)如图1,平移线段AB,使点A移到点A′的位置,请在图中作出平移后的线段A′B′,并直接写出B′点的坐标为;(2)如图2,线段AB与A′B′关于某条直线l对称,请用尺规作图的方法在图中画出对称轴l(保留作图痕迹),并直接写出对称轴l的解析式为;(3)如图3,线段AB绕图中某点P顺时针方向旋转90°,点A恰好旋转到点A′的位置,请在图中画出点P的位置,并画出点B的对应点B′,直接写出:P点的坐标为,在旋转过程中线段AB扫过的面积为.20(8分).某班“2011年新春联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率是.(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现笑脸就获奖.他们获奖的机会相等吗?请说明理由.21(10分).如图1,锐角△ABC内接于⊙O,∠BAC=60°,若⊙O的半径为2.(1)求BC的长度;(2)如图2,过点A作AH⊥BC于点H,若AB+AC=12,求AH的长度.22(10分).某公司准备投资开发A、B两种新产品,信息部通过市场调研得到两条信息:x(万元) 1 2yA(万元) 0.6 1.2yB(万元) 2.4 4.4信息一:如果投资A种产品,所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系:y=kx;信息二:如果投资B种产品,所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.根据公司信息部报告,yA 、yB(万元)与投资金额x(万元)的部分对应值如上表所示:(1)填空:yA = ; yB= ;(2)如果公司准备投资15万元同时开发A、B两种新产品,设公司所获得的总利润为W(万(3)请你设计一个在(2)中公司能获得最大总利润的投资方案.23(12分).已知:正方形ABCD的边长为4,点E为BC的中点,点P为AB上一动点,沿PE 翻折△BPE得到△FPE,直线PF交CD边于点Q,交直线AD于点G,联接EQ.(1)如图,当BP=1.5时,求CQ的长;(2)如图,当点G在射线AD上时,BP=x,DG=y,求y关于x的函数关系式,并写出x的取值范围;(3)延长EF交直线AD于点H,若△CQE与△FHG相似,求BP的长.24(14分).如图1,已知直线y=﹣2x+4与两轴交于A、B两点,抛物线y=x2+bx+c 的顶点M 在线段AB上,与y轴交于点C.(1)若b=﹣2,求C点的坐标;(2)若△ACM为等腰三角形时,求抛物线的解析式;(3)如图2,抛物线的顶点M与B点重合,P为x轴负半轴上一点,过P点作直线l交抛物线于D、E两点,连接BD、BE,试证明:对于x轴负半轴上任意给定的一点P,都存在这样的一条直线l,使得△BPD的面积等于△BDE的面积恒成立.参考答案一、选择题1.故选A.2.故选A.3.故选:B.4故答案为:A.5.故选C.6故选A.7.故选B.8.故选B.9.故选:D.10故选C.二、填空题11.2(a﹣2b)(a+2b).12 8.2×1010.13..14.450 千米.15..16 ﹣7 .三、解答题17.解:把点P(2,﹣8)的坐标代入直线解析式y=kx﹣4中,2k﹣4=﹣8,解得:k=﹣2,则直线的函数解析式为:y=﹣2x﹣4,﹣2x﹣4≥0,解得:x≤﹣2.18.证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).19.解:(1)如图1所示,B′(0,﹣1).故答案为:(0,﹣1);(2)如图2所示,连接AA′,作线段AA′的垂直平分线,则此直线即为直线l.由图可知,直线l过点(0,0),(﹣1,3),∴设直线l的解析式为y=kx(k≠0),∵直线过点(﹣1,3),∴3=﹣k,即k=﹣3,∴直线l的解析式为:y=﹣3x.故答案为:y=﹣3x;(3)如图3所示,∵OA=OA′,且∠AOA′=90°,∴点O即为P点.∵OA==,OB==,∴在旋转过程中线段AB扫过的面积==2π.故答案为:(0,0),2π.20.解:(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,∴获奖的概率是(或填0.5).故答案为:(或填0.5).(2)他们获奖的机会不相等,P(小芳获奖)==,P(小明获奖)==,因为,所以他们获奖的机会不相等.21.解:(1)连接OB,OC,过点O作OD⊥BC于点D,∴BD=CD=BC,∵∠A=60°,∴∠BOC=2∠A=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵OB=2,∴BD=OB•cos30°=2×=3,∴BC=2BD=6.(2)设点G为此三角形ABC内切圆的圆心(角平分线的交点),过G分别向AB,AC,BC作垂线GM,GN,GQ,∵GM=GN=GQ,CQ=CN,BQ=BM,AM=AN,∴AM+AN=AB+AC﹣BC=6,∴AM=AN=3.在Rt△AGM中,∵∠GAM=30°,∴S△ABC =BC•AH=S△ABQ+S△BCQ+S△ACQ=AB•GM+BC•GQ+AC•GM=GM(AB+AC+CB)=9,∴AH=3.22.解:(1)由题意,得k=0.6,,解得:k=0.6,,∴yA =0.6x,yB=﹣0.2x2+2.6x;故答案为:0.6x,﹣0.2x2+2.6x(2)∵设公司所获得的总利润为W(万元),B种产品的投资金额为x(万元),则A种产品投资(15﹣x)万元,由题意,得W=yA+yB=0.6(15﹣x)﹣0.2x2+2.6x;W=﹣0.2x2+2x+9;(3)∵W=﹣0.2x2+2x+9;∴a=﹣0.2<0,∴当x=5时,W最大=14.∴最大利润的投资方案是:B种产品的投资金额为5万元,A种产品投资10万元.23.解:(1)由翻折性质,可知PE为∠BPQ的角平分线,且BE=FE.∵点E为BC中点,∴EC=EB=EF,∴QE为∠CQP的角平分线.∵AB∥CD,∴∠BPQ+∠CQP=180°,即2∠EPQ+2∠EQP=180°,∴∠EPQ+∠EQP=90°,∴∠PEQ=90°,即PE⊥EQ.易证△PBE∽△ECQ,∴,即,解得:CQ=.(2)由(1)知△PBE∽△ECQ,∴,即,∴CQ=,∴DQ=4﹣.∵QD∥AP,∴,又AP=4﹣x,AG=4+y,∴,∴y=(1<x<2).(3)由题意知:∠C=90°=∠GFH.①当点G在线段AD的延长线上时,如答图1所示.由题意知:∠G=∠CQE∵∠CQE=∠FQE,∴∠DQG=∠FQC=2∠CQE=2∠G.∵∠DQG+∠G=90°,∴∠G=30°,∴∠BEP=∠CQE=∠G=30°,∴BP=BE•tan30°=;②当点G在线段DA的延长线上时,如答图2所示.由题意知:∠FHG=∠CQE.同理可得:∠G=30°,∴∠BPE=∠G=30°,∴∠BEP=60°,∴BP=BE•tan60°=.综上所述,BP的长为或.24.解:(1)∵b=﹣2,∴y=x2﹣2x+c,∴顶点M的横坐标为﹣=﹣=1,把x=1代入y=﹣2x+4得,y=﹣2+4=2,∴顶点M的坐标为:(1,2),把(1,2)代入y=x2﹣2x+c得,2=1﹣2+c,∴c=3,∴二次函数解析式为:y=x2﹣2x+3,令x=0,则y=3,∴点C的坐标为:(0,3);(2)由(1)可知,A(0,4),设M(t,﹣2t+4),C(0,t2﹣2t+4),∵抛物线y=x2+bx+c 的顶点M在线段AB上,与y轴交于点C,显然∠ACM>90°,∴△ACM为等腰三角形时,AC=CM,∴4﹣(t2﹣2t+4)=,∴t=,∴,∴抛物线的解析式为y=x2﹣x+;(3)抛物线的顶点M与B点重合时抛物线的解析式为,y=x2﹣4x+4,∵△BPD的面积等于△BDE的面积,∴D为PE的中点,∴设P(m,0),E(n,n2﹣4n+4),∴D(,),∴=()2﹣4•+4,化简得,n2﹣2mn+8m﹣8=0,∵m<0,∴△=b2﹣4ac=4m2﹣32m+32>0,∴无论m为何负值时,关于n的方程总有两个不相等的实数根,即对于x轴负半轴上任意给定的一点P,都存在这样的一条直线l,使得△BPD的面积等于△BDE的面积恒成立.。
山西省2016年百校联考中考数学模拟试卷(二)及参考答案
![山西省2016年百校联考中考数学模拟试卷(二)及参考答案](https://img.taocdn.com/s3/m/b494e9f0482fb4daa48d4ba4.png)
(1) 小明随机抽取了名学生的报名情况进行整理,扇形统计图中,表示E类别部分的扇形的圆心角度数为度; (2) 将条形统计图补充完整; (3) 小华认为如果知道八年级报名参加比赛的总人数,则根据小明制作的统计图就可以估算出八年级报名参加声乐
山西省2016年百校联考中考数学模拟试卷(二)
一、选择题: 1. 山西省某地某天的最低温度为﹣7℃,且昼夜温差为12℃,则最高温度为( ) A . 5℃ B . 7℃ C . ﹣12℃ D . ﹣5℃ 2. 如图为一个正方体的表面展开图,则该正方体的六个表面中,与“善”字相对的面上的字是( )
A.敬B.业 C.诚D.信 3. 山西剪纸是一门古老的民间艺术,下面四幅剪纸艺术作品中,是中心对称图形的是( )
A.
B.
C.
D.
4. 如图,一个直角三角尺的直角顶点和一个锐角顶点分别落在直线l1和l2上,且l1∥l2 , ∠1=30°,当∠2=10°时,∠3
的度数是( )
A . 45° B . 40° C . 35° D . 30° 5. 我国古代典籍《庄子•天下篇》中曾说过一句话:“一尺之棰,日取其半,万世不竭”,现有一根长为1尺的木杆,第1 次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复,则第99次截取 后,此木杆剩下的长度为( ) A. 尺B. 尺C. 尺D. 尺
(1) 在不添加辅助线和字母的情况下,请在图中找出一对全等三角形(用“≌”表示),并加以证明; (2) 求tan∠BDC的值. 19. 如图,在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y= 的图象交于点A(﹣3,2)和点B(1,m) ,连接BO并延长与反比例函数y= 的图象交于点C.
【试卷】中考数学二模试卷含解析13
![【试卷】中考数学二模试卷含解析13](https://img.taocdn.com/s3/m/f7abe0cfe2bd960591c6772f.png)
【关键字】试卷2016年山西省太原市中考数学二模试卷一、选择题:本大题共10小题,每小题3分,共30分1.计算﹣2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.52.如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于()A.80°B.70°C.60°D.50°3.如图是一个零件的立体图,该零件的俯视图是()A.B.C.D.4.一元二次方程x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根5.国家统计局发布的数据显示,初步核算,一季度国内生产总值约159000亿元,按可比价格计算,同比增长6.7%,数据159000亿用科学记数法可表示为()A.1.59×108 B.15.9×1012 C.1.59×1013 D.1.59×10146.若四边形的两条对角线分别平分两组对角,则该四边形一定是()A.平行四边形B.菱形C.矩形D.正方形7.某校举行“我爱我校”演讲比赛,由7名学生组成评委组.小明统计了每位评委对某参赛选手的评分并制成如下表格:众数中位数平均数方差7.9 8.3 8.2 0.3如果以去掉一个最高分和一个最低分后其他5名评委的平均分记为选手的最后得分,那么表中的数据一定不发生变化的是()A.众数B.中位数C.平均数D.方差8.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=2,点A在函数y=﹣(x <0)的图象上.将矩形向右平移6个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,边C1O1与此图象交于点P,则点P的纵坐标为()A.B.C.D.9.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的图象可能是()A.B.C.D.10.有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1 B.方案2 C.方案3 D.方案4二、填空题:本大题共6小题,每小题3分,共18分11.计算5a2b•3ab4的结果是.12.计算:﹣=.13.如图,在▱ABCD中,对角线AC,BD交于点O,OE∥DC交BC于点E,若△BEO的面积为1,则▱ABCD的面积等于.14.超市招聘一名收银员,下面是三名应聘者各项测试成绩:素质测试测试成绩/分小李小张小赵计算机80 70 85商品知识90 75 80语言85 80 95根据实际工作需要,该超市将计算机、商品知识和语言三项测试成绩按4:3:2的比率确定各人的素质测试成绩,三名应聘者中将被录用.15.如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D 逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于.16.建模是数学的核心素养之一,小明在计算+++…+时利用了如下的正方形模型.第1次分割,把正方形的面积三等分,阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…由此计算+++…+的结果是(用含n的代数式表示)三、解答题:本大题共8小题,共72分17.(1)计算:()﹣1+tan30°﹣|﹣2|﹣(π﹣2016)0(2)解方程:+=1.18.阅读与计算:对于任意实数a,b,规定运算@的运算过程为:a@b=a2+ab.根据运算符号的意义,解答下列问题.(1)计算(x﹣1)@(x+1);(2)当m@(m+2)=(m+2)@m时,求m的值.19.根据我国《环境空气质量指数AQI技术规定》(试行),AQI共分0﹣50,51﹣100,101﹣150,151﹣200,201﹣300和大于300六级,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于150时,可以户外运动;空气质量指数151及以上,不适合进行旅游等户外运动,如表是某市未来10天的空气质量指数预测:时间11日12日13日14日15日16日17日18日19日20日AQ1 149 143 251 254 138 55 69 102 243 269 (1)该市市民在这10天内随机选取1天进行户外运动,求这10天该市市民不适合户外运动的概率;(2)一名外地游客计划在这10天内到该市旅游,随机选取连续2天游玩,求这10天中适合他旅游的概率.20.某开发公司研制出一种新型产品,该产品的成本价为每件2000元,批发价定为每件2600元,为了鼓励批发商经销该产品,公司决定:批发商一次批发这种产品不超过10件,每件按2600元批发;一次批发这种产品超过10件,每增加1件,所批发的产品每件均降低10元,但不低于成本价.(1)如果批发单价不低于每件2200元,求批发商一次最多能批发这种产品多少件;(2)如果公司在一次批发这种产品中可获利12000元,求这次批发出这种产品多少件.21.实践与操作:如图,在△ABC中,AB=3,∠C=30°.(1)尺规作图:作△ABC的外接圆⊙O;(要求:保留作图痕迹,不写作法)(2)在你按(1)中要求所作的图中,画⊙O的切线BF,BF与CA的延长线交于点F,若CF⊥BF,求BC的长.22.综合与实践:制作礼品盒如图(1),小颖将边长为60cm的正方形硬纸片ABCD,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,如图(2),点A,B,C,D四点重合于点P,做成一个底面是正方形的长方体形状的礼品盒.设礼品盒的侧面积为Scm2,AE=FB=xcm.(1)求S与x之间的关系式及S的最大值;(2)小颖有一底面半径为15cm,高为15cm的圆柱体形状的礼品,该礼品能否底面朝下放入她做成的礼品盒?若能,求出x的值;若不能,请说明理由.23.数学活动:图形的变化问题情境:如图(1),△ABC为等腰直角三角形,∠ACB=90°,E是AC边上的一个动点(点E与A,C不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接BE,AD.猜想线段BE,AD之间的关系.(1)独立思考:请直接写出线段BE,AD之间的关系;(2)合作交流:“希望”小组受上述问题的启发,将图(1)中的等腰直角△ECD绕着点C 顺时针方向旋转至如图(2)的位置,BE交AC于点H,交AD于点O.(1)中的结论是否仍然成立,请说明理由.(3)拓展延伸:“科技”小组将(2)中的等腰直角△ABC改为Rt△ABC,∠ACB=90°,AC=8,BC=6,将等腰直角△ECD改为Rt△ECD,∠ECD=90°,CD=4,CE=3.试猜想BD2+AE2是否为定值,结合图(3)说明理由.24.综合与探究:如图,直线y=﹣x+3与y轴交于点A,与x轴交于点B,点P从点B出发以每秒1个单位长度的速度沿BA边向终点A运动,同时点Q以相同的速度从坐标原点O 出发沿OB边向终点B运动,设点P运动的时间为t秒.(1)求点A,B的坐标;(2)设△OPQ的面积为S,求S与运动时间t之间的函数关系式;(3)在点P,Q运动的过程中,是否存在点N,使得以点A,P,Q,N为顶点的四边形是矩形?若存在,求t的值并直接写出点N的坐标;若不存在,请说明理由.2016年山西省太原市中考数学二模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.计算﹣2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.5【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数即可求解.【解答】解:﹣2﹣3=﹣2+(﹣3)=﹣5.故选:A.2.如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于()A.80° B.70° C.60° D.50°【考点】平行线的判定与性质.【分析】先根据:∠1=70°,∠2=70°,判定AB∥CD,再根据平行线的性质,求得∠4的度数.【解答】解:∵∠1=70°,∠2=70°,∴AB∥CD,∴∠3=∠4,又∵∠3=60°,∴∠4的度数等于60°.故选(C)3.如图是一个零件的立体图,该零件的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:该零件的俯视图为:故选D.4.一元二次方程x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.只有一个实数根【考点】根的判别式.【分析】首先求得△=b2﹣4ac的值,然后即可判定一元二次方程x2+3x+1=0的根的情况.【解答】解:∵a=1,b=3,c=1,∴△=b2﹣4ac=32﹣4×1×1=5>0,∴有两个不相等的实数根.故选A.5.国家统计局发布的数据显示,初步核算,一季度国内生产总值约159000亿元,按可比价格计算,同比增长6.7%,数据159000亿用科学记数法可表示为()A.1.59×108B.15.9×1012C.1.59×1013D.1.59×1014【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将159000亿用科学记数法表示为:1.59×1013.故选:C.6.若四边形的两条对角线分别平分两组对角,则该四边形一定是()A.平行四边形B.菱形 C.矩形 D.正方形【考点】菱形的判定.【分析】由题意得出∠1=∠2=∠ABC,∠3=∠4=∠ADC,由三角形内角和定理得出∠BAD=∠BCD,同理:∠ABC=∠ADC,证出四边形ABCD是平行四边形,证出∠1=∠3,得出AB=AD,即可得出结论.【解答】解:如图所示:∵BD平分∠ABC、∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC,∵∠BAD+∠1+∠3=180°,∠BCD+∠2+∠4=180°,∴∠BAD=∠BCD,同理:∠ABC=∠ADC,∴四边形ABCD是平行四边形,∠1=∠3,∴AB=AD,∴四边形ABCD是菱形.故选:B.7.某校举行“我爱我校”演讲比赛,由7名学生组成评委组.小明统计了每位评委对某参赛选手的评分并制成如下表格:众数中位数平均数方差7.9 8.3 8.2 0.3如果以去掉一个最高分和一个最低分后其他5名评委的平均分记为选手的最后得分,那么表中的数据一定不发生变化的是()A.众数 B.中位数C.平均数D.方差【考点】方差;算术平均数;中位数;众数.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选B.8.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=2,点A在函数y=﹣(x <0)的图象上.将矩形向右平移6个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x >0)的图象上,边C1O1与此图象交于点P,则点P的纵坐标为()A.B.C.D.【考点】反比例函数图象上点的坐标特征;矩形的性质.【分析】先根据OB=2,点A在函数y=﹣(x<0)的图象上求出AB的长,再由平移的性质得出B1的坐标,进而得出反比例函数的解析式,求出O1的坐标,进而可得出结论.【解答】解:∵OB=2,点A在函数y=﹣(x<0)的图象上,∴AB=4.∵将矩形向右平移6个单位长度到A1B1O1C1的位置,∴(4,0),∴A1(4,4),∴k=16,即反比例函数的解析式为y=.∵OB=2,∴O1(6,0),∴当x=6时,y==,∴点P的纵坐标为.故选D.9.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据两个函数的交点坐标可以排除A、B,根据函数的性质可以判断C、D哪个是正确,本题得以解决.【解答】解:解得或即一次函数y=ax+b和二次函数y=ax2+bx的交点为(0,0)和(),故A、B错误;选项C中由一次函数的图象可知,a>0,b<0,则,由二次函数图象可知,a>0,b<0,故C正确;选项D中,由一次函数的图象可知,a>0,b>0,由二次函数的图象可知,a<0,b<0,故选项D错误.故选C.10.有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1 B.方案2 C.方案3 D.方案4【考点】作图—应用与设计作图.【分析】认真观察图形,分别利用锐角三角函数关系得出4个方案的管道长度进而比较得出答案.【解答】解:设等边三角形的边长为a,方案1:铺设路线的长为AB+AC=2a,方案2:△ABC中的高线=AB•sin60°=a,故铺设路线的长度为AB+AD+DC=a+a;方案3:△ABC中的高线=AB•sin60°=a,故铺设路线的长度为BC+a=a+a;方案4:如图所示:过点O作OD⊥BC于点D,∵BD=,则BO==a,铺设路线的长为AO+BO+CO=3×a=a;因为a+a>2a>a+a>a,所以方案4铺设路线最短.故选D.二、填空题:本大题共6小题,每小题3分,共18分11.计算5a2b•3ab4的结果是15a3b5.【考点】单项式乘单项式.【分析】依据单项式乘单项式法则进行计算即可.【解答】解;原式=5×3a2•a•b•b4=15a3b5.故答案为:15a3b5.12.计算:﹣= ﹣.【考点】分式的加减法.【分析】先通分,再把分子相加减即可.【解答】解:原式=﹣====﹣.故答案为:﹣.13.如图,在▱ABCD中,对角线AC,BD交于点O,OE∥DC交BC于点E,若△BEO的面积为1,则▱ABCD的面积等于8 .【考点】平行四边形的性质.【分析】由平行四边形的性质和相似三角形的性质得出△BCD的面积=4△BEO的面积=4,即可得出▱ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC,BCD的面积=四边形ABCD的面积,∵OE∥DC,∴△BEO∽△BCD,∴△BEO的面积:△BCD的面积=1:4,∴△BCD的面积=4△BEO的面积=4×1=4,∴▱ABCD的面积=4×2=8;故答案为:8.14.超市招聘一名收银员,下面是三名应聘者各项测试成绩:素质测试测试成绩/分小李小张小赵计算机80 70 85商品知识90 75 80语言85 80 95根据实际工作需要,该超市将计算机、商品知识和语言三项测试成绩按4:3:2的比例确定各人的素质测试成绩,三名应聘者中小赵将被录用.【考点】加权平均数.【分析】分别计算出三个人的加权平均数,然后比较即可.【解答】解:∵小李的平均数是: =,小张的平均数是: =,小赵的平均数是: =,∴小赵的得分最高,故小赵被录用.故答案为:小赵.15.如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D 逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120 .【考点】旋转的性质.【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.16.建模是数学的核心素养之一,小明在计算+++…+时利用了如下的正方形模型.第1次分割,把正方形的面积三等分,阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…由此计算+++…+的结果是﹣(用含n的代数式表示)【考点】规律型:图形的变化类.【分析】由阴影部分面积=1﹣空白部分面积,可得第n次分割图中: =1﹣,两边除以2可得答案.【解答】解:第1次分割,阴影部分的面积为,空白部分面积为1﹣=;第2次分割,阴影部分的面积之和为+,空白部分面积为1﹣(+)=;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,所有阴影部分的面积之和为,最后空白部分的面积是.根据第n次分割图可得等式: =1﹣,两边同除以2,得+++…+=﹣.故答案为:﹣.三、解答题:本大题共8小题,共72分17.(1)计算:()﹣1+tan30°﹣|﹣2|﹣(π﹣2016)0(2)解方程: +=1.【考点】实数的运算;解分式方程;特殊角的三角函数值.【分析】(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣2+﹣1=;(2)去分母得:1+6x=2x﹣4,解得:x=﹣,经检验x=﹣是分式方程的解.18.阅读与计算:对于任意实数a,b,规定运算@的运算过程为:a@b=a2+ab.根据运算符号的意义,解答下列问题.(1)计算(x﹣1)@(x+1);(2)当m@(m+2)=(m+2)@m时,求m的值.【考点】整式的混合运算;解一元一次方程.【分析】(1)根据题目中的新运算可以化简题目中的式子;(2)根据题目中的新运算可以对题目中的式子进行转化,从而可以求得m的值.【解答】解:(1)∵a@b=a2+ab,∴(x﹣1)@(x+1)=(x﹣1)2+(x﹣1)(x+1)=x2﹣2x+1+x2﹣1=2x2﹣2x;(2)∵a@b=a2+ab,∴m@(m+2)=(m+2)@m即m2+m(m+2)=(m+2)2+(m+2)m,化简,得4m+4=0,解得,m=﹣1,即m的值是﹣1.19.根据我国《环境空气质量指数AQI技术规定》(试行),AQI共分0﹣50,51﹣100,101﹣150,151﹣200,201﹣300和大于300六级,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于150时,可以户外运动;空气质量指数151及以上,不适合进行旅游等户外运动,如表是某市未来10天的空气质量指数预测:时间11日12日13日14日15日16日17日18日19日20日AQ1 149 143 251 254 138 55 69 102 243 269 (1)该市市民在这10天内随机选取1天进行户外运动,求这10天该市市民不适合户外运动的概率;(2)一名外地游客计划在这10天内到该市旅游,随机选取连续2天游玩,求这10天中适合他旅游的概率.【考点】概率公式.【分析】(1)先找出市民不适合户外运动的天数,再根据概率公式即可得出结论;(2)列举出适合连续2天游玩的情况,再根据概率公式求解即可.【解答】解:(1)∵这10天该市市民户外运动的机会是相同的,其中不适合户外运动的天数分别是:13日,14日,19日,20日,∴这10天该市市民不适合户外运动的概率==;(2)∵这10天连续2天的组合共有9中可能情况,其中连续2天游玩的情况有4中,分别是(11,12),(15,16)(16,17),(17,18),∴适合他旅游的概率=.20.某开发公司研制出一种新型产品,该产品的成本价为每件2000元,批发价定为每件2600元,为了鼓励批发商经销该产品,公司决定:批发商一次批发这种产品不超过10件,每件按2600元批发;一次批发这种产品超过10件,每增加1件,所批发的产品每件均降低10元,但不低于成本价.(1)如果批发单价不低于每件2200元,求批发商一次最多能批发这种产品多少件;(2)如果公司在一次批发这种产品中可获利12000元,求这次批发出这种产品多少件.【考点】二次函数的应用.【分析】(1)设批发商一次最多能批发这种产品x件,根据题意得不等式即可得到结论;(2)设这次批发出这种产品y件,①当y=10时,通过计算得到y=10不成立,②当y>10时,根据题意得方程求得y1=30,y2=40,于是得到结论.【解答】解:(1)设批发商一次最多能批发这种产品x件,根据题意得:2600﹣10(x﹣10)≥2200,解得:x≤50,答:批发商一次最多能批发这种产品50件;(2)设这次批发出这种产品y件,①当y=10时,公司可获得利润:10=6000,∵6000<12000,∴y=10不成立,②当y>10时,根据题意得:y[2600﹣10(y﹣10)﹣2000]=12000,解得:y1=30,y2=40,答:这次批发出这种产品30件或40 件.21.实践与操作:如图,在△ABC中,AB=3,∠C=30°.(1)尺规作图:作△ABC的外接圆⊙O;(要求:保留作图痕迹,不写作法)(2)在你按(1)中要求所作的图中,画⊙O的切线BF,BF与CA的延长线交于点F,若CF ⊥BF,求BC的长.【考点】作图—复杂作图;切线的性质.【分析】(1)分别作AC和BC的垂直平分线,它们相交于点O,则以O为圆心,OA为半径作圆即可;(2)连接OA、OB,OA交BC于E,如图,根据切线的性质得OB⊥BF,再证明OB∥CF得到∠OBC=∠C=30°,利用圆周角定理得到∠AOB=2∠C=60°,于是可判定△OAB为等边三角形,所以∠ABC=30°,则可判断BC平分∠ABO,根据等边三角形的性质得AO⊥BC,利用垂径定理得到BE=CE,然后在Rt△ACE中,利用含30度的直角三角形三边的关系求出BE,从而得到BC的长.【解答】解:(1)如图,⊙O为所作;(2)连接OA、OB,OA交BC于E,如图,∵BF为切线,∴OB⊥BF,∵BF⊥CF,∴OB∥CF,∴∠OBC=∠C=30°,∵∠AOB=2∠C=60°,∵OA=OB,∴△OAB为等边三角形,∴∠ABC=30°,∴BC平分∠ABO,∴AO⊥BC,∴BE=CE,在Rt△ACE中,AE=AB=,BE=AE=,∴BC=2BE=3.22.综合与实践:制作礼品盒如图(1),小颖将边长为60cm的正方形硬纸片ABCD,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,如图(2),点A,B,C,D四点重合于点P,做成一个底面是正方形的长方体形状的礼品盒.设礼品盒的侧面积为Scm2,AE=FB=xcm.(1)求S与x之间的关系式及S的最大值;(2)小颖有一底面半径为15cm,高为15cm的圆柱体形状的礼品,该礼品能否底面朝下放入她做成的礼品盒?若能,求出x的值;若不能,请说明理由.【考点】二次函数的应用.【分析】(1)根据条件可以分别表示出阴影部分的面积,掀起的四个角上的四个等腰直角三角形的面积之和及底部正方形的面积就可以表示出S与x之间的函数关系式;将解析式化为顶点式就可以求出S的最大值;(2)设包装盒的底面正方形的边长为a,高为h,就可以得出AE=a,EF=60﹣2AE=60﹣a,h=EF=30﹣a,再三种情况讨论就可以得出结论.【解答】解:(1)∵AE=FB=xcm,∴EF的长为(60﹣2x)cm.图中阴影部分拼在一起是边长为EF的正方形,其面积为:(60﹣2x)2cm2,掀起的四个角上的四个等腰直角三角形的面积之和为:2x2cm2;盒底正方形的边长为x,其面积为2x2;∴S=602﹣(60﹣2x)2﹣4x2=240x﹣8x2∴S=﹣8(x2﹣30x)=﹣8(x﹣15)2+1800(0<x<30),∵a=﹣8<0.∴抛物线的开口向下,S有最大值.∴x=15cm时,侧面积最大为1800cm2,答:若包装盒侧面积S最大=1800cm2最大,x应取15cm.(2)包装盒的底面正方形的边长为a,高为h,∴AE=a,∴EF=60﹣2AE=60﹣a,∴h=EF=30﹣a,∴包装盒的高h随底面边长的增大而减小.①圆柱的底面朝下放入,此时包装盒高h不能小于15.∵圆柱的底面半径为15cm,∴盒底边长最小取30cm(放入如①图),∴h=30﹣a=30(﹣1)<15,故不能放下.②圆柱体侧面朝下放入,盒高h最小取30cm,此时底面边长最大为(30﹣30)cm.此时由两种特殊的防治方法:若按图1放置,此时盒底边长a取30cm,∴高为30﹣30.∵30>30﹣30,∴放不下;若按图2放置,此时盒底边长为a=30×+15×=cm,∵﹣(30﹣30)=30﹣>0,∴也不能放下.其他任意位置摆放,也不能放下,理由:实质上就是将边长为15和30的矩形放入另一矩形,如图3,此时矩形的面积S=(x+2y)(2x+y)=5xy+2(x2+y2),=5x=5,令x2=t(0<t<225),∴S=5+450,(x=0和15为图1情况,x=为图2情况)∴无论位置如何摆放,正方形的边长最小只能取到30cm,而30>30﹣30,不能放下.综上所述,不能放下这个几何体.23.数学活动:图形的变化问题情境:如图(1),△ABC为等腰直角三角形,∠ACB=90°,E是AC边上的一个动点(点E与A,C不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接BE,AD.猜想线段BE,AD之间的关系.(1)独立思考:请直接写出线段BE,AD之间的关系;(2)合作交流:“希望”小组受上述问题的启发,将图(1)中的等腰直角△ECD绕着点C 顺时针方向旋转至如图(2)的位置,BE交AC于点H,交AD于点O.(1)中的结论是否仍然成立,请说明理由.(3)拓展延伸:“科技”小组将(2)中的等腰直角△ABC改为Rt△ABC,∠ACB=90°,AC=8,BC=6,将等腰直角△ECD改为Rt△ECD,∠ECD=90°,CD=4,CE=3.试猜想BD2+AE2是否为定值,结合图(3)说明理由.【考点】几何变换综合题.【分析】(1)由△ABC和△CDE都是等腰直角三角形,得到的结论,直接判断出△BCE≌△ACD,再用互余判断出垂直;(2)由△ABC和△CDE都是等腰直角三角形,得到的结论,直接判断出△BCE≌△ACD,再用互余判断出垂直;(3)由条件用两边对应成比例,夹角相等判断出△BCE∽△ACD,再用勾股定理简单的计算即可.【解答】解:(1)∵△ABC和△CDE都是等腰直角三角形,∴BC=AC,CE=CD,∠BCE=∠ACD=90°,∴△BCE≌△ACD,∴BE=AD,∠CEB=∠CDA,∵∠CBE+∠CEB=90°,∴∠CBE+∠CDA=90°,∴BE⊥AD,(2)BE=CD,BE⊥AD,理由:∵△ABC是等腰直角三角形,∠ACB=90°∴AC=BC,∵△CDE是等腰直角三角形,∠ECD=90°,∴CD=CE,∴∠ACB+∠ACE=∠ECD+∠ACE,∴∠BCE=∠ACD,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠BHC=∠AHO,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AHO=90°,∴BE⊥AD;(3)是定值,理由:∵∠ECD=90°,∠ACB=90°,∴∠ACB=∠ECD,∴∠ACB+ACE=∠ECD+∠ACE=90°,∴∠BCE=ACD,∵AC=8,BC=6,CD=4,CE=3,∴=,∴△BCE∽△ACD,∴∠CBE=∠CAD,∵∠BHC=∠AHO,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BE⊥AD,∴∠BOD=∠AOB=90°,∴BD2=OB2+OD2,AE2=OA2+OE2,AB2=OA2+OB2,DE2=OE2+OD2,∴BD2+AE2=OB2+OD2+OA2+OE2=AB2+DE2,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB2=100,在Rt△ECD中,∠ECD=90°,CD=4,CE=3,∴DE2=25,∴BD2+AE2=AB2+DE2=125.24.综合与探究:如图,直线y=﹣x+3与y轴交于点A,与x轴交于点B,点P从点B出发以每秒1个单位长度的速度沿BA边向终点A运动,同时点Q以相同的速度从坐标原点O 出发沿OB边向终点B运动,设点P运动的时间为t秒.(1)求点A,B的坐标;(2)设△OPQ的面积为S,求S与运动时间t之间的函数关系式;(3)在点P,Q运动的过程中,是否存在点N,使得以点A,P,Q,N为顶点的四边形是矩形?若存在,求t的值并直接写出点N的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)对于直线解析式,分别令x与y为0求出对应y与x的值,即可求出A与B 坐标;(2)如图1所示,过P作PH垂直于x轴,由题意求出OQ=BP=1,在直角三角形AOB中,利用勾股定理求出AB的长,进而求出sin∠ABO的值,根据BP=t表示出PH,分情况分类讨论表示出S与t的函数关系式即可;(3)存在点N,使得以点A,P,Q,N为顶点的四边形是矩形,分三种情况考虑:①如图2所示,当∠APQ=90°时,∠BPQ=∠AOB=90°;②如果∠PAQ=90°;③如果∠AQP=90°,当Q 与O重合时,t=0,此时N坐标为(4,3),分别求出t的值,进而相应求出N的坐标即可.【解答】解:(1)对于直线y=﹣x+3,令x=0,得到y=3;令y=0,得到x=4,∴A(0,3),B(4,0);(2)如图1所示,过P作PH⊥x轴于H,由题意得:OQ=BP=1,由题意得:OA=3,OB=4,在Rt△ABO中,∠AOB=90°,根据勾股定理得:AB===5,∴sin∠ABO=,在Rt△PHB中,∠PHB=90°,BP=t,∴PH=BPsin∠ABO=t,当0≤t<4时,S=×OQ×PH=×t×t=t2;当4≤t<5时,点Q与点B重合,OQ=OB=4,PH=t,∴S=×OQ×PH=×4×t=t,综上,S与t的函数解析式为S=;(3)存在以点A,P,Q,N为顶点的四边形是矩形,①如图2所示,当∠APQ=90°时,∠BPQ=∠AOB=90°,由(2)得:cos∠PBQ=,即=,解得:t=,此时N坐标为(﹣,);②如果∠PAQ=90°,∵∠OAB为锐角,∠PAQ<∠OAB,∴不成立,∠PAQ≠90°;③如果∠AQP=90°,当Q与O重合时,t=0,此时N坐标为(4,3),当0<t≤5时,如图3所示,过P作PM⊥x轴于点M,由①得:MB=t,∴QM=OB﹣OQ﹣BM=4﹣t,∵∠AOQ=∠QMP=∠AQP=90°,∴∠OAQ=∠MQP,∴Rt△AOQ∽Rt△QMP,∴=,即=,解得:t=,此时N坐标为(,),综上所述,当t的值为0,,时,以点A,P,Q,N为顶点的四边形是矩形,点N的坐标分别为(4,3),(﹣,),(,).此文档是由网络收集并进行重新排版整理.word可编辑版本!。
山西省运城市数学中考二模试卷
![山西省运城市数学中考二模试卷](https://img.taocdn.com/s3/m/c13ae2ed580216fc710afd97.png)
山西省运城市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2019七下·宝应月考) 把-0.000236用科学计数法表示,应是()A .B .C .D .2. (2分)(2020·新野模拟) 下列运算正确的是()A .B .C .D .3. (2分) (2019七上·成都月考) 下列四个选项中,结果是正数的是()A .B .C .D .4. (2分)(2020·桂林) 有理数2,1,﹣1,0中,最小的数是()A . 2B . 1C . ﹣1D . 05. (2分)(2020·滨海模拟) 估计的值在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间6. (2分)(2017·玄武模拟) 如图,将正六边形ABCDEF放入平面直角坐标系后,若点A、B、E的坐标分别为(a,b)、(3,1)、(﹣a,b),则点D的坐标为()A . (1,3)B . (3,﹣1)C . (﹣1,﹣3)D . (﹣3,1)二、填空题 (共10题;共12分)7. (1分) (2016七上·平阳期末) ﹣的相反数是________8. (1分)(2020·启东模拟) 计算:﹣=________.9. (1分) (2019·义乌模拟) 分解因式:3x2﹣27x=________.10. (1分) (2019九上·获嘉月考) 若一元二次方程2x2+4x+1=0的两根是x1、x2 ,则x1+x2的值是________.11. (2分) (2019八上·宁化月考) 如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=18°,那么∠2的度数是________.12. (1分) (2019九上·浦东期中) 如图,正方形EFGH的边EF在△ABC的边BC上,顶点H、G分别在边AB、AC上.如果△ABC的边BC=30,高AD=20,那么正方形EFGH的边长为________13. (1分) (2019七下·桦南期末) 某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有________人.14. (2分)已知一个圆的半径为5cm,则它的内接正六边形的边长为________.15. (1分)(2018·广水模拟) 甲、乙两人从A地出发前往B地,甲先出发1分钟后,乙再出发,乙出发一段时间后返回A地取物品,甲、乙两人同时达到B地和A地,并立即掉头相向而行直至相遇,甲、乙两人之间相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则甲、乙两人最后相遇时,乙距B地的路程是________米.16. (1分)如图,电灯在横杆的正上方,在灯光下的影子为,,,,点到的距离为,则与间的距离是________ .三、解答题 (共11题;共75分)17. (5分) (2019七下·萍乡期中) 计算18. (5分)(2018·遵义模拟) 解不等式组,并把它的解集在数轴上表示出来.19. (15分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有________名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.20. (6分)(2020·梧州模拟) 某校开展了“创建文明校园”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与。
2016年山西省中考数学试题(卷)(含答案解析)
![2016年山西省中考数学试题(卷)(含答案解析)](https://img.taocdn.com/s3/m/d9c79ce3b0717fd5360cdc79.png)
2016年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)﹣的相反数是()A.B.﹣6 C.6 D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:∵+(﹣)=0,∴﹣的相反数是:.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)不等式组解集是()A.x>﹣5 B.x<3 C.﹣5<x<3 D.x<5【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣5,解②得:x<3,则不等式的解集是:﹣5<x<3.故选:C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(3分)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是()A.B. C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1,据此可得出图形,从而求解.【解答】解:观察图形可知,该几何体的左视图是.故选:A.【点评】本题考查由三视图判断几何体,简单组合体的三视图.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.(3分)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500万=5.5×107.故选:B.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.6.(3分)下列运算正确的是()A.(﹣)2=﹣B.(3a2)3=9a6C.5﹣3÷5﹣5=D.【分析】分别利用积的乘方运算法则以及二次根式的加减运算法则、同底数幂的除法运算法则分别化简求出答案.【解答】解:A、(﹣)2=,故此选项错误;B、(3a2)3=27a6,故此选项错误;C、5﹣3÷5﹣5=25,故此选项错误;D、﹣=2﹣5=﹣3,正确;故选:D.【点评】此题主要考查了积的乘方运算以及二次根式的加减运算、同底数幂的除法运算等知识,正确掌握相关运算法则是解题关键.7.(3分)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg 货物,则可列方程为()A.B.C.D.【分析】设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,根据甲搬运5000kg 所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【解答】解:设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,由题意得,故选B【点评】本题考查了列分时方程解实际问题的运用,分式方程的解法的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.8.(3分)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3 C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣3【分析】先把一般式配成顶点式得到抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),再利用点平移的规律得到把点(2,﹣8)平移后所得对应点的坐标为(﹣1,﹣3),然后利用顶点式写出平移后的抛物线的函数表达式.【解答】解:因为y=x2﹣4x﹣4=(x﹣2)2﹣8,所以抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),把点(2,﹣8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(﹣1,﹣3),所以平移后的抛物线的函数表达式为y=(x+1)2﹣3.故选D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.(3分)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为()A.B.C.πD.2π【分析】首先求出圆心角∠EOF的度数,再根据弧长公式l=,即可解决问题.【解答】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长==π.故选C.【点评】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式,属于中考常考题型.10.(3分)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC 的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD 的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH【分析】先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【解答】解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF中,DF==∴FG=∴CG=﹣1∴=∴矩形DCGH为黄金矩形故选D.【点评】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,﹣1),表示桃园路的点的坐标为(﹣1,0),则表示太原火车站的点(正好在网格点上)的坐标是(3,0).【分析】根据双塔西街点的坐标可知:1号线起点所在的直线为x轴,根据桃园路的点的坐标可知:2号线起点所在的直线为y轴,建立平面直角坐标系,确定太原火车站的点的坐标.【解答】解:由双塔西街点的坐标为(0,﹣1)与桃园路的点的坐标为(﹣1,0)得:平面直角坐标系,可知:太原火车站的点的坐标是(3,0);故答案为:(3,0)【点评】本题考查了利用坐标确定位置,解题的关键就是确定坐标原点和x、y轴的位置.12.(3分)已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y=(m<0)图象上的两点,则y1>y2(填“>”或“=”或“<”)【分析】由反比例函数系数小于0,可得出该反比例函数在第二象限单增,结合m﹣1、m﹣3之间的大小关系即可得出结论.【解答】解:∵在反比例函数y=(m<0)中,k=m<0,∴该反比例函数在第二象限内y随x的增大而增大,∵m﹣3<m﹣1<0,∴y1>y2.故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是找出函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质找出其单调性是关键.13.(3分)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有4n+1 个涂有阴影的小正方形(用含有n的代数式表示).【分析】观察不难发现,后一个图案比前一个图案多4个涂有阴影的小正方形,然后写出第n个图案的涂有阴影的小正方形的个数即可.【解答】解:由图可得,第1个图案涂有阴影的小正方形的个数为5,第2个图案涂有阴影的小正方形的个数为5×2﹣1=9,第3个图案涂有阴影的小正方形的个数为5×3﹣2=13,…,第n个图案涂有阴影的小正方形的个数为5n﹣(n﹣1)=4n+1.故答案为:4n+1.【点评】本题是对图形变化规律的考查,观察出“后一个图案比前一个图案多4个基础图形”是解题的关键.14.(3分)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两次指针指向的数都是奇数的情况,再利用概率公式即可求得答案.【解答】解:列表得如下:12311、11、21、322、12、22、333、13、23、3∵由表可知共有9种等可能结果,其中两次指针指向的数都是奇数的有4种结果,∴两次指针指向的数都是奇数的概率为,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.15.(3分)如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是∠DAB 的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为3﹣.【分析】根据AB=CD=4、C为线段AB的中点可得BC=AC=2、AD=2,再根据EH⊥DC、CD⊥AB、BE⊥AB得EH∥AC、四边形BCGE为矩形,BC=GE=2,继而由AE是∠DAB的平分线可得∠DAE=∠HEA即HA=HE,设GH=x得HA=2+x,由△DHG∽△DAC得=,列式即可求得x.【解答】解:∵AB=CD=4,C为线段AB的中点,∴BC=AC=2,∴AD=2,∵EH⊥DC,CD⊥AB,BE⊥AB,∴EH∥AC,四边形BCGE为矩形,∴∠HEA=∠EAB,BC=GE=2,又∵AE是∠DAB的平分线,∴∠EAB=∠DAE,∴∠DAE=∠HEA,∴HA=HE,设GH=x,则HA=HE=HG+GE=2+x,∵EH∥AC,∴△DHG∽△DAC,∴=,即=,解得:x=3﹣,即HG=3﹣,故答案为:3﹣.【点评】本题主要考查勾股定理、平行线的性质和判定、等腰三角形的判定与性质、矩形的判定与性质及相似三角形的判定与性质等知识点,根据相似三角形的性质得出对应边成比例且表示出各边长度是关键.三、解答题(本大题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(﹣3)2﹣()﹣1﹣×+(﹣2)0的值是多少即可.(2)先把﹣化简为最简分式,再把x=﹣2代入求值即可.【解答】解:(1)(﹣3)2﹣()﹣1﹣×+(﹣2)0=9﹣5﹣4+1=1(2)x=﹣2时,﹣=﹣=﹣===2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.17.(7分)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.18.(8分)每年5月的第二周为“职业教育活动周”,今年我省开展了以“弘扬工匠精神,打造技能强国”为主题的系列活动.活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校教务处随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).请解答以下问题:(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中,随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是0.13 .【分析】(1)根据喜欢其它累的人数是18,所占的百分比是9%,据此即可求的调查的总人数,进而根据百分比的意义求得扇形统计图中每部分的百分比,补全统计图;(2)利用总人数乘以对应的百分比即可;(3)概率约等于对应的百分比.【解答】解:(1)调查的总人数是18÷9%=200(人),则喜欢工业设计的人数是200﹣16﹣26﹣80﹣18=60(人).喜欢工业设计的所占的百分比是=30%;喜欢机电维修的所占的百分比是=13%.;(2)估计该校对“工业设计”最感兴趣的学生数是:1800×30%=540(人);(3)正好抽到对“机电维修”最感兴趣的学生的概率是0.13.故答案是:0.13.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al﹣Binmi(973﹣1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al﹣Binmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知等边△ABC内接于⊙O,AB=2,D为上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是2+2.【分析】(1)首先证明△MBA≌△MGC(SAS),进而得出MB=MG,再利用等腰三角形的性质得出BD=GD,即可得出答案;(2)首先证明△ABF≌ACD(SAS),进而得出AF=AD,以及CD+DE=BE,进而求出DE的长即可得出答案.【解答】(1)证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC.在△MBA和△MGC中∵,∴△MBA≌△MGC(SAS),∴MB=MG,又∵MD⊥BC,∴BD=GD,∴DC=GC+GD=AB+BD;(2)解:如图3,截取BF=CD,连接AF,AD,CD,由题意可得:AB=AC,∠ABF=∠ACD,在△ABF和△ACD中∵,∴△ABF≌ACD(SAS),∴AF=AD,∵AE⊥BD,∴FE=DE,则CD+DE=BE,∵∠ABD=45°,∴BE==,则△BDC的周长是2+2.故答案为:2+2.【点评】此题主要考查了全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.20.(7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg 和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.【分析】(1)根据题意确定出两种方案应付款y与购买量x之间的函数表达式即可;(2)根据A付款比B付款少列出不等式,求出不等式的解集确定出x的范围即可;(3)根据题意列出算式,计算比较即可得到结果.【解答】解:(1)方案A:函数表达式为y=5.8x;方案B:函数表达式为y=5x+2000;(2)由题意得:5.8x<5x+2000,解得:x<2500,则当购买量x的范围是2000≤x<2500时,选用方案A比方案B付款少;(3)他应选择方案B,理由为:方案A:苹果数量为20000÷5.8≈3448(kg);方案B:苹果数量为(20000﹣2000)÷5=3600(kg),∵3600>3448,∴方案B买的苹果多.【点评】此题考查了一次函数的应用,弄清题中的两种方案是解本题的关键.21.(10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F 到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号).【分析】过A作AG⊥CD于G,在Rt△ACG中,求得CG=25,连接FD并延长与BA的延长线交于H,在Rt△CDH中,根据三角函数的定义得到CH=90,在Rt△EFH中,根据三角函数的定义即可得到结论.【解答】解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=ACsin30°=50×=25,∵GD=50﹣30=20,∴CD=CG+GD=25+20=45,连接FD并延长与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90,∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290,在Rt△EFH中,EF=EH•tan30°=290×=,答:支撑角钢CD和EF的长度各是45cm,cm.【点评】本题考查了解直角三角形的应用,解题的关键是将实际问题转化为数学问题,构造直角三角形并解直角三角形,难度适中.22.(12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是菱形;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.【分析】(1)利用旋转的性质结合菱形的性质得出:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,进而利用菱形的判定方法得出答案;(2)利用旋转的性质结合菱形的性质得出,四边形BCC′D是平行四边形,进而得出四边形BCC′D 是矩形;(3)首先求出CC′的长,分别利用①点C″在边C′C上,②点C″在C′C的延长线上,求出a的值;(4)利用平移的性质以及平行四边形的判定方法得出答案.【解答】解:(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,故AC′∥EC,AC∥C′E,则四边形ACEC′是平行四边形,故四边形ACEC′的形状是菱形;故答案为:菱形;(2)证明:如图3,作AE⊥CC′于点E,由旋转得:AC′=AC,则∠CAE=∠C′AE=α=∠BAC,∵四边形ABCD是菱形,∴BA=BC,∴∠BCA=∠BAC,∴∠CAE=∠BCA,∴AE∥BC,同理可得:AE∥DC′,∴BC∥DC′,则∠BCC′=90°,又∵BC=DC′,∴四边形BCC′D是平行四边形,∵∠BCC′=90°,∴四边形BCC′D是矩形;(3)如图3,过点B作BF⊥AC,垂足为F,∵BA=BC,∴CF=AF=AC=×10=5,在Rt△BCF中,BF===12,在△ACE和△CBF中,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE∽△CBF,∴=,即=,解得:EC=,∵AC=AC′,AE⊥CC′,∴CC′=2CE=2×=,当四边形BCC′D′恰好为正方形时,分两种情况:①点C″在边C′C上,a=C′C﹣13=﹣13=,②点C″在C′C的延长线上,a=C′C+13=+13=,综上所述:a的值为:或;(4)答案不唯一,例:如图4,画出正确图形,平移及构图方法:将△ACD沿着射线CA方向平移,平移距离为AC的长度,得到△A′C′D′,连接A′B,D′C,结论:∵BC=A′D′,BC∥A′D′,∴四边形A′BCD′是平行四边形.【点评】此题主要考查了几何变换综合以及相似三角形的判定与性质、菱形的判定与性质以及矩形的判定方法等知识,正确利用相似三角形的判定与性质得出CC′的长是解题关键.23.(14分)综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.【分析】(1)根据待定系数法求出抛物线解析式即可求出点B坐标,求出直线OD解析式即可解决点E坐标.(2)抛物线上存在点F使得△FOE≌△FCE,此时点F纵坐标为﹣4,令y=﹣4即可解决问题.(3))①如图1中,当OP=OQ时,△OPQ是等腰三角形,过点E作直线ME∥PB,交y轴于点M,交x 轴于点H,求出点M、H的坐标即可解决问题.②如图2中,当QO=QP时,△POQ是等腰三角形,先证明CE∥PQ,根据平行线的性质列出方程即可解决问题.【解答】解:(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),∴,解得,∴抛物线解析式为y=x2﹣3x﹣8,∵y=x2﹣3x﹣8=(x﹣3)2﹣,∴抛物线对称轴为直线x=3,又∵抛物线与x轴交于点A、B两点,点A坐标(﹣2,0),∴点B坐标(8,0).设直线l的解析式为y=kx,∵经过点D(6,﹣8),∴6k=﹣8,∴k=﹣,∴直线l的解析式为y=﹣x,∵点E为直线l与抛物线的交点,∴点E的横坐标为3,纵坐标为﹣×3=﹣4,∴点E坐标(3,﹣4).(2)抛物线上存在点F使得△FOE≌△FCE,此时点F纵坐标为﹣4,∴x2﹣3x﹣8=﹣4,∴x2﹣6x﹣8=0,x=3,∴点F坐标(3+,﹣4)或(3﹣,﹣4).(3)①如图1中,当OP=OQ时,△OPQ是等腰三角形.∵点E坐标(3,﹣4),∴OE==5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H.则=,∴OM=OE=5,∴点M坐标(0,﹣5).x﹣5,设直线ME的解析式为y=k1∴3k﹣5=﹣4,1=,∴k1∴直线ME解析式为y=x﹣5,令y=0,得x﹣5=0,解得x=15,∴点H坐标(15,0),∵MH∥PB,∴=,即=,∴m=﹣,②如图2中,当QO=QP时,△POQ是等腰三角形.∵当x=0时,y=x2﹣3x﹣8=﹣8,∴点C坐标(0,﹣8),∴CE==5,∴OE=CE,∴∠1=∠2,∵QO=QP,∴∠1=∠3,∴∠2=∠3,∴CE∥PB,x﹣8,设直线CE交x轴于N,解析式为y=k2﹣8=﹣4,∴3k2=,∴k2∴直线CE解析式为y=x﹣8,令y=0,得x﹣8=0,∴x=6,∴点N坐标(6,0),∵CN∥PB,∴=,∴=,∴m=﹣.③OP=PQ时,显然不可能,理由,∵D(6,﹣8),∴∠1<∠BOD,∵∠OQP=∠BOQ+∠ABP,∴∠PQO>∠1,∴OP≠PQ,综上所述,当m=﹣或﹣时,△OPQ是等腰三角形.【点评】本题考查二次函数综合题、一次函数的性质、待定系数法,等腰三角形的判定和性质等知识,解题的关键是学会分类讨论,不能漏解,学会用方程的思想思考问题,属于中考压轴题.。
山西省运城市中考数学二模考试试卷
![山西省运城市中考数学二模考试试卷](https://img.taocdn.com/s3/m/918dc290482fb4daa48d4b8f.png)
山西省运城市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共40分)1. (2分)下列各组数中,互为相反数的是()A . 和B . ﹣(+3)和+|﹣3|C . ﹣(﹣3)和+(+3)D . ﹣4和﹣(+4)2. (3分) (2018八上·云安期中) 如右图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A . 两点之间线段最短B . 矩形的对称性C . 矩形的四个角都是直角D . 三角形的稳定性3. (3分)如图,表示的点在数轴上表示时,所在哪两个字母之间()A . C与DB . A与BC . A与CD . B与C4. (2分) (2016七上·萧山期中) 有下列说法:① 没有立方根;②实数与数轴上的点一一对应;③近似数3.20万,该数精确到千位;④ 是分数;⑤近似数5.60所表示的准确数x的范围是:5.55≤x<5.65其中正确的个数是()A . 1B . 2C . 3D . 45. (3分)若0.0003007用科学记数法表示为3.007×10n ,则n等于()A . ﹣3B . ﹣4C . +3D . +46. (3分)(2017·平房模拟) 如图,在△ABC中,AB=AC=5,BC=6,点M为BC边中点,MN⊥AC于点N,那么MN等于()A .B .C .D .7. (3分) (2017七下·红桥期末) 如图1是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图2,再沿BF 折叠成图3,则图3中∠CFE度数是多少()A . 160°B . 150°C . 120°D . 110°8. (3分) (2016七上·大同期中) 汛期来临前,滨海区决定实施“海堤加固”工程.某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a 米,则完成整个任务的实际时间比原计划时间少用了()A . 天B . 天C . 天D . 天9. (3分)如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是()A . 150°B . 300°C . 210°D . 330°10. (3分)已知分式当,时,值是,那么当,时,分式的值是()A .B .C . 1D . 311. (2分) (2015九上·淄博期中) 甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55149191135乙55151110135某同学根据表中数据分析得出下列结论:1)甲、乙两班学生成绩的平均水平相同;2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是()A . (1)(2)(3)B . (1)(2)C . (1)(3)D . (2)(3)13. (2分)(2016·庐江模拟) 如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A . 2B . 8C .D . 214. (2分)如图,点A、C、B在⊙O上,已知∠AOB =∠ACB =α.则α的值为()A . 135°B . 120°C . 110°D . 100°15. (2分)已知反比例函数y=(k>0)经过点A(x1 , y1)、B(x2 , y2),如果y1<y2<0,那么()A . x2>x1>0B . x1>x2>0C . x2<x1<0D . x1<x2<016. (2分) (2017八上·南京期末) 如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB =2,则点A的坐标为()A . (2,)B . (1,2)C . (1,)D . (,1)二、填空题(本大题有3个小题,共12分,17~18小题各3分;1 (共3题;共12分)17. (3分)(2019·上城模拟) 如图,正方形纸片ABCD边长为6,点E,F分别是AB,CD的中点,点G,H 分别在AD,AB上,将纸片沿直线GH对折,当顶点A与线段EF的三等分点重合时,AH的长为________.18. (3分)(2018·贵阳) 如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是________度.19. (6分)(2017·新化模拟) 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为________.三、解答题(本大题有7个小题,共66分。
运城市九年级初中毕业学业考试模拟考试数学卷(二)
![运城市九年级初中毕业学业考试模拟考试数学卷(二)](https://img.taocdn.com/s3/m/50349a3e941ea76e59fa0496.png)
运城市九年级初中毕业学业考试模拟考试数学卷(二)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列式子正确的是()A .B .C .D .2. (2分)如图所示的几何体中,俯视图形状相同的是()A . ①④B . ②④C . ①②④D . ②③④3. (2分)下列计算正确的是()A . 2x+x=3x2B . 2x2•3x2=6x2C . x6÷x2=x4D . 2x﹣x=24. (2分)(2012·崇左) 如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于()A . 25°B . 55°C . 65°D . 75°5. (2分) (2017八下·河东期末) 将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k≠0)与正方形ABCD有公共点,则k的取值范围是()A . k≤2B .C .D .6. (2分)如图,四边形ABCD中,∠A=90°,AB=, AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A . 3B . 4C . 4.5D . 57. (2分)已知一次函数y=kx+b(k≠0)的y随x的增大而增大,则下列结论中一定正确的是()A . k<0B . k>0C . b<0D . b>08. (2分)(2013·南宁) 如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC= ∠BOD,则⊙O的半径为()A . 4B . 5C . 4D . 39. (2分)(2016·眉山) 如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A . 64°B . 58°C . 72°D . 55°10. (2分)给出下列函数:①y=2x;②y=-2x+1;③y=(x>0);④y=x2(x<-1).其中,y随x的增大而减小的函数是()A . ①②B . ①③C . ②④D . ②③④二、填空题 (共4题;共4分)11. (1分) (2020七上·中山期末) 用“>”或“<”填空: ________ , ________-312. (1分)计算(﹣a4)(6a3﹣12a2+9a)=________ ,十边形的内角和是________ .13. (1分)(2020九上·新乡期末) 如图,在轴的正半轴上依次截取……,过点、、、、……,分别作轴的垂线与反比例函数的图象相交于点、、、、……,得直角三角形、,,,……,并设其面积分别为、、、、……,则 ________. 的整数).14. (1分) (2019九上·辽源期末) 如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π)________.三、解答题 (共11题;共87分)15. (5分)计算:|﹣2|﹣20180+()﹣116. (5分)(2018·建邺模拟) 解不等式组,并把解集在数轴上表示出来.17. (5分) (2020八上·卫辉期末) 如图,在△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)(2)求S△ADC: S△ADB的值.18. (11分)(2019·吉林模拟) 调查作业:了解你所住小区家庭3月份用气量情况小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数约为3.3.小天、小东、小芸各自对该小区家庭3月份用气量情况进行了抽样裯查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1抽样调查小区4户家庭3月份用气量统计表(单位:m3)家庭人数2345用气量14192126表2抽样调查小区15户家庭3月份用气量统计表(单位:m3)家庭人数22233333333334用气量1011151314151517171818182022表3抽样调查小区15户家庭3月份用气量统计表(单位:m3)家庭222333333444455人数用气101213141717182020212226312831量根据以|材料回答问题:(1)小天、小东和小芸三人中,哪位同学抽样调查的数据能较好地反映出该小区家庭3月份用气量情况?请简要说明其他两位同学抽样调查的不足之处.(2)在表3中,调查的15个家庭中使用气量的中位数是________m3,众数是________m3.(3)小东将表2中的数据按用气量x(m3)大小分为三类.①节约型:10≤x≤13,②适中型:14≤x≤17,③偏高型:18≤x≤22,并绘制成如图扇形统讣图,请帮助他将扇形图补充完整.(4)小芸算出表3中3月份平均每人的用气量为6m3,请估计该小区3月份的总用气量.19. (5分) (2017九上·鸡西月考) 平面内有一等腰直角三角板(∠ACB=90°)和一直线MN .过点C作CE⊥MN于点E ,过点B作BF⊥MN于点F .当点E与点A重合时(如图1),易证:AF+BF=2CE .当三角板绕点A顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.20. (5分)(2016·丹东) 某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)21. (10分)(2017·武汉模拟) 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.22. (10分)(2020·惠山模拟) 在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个红球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.23. (10分) (2017七下·东城期中) 已知:直线,点、分别在直线,上,点为平面内一点.(1)如图,,,的数量关系是________.(2)利用()的结论解决问题:如图,已知,平分,平分,,求得度数.(3)如图,点为上一点,,,交于点,直接写出,,之间的数量关系.(用含的式子表示)24. (10分)(2019·容县模拟) 如图,抛物线的图象与轴交于两点(点在点的左边)与轴交于点 ,抛物线的顶点为 .(1)求点的坐标;(2)点为线段上一点(点不与点重合),过点作轴的垂线,与直线交于点,与抛物线交于点,过点作交抛物线于点,过点作轴于点 ,可得矩形 .如图,点在点左边,当矩形的周长最大时,求此时的的面积;(3)在(2)的条件下,当矩形的周长最大时,连接,过抛物线上一点作轴的平行线,与直线交于点 (点在点的上方)若,求点的坐标.25. (11分)(2019·渝中模拟) 如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共11题;共87分)15-1、16-1、17-1、17-2、18-1、18-2、18-3、18-4、19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。
山西省运城市中考数学模拟试卷2
![山西省运城市中考数学模拟试卷2](https://img.taocdn.com/s3/m/f1c7339aaa00b52acfc7ca63.png)
山西省运城市中考数学模拟试卷2姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题3分,共30分。
) (共10题;共27分)1. (3分)(2017·瑞安模拟) 给出四个数0,,- ,0.3,其中属于无理数的是()A . 0B .C . -D . 0.32. (2分)(2020·迁安模拟) 从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是()A . 21:05B . 21:15C . 20:15D . 20:123. (3分)(2017·泰兴模拟) 下面四个几何体中,主视图与其它几何体的主视图不同的是()A .B .C .D .4. (3分) (2015七下·衢州期中) 下列计算中正确的是()A . a×a3=a3B . (a2)3=a5C . (a+b)3=a3+b3D . a6÷a2=a45. (3分) (2020七下·宁波期中) 如图,下列条件中能判断直线AD∥BC 的是()A . ∠A=∠ABCB . ∠ADB=∠CBDC . ∠A+∠ADC=180°D . ∠A=∠C6. (3分)计算频率时不可能得到的数值是()A . 0B . 0.5C . 1D . 1.27. (2分) (2015九上·黄冈期中) 在长方形ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面半径为()A . 4B . 16C . 4D . 88. (3分)甲、乙两数这和为16,甲数的3倍等于乙数的5倍”,若设甲数为x,乙数为y,则方程组(1)(2)(3)(4)中,正确的有()A . 1组B . 2组C . 3组D . 4组9. (2分)(2017·萧山模拟) 小兰画了一个函数y= 的图象如图,那么关于x的分式方程 =2的解是()A . x=1B . x=2C . x=3D . x=410. (3分)观察下图及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A . (2n+1)2B . (2n-1)2C . (n+2)2D . n2二、填空题(本大题共6小题,每小题4分,共24分) (共6题;共22分)11. (4分)(2013·淮安) 方程的解集是________.12. (2分)(2017·长春) 计算:× =________.13. (4分) (2019九上·通州期末) 某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗杆高为________.14. (4分)如图所示,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为________ 度.15. (4分)(2018·成都模拟) 已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3 x+8=0,则△ABC 的周长是________.16. (4分)(2016·庐江模拟) 如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,AD与OC交于点E,连接CD、OD,给出以下四个结论:①AC∥OD;②C E=OE;③∠CDE=∠COD;④2CD2=CE•AB.其中正确结论的序号是________(在横线上填上你认为所有正确结论的代号).三、解答题(本大题共7小题,共66分) (共7题;共39分)17. (6分)(2016·嘉兴) 先化简,再求值:(1+ )÷ ,其中x=2016.18. (9分)在一次科技知识竞赛中,两组学生的成绩统计如下:已经算得两组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组在这次竞赛中成绩哪一组好些,哪一组稍差,并说明理由.19. (6分)(2011·温州) 2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.20. (2分) (2016九上·海淀期中) 在菱形ABCD中,∠BAD=α,E为对角线AC上的一点(不与A,C重合),将射线EB绕点E顺时针旋转β角之后,所得射线与直线AD交于F点.试探究线段EB与EF的数量关系.小宇发现点E的位置,α和β的大小都不确定,于是他从特殊情况开始进行探究.(1)如图1,当α=β=90°时,菱形ABCD是正方形.小宇发现,在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB 于N.由角平分线的性质可知EM=EN,进而可得△EMF≌△ENB,并由全等三角形的性质得到EB与EF的数量关系为________.(2)如图2,当α=60°,β=120°时,①依题意补全图形;②请帮小宇继续探究(1)的结论是否成立.若成立,请给出证明;若不成立,请举出反例说明;(3)小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设∠ABE=γ,若旋转后所得的线段EF与EB的数量关系满足(1)中的结论,请直接写出角α,β,γ满足的关系:________21. (12分)(2018·淄博) 如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.22. (2分) (2016八上·苏州期中) 已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点,连接BE、BD、DE.(1)求证:△BED是等腰三角形;(2)当∠BAD=________°时,△BED是等腰直角三角形.23. (2分)如图,曲线y1抛物线的一部分,且表达式为:y1=(x2﹣2x﹣3)(x≤3)曲线y2与曲线y1关于直线x=3对称.(1)求A、B、C三点的坐标和曲线y2的表达式;(2)过点D作CD∥x轴交曲线y1于点D,连接AD,在曲线y2上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标;(3)设直线CM与x轴交于点N,试问在线段MN下方的曲线y2上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分。
山西省运城市数学中考二模试卷
![山西省运城市数学中考二模试卷](https://img.taocdn.com/s3/m/9e474fc3a417866fb94a8e25.png)
山西省运城市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)数字,,π,, -,中无理数的个数是()A . 1B . 2C . 3D . 42. (2分)如图,一个由若干个相同的小正方体堆积成的几何体,它的主视图、左视图和俯视图都是田字形,则小正方体的个数是()A . 6、7或8B . 6C . 7D . 83. (2分)排列做操队形时,甲、乙、丙位置如图所示,甲对乙说,如果我的位置用(0,0)来表示,你的位置用(2,1)表示,那么丙的位置是()A . (5,4)B . (4,5)C . (3,4)D . (4、3)4. (2分)如果反比例函数y=的图象经过点(-1,-2),则k的值是()A . 2B . -2C . -3D . 35. (2分) (2017八上·江津期中) 如图,将含30°角的三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2的度数为()A . 80°B . 65°C . 60°D . 55°6. (2分) (2018九上·义乌期中) 将抛物线y=2x2向右平移2个单位,能得到的抛物线是()A . y=2(x+2)2B . y=2(x﹣2)2C . y=2x2+2D . y=2x2﹣27. (2分)(2019·广州模拟) 如图,在菱形ABCD中,,,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A .B .C .D .8. (2分)同时抛掷两枚均匀硬币,正面都同时向上的概率是()A .B .C .D .9. (2分)(2017·德阳模拟) 一个底面直径为2,高为3的圆锥的体积是()A . πB . 2πC . 3πD . 4π10. (2分)如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连接AE交CD于点F,则∠AFC的度数是()A . 150°B . 125°C . 135°D . 112.5°二、填空题 (共6题;共7分)11. (1分)(2018·射阳模拟) 2017年盐城市经济总量首次突破5000亿元,预计地区生产总值达5050亿元,比上年增长6.8%,数据5050亿用科学记数法可表示为________.12. (1分)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是________.13. (1分) (2019七下·吴江期末) 五边形的外角和是________度.14. (1分)(2019·北京模拟) 惠来县某单位组织34人分别到广州和深圳进行继续教育学习,到广州的人数是到深圳的人数的2倍多1人,求到两地的人数各是多少?设到广州的人数为x人,到深圳的人数为y人,请列出满足题意的方程组________.15. (1分)(2017·济宁) 请写出一个过点(1,1),且与x轴无交点的函数解析式:________.16. (2分)(2018·秀洲模拟) 如图,AB为半圆O的直径,AB=2,C,D为半圆上两个动点(D在C右侧),且满足∠COD=60°,连结AD,BC相交于点P若点C从A出发按顺时针方向运动,当点D与B重合时运动停止,则点P所经过的路径长为________.三、解答题 (共10题;共80分)17. (5分)计算题:(1)(﹣1)2016﹣(﹣9)+ ﹣()2(2)﹣ +(﹣1)3× .18. (5分)(2017·贺州) 先化简,再求值:÷(1+ ),其中x= +1.19. (5分)(2018·天河模拟) 已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.20. (7分)(2018·商河模拟) “校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为________;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.21. (10分) (2017七下·自贡期末) “震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?22. (6分) (2016九上·溧水期末) 某批发商以40元/千克的价格购入了某种水果500千克.据市场预测,该种水果的售价y(元/千克)与保存时间x(天)的函数关系为y=60+2x,但保存这批水果平均每天将损耗10千克,且最多能保存8天.另外,批发商保存该批水果每天还需40元的费用.(1)若批发商保存1天后将该批水果一次性卖出,则卖出时水果的售价为________(元/千克),获得的总利润为________(元);(2)设批发商将这批水果保存x天后一次性卖出,试求批发商所获得的总利润w(元)与保存时间x(天)之间的函数关系式;(3)求批发商经营这批水果所能获得的最大利润.23. (10分)(2017·兰州模拟) 已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.24. (10分) (2019七上·道外期末) 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.25. (11分)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.26. (11分)(2017·黄冈模拟) 已知抛物线经过点A(﹣3,0),F(8,0),B(0,4)三点(1)求抛物线解析式及对称轴;(2)若点D在线段FB上运动(不与F,B重合),过点D作DC⊥轴于点C(x,0),将△FCD沿CD向左翻折,点B 对应点为点E,△CDE与△FBO重叠部分面积为S.①试求出S与x之间的函数关系式,并写出自变量取值范围.②是否存在这样的点C,使得△BDE为直角三角形,若存在,求出C点坐标,若不存在,请说明理由;(3)抛物线对称轴上有一点M,平面内有一点N,若以A,B,M,N四点组成的四边形为菱形,求点N的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共80分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省运城市名校2016年中考模拟
数学试题(二)
时间120分钟 满分120分 2015.8.27 一选择题(每小题3分,共30分)
1.我们把零上16°记作+16℃,则零下2℃可记作( )
A .+2
B .-2
C .2℃
D .-2℃
2.计算2
32x x ÷的结果是( )
A .x
B .x 2
C .52x
D .6
2x
3.由四个大小相同的正方体搭成如图所示的几何体,它的左视图是( )
4.若关于x 的一元二次方程022
=--m x x 有实数根,则m 的取值范围是( )
A .m ≥-l
B .m<1
C .m ≤-l
D .m ≤1
5.五箱苹果的质量分别为(单位:千克):18,20,21,22,19,则这五箱苹果质量的平均数和中位数分别为( ) A .19和20 B .20和19
C .20和20
D .20和21
6.如图,某公园的一座石拱桥是圆弧形(劣弧), 其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米
7.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的 中点C ′
上,若AB =6,BC =9,则BF 的长为( ).
A .4
B .
C .4.5
D .5
8.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )
9.如图,△ABC 内接于⊙O ,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB =( )
A .2
B .3
C .4
D .5
10.二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( )
A .240b ac ->
B .0a >
C .0c >
D .02b
a
-<
二、填空题 (本大题共有6小题,每小题3分,共18分)
11.函数2
y x =中,自变量x 的取值范围是 .
12.计算
5
1
452021-
= . 13.有4条线段长度分别为1 cm ,2 cm ,3 cm ,4 cm ,从中任取三条能构成三角形的概率为___________.
14.将一个含有60°角的三角板,按图所示的方式摆放在半圆形纸片上,O 为圆心,则
ACO ∠= ___度.
15.如图,O ⊙是边长为2的等边三角形ABC 的内切圆,则图中阴影部分的面积为________.
16.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 _______.
三、解答题:(本大题共有8个小题,共72分)
17.(每小题4分,共8分)
(1)
.计算:0
2
16sin 302-⎛⎫--+ ⎪⎝⎭
(2)解不等式组⎪⎩⎪
⎨⎧<-+≥+1214)2(3x x x ,并求出不等式组的非负整数解.
18.(本题满分8分)
先化简,再求值:2
352362a a a a a -⎛⎫÷+- ⎪--⎝⎭
,其中2310a a +-=
19.(本题满分9分)
某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:
(1)求本次被调查的学生人数,并补全条形统计图;
(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;
(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.
20.(本题满分9分)
桌子上放有质地均匀,反面相同的4张卡片,正面分别标有数字1、2、3、4,将这些卡片反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标的数字作为十位上的数字,将取出的卡片反面朝上放回洗匀;再从中任意抽取1张卡片,用卡片上所标的数字作为个位数字.试用列表或画树状图的方法分析,组成的两位数恰好能被3整除的概率是多少?
21.(本题满分8分)
如图,在ABCD Y 中,AE 平分BAD ∠,交BC 于点E ,BF 平分ABC ∠,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD . (1)求证:四边形ABEF 是菱形;
(2)若4AB =,6AD =,60ABC ∠=︒,求tan ADP ∠的值.
22.(本题满分8分)
已知:如图在平面直角坐标系xOy 中,直线AB 分别与y x 、轴交于点B 、A ,与反比例
函数的图象分别交于点C 、D ,CE ⊥x 轴于点E ,21
tan =∠ABO ,OB=4,OE=2.
(1)求该反比例函数的解析式; (2)求直线AB 的解析式。
F
P
E
C
B
A
D
23.(本题满分10分)
在Rt ABC
∠=°,D是AB边上一点,以BD为直径的O
⊙与边AC相切于点ACB
△中,90
E,连结DE并延长,与BC的延长线交于点F.
(1)求证:BD BF
=;
(2)若64
⊙的面积.
,,求O
BC AD
==
24.(本题满分12分)
如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)
和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;
(2)求证:在点P运动的过程中,⊙P始终与x轴相交;
(3)设⊙P与x轴相交于M(x
1,0),N(x
2
,0)(x
1
<x
2
)两点,当△AMN为等腰三角形时,
求圆心P的纵坐标.。