注塑成型工艺调整方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正确选择注塑机
注塑机的性能直接影响注塑制品的质量,不同规格及性能要求的注塑机,价格也会相差很多。

注塑机规格选择
在选择注塑机规格时,首先要考虑到生产模具的状况,因为同一台注塑机往往要满足大小不同的多副模具生产,应根据制件重量、模具尺寸等来确定注塑机规格,即注塑机最大锁模力和最大注射量,然後根据注塑机厂商所提供的规格型号选择合适的机型。

大部分厂商都提供客制化服务,这给选购注塑机提供了极大的方便;其次要考虑是否需要一些特殊配置,如生产PA、PC等材料时需选用专用螺杆,成型带有进抽芯或脱螺纹的模具时需配备相应的装置;再次,要根据模具结构、产品质量等方面的因素来确定是否需要选用一些具有特殊功能的注塑机,如成型薄壁长流动制品(一般指L/D﹥300)时,需选用高注射速度注塑机,精密电子配件需选用精密全闭环控制注塑机等。

锁模力设定
理论上,锁模力可按下式进行计算﹕
Fcm>=K × P平均× A制品×10
式中﹕Fcm–锁模力,(KN)
K–安全系数,一般取1-1.2
P平均–模腔平均压力(MPa)
A制品–制品在模具分型面上的最大投影面积(cm2)
在实际生产中,锁模力的调整还应考虑模具在生产中受热膨胀所产生的影响,一般应留有0.1-0.2mm的余量;锁模力的设定原则是在保证产品质量的前提下以低锁模力为宜。

注塑工艺参数设定
料筒温度、模具温度
根据不同塑料材料的性能来设定螺杆料筒温度,料筒设定温度一般高於塑料熔点10℃-30℃。

必须注意,不同厂商所提供的材料因合成方法或添加助剂类型的不同,它们的熔点和在料筒中允许停留时间也会有差异。

如下页表1,对Solutia 公司的PA66(牌号为21SPC)和Rhodia公司的PA66(牌号为25AE1),它们的熔点和各温度下允许停留时间进行对比。

模具温度在设定时一般使用循环水冷却,但在生产精密尺寸或表面质量要求较高的制品时,应根据工艺要求使用能够进行准确控制的模温机。

表1 不同牌号PA66熔点及允许停留时间对比
注射保压时间、冷却时间
注射时间、保压时间和冷却时间须根据产品厚度、模具温度、材料性能等进行设定。

注射时间设定一般以略大於螺杆完成注射行程移动的时间即可,过长的注射时间不但会产生机械磨损、能耗增加等负面影响,同时也会延长成型周期。

保压时间设定根据产品厚度来设定,薄壁产品在成型时可不用保压时间;在设定保压时间时,只要产品表面无明显凹陷即可,也可用称重法来确定,逐步延长保压时间直至产品质量不再变化的时间即可定为最佳保压时间。

冷却时间同样需根据产品厚度、模具温度、材料性能来确定,一般无定型聚合物所需冷却时间要比结晶型聚合物时间长。

注射压力、速度
注射压力设定要遵循宜低不宜高的原则,只要能提供足够动力达到所要求的注射速度、使熔体能够顺利充满型腔即可,过高的压力容易使制品内产生内应力;但在成型尺寸精度较高的制品时,为防止产品收缩过度,可以采用高压力注射以减少制品脱模後的收缩。

注射速度会影响产品的外观质量,其设定应根据模具的几何结构、排气状况等进行设定,一般在保证良好的外观前提下,尽量提高注射速度,以减少充填时间。

在注射成型中,熔体在模具内流动时,模壁会形成固化层,因而降低了可流动通道的厚度,一般根据模具结构和注射速度不同,模壁会有0.2mm左右的固化层。

因此成型中通常采用较快的注射速度。

注射行程、多级注射参数
在成型中,首先须确定注射行程,理论上,注射行程可按下式计算﹕
S1=4(CVp+Va)/ρDs2
式中﹕S1–注射行程 Vp–产品体积
ρ–树脂密度 C–型腔数目
Va–浇口体积 Ds–螺杆直径
在实际生产中,若已知“产品+浇口”的总重量,则可用下式来计算注射行程﹕
S1=(M/Mmax)·Smax+(5~10)mm
式中﹕ S1---注射行程,mm
M–“产品+浇口”总重量,g
Mmax–注塑机最大注射量,g
Smax–注塑机最大注射行程,mm
由於浇道系统及模具各部位几何形状不同,为满足产品质量要求,在不同部位对充模熔体的流动状态(主要指流动时压力、速度)有不同要求。

在一个注射过程中,螺杆向模具推进熔体时,要求实现在不同的位置上有不同的压力和速度,称之为多级注射成型。

一般塑件在成型时至少设定三段或四段以上注射才是比较科学的,即主流道处为第一段,分流道至浇口处为第二段,产品充满型腔约90%为第三段,剩余部分为第四段,可用计算重量法来确定各段的切换位置点;实际生产中,应根据产品质量要求、流道结构、模具排气状况等对多级注射工艺参数进行科学分析,合理设定。

通常可采用调试观察法进行设定,将注射时所需找切换位置点的压力/速度设定为0,观察熔体的走向位置及产品缺陷状况,逐步进行调整,直至找出合理的位置点。

但在调试观察的过程中必须注意欠注产品的脱模状况,以免在模具某些凹陷部位因欠注而发生粘模。

其它工艺参数
在注射成型中,除了成型温度、压力、速度、时间、多级注射切换位置等几个主要参数的设定以外,还有许多其它的工艺参数,如背压、螺杆转速、螺杆倒索防流延以及其它各动作参数设定等,也不能忽视其设定。

工艺参数设定实例
以生产尼龙束线带产品为例,产品质量要求﹕产品达到规定拉力标准;表面无银丝、气泡、缩痕等各类不良现象;成型後产品束紧性良好,无松脱现象。

使用材料为PA66;注塑成型机为JSW1000-EⅡ-SP,模具结构为热流道式,浇口型式为点浇口。

首先根据产品特点以及模具结构来确定工艺参数设定原则﹕(1)因产品流动长度较长,L/t(流程与壁厚比)为511,应选择高速注射成型;(2)浇口型式为点浇口,须使用较高压力以克服流动时的阻力;(3)为保证产品能顺利充模,熔料必须有良好的流动性,成型温度应适当偏高;(4)高压高速注射至未端时容易产生飞边,成型机必须有低惯性压力、速度切换;(5)因产品壁厚较小,可不使用保压;制定各主要成型工艺参数见表2。

表2 束带产品成型工艺参数
拟定注射工艺参数必须了解设备性能、模具结构、成型材料及产品质量要求等方
面的信息,科学合理地设定各成型参数。

首先要根据产品成型状况逐步进行工艺参数的调整,正确的调整顺序为压力→速度→温度。

每次更改参数时,输入的参数已为电脑所确认後再进行下一个参数更改,应避免同时更改两个以上参数;其次在产品进入稳定生产中,须尽量保持各参数的稳定,应作详细记录,若变更幅度过大时,应及时查找原因。

另外,每次模具上线时成型工艺须尽量固定,便於成品质量控制。

由产品及塑料确定“锁模力”吨数方法如下:
当原料以高压注入模穴内时会产生一个撑模的力量,因此注塑机的锁模单元必须提供足够的“锁模力”使模具不至于被撑开。

锁模力需求的计算如下:
撑模力=成品在开关模方向的投影面积(cm2)×模穴数×模内压力(kg/cm2)
模内压力随原料而不同, 一般原料取350~400kg/cm2;
机器锁模力需大于撑模力,且为了保险起见,机器锁模力通常需大于撑模力的1.17倍以上
假如:你的产品在开关模方向的投影面积(cm2)为长X宽,每模生产一个制品推荐:锁模力=1.17X撑模力=1.17X38X14X1X(350~400)=218~249吨最少需要的锁模力=38X14X1X350=186吨
如何选择注塑机及调整工艺参数
注塑机的性能直接影响注塑制品的质量,不同规格及性能要求的注塑机,价格也会相差很多。

注塑机规格选择
在选择注塑机规格时,首先要考虑到生产模具的状况,因为同一台注塑机往往要满足大小不同的多副模具生产,应根据制件重量、模具尺寸等来确定注塑机规格,即注塑机最大锁模力和最大注射量,然後根据注塑机厂商所提供的规格型号选择合适的机型。

大部分厂商都提供客制化服务,这给选购注塑机提供了极大的方便;其次要考虑是否需要一些特殊配置,如生产PA、PC等材料时需选用专用螺杆,成型带有进抽芯或脱螺纹的模具时需配备相应的装置;再次,要根据模具结构、产品质量等方面的因素来确定是否需要选用一些具有特殊功能的注塑机,如成型薄壁长流动制品(一般指L/D??300)时,需选用高注射速度注塑机,精密电子配件需选用精密全闭环控制注塑机等。

锁模力设定
理论上,锁模力可按下式进行计算:
sFcm>=K×P平均×A制品×10
式中:sFcm–锁模力,(KN)K–安全系数,一般取1-1.2 P平均–模腔平均压力(M Pa)A制品–制品在模具分型面上的最大投影面积(cm2)
在实际生产中,锁模力的调整还应考虑模具在生产中受热膨胀所产生的影响,一般应留有0.1-0.2mm的余量;锁模力的设定原则是在保证产品质量的前提下以低锁模力为宜。

注塑工艺参数设定
料筒温度、模具温度
根据不同塑料材料的性能来设定螺杆料筒温度,料筒设定温度一般高於塑料熔点10℃-30℃。

必须注意,不同厂商所提供的材料因合成方法或添加助剂类型的不同,它们的熔点和在料筒中允许停留时间也会有差异。

如下页表1,对Solutia 公司的PA66(牌号为21SPC)和Rhodia公司的PA66(牌号为25AE1),它们的熔点和各温度下允许停留时间进行对比。

模具温度在设定时一般使用循环水冷却,但在生产精密尺寸或表面质量要求较高的制品时,应根据工艺要求使用能够进行准确控制的模温机。

注射保压时间、冷却时间
注射时间、保压时间和冷却时间须根据产品厚度、模具温度、材料性能等进行设定。

注射时间设定一般以略大於螺杆完成注射行程移动的时间即可,过长的注射时间不但会产生机械磨损、能耗增加等负面影响,同时也会延长成型周期。

保压时间设定根据产品厚度来设定,薄壁产品在成型时可不用保压时间;在设定保压时间时,只要产品表面无明显凹陷即可,也可用称重法来确定,逐步延长保压时间直至产品质量不再变化的时间即可定为最佳保压时间。

冷却时间同样需根据产品厚度、模具温度、材料性能来确定,一般无定型聚合物所需冷却时间要比结晶型聚合物时间长。

注射压力、速度
注射压力设定要遵循宜低不宜高的原则,只要能提供足够动力达到所要求的注射速度、使熔体能够顺利充满型腔即可,过高的压力容易使制品内产生内应力;但在成型尺寸精度较高的制品时,为防止产品收缩过度,可以采用高压力注射以减少制品脱模後的收缩。

注射速度会影响产品的外观质量,其设定应根据模具的几何结构、排气状况等进行设定,一般在保证良好的外观前提下,尽量提高注射速度,以减少充填时间。

在注射成型中,熔体在模具内流动时,模壁会形成固化层,因而降低了可流动通道的厚度,一般根据模具结构和注射速度不同,模壁会有0.2mm左右的固化层。

因此成型中通常采用较快的注射速度。

注射行程、多级注射参数
在成型中,首先须确定注射行程,理论上,注射行程可按下式计算?s
S1=4(CVp+Va)/ρDs2
式中?sS1-–注射行程Vp–产品体积ρ–树脂密度C–型腔数目Va–浇口体积Ds–螺杆直径
在实际生产中,若已知“产品+浇口”的总重量,则可用下式来计算注射行程?s
S1=(M/Mmax)·Smax+(5~10)mm
式中?s S1---注射行程,mm M–“产品+浇口”总重量,g Mmax–注塑机最大注射量,g Smax–注塑机最大注射行程,mm
由於浇道系统及模具各部位几何形状不同,为满足产品质量要求,在不同部位对充模熔体的流动状态(主要指流动时压力、速度)有不同要求。

在一个注射过程中,螺杆向模具推进熔体时,要求实现在不同的位置上有不同的压力和速度,称之为多级注射成型。

一般塑件在成型时至少设定三段或四段以上注射才是比较科学的,即主流道处为第一段,分流道至浇口处为第二段,产品充满型腔约90%为第三段,剩余部分为第四段,可用计算重量法来确定各段的切换位置点;实际生产中,应根据产品质量要求、流道结构、模具排气状况等对多级注射工艺参数进行科学分析,合理设定。

通常可采用调试观察法进行设定,将注射时所需找切换位置点的压力/速度设定为0,观察熔体的走向位置及产品缺陷状况,逐步进行调整,直至找出合理的位置点。

但在调试观察的过程中必须注意欠注产品的脱模状况,以免在模具某些凹陷部位因欠注而发生粘模。

其它工艺参数
在注射成型中,除了成型温度、压力、速度、时间、多级注射切换位置等几个主要参数的设定以外,还有许多其它的工艺参数,如背压、螺杆转速、螺杆倒索防流延以及其它各动作参数设定等,也不能忽视其设定。

工艺参数设定实例
以生产尼龙束线带产品为例,产品质量要求?s产品达到规定拉力标准;表面无银丝、气泡、缩痕等各类不良现象;成型後产品束紧性良好,无松脱现象。

使用材料为PA66;注塑成型机为JSW1000-EⅡ-SP,模具结构为#p#分页标题#e#热流道式,浇口型式为点浇口。

首先根据产品特点以及模具结构来确定工艺参数设定原则?s(1)因产品流动长度较长,L/t(流程与壁厚比)为511,应选择高速注射成型;(2)浇口型式为点浇口,须使用较高压力以克服流动时的阻力;(3)为保证产品能顺利充模,熔料必须有良好的流动性,成型温度应适当偏高;(4)高压高速注射至未端时容易产生飞边,成型机必须有低惯性压力、速度切换;(5)因产品壁厚较小,可不使用保压;制定各主要成型工艺参数见表2。

拟定注射工艺参数必须了解设备性能、模具结构、成型材料及产品质量要求等方面的信息,科学合理地设定各成型参数。

首先要根据产品成型状况逐步进行工艺参数的调整,正确的调整顺序为压力→速度→温度。

每次更改参数时,输入的参数已为电脑所确认後再进行下一个参数更改,应避免同时更改两个以上参数;其次在产品进入稳定生产中,须尽量保持各参数的稳定,应作详细记录,若变更幅度过大时,应及时查找原因。

另外,每次模具上线时成型工艺须尽量固定,便於成品质量控制。

注塑制品生产成型过程中,由于原料塑化的不均匀或者是在注射成型时模具温度的不均衡,使制品成型时冷却降温速度不一致,造成制品产生不均匀结晶、取向和收缩,结果使制品产生内应力。

由于制品中内应力的作用,在使用或贮存时,制品的性能发生变化或者出现变形或裂纹等现象。

为了消除或减少成型制品中的内应力、避免制品在贮存或应用时产生较大的变形或开裂,对成型后的一些制品要进行退火处理。

注塑制品的退火方法如下。

把成型脱模后的注塑制品放在有一定温度的加热介质(如油、液体石蜡或甘油)或有热空气循环的供箱中,加热温度要低于制件的热变形温度20℃左右。

不同塑料制品的热处理退火条件可参照表1。

热处理时间达到要求后,制件随介质一起缓慢降温至室温。

注意,处理后的制品如果急剧降温或直接从热处理介质中取出降温,制品由于冷却速度的不同,又会产生新的内应力。

热塑性塑料注射成型中的常见缺陷及产生原因?
1.制品填充不足
1)料桶,喷嘴及模具的温度偏低
2)加料量不足
3)料桶内的剩料太多
4)注射压力太小
5)注射速度太慢
6)流道和浇口尺寸太小,浇口数量不够,切浇口位置不恰当7)型腔排气不良
8)注射时间太短
9)浇注系统发生堵塞
10)塑料的流动性太差
2.制品有溢边
1)料桶,喷嘴及模具温度太高
2)注射压力太大,锁模力太小
3)模具密合不严,有杂物或模板已变形
4)型腔排气不良
5)塑料的流动性太好
6)加料量过大
3.制品有气泡
1)塑料干燥不够,含有水分
2)塑料有分解
3)注射速度太快
4)注射压力太小
5)麻烦温太底,充模不完全
6)模具排气不良
7)从加料端带入空气
4.制品凹陷
1)加料量不足
2)料温太高
3)制品壁厚与壁厚相差过大
4)注射和保压的时间太短
5)注射压力太小
6)注射速度太快
7)浇口位置不恰当
5.制品有明显的熔合纹
1)料温太低,塑料的流动性差
2)注射压力太小
3)注射速度太慢
4)模温太低
5)型腔排气不良
6)塑料受到污染
6.制品的表面有银丝及波纹
1)塑料含有水分和挥发物
2)料温太高或太低
3)注射压力太小
4)流道和浇口的尺寸太大
5)嵌件未预热回温度太低
6)制品内应力太大
7.制品的表面有黑点及条纹
1)塑料有分解
2)螺杆的速度太快,背压力太大
3)喷嘴与主流道吻合不好,产生积料
4)模具排气不良
5)塑料受污染或带进杂物
6)塑料的颗粒大小不均匀
8.制品翘曲变形
1)模具温度太高,冷却时间不够
2)制品厚薄悬殊
3)浇口位置不恰当,切浇口数量不合适
4)推出位置不恰当,且受力不均
5)塑料分子定向作用太大
9.制品的尺寸不稳定
1)加料量不稳定
2)塑料的确颗粒大小不均匀
3)料桶和喷嘴的温度太高
4)注射压力太小
5)充模和保压的时间不够
6)浇口和流道的尺寸不恰当
7)模具的设计尺寸不恰当
8)模具的设计尺寸不准确
9)推杆变形或磨损
10)注射机的电气,液压系统不稳定
10.制品粘模
1)注射压力太大,注射时间太长
2)模具温度太高
3)浇口尺寸太大,且浇口位置不恰当
注塑成型各种缺陷的现象及解决方法?
龟裂
龟裂是塑料制品较常见的一种缺陷,产生的主要原因是由于应力变形所致。

主要有残余应力、外部应力和外部环境所产生的应力变形。

(-)残余应力引起的龟裂
残余应力主要由于以下三种情况,即充填过剩、脱模推出和金属镶嵌件造成的。

作为在充填过剩的情况下产生的龟裂,其解决方法主要可在以下几方面入手:(1)由于直浇口压力损失最小,所以,如果龟裂最主要产生在直浇口附近,则可考虑改用多点分布点浇口、侧浇口及柄形浇口方式。

(2)在保证树脂不分解、不劣化的前提下,适当提高树脂温度可以降低熔融粘度,提高流动性,同时也可以降低注射压力,以减小应力。

(3)一般情况下,模温较低时容易产生应力,应适当提高温度。

但当注射速度较高时,即使模温低一些,也可减低应力的产生。

(4)注射和保压时间过长也会产生应力,将其适当缩短或进行Th次保压切换效果较好。

(5)非结晶性树脂,如AS树脂、ABS树脂、PMMA树脂等较结晶性树脂如聚乙烯、聚甲醛等容易产生残余应力,应予以注意。

脱模推出时,由于脱模斜度小、模具型胶及凸模粗糙,使推出力过大,产生应力,有时甚至在推出杆周围产生白化或破裂现象。

只要仔细观察龟裂产生的位置,即可确定原因。

在注射成型的同时嵌入金属件时,最容易产生应力,而且容易在经过一段时间后才产生龟裂,危害极大。

这主要是由于金属和树脂的热膨胀系数相差悬殊产生应力,而且随着时间的推移,应力超过逐渐劣化的树脂材料的强度而产生裂纹。

为预防由此产生的龟裂,作为经验,壁厚7”与嵌入金属件的外径
通用型聚苯乙烯基本上不适于宜加镶嵌件,而镶嵌件对尼龙的影响最小。

由于玻璃纤维增强树脂材料的热膨胀系数较小,比较适合嵌入件。

另外,成型前对金属嵌件进行预热,也具有较好的效果。

(二)外部应力引起的龟裂
这里的外部应力,主要是因设计不合理而造成应力集中,特别是在尖角处更需注意。

由图2-2可知,可取R/7”一0.5~0.7。

(三)外部环境引起的龟裂
化学药品、吸潮引起的水降解,以及再生料的过多使用都会使物性劣化,产生龟裂。

二、充填不足
充填不足的主要原因有以下几个方面:
树脂容量不足。

型腔内加压不足。

树脂流动性不足。

排气效果不好。

作为改善措施,主要可以从以下几个方面入手:
1)加长注射时间,防止由于成型周期过短,造成浇口固化前树脂逆流而难于充满型腔。

2)提高注射速度。

3)提高模具温度。

4)提高树脂温度。

5)提高注射压力。

6)扩大浇口尺寸。

一般浇口的高度应等于制品壁厚的1/2~l/3。

7)浇口设置在制品壁厚最大处。

8)设置排气槽(平均深度0.03mm、宽度3~smm)或排气杆。

对于较小工件更为重要。

9)在螺杆与注射喷嘴之间留有一定的(约smm)缓冲距离。

10)选用低粘度等级的材料。

11)加入润滑剂。

三、皱招及麻面
产生这种缺陷的原因在本质上与充填不足相同,只是程度不同。

因此,解决方法也与上述方法基本相同。

特别是对流动性较差的树脂(如聚甲醛、PMMA树脂、聚碳酸酯及PP树脂等)更需要注意适当增大浇口和适当的注射时间。

四、缩坑
缩坑的原因也与充填不足相同,原则上可通过过剩充填加以解决,但却会有产生应力的危险,应在设计上注意壁厚均匀,应尽可能地减少加强肋、凸柱等地方的壁厚。

五、溢边
对于溢边的处理重点应主要放在模具的改善方面。

而在成型条件上,则可在降低流动性方面着手。

具体地可采用以下几种方法:
1)降低注射压力。

2)降低树脂温度。

4)选用高粘度等级的材料。

5)降低模具温度。

6)研磨溢边发生的模具面。

7)采用较硬的模具钢材。

8)提高锁模力。

9)调整准确模具的结合面等部位。

10)增加模具支撑柱,以增加刚性。

ll)根据不同材料确定不同排气槽的尺寸。

六、熔接痕
熔接痕是由于来自不同方向的熔融树脂前端部分被冷却、在结合处未能完全融合而产生的。

一般情况下,主要影响外观,对涂装、电镀产生影响。

严重时,对制品强度产生影响
(特别是在纤维增强树脂时,尤为严重)。

可参考以下几项予以改善:
l)调整成型条件,提高流动性。

如,提高树脂温度、提高模具温度、提高注射压力及速度等。

2)增设排气槽,在熔接痕的产生处设置推出杆也有利于排气。

3)尽量减少脱模剂的使用。

4)设置工艺溢料并作为熔接痕的产生处,成型后再予以切断去除。

5)若仅影响外观,则可改变烧四位置,以改变熔接痕的位置。

或者将熔接痕产生的部位处理为暗光泽面等,予以修饰。

七、烧伤
根据由机械、模具或成型条件等不同的原因引起的烧伤,采取的解决办法也不同。

1)机械原因,例如,由于异常条件造成料筒过热,使树脂高温分解、烧伤后注射到制品中,或者由于料简内的喷嘴和螺杆的螺纹、止回阀等部位造成树脂的滞流,分解变色后带入制品,在制品中带有黑褐色的烧伤痕。

这时,应清理喷嘴、螺杆及料筒。

2)模具的原因,主要是因为排气不良所致。

这种烧伤一般发生在固定的地方,容易与第一种情况区别。

这时应注意采取加排气槽反排气杆等措施。

3)在成型条件方面,背压在300MPa以上时,会使料筒部分过热,造成烧伤。

螺杆转速过高时,也会产生过热,一般在40~90r/min范围内为好。

在没设排。

相关文档
最新文档