安平县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABCDE , BC // AE , AB AD AG 3, DE 1 ,根据几何体的性质得: AC 3 2, GC 32 (3 2) 2
27 3 3, GE 32 42 5 , BG 3 2, AD 4, EF 10, CE 10 ,所以最长为 GC 3 3 .
服一次药,每次一片,每片 毫克.假设该患者的肾脏每 小时从体内大约排出这种药在其体内残留量的 ,并且医生认为这种药在体内的残留量不超过 毫克时无明显副作用.若该患者第一天上午点第一次 服药,则第二天上午 点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”) 19.已知直线 : 3 x 4 y m 0 ( m 0 )被圆 C : x y 2 x 2 y 6 0 所截的弦长是圆心 C 到直线的
故选 A.
【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视. 3. 【答案】D 【解析】
考 点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 4. 【答案】C 【解析】解:∵集 M={x|m≤x≤m+ },N={x|n﹣ ≤x≤n},
第 7 页,共 17 页
Байду номын сангаас
P={x|0≤x≤1},且 M,N 都是集合 P 的子集, ∴根据题意,M 的长度为 ,N 的长度为 , 当集合 M∩N 的长度的最小值时, M 与 N 应分别在区间[0,1]的左右两端, 故 M∩N 的长度的最小值是 故选:C. 5. 【答案】D 【解析】 试题分析:因为根据几何体的三视图可得,几何体为下图 AD, AB, AG 相互垂直,面 AEFG 面 = .
第 9 页,共 17 页
考 点:异面直线所成的角. 13.【答案】C 【解析】解:设 C(x,y,z), ∵点 A(﹣2,1,3)关于点 B(1,﹣1,2)的对称点 C,

,解得 x=4,y=﹣3,z=1,
∴C(4,﹣3,1). 故选:C. 14.【答案】D 【解析】解:∵Sn 为等比数列{an}的前 n 项和, ∴S4,S8﹣S4,S12﹣S8 也成等比数列,且 S8=4S4, ∴(S8﹣S4)2=S4×(S12﹣S8),即 9S42=S4×(S12﹣4S4), 解得 =13. =4,
23.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科 目的考试,成绩分为 A,B,C,D,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数 学与逻辑”科目的成绩为 B 的考生有 10 人.
第 4 页,共 17 页
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为 A 的人数; (Ⅱ)若等级 A,B,C,D,E 分别对应 5 分,4 分,3 分,2 分,1 分,求该考场考生“数学与逻辑”科目的 平均分; (Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为 A.在至少一科成绩为 A 的考生中,随机抽 取两人进行访谈,求这两人的两科成绩均为 A 的概率.
故选:D. 【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题. 15.【答案】A 【解析】解:∵a=60.5>1,0<b=0.56<1,c=log0.56<0, ∴c<b<a. 故选:A. 【点评】本题考查了指数函数与对数函数的单调性,属于基础题.
) D.关于直线 y=﹣x 轴对称 ) D. 2,5 C. 2, 4,5 )等于( )
7. 已知全集 U 1, 2,3, 4,5, 6, 7 , A 2, 4, 6 , B 1,3,5, 7 ,则 A (ð U B) (
8. 已知 α 是△ABC 的一个内角,tanα= ,则 cos(α+ A. B. C. D.
考点:集合交集,并集和补集. 【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象, 是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用 十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是
15.设 a=60.5,b=0.56,c=log0.56,则(
A.c<b<a B.c<a<b C.b<a<c D.b<c<a
二、填空题
16.log3 +lg25+lg4﹣7 ﹣(﹣9.8)0= .
x x
17.定义在 R 上的函数 f ( x) 满足: f ( x) f ' ( x) 1 , f (0) 4 ,则不等式 e f ( x) e 3 (其 中为自然对数的底数)的解集为 . 小时各 18.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔
9. 已知全集 I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I(A∩B)等于( A.{3,4} B.{1,2,5,6} C.{1,2,3,4,5,6} D.∅ ) )

x 10.已知全集 U R , A {x | 2 3 9} , B { y | 0 y 2} ,则有( A. A Ø B B. A B B C. A (ð R B)
安平县高级中学 2018-2019 学年高二上学期数学期末模拟试卷含解析 班级__________ 一、选择题
1. 由两个 1,两个 2,两个 3 组成的 6 位数的个数为( A.45 B.90 C.120 D.360 ) )
座号_____
姓名__________
分数__________
2. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图 如下,则它的左(侧)视图是(
24.已知数列{an}满足 a1=﹣1,an+1= (Ⅰ)证明:数列{ (Ⅱ)令 bn= + }是等比数列;
(n∈N*).
,数列{bn}的前 n 项和为 Sn.
第 5 页,共 17 页
①证明:bn+1+bn+2+…+b2n< ②证明:当 n≥2 时,Sn2>2( + +…+ )
25. AD∥BC, AB⊥AD, AB⊥PA, BC=2AB=2AD=4BE, 如图, 在四棱锥 P﹣ABCD 中, 平面 PAB⊥平面 ABCD , (Ⅰ)求证:平面 PED⊥平面 PAC; (Ⅱ)若直线 PE 与平面 PAC 所成的角的正弦值为 ,求二面角 A﹣PC﹣D 的平面角的余弦值.
第 8 页,共 17 页
属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并 集和补集的题目. 8. 【答案】B 【解析】解:由于 α 是△ABC 的一个内角,tanα= , 则 = ,又 sin2α+cos2α=1,
解得 sinα= ,cosα= (负值舍去). 则 cos(α+ 故选 B. 【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力 ,属于基础题. 9. 【答案】B 【解析】解:∵A={1,2,3,4},B={3,4,5,6}, ∴A∩B={3,4}, ∵全集 I={1,2,3,4,5,6}, ∴∁I(A∩B)={1,2,5,6}, 故选 B. 【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价 转化. 10.【答案】A 【解析】解析:本题考查集合的关系与运算, A (log 3 2, 2] , B (0, 2] ,∵ log 3 2 0 ,∴ A Ø B ,选 A. 11.【答案】C 【解析】 试题分析: g x log 2 2 x log 2 2 log 2 x 1 log 2 x ,故向上平移个单位. 考点:图象平移. 12.【答案】D 【解析】 )=cos cosα﹣sin sinα= ×( ﹣ )= .
D. A (ð R B) R D.向下平移 1 个单位
11.(文科)要得到 g x log 2 2 x 的图象,只需将函数 f x log 2 x 的图象( A.向左平移 1 个单位 B.向右平移 1 个单位 C.向上平移 1 个单位 )
12.已知三棱柱 ABC A1 B1C1 的侧棱与底面边长都相等, A1 在底面 ABC 上的射影为 BC 的中点, 则异面直线 AB 与 CC1 所成的角的余弦值为(
A.
B.
C.
D. ) C.
3. 定义运算: a b
a, a b .例如 1 2 1 ,则函数 f x sin x cos x 的值域为( b, a b
B . 1,1
2 2 , 2 2 2 D. 1, 2
A.
3 4
B.
5 4
C.
7 4

D.
3 4
13.空间直角坐标系中,点 A(﹣2,1,3)关于点 B(1,﹣1,2)的对称点 C 的坐标为(
第 2 页,共 17 页
A.(4,1,1) B.(﹣1,0,5) C.(4,﹣3,1) D.(﹣5,3,4) 14.已知等比数列{an}的前 n 项和为 Sn,若 A.3 B.4 C. D.13 ) =4,则 =( )
第 3 页,共 17 页
(2)根据频率分布直方图,估计这 100 名学生语文成绩的平均分.
22.现有 5 名男生和 3 名女生. (1)若 3 名女生必须相邻排在一起,则这 8 人站成一排,共有多少种不同的排法? (2)若从中选 5 人,且要求女生只有 2 名,站成一排,共有多少种不同的排法?
考点:几何体的三视图及几何体的结构特征. 6. 【答案】A 【解析】解:方程 x2+2ax+y2=0(a≠0)可化为(x+a)2+y2=a2,圆心为(﹣a,0), ∴方程 x2+2ax+y2=0(a≠0)表示的圆关于 x 轴对称, 故选:A. 【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键. 7. 【答案】A
2 2
距离的 2 倍,则 m
.
三、解答题
20.已知等差数列
满足: =2,且 , 的通项公式。
成等比数列。 若存在,求 n 的最小
(1)
求数列
(2)记 为数列
的前 n 项和,是否存在正整数 n,使得
值;若不存在,说明理由.
21. [50, 60][60, 70][70 某校 100 名学生期中考试语文成绩的频率分布直方图如图 4 所示, 其中成绩分组区间是 : ,80][80,90][90,100]. (1)求图中 a 的值;
第 6 页,共 17 页
安平县高级中学 2018-2019 学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】B 【解析】解:问题等价于从 6 个位置中各选出 2 个位置填上相同的 1,2,3, 所以由分步计数原理有:C62C42C22=90 个不同的六位数, 故选:B. 【点评】本题考查了分步计数原理,关键是转化,属于中档题. 2. 【答案】A 【解析】解:由题意可知截取三棱台后的几何体是 7 面体,左视图中前、后平面是线段, 上、下平面也是线段,轮廓是正方形,AP 是虚线,左视图为:
5. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( A.4 B.5 C. 3 2
第 1 页,共 17 页
6. 方程 x2+2ax+y2=0(a≠0)表示的圆( A.关于 x 轴对称 B.关于 y 轴对称 C.关于直线 y=x 轴对称 A. 2, 4, 6 B. 1,3,5
A .

2 ,1 2
4. 设数集 M={x|m≤x≤m+ },N={x|n﹣ ≤x≤n},P={x|0≤x≤1},且 M,N 都是集合 P 的子集,如果把 b﹣a 叫 做集合{x|a≤x≤b}的“长度”,那么集合 M∩N 的“长度”的最小值是( A. B. C. D. ) D. 3 3 )
相关文档
最新文档