溧水区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溧水区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设函数y=的定义域为M ,集合N={y|y=x 2
,x ∈R},则M ∩N=( )
A .∅
B .N
C .[1,+∞)
D .M
2. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 不能被5整除 D .a ,b 有1个不能被5整除
3. (+
)2n (n ∈N *
)展开式中只有第6项系数最大,则其常数项为( )
A .120
B .210
C .252
D .45
4. 若将函数y=tan (ωx+)(ω>0)的图象向右平移
个单位长度后,与函数y=tan (ωx+
)的图象
重合,则ω的最小值为( )
A .
B .
C .
D .
5. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )
A .(0,+∞)
B .(1,+∞)
C .(0,1)
D .(1,2)
6. 复数z=
(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
7. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )
A .(﹣∞,1]
B .[0,1]
C .(﹣2,﹣1)∪(﹣1,1]
D .(﹣∞,﹣2)∪(﹣1,1]
8. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( ) A .{2,1,0}-- B .{1,0,1,2}- C .{2,1,0}-- D .{1,,0,1}- 【命题意图】本题考查集合的交集运算,意在考查计算能力.
9. 已知双曲线C :22
221x y a b
-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆
被双曲线C 截得劣弧长为23
a π
,则双曲线C 的离心率为( )
A .
65 B .210 C .425
D .43 10.已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}
可.
11.过抛物线2
2(0)y px p =>焦点F 的直线与双曲线2
2
18
-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )
A .2y x =
B .22y x =
C .24y x =
D .2
3y x =
【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.
12.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1
B .y=lnx
C .y=x 3
D .y=|x|
二、填空题
13.设x ,y 满足约束条件
,则目标函数z=2x ﹣3y 的最小值是 .
14.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填A B 方格的数字,则不同的填法共有 种(用数字作答). A B C D
15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=(
)t ﹣a (a 为常数),
如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.
16.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )
A .5-
B
C .6- D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
17.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .
18.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R x
f x x a a x =+-∈,若曲线122e e 1
x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.
三、解答题
19.(本小题满分12分)已知12,F F 分别是椭圆C :22
221(0)x y a b a b
+=>>的两个焦点,且12||2F F =,点
在该椭圆上.
(1)求椭圆C 的方程;
(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两
点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.
20.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周得到
如图所示的几何体σ. (1)求几何体σ的表面积;
(2)点M 时几何体σ的表面上的动点,当四面体MABD 的体积为,试判断M 点的轨迹是否为2个菱形.
21.在数列中,,
,其中


(Ⅰ)当
时,求
的值;
(Ⅱ)是否存在实数,使
构成公差不为0的等差数列?证明你的结论; (Ⅲ)当时,证明:存在
,使得

22.(本小题满分12分)
已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.
23.(本题满分15分)
如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .
(1)求证:BM AD ⊥;
(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为
3
π
时,求λ的值.
【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.
24.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO 图案是多边形ABEFMN ,其
设计创意如下:在长4cm 、宽1
c m 的长方形ABCD 中,将四边形DFEC 沿直线EF 翻折到MFEN (点F 是线段AD 上异于D 的一点、点E 是线段BC 上的一点),使得点N 落在线段AD 上. (1)当点N 与点A 重合时,求NMF ∆面积;
最小时,LOGO最美观,试求此时LOGO图案的面积. (2)经观察测量,发现当2NF MF
溧水区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】B
【解析】解:根据题意得:x+1≥0,解得x≥﹣1,
∴函数的定义域M={x|x≥﹣1};
∵集合N中的函数y=x2≥0,
∴集合N={y|y≥0},
则M∩N={y|y≥0}=N.
故选B
2.【答案】B
【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.
故应选B.
【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.3.【答案】
B
【解析】
【专题】二项式定理.
【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.
【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,
所以展开式有11项,所以2n=10,即n=5,
又展开式的通项为=,
令5﹣=0解得k=6,
所以展开式的常数项为=210;
故选:B
【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.4.【答案】D
【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)
∴﹣ω+kπ=
∴ω=k+(k∈Z),
又∵ω>0
∴ωmin=.
故选D.
5.【答案】A
【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)
则A∪B=(0,+∞)
故选:A.
【点评】本题考查了集合的化简与运算问题,是基础题目.
6.【答案】C
【解析】解:z====+i,
当1+m>0且1﹣m>0时,有解:﹣1<m<1;
当1+m>0且1﹣m<0时,有解:m>1;
当1+m<0且1﹣m>0时,有解:m<﹣1;
当1+m<0且1﹣m<0时,无解;
故选:C.
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.
7.【答案】D
【解析】解:∵函数f(x)=﹣x2+2ax的对称轴为x=a,开口向下,
∴单调间区间为[a,+∞)
又∵f(x)在区间[1,2]上是减函数,
∴a≤1
∵函数g(x)=在区间(﹣∞,﹣a)和(﹣a,+∞)上均为减函数,
∵g (x )=在区间[1,2]上是减函数,
∴﹣a >2,或﹣a <1, 即a <﹣2,或a >﹣1,
综上得a ∈(﹣∞,﹣2)∪(﹣1,1],
故选:D
【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.
8. 【答案】C
【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .
9. 【答案】B
考点:双曲线的性质. 10.【答案】D
【解析】解:由已知M={x|﹣1<x <1}, N={x|x >0},则M ∩N={x|0<x <1}, 故选D .
【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,
11.【答案】C
【解析】
由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x
,所以0
002
002322ì=ï
ï-ïïïï
+=íï
ï=ïïïïî
y p x p x y px ,
解得2=p 或4=p ,因为322
->p p
,故03p <<,故2=p ,所以抛物线方程为24y x . 12.【答案】D
【解析】解:选项A :
y=
在(0,+∞)上单调递减,不正确;
选项B :定义域为(0,+∞),不关于原点对称,故y=lnx 为非奇非偶函数,不正确;
选项C :记f (x )=x 3,∵f (﹣x )=(﹣x )3=﹣x 3,∴f (﹣x )=﹣f (x ),故f (x )是奇函数,又∵y=x 3
区间
(0,+∞)上单调递增,符合条件,正确;
选项D :记f (x )=|x|,∵f (﹣x )=|﹣x|=|x|,∴f (x )≠﹣f (x ),故y=|x|不是奇函数,不正确. 故选D
二、填空题
13.【答案】 ﹣6 .
【解析】
解:由约束条件
,得可行域如图,
使目标函数z=2x ﹣3y 取得最小值的最优解为A (3,4), ∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6. 故答案为:﹣6.
14.【答案】27
【解析】解:若A方格填3,则排法有2×32=18种,
若A方格填2,则排法有1×32=9种,
根据分类计数原理,所以不同的填法有18+9=27种.
故答案为:27.
【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.
15.【答案】0.6
【解析】解:当t>0.1时,可得1=()0.1﹣a
∴0.1﹣a=0
a=0.1
由题意可得y≤0.25=,
即()t﹣0.1≤,
即t﹣0.1≥
解得t≥0.6,
由题意至少需要经过0.6小时后,学生才能回到教室.
故答案为:0.6
【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.
16.【答案】B
【解析】
17.【答案】5
【解析】
试题分析:'2'()323,(3)0,5f x x ax f a =++∴-=∴=. 考点:导数与极值. 18.【答案】1,e
⎛⎤-∞ ⎥⎝

【解析】结合函数的解析式:1
22e e 1x x y +=+可得:()
()
122
221'1
x x x e e y e +-=+, 令y ′=0,解得:x =0,
当x >0时,y ′>0,当x <0,y ′<0,
则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],
结合函数的解析式:()()R lnx
f x x a a x =+-∈可得:()22ln 1'x x f x x
-+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.
假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.
令函数()ln x
f x x a x x =
+-=. 设()ln x g x x =,求导()2
1ln 'x
g x x -=,
当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e
=, 当x →0时,a →-∞, ∴a 的取值范围1,e
⎛⎤-∞ ⎥⎝

.
点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.
(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )
≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.
三、解答题
19.【答案】
【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.
20.【答案】
【解析】解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=×4π×2×2=8π,
或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;
(2)由已知S
=××2×sin135°=1,
△ABD
因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,
因为在空间中有两个平面到平面ABCD的距离为1,
它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
21.【答案】
【解析】【知识点】数列综合应用
【试题解析】(Ⅰ),,.
(Ⅱ)成等差数列,,
即,
,即.
,.
将,代入上式,解得.
经检验,此时的公差不为0.
存在,使构成公差不为0的等差数列.
(Ⅲ),
又,令.
由,

……

将上述不等式相加,得 ,即. 取正整数
,就有
22.【答案】(1)3
π
;(2) 【解析】
试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式2
2
a a =,把
考点:向量的数量积,向量的夹角与模.
【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b
⋅<>=求得这两个
向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角.
23.【答案】(1)详见解析;(2)3λ=.
【解析】(1)由于2AB =,AM BM ==,则AM BM ⊥,
又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM , ∴⊥BM 平面ADM ,…………3分
又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分
24.【答案】(1)
215cm 16;(2)2
4. 【解析】试题分析:
(1)设MF x =4x =,则158
x =
, 据此可得NMF ∆的面积是
211515
1cm 2816
⨯⨯=;
试题解析:
(1)设MF x =,则FD MF x ==
,NF =
∵4NF MF +=,
4x =,解之得158
x =, ∴NMF ∆的面积是
211515
1cm 2816
⨯⨯=; (2)设NEC θ∠=,则2
NEF θ
∠=,NEB FNE πθ∠=∠=-,
∴()22
MNF π
π
πθθ∠=
--=-

∴1
1
2MN
NF cos MNF
sin cos πθ
θ==
=
∠⎛
⎫- ⎪

⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛
⎫-=- ⎪⎝
⎭,
∴22cos NF MF sin θ
θ
+-=.
∵14NF FD <+≤,∴114cos sin θθ-<
≤,即142
tan θ
<≤, ∴42πθα<≤(4tan α=且,32ππα⎛⎫
∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫
∈ ⎪⎝⎭
), 设()2cos f sin θθθ+=,则()2
12cos f sin θθθ--=',令()0f θ'=得23
π
θ=, 列表得
∴当23
π
θ=
时,2NF MF -取到最小值,
此时,NEF CEF NEB ∠=∠=∠3
FNE NFE NFM π
=∠=∠=∠=,6
MNF π
∠=

在Rt MNF ∆中,1MN =,MF =
,NF =,
在正NFE ∆中,NF EF NE ===,
在梯形ANEB 中,1AB =,4AN =4BE =,
∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形144142⎛⨯⨯= ⎝⎭
.
答:当2NF MF -最小时,LOGO 图案面积为2
4. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.。

相关文档
最新文档