【精品】2020年中考数学总复习专题讲义★☆二次函数十大基本问题

合集下载

中考数学复习专题二次函数知识点总结

中考数学复习专题二次函数知识点总结

中考复习专题——二次函数知识点总结二次函数知识点:1.二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c=++的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二次函数的基本形式1. 二次函数基本形式:2=的性质:y ax结论:a 的绝对值越大,抛物线的开口越小。

总结:=+的性质:y ax c结论:上加下减。

总结:3. ()2y a x h =-的性质:结论:左加右减。

总结:4. ()2y a x h k =-+的性质:总结:1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。

请将2y ax bx c =++配成()2y a x h k =-+。

总结:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.二、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a++≠本身就是所含字母x的二次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x2y=3(x+4)22y=3x2y=-2(x-3)222-32。

2020年九年级中考数学总复习:二次函数知识复习总结 讲义

2020年九年级中考数学总复习:二次函数知识复习总结 讲义

2020 年中考数学人教版总复习:二次函数知识总结一、二次函数的概念一般地,形如 y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x )(x –x ),其中 x ,x 是二次函数与 x 轴的交点的横坐标,a ≠0 .三、二次函数的图象及性质1.二次函数的图象与性质解析式二次函数 y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴顶点(–b 2abx =–2a4ac b 2 , )4aa 的符号a >0a <0图象开口方向开口向上开口向下当 x =–b 2a时,当 x =–b 2a时, 最值y最小值=4ac b 4a2y=最大值 4ac b 4a21 2 1 2最点抛物线有最低点抛物线有最高点增减性b当x<–时,y 随x 的增大而减小;2ab当x>–时,y随x 的增大而增大2a当x<–当x>–b2ab2a时,y随x的增大而增大;时,y 随x的增大而减小2.二次函数图象的特征与a,b,c的关系字母的符号a>0aa<0b=0b ab>0(a与b同号)ab<0(a 与b异号)c=0c c>0c<0b2–4ac=0b2–4ac b2–4ac>0b2–4ac<0图象的特征开口向上开口向下对称轴为y轴对称轴在y轴左侧对称轴在y轴右侧经过原点与y轴正半轴相交与y轴负半轴相交与x轴有唯一交点(顶点)与x轴有两个交点与x轴没有交点四、抛物线的平移1.将抛物线解析式化成顶点式y=a(x–h)2+k,顶点坐标为(h,k).2.保持y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.五、二次函数与一元二次方程的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了一元二次方程ax2+bx+c=0(a≠0).2.ax2+bx+c=0(a≠0)的解是抛物线y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.3.(1)b2–4ac>0⇔方程有两个不相等的实数根,抛物线与x轴有两个交点;(2)b2–4ac=0⇔方程有两个相等的实数根,抛物线与x 轴有且只有一个交点;(3)b2–4ac<0⇔方程没有实数根,抛物线与x轴没有交点.六、二次函数的综合1、函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;然后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在.2、函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.(3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.考点一二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典型例题典例1 )如果y=(m–2)x m 2m是关于x的二次函数,则m=A.–1【答案】AB.2C.–1或2D.m不存在【解析】依题意m²m 2m 20,解得m=–1,故选A.【名师点睛】此题主要考察二次函数的定义,需要注意a典例2 下列函数是二次函数的是0.A.y=2x+2B.y=﹣2x C.y=x2+2D.y=x﹣2【答案】C【解析】直接根据二次函数的定义判定即可.A、y=2x+2,是一次函数,故此选项错误;B、y=﹣2x,是正比例函数,故此选项错误;C、y=x2+2是二次函数,故此选项正确;D、y=x﹣2,是一次函数,故此选项错误.故选C.考点2二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.典型例题典例3 函数y=ax2+bx+a+b(a≠0)的图象可能是A.B.C.D.【答案】C【解析】A,由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y轴交点为(0,a+b)在y轴正半轴,与a+b<0矛盾,故此选项错误;B,由图象可知,开口向下,则a<0,又因为顶点在y轴左侧,则b<0,则a+b<0,而图象与y 轴交点为(0,1)在y 轴正半轴,可知a+b=1与a+b<0矛盾,故此选项错误;C,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,a+b=1 可能成立,故此选项正确;D,由图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0,与y 轴交于正半轴,则a+b>0,而图象与x轴的交点为(1,0),则a+b+a+b=0,显然a+b=0 与a+b>0矛盾,故此选项错误.故选C.典例4 如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是A.a>0B.b<0 C.ac<0D.bc<0【答案】C【解析】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=–b2a>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,bc>0.故选C.考点4二次函数的性质二次函数的解析式中,a 决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.典型例题典例5由二次函数y=3(x﹣4)2﹣2可知A.其图象的开口向下C.其顶点坐标为(4,2)【答案】B B.其图象的对称轴为直线x=4 D.当x>3时,y随x的增大而增大【解析】Q y 3(x 4)22,a=3>0,抛物线开口向上,故A不正确;对称轴为x 4,故B正确;顶点坐标为(4,–2),故C不正确;当x 4时,y随x的增大而增大,故D不正确;故选B.【名师点睛】本题主要考查二次函数的性质,掌握抛物线的顶点式是解题的关键,即在y a(x h)2k中,顶点坐标为(h,k),对称轴x h.a决定了开口方向.典例6 (2019·福建厦门外国语学校初三期中)在函数y (x 1)23中,当y随x的增大而减小时,则x的取值范围是A.x 1B.x 0C.x 3D.x 1【答案】D【解析】二次函数y (x 1)23的对称轴为直线x 1,∵a 0,∴x 1时,y随x的增大而减小.故选D.【名师点睛】本题考查了二次函数的单调性.二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,在对称轴左侧y 随x的增大而减小,在对称轴右侧y随x的增大而增大;当a<0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y 随x 的增大而减小考点4 二次函数的平移1.抛物线在平移的过程中,a 的值不发生变化,变化的只是顶点的位置,且与平移方向有关.2.涉及抛物线的平移时,首先将表达式转化为顶点式y=a(x–h)2+k的形式.的顶点是(0,0),y=a(x–h)2的顶点是(h,3.抛物线的移动主要看顶点的移动,y=ax20),y=a(x–h)2+k的顶点是(h,k).4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.典型例题典例7 如果将抛物线y=–x2–2向右平移3 个单位长度,那么所得到的新抛物线的表达式是A.y=–x2–5B.y=–x2+1C.y=–(x–3)2–2D.y=–(x+3)2–2【答案】C【解析】y=–x2–2 的顶点坐标为(0,–2),∵向右平移3个单位长度,∴平移后的抛物线的顶点坐标为(3,–2),∴所得到的新抛物线的表达式是y=–(x–3)2–2.故选C.【名师点睛】牢记抛物线的平移口诀可轻松解决此类问题.典例8如图,如果把抛物线y=x2 沿直线y=x向上方平移22个单位后,其顶点在直线y=x上的A处,那么平移后的抛物线解析式是A.y=(x+2C.y=(x–22)2+22)2+222B.y=(x+2)2+2D.y=(x–2)2+2【答案】D【解析】如图,过点A作AB⊥x轴于B,∵直线y=x与x轴夹角为45°,OA=22,∴OB=AB=2 2×22=2,∴点A的坐标为(2,2),∴平移后的抛物线解析式是y=(x–2)2+2.故选D.考点5二次函数与一元二次方程、不等式的综合抛物线y=ax2+bx+c(a≠0)与x 轴的交点个数及相应的一元二次方程根的情况都由Δ=b2–4ac 决定.1.当Δ>0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x轴有一个交点(即顶点)时,方程ax2+bx+c=0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x 轴无交点时,方程ax2+bx+c=0无实数根,此时抛物线在x 轴的上方(a>0时)或在x 轴的下方(a<0时).典型例题典例9二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表,则方程a x2+bx+c=0的一个解的范围是A.–0.03<x<–0.01 C.6.18<x<6.19xy6.17–0.036.18 6.19–0.010.02B.–0.01<x<0.02D.6.17<x<6.18【答案】C【解析】由表格中的数据看出–0.01和0.02更接近于0,故x应取对应的范围为:6.18<x<6.19,故选C.典例10 如图是二次函数y=a(x+1)2+2图象的一部分,则关于x的不等式a(x+1)2+2>0的解集是A.x<2C.–3<x<1B.x>–3D.x<–3或x>1【答案】C【解析】二次函数y=a(x+1)2+2的对称轴为x=–1,∵二次函数y=a(x+1)2+2与x 轴的一个交点是(–3,0),∴二次函数y=a(x+1)2+2与x轴的另一个交点是(1,0),∴由图象可知关于x 的不等式a(x+1)2+2>0的解集是–3<x<1.故选C.考点六二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.典型例题典例11 飞机着陆后滑行的距离y(单位:m)关于滑行时间以(单位:)的函数解析式是y=6t﹣A.1032t2.在飞机着陆滑行中,滑行最后的150m所用的时间是s.B.20C.30D.10或30【答案】A【解析】当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时 t =20,飞机着陆后滑行 600 米才能停下来.因此 t 的取值范围是 0≤t ≤20;即当 y =600﹣150=450 时,即 60t ﹣3 2t 2=450,解得:t =10,t =30(不合题意舍去),∴滑行最后的 150m 所用的时间是 20﹣10=10,故选 A .【名师点睛】本题考查二次函数与一元二次方程综合运用,关键在于解一元二次方程. 典例 12如图,一段抛物线:y =﹣x (x ﹣4)(0≤x ≤4)记为 C ,它与 x 轴交于两点 O ,A ;将 C 绕 A 旋转 180°得到 C ,交 x 轴于 A ;将 C 绕 A 旋转 180°得到 C ,交 x 轴于 A ;…如 此变换进行下去,若点 P (17,m )在这种连续变换的图象上,则 m 的值为A .2C .﹣3B .﹣2D .3【答案】D【解析】∵y =﹣x (x ﹣4)(0≤x ≤4)记为 C ,它与 x 轴交于两点 O ,A ,∴点 A (4,0),∴OA =4, ∵OA =A A =A A =A A ......,∴OA =A A =A A =A A (4)∵点 P (17,m )在这种连续变换的图象上,17÷4=4……1,∴点 P (17,m )在 C 上,∴x =17 和 x =1 时的函数值相等,∴m =﹣1×(1﹣4)=﹣1×(﹣3)=3,故选 D .1 1 1 12 2 2 23 3 1 11 11 12 23 34 1 1 2 2 3 3 45【名师点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键.。

中考数学复习考点知识与题型专题讲义15---二次函数的最值(基础篇)

中考数学复习考点知识与题型专题讲义15---二次函数的最值(基础篇)

中考数学复习考点知识与题型专题讲义15 二次函数的最值(基础)1.已知二次函数y1=ax2+4x+b与y2=bx2+4x+a都有最小值,记y1、y2的最小值分别为m、n.(1)若m+n=0,求证:对任意的实数x,都有y1+y2≥0;(2)若m,n均大于0,且mn=2,记M为m,n中的最大者,求M的最小值.【分析】(1)根据题意可以用用含a,b的代数式表示m、n,然后根据m+n=0,可以解答本题;(2)根据题意可以用用含a,b的代数式表示m、n,然后根据mn=2,记M为m,n中的最大者,可以求得M的最小值.【解答】解:(1)∵二次函数y1=ax2+4x+b与y2=bx2+4x+a都有最小值,y1、y2的最小值分别为m、n,∴y1+y2≥m+n,∵m+n=0,∴y1+y2≥0;(2))∵y1=ax2+4x+b=a(x+2a)2+ab−4a,∴m=ab−4 a,∵y2=bx2+4x+a=b(x+2b)2+ab−4b,∴n=ab−4 b,∵mn=2,m,n均大于0,∴ab−4a•ab−4b=2,解得,ab=2(舍去)或ab=8,∴{m =4a n =4b , ∴m =4a ,n =a 2,∵M 为m ,n 中的最大者,∴当0<a <2√2时,M =4a >√2,当a =2√2时,M =√2,当a >2√2时,M =a 2由上可得,M 的最小值是√2.【点评】本题考查二次函数的最值,解题的关键是明确题意,可以将函数的一般式化为顶点式,利用分类讨论的数学思想和数形结合的思想解答问题.2.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2﹣ax 有最大值还是最小值,并求出其最值.【分析】先根据一次函数的性质得到a +1>0且a <0,则﹣1<a <0,再利用配方法得到y =ax 2﹣ax =a (x −12)2−14a ,然后利用二次函数的性质解决问题.【解答】解:∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴a +1>0且a <0,∴﹣1<a <0,∵y =ax 2﹣ax =a (x 2﹣x )=a (x 2﹣x +14−14)=a (x −12)2−14a ,而a <0,∴二次函数有最大值,最大值为−14a .【点评】本题考查了二次函数的最值:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.也考查了一次函数的性质.3.若函数f(x)=−12x 2+133当a ≤x ≤b 时的最小值为2a ,最大值为2b ,求a 、b 的值. 【分析】根据二次函数的增减性以及当a <b ≤0时,当a ≤0<b 时,若0<a <b 时分别得出a ,b 的值即可.【解答】解:函数f(x)=−12x 2+133的顶点是(0,133),对称轴是y 轴,最大值为133,如右图, (1)当a <b ≤0时,x =a 时有最小值2a ,x =b 时有最大值2b ,于是−12a 2+133=2a , −12b 2+133=2b ,可知a 、b 是方程−12x 2+133=2x 的两个根,即3x 2+12x ﹣26=0,由于△>0,x 1x 2=−263,此方程有一正一负两个根,这与a <b ≤0矛盾,故此情况舍去;(2)当a ≤0<b 时,x =0时有最大值133=2b , 解得b =136,x =b 时有最小值2a ,即−12×(136)2+133=14372>0,而2a ≤0,矛盾, 所以只能是x =a 时取最小值,(−12)a 2+133=2a , 3a 2+12a ﹣26=0 a =−6−√1143<0,符合条件,(3)若0<a <b ,显然有 (−12)a 2+133=2b ①,−12b 2+133=2a ②,①﹣②得:(−12)(a ﹣b )(a +b )=2(b ﹣a ),则a+b=4,b=4﹣a,代入①得:(−12)a2+133=2(4﹣a),3a2﹣12a+22=0,∵△<0,∴此方程无实数根,故此情况舍去.故有一组解符合要求:a=−6−√1143,b=136.【点评】此题主要考查了二次函数的最值求法,根据自变量的取值范围分别将a,b代入求出是解题关键.4.已知二次函数y=ax2+bx+c的图象经过点(1,2),且当x=﹣1时,y有最小值y=﹣2.(1)求这个函数的关系式;(2)试判断点(3,14)是否在此函数图象上.【分析】二次函数得最小值出现于对称轴处.因此本题利用二次函数得基本性质便可解题.【解答】解:(1)由题意得,对称轴x=−b2a=−1,代入函数得y=a﹣b+c=﹣2将点(1,2)代入函数得a+b+c=2,解得a=1,b=2,c=﹣1 ∴解析式为y=x2+2x﹣1(2)当x=3时,y=14∴(3,14)在此函数图象上【点评】本题主要考察二次函数得基本性质,熟练掌握二次函数是本题得关键5.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?【分析】(1)由平行线得△ABC∽△ADE,根据相似形的性质得关系式;(2)由S=12•BD•AE;得到函数解析式,然后运用函数性质求解.【解答】解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴ADAB=AEAC,∴AE=6(8−2x)8=6−32x,∴y关于x的函数关系式为y=−32x+6(0<x<4).(2)解:S△BDE=12⋅BD⋅AE=12×2x(−32x+6)=−32x2+6x(0<x<4).当x=−62×(−32)=2时,S△BDE最大,最大值为6cm2.【点评】本题主要考查相似三角形的判定、三角形的面积及涉及到二次函数的最值问题,找到等量比是解题的关键.6.已知二次函数y=一x2+4x+6.(1)当x 为何值时,y 有最值?是多少?(2)当一2≤x ≤1时,求函数的最值.(3)当x ≥4时.求函数的最值.【分析】(1)将函数解析式配方成顶点式后,根据二次函数的性质即可得;(2)由x <2时,y 随x 的增大而增大,结合x 的范围求解可得;(3)由x >2时,y 随x 的增大而减小,结合x 的范围求解可得.【解答】解:(1)∵y =﹣x 2+4x +6=﹣(x 2﹣4x +4﹣4)+6=﹣(x ﹣2)2+10,∴当x =2时,y 有最大值,最大值为10;(2)∵当x <2时,y 随x 的增大而增大,∴由﹣2≤x ≤1知,当x =﹣2时,y 取得最小值,最小值y =﹣4﹣8+6=﹣6,当x =1时,y 取得最大值,最大值y =﹣1+4+6=9;(3)∵当x >2时,y 随x 的增大而减小,∴在x ≥4范围内,当x =4时,函数取得最大值,最大值y =﹣16+16+6=6,无最小值.【点评】本题主要考查二次函数的最值,解题的关键是熟练将二次函数的一般式配方成顶点式及二次函数的性质.7.对于二次函数f (x )=ax 2﹣bx +c ,当a >0时,只有最小值为4ac−b 24a ,这个结论一定正确吗?【分析】直接利用配方法求出二次函数的顶点式,即可求得出二次函数的顶点坐标,根据二次函数的性质求得出二次函数的最小值.【解答】解:对于二次函数f (x )=ax 2﹣bx +c ,当a >0时,只有最小值为4ac−b 24a ,这个结论一定正确;∵二次函数f (x )=ax 2﹣bx +c=a (x −b 2a )2+4ac−b 24a ; ∴图象的顶点坐标为:(b 2a ,4ac−b 24a ), ∵a >0,∴函数的最小值为:4ac−b 24a .【点评】此题主要考查了求二次函数的最值,熟练掌握二次函数的性质是解题关键.8.求函数y =3x 2+x+2x 2+2x+1的最小值. 【分析】将函数整理成关于x 的一元二次方程,然后利用根的判别式列出不等式求解即可.【解答】解:∵y =3x 2+x+2x 2+2x+1, ∴y (x 2+2x +1)=3x 2+x +2,整理得,(y ﹣3)x 2+(2y ﹣1)x +(y ﹣2)=0,∵关于x 的一元二次方程有解,∴△=b 2﹣4ac =(2y ﹣1)2﹣4(y ﹣3)(y ﹣2)≥0,整理得,16y ﹣24≥0,解得y ≤32,所以,函数的最小值为32. 【点评】本题考查了二次函数的最值,题目难度较大,将函数整理成关于x 的一元二次方程并考虑利用根的判别式求解是解题的关键.9.已知:二次函数y =﹣x 2+2(α+1)x +1,其中a 为常数.(1)若y 的最大值为2,求a 的值;(2)求y =﹣x 2+2(a +1)x +1在0≤x ≤|a |时的最小值;(3)若方程|﹣x 2+2(a +1)x +1|=2﹣x 的正实数根只有一个,求a 的取值范围.【分析】(1)把y=﹣x2+2(α+1)x+1配方即可得到结论;(2)根据二次函数的性质即可得到结论;(3)根据题意得到即该方程的一次项的系数为0,判别式△≥0且二次项的系数与常数项的符号相反.解方程即可得到结论.【解答】解:(1)∵二次函数y=﹣x2+2(α+1)x+1=﹣[x﹣(a+1)]2+a2+2a+2,∵y的最大值为2,∴a2+2a+2=2解得:a=0或a=﹣2即y的最大值为2时,a的值为0或﹣2;(2)∵二次函数y=﹣x2+2(α+1)x+1=﹣[x﹣(a+1)]2+(a+1)2+1的图象开口向下,对称轴x =a+1,当|a|≤a+1时,解得a≥−1 2当a>−12时,0≤x≤|a|时,函数值随x的增大而增大,故:函数y=﹣x2+2(a+1)x+1的最小值为:y min═﹣[0﹣(a+1)]2+(a+1)2+1=1,当a<−12时,0≤x≤|a|时,函数值随x的增大而减小,x=|a|时,有最小值,最小值=﹣a2﹣2a(a+1)+1=﹣3a2﹣2a+1.(3)∵方程|﹣x2+2(a+1)x+1|=2﹣x的正实数根只有一个,判别式△≥0且二次项的系数与常数项的符号相反.∴当方程﹣x2+2(a+1)x+1=2﹣x时,有:x2﹣(2a+3)x+1=0,而此时二次项的系数与常数项的符号相同,不符合题意,舍去.∴当方程为:﹣x 2+2(a +1)x +1=x ﹣2时,化简整理得:x 2﹣(2a +1)x ﹣3=0,∵△=[﹣(2a +1)]2﹣4×(﹣3)=4a 2+4a +13=(2a +1)2+12>0,∴a 的取值范围为任意实数.【点评】本题考查了二次函数的最值,二次方程的判别式,正确的理解题意是解题的关键.10.已知函数y =k 2x k 2﹣2是关于x 的二次函数(1)求满足条件的k 的值;(2)k 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?【分析】(1)根据二次函数的指数是二,可得方程,根据解方程,可得答案;(2)根据函数有最大值,可得二次项系数是负数,根据顶点坐标是函数的最值,可得答案;根据a <0时,对称轴的右侧y 随x 的增大而减小,可得答案.【解答】解:(1)函数y =k 2x k 2﹣2是关于x 的二次函数,得{k 2−2=2k 2≠0, 解得k =2或k =﹣2;(2)当k =﹣2时,函数y =﹣x 2有最大值,最大值是0;∴此时函数y =k 2x k 2﹣2是开口向下的,对称轴为x =0;∴当x >0时,y 随x 的增大而减小.【点评】本题考查了二次函数的定义,利用二次函数的定义得出k 值是解题关键,又利用了二次函数的性质.11.如图.抛物线y =ax 2+bx +52与直线AB 交于点A (﹣1,0),B (4,52),点D 是抛物线上位于直线AB 上方的一点(不与点A ,B 重合),连接AD ,BD .(1)求抛物线的解析;(2)设△ADB 的面为S ,求出当S 取最大值时的点D 的坐标.【分析】(1)把A 、B 两点坐标代入抛物线解析式即可.(2)设点D 坐标为(m ,−12m 2+2m +52),直线DC ⊥x 轴,与AB 交于点C ,根据S △ABD =S △ACD +S △BCD 构建二次函数,利用二次函数的最值问题解决.【解答】解:(1)∵抛物线y =ax 2+bx +52经过点A (﹣1,0),B (4,52),∴{a −b +52=016a +4b +52=52解得{a =−12b =2, ∴抛物线解析式为y =−12x 2+2x +52.(2)设点D 坐标为(m ,−12m 2+2m +52),直线DC ⊥x 轴,与AB 交于点C , ∵直线AB 解析式为y =12x +12,∴点C 坐标(m ,12m +12), ∵S △ABD =S △ACD +S △BCD =12(−12m 2+2m +52−12m −12)×(4+1)=−54(m 2﹣3m ﹣4)=−54(m −32)2+12516,∴当m =32时,△ADB 面积最大,此时点D 坐标(32,358).【点评】本题考查二次函数的最值、一次函数等知识,解题的关键是掌握待定系数法确定函数解析式,学会构建二次函数,利用二次函数的性质解决问题,属于中考常考题型.12.如图,四边形ABCD的两条对角线AC,BD互相垂直,AC+BD=12,当AC,BD的长分别是多少时,四边形ABCD的面积最大?【分析】直接利用对角线互相垂直的四边形面积求法得出S=12AC•BD,再利用配方法求出二次函数最值.【解答】解:设AC=x,四边形ABCD面积为S,则BD=12﹣x,则:S=12AC•BD=12x(12﹣x)=−12(x﹣6)2+18,当x=6时,S最大=18;所以AC=BD=6时,四边形ABCD的面积最大.【点评】此题主要考查了二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.13.如图,点E、F分别是正方形ABCD的边BC、CD上两点,且CE=CF,AB=4.(1)设CE=x,△AEF的面积为y,求y关于x的函数关系式;(2)当x取何值时,△AEF面积最大?求出此时△AEF的面积.【分析】(1)由已知可得,AB=BC=CD=AD=4,CE=x,由图形得出y=S正方形ABCD﹣S△ABE﹣S △ADF﹣S△CEF,便可求出x与y的关系式.(2)化成顶点式即可求得结论.【解答】解:(1)∵BC=DC,CE=CF,∴BE=DF=x,∴y=S正方形ABCD﹣S△ABE﹣S△ADF﹣S△CEF,∴y=42−12×4×(4﹣x)−12×4×(4﹣x)−12⋅x2∴y=−12x2+4x(0≤x≤4).(2)∵y=−12x2+4x=−12(x﹣4)2+8,∴当x=4时,△AEF的面积最大,此时△AEF的面积是8.【点评】本题考查了二次函数的最值,正方形的性质,三角形的面积,正确求得函数的解析式是解题的关键.14.如图(1)放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B、F、C、E在同一条直线上,如图(2),AB与DF、DE分别交于点P、M,AC与DE交于点Q,其中AC=DF=√3,设三角板ABC移动时间为x秒.(1)在移动过程中,试用含x的代数式表示△AMQ的面积;(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?【分析】(1)解直角三角形ABC求得EF=BC=3,由题意可知CF=x,可求AQ=√33x,MN=12x,根据三角形面积公式即可求出结论;(2)根据“S重叠=S△ABC﹣S△AMQ﹣S△BPF”列出函数关系式,通过配方求解即可.【解答】解:(1)解:因为Rt△ABC中∠B=30°,∴∠A=60°,∵∠E=30°,∴∠EQC=∠AQM=60°,∴△AMQ为等边三角形,过点M作MN⊥AQ,垂足为点N.在Rt△ABC中,AC=√3,BC=AC⋅tanA=3,∴EF=BC=3,根据题意可知CF=x,∴CE=EF﹣CF=3﹣x,CQ=CE⋅tanE=√33(3−x),∴AQ=AC−CQ=√3−√33(3−x)=√33x,∴AM =AQ =√33x ,而MN =AM ⋅sinA =12x ,∴S △MAQ =12AQ ⋅MN =12×√33x ⋅12x =√312x 2,(2)由(1)知BF =CE =3﹣x ,PF =BF ⋅tanB =√33(3−x),∴S 重叠=S △ABC −S △AMQ −S △BPF =12AC ⋅BC −12AQ ⋅MN −12BF ⋅PF=12×3×√3−√312x 2−12(3﹣x )×√33(3﹣x ) =−√34x 2+√3x =−√34(x −2)2+√3,所以当x =2时,重叠部分面积最大,最大面积是√3.【点评】本题属于几何变换综合题,考查了平移变换,等边三角形的性质和判定,解直角三角形,二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.15.如图,函数y =﹣x 2+12x +c (﹣2020≤x ≤1)的图象记为L 1,最大值为M 1;函数y =﹣x 2+2cx +1(1≤x ≤2020)的图象记为L 2,最大值为M 2.L 1的右端点为A ,L 2的左端点为B ,L 1,L 2合起来的图形记为L .(1)当c =1时,求M 1,M 2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数;(3)若M 1,M 2的差为4716,直接写出c 的值.【分析】(1)当c =1时,把函数的解析式化成顶点式即可求得M 1,M 2的值;(2)由已知可得点A,B重合时,c−12=2c,c=−12,L1上有1011个“美点”,L2上有2020个“美点”.则L上“美点”的个数是1011+2020﹣1=3030;(3)当x=14时,M1=116+c,由于L2的对称轴为x=c,分两种情况求解:当c≥1时,M2=c2+1;当c<1时,M2=2c;再由已知列出等式即可求c的值.【解答】解:(1)当c=1时,函数y=﹣x2+12x+c=﹣x2+12x+1=﹣(x−14)2+1716.又∵﹣2020≤x≤1,∴M1=17 16,y=﹣x2+2cx+1=﹣x2+2x+1=﹣(x﹣1)2+2.又∵1≤x≤2020,∴M2=2;(2)当x=1时,y=﹣x2+12x+c=c−12;y=﹣x2+2cx+1=2c.若点A,B重合,则c−12=2c,c=−12,∴L1:y=﹣x2+12x−12(﹣2020≤x≤1);L2:y=﹣x2﹣x+1(1≤x≤2020).在L1上,x为奇数的点是“美点”,则L1上有1011个“美点”;在L2上,x为整数的点是“美点”,则L2上有2020个“美点”.又点A,B重合,则L上“美点”的个数是1011+2020﹣1=3030.(3)y=﹣x2+12x+c(﹣2020≤x≤1)上时,当x=14时,M1=116+c,y=﹣x2+2cx+1(1≤x≤2020),对称轴为x=c,当c≥1时,M2=c2+1,∴|116+c ﹣c 2﹣1|=4716, ∴c =﹣1(舍去)或c =2;当c <1时,M 2=2c ,∴|2c −116−c |=4716, ∴c =3(舍去)或c =−238;∴c =−238或2. 【点评】本题考查二次函数的图象及性质;能够根据函数所给的取值范围,通过适当的分类讨论,正确的求函数的最大值是解题的关键.16.在矩形ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,且AE =AH =CF =CG ,已知AB =a ,BC =b .(1)若b 3≤a ≤3b 时,求四边形EFGH 的面积的最大值; (2)若a =4,b =16,求四边形EFGH 的面积的最大值.【分析】(1)由已知可证明△AEH ≌△CGF (SAS ),△BEF ≌△DGH (SAS ),则S 四EFGH =S 矩ABCD ﹣2S △AEH ﹣2S △BEF =﹣2x 2+(a +b )x ,由二次函数的性质即可求面积最大值;(2)将a =4,b =16代入(1)所得的式子即可.【解答】解:(1)设AE =x ,∵AE =AH =CF =CG ,∴△AEH ≌△CGF (SAS ),∵AB =CD ,AD =BC ,∴BE=DG,HD=BF,∴△BEF≌△DGH(SAS),∴S四EFGH=S矩ABCD﹣2S△AEH﹣2S△BEF=ab﹣2×12x2﹣2×12(a﹣x)(b﹣x)=ab﹣x2﹣(ab﹣ax﹣bx+x2)=﹣2x2+(a+b)x,当x=a+b4时,S四EFGH有最大值,最大值为(a+b)28;(2)当a=4,b=16时,四边形EFGH的面积=﹣2x2+20x,∴当x=4时,四边形EFGH的面积的最大值为48.【点评】本题考查矩形的性质;熟练掌握矩形的性质,通过三角形全等求面积,再由二次函数求面积的最大值是解题的关键.17.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB边向点B以1cm/秒的速度移动,同时点Q从B点开始沿BC边向点C以2cm/秒的速度移动,且当其中一点到达终点时,另一个点随之停止移动.(1)P,Q两点出发几秒后,可使△PBQ的面积为8cm2.(2)设P,Q两点同时出发移动的时间为t秒,△PBQ的面积为Scm2,请写出S与t的函数关系式,并求出△PBQ面积的最大值.【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6﹣t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)利用三角形面积公式表示S=12×(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,利用二次函数的性质解题.【解答】解:(1)设经过t秒后,△PBQ的面积等于8cm2.12×(6﹣t)×2t=8,解得:t1=2,t2=4,答:经过2或4秒后,△PBQ的面积等于8cm2.(2)依题意,得S=12×PB×BQ=12×(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∴在移动过程中,△PBQ的最大面积是9cm2.【点评】本题考查了二次函数的运用.关键是根据题意,列出相应的函数关系式,运用二次函数的性质解题.18.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,点P从点C开始沿CB向点B以1cm/s 的速度移动,点Q从A开始沿AC向点C以2cm/s的速度移动,如果点P,Q同时从点C,A出发,试问:(1)出发多少时间时,点P,Q之间的距离等于2√17cm?(2)出发多少时间时,△PQC的面积为6cm2?(3)△PQC面积的是否有最大值?若有是多少?此时时间是多少?【分析】(1)可设出发xs时间时,点P,Q之间的距离等于2√17cm,根据勾股定理列出方程求解即可;(2)可设出发ys时间时,△PQC的面积为6cm2,根据三角形的面积公式列出方程求解即可;(3)根据题意得到△PQC面积和时间t的关系式,根据关系式即可得到结论.【解答】解:(1)设出发xs时间时,点P,Q之间的距离等于2√17cm,依题意有x2+(12﹣2x)2=(2√17)2,解得x1=2,x2=7.6(不合题意舍去).答:出发2s时间时,点P,Q之间的距离等于2√17cm;(2)设出发ys时间时,△PQC的面积为6cm2,依题意有12y(12﹣2y)=6,解得y1=3−√3,y2=3+√3.答:出发(3−√3)s或(3+√3)s时间时,△PQC的面积为6cm2;(3)依题意有S△PQC=12t(12﹣2t)=﹣(t﹣3)2+9,∵﹣1<0,∴△PQC面积的有最大值9,此时时间是3.【点评】此题主要考查了二次函数的最值,一元二次方程的应用,熟练掌握二次函数的性质是解题关键.19.如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小.【分析】(1)根据待定系数法即可求得;(2)把x=﹣2代入解析式得到P点的纵坐标y P=4+4m+m2﹣2=(m+2)2﹣2,即可得到当m=﹣2时,y P的最小值=﹣2,然后根据二次函数的性质即可判断y1与y2的大小.【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=1+2m+m2﹣2,∴m=﹣1,∴抛物线F的表达式是y=x2+2x﹣1.(2)当x=﹣2时,y P=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y P的最小值=﹣2.此时抛物线F的表达式是y=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小.∵x1<x2≤﹣2,∴y1>y2.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.20.如图,在平面直角坐标系中,点A,B是一次函数y=x图象上两点,它们的横坐标分别为a,a+3,其中a>0,过点A,B分别作y轴的平行线,交抛物线y=x2﹣4x+8于点C,D.(1)若AD=BC,求a的值;(2)点E是抛物线上的一点,求△ABE面积的最小值.【分析】(1)将已知点的坐标代入相应的函数解析式,再结合AD=BC,可得关于a的方程,解得a的值即可;(2)设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG⊥EM,垂足分别为F,G,由题意可得M(m,m),从而可用含m的式子表示出EM的长,根据二次函数的性质及三角形的面积公式可得答案.【解答】解:(1)∵点A,B是一次函数y=x图象上两点,它们的横坐标分别为a,a+3,∴A(a,a),B(a+3,a+3).y=x2﹣4x+8=(x﹣2)2+4,将x=a,代入得:y=(a﹣2)2+4;将x=a+3,代入得:y=(a+1)2+4.∴D(a,(a﹣2)2+4),C(a+3,(a+1)2+4),∴AD=(a﹣2)2+4﹣a,CB=(a+1)2+4﹣(a+3).由AD=BC得:(a﹣2)2+4﹣a=(a+1)2+4﹣(a+3),∴a=1.(2)设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG⊥EM,垂足分别为F,G,由题意得:M(m,m),∴EM=m2﹣4m+8﹣m=m2﹣5m+8=(m−52)2+74,∴S△ABE=S△AEM+S△EMB=12EM⋅AG+12EM⋅BF=12EM(AG+BF)=32(m−52)2+218,由32>0,得S△ABE有最小值.∴当m=52时,S△ABE的最小值为218.【点评】本题考查了二次函数的最值、一次函数与二次函数图象上的点与坐标的关系及三角形的面积计算等知识点,熟练掌握相关性质及定理并数形结合是解题的关键.。

2020年中考数学压轴解答题10 二次函数与线段关系及最值定值问题(学生版)

2020年中考数学压轴解答题10 二次函数与线段关系及最值定值问题(学生版)

备战2020中考数学之解密压轴解答题命题规律专题10 二次函数与线段关系及最值定值问题【类型综述】图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由比例线段产生的函数关系问题,在两种类型的题目中比较常用. 一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.【方法揭秘】由勾股定理产生的函数关系,在两种类型的题目中比较常用.类型一,已知“边角边”,至少一边是动态的,求角的对边.如图1,已知点A 的坐标为(3, 4),点B 是x 轴正半轴上的一个动点,设OB =x ,AB =y ,那么我们在直角三角形ABH 中用勾股定理,就可以得到y 关于x 的函数关系式.类型二,图形的翻折.已知矩形OABC 在坐标平面内如图2所示,AB =5,点O 沿直线EF 翻折后,点O 的对应点D 落在AB 边上,设AD =x ,OE =y ,那么在直角三角形AED 中用勾股定理就可以得到y 关于x 的函数关系式.图1 图2【典例分析】【例1】如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;(2)类比探究:如图③,在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由; (3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ;①在旋转过程中,若1t =时,求对应的EPF ∆的面积; ②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.【例2】如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G . (1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y . ①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.【例3】抛物线2(0)y ax bx c a =++≠与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点(0,4)C -.已知(2,0)A -,抛物线的对称轴l 交x 轴于点(1,0)D . (1)求出,,a b c 的值;(2)如图1,连接BC ,点P 是线段BC 下方抛物线上的动点,连接,PB PC .点,M N 分别在y 轴,对称轴l 上,且MN y ⊥轴.连接,AM PN .当PBC ∆的面积最大时,请求出点P 的坐标及此时AM MN NP ++的最小值;(3)如图2,连接AC ,把AOC ∆按照直线y x =对折,对折后的三角形记为A OC ∆'',把A OC ∆''沿着直线BC 的方向平行移动,移动后三角形的记为A O C ∆''''',连接DA '',DC '',在移动过程中,是否存在DA C ∆''''为等腰三角形的情形?若存在,直接写出点C ''的坐标;若不存在,请说明理由.【例4】如图在锐角△ABC 中,BC =6,高AD =4,两动点M 、N 分别在AB 、AC 上滑动(不包含端点),且MN ∥BC,以MN 为边长向下作正方形MPQN,设MN =x,正方形MPQN 与△ABC 公共部分的面积为y . (1)如图(1),当正方形MPQN 的边P 恰好落在BC 边上时,求x 的值;(2)如图(2),当PQ 落△ABC 外部时,求出y 与x 的函数关系式(写出x 的取值范围)并求出x 为何值时y 最大,最大是多少?【例5】如图,抛物线y=12-x2+mx+m(m>0)的顶点为A,交y轴于点C.(1)求出点A的坐标(用含m的式子表示);(2)若直线y=﹣x+n经过点A,与抛物线交于另一点B,证明:AB的长是定值;(3)连接AC,延长AC交x轴于点D,作直线AD关于x轴对称的直线,与抛物线分别交于E、F两点.若∠ECF=90°,求m的值.【例6】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B 点的坐标为(3,0),与y轴交于点C(0,﹣3).(1)求二次函数解析式;(2)若点Q为抛物线上一点,且S△ABQ=12S△ACQ,求点Q的坐标;(3)若直线l:y=mx+n与抛物线有两个交点M,N(M在N的左边),P为抛物线上一动点(不与M,N重合).过P作PH平行于y轴交直线l于点H,若HM HNHP⋅=5,求m的值.【变式训练】1.如图,抛物线y =ax 2+4x +c (a ≠0)与反比例函数y =5x的图象相交于点B ,且点B 的横坐标为5,抛物线与y 轴交于点C (0,6),A 是抛物线的顶点,P 和Q 分别是x 轴和y 轴上的两个动点,则AQ +QP +PB 的最小值为_____.2.如图,在平面直角坐标系中,菱形OABC 的顶点 A 在 x 轴正半轴上,顶点 C 的坐标为(4,3),D 是抛物线 y =﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为__________3.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.4.如图,在Rt △ABC 中,∠BAC =90°,AB =AC =16cm ,AD 为BC 边上的高,动点P 从点A 出发,沿A →D 方向以2/s 的速度向点D 运动,过P 点作PE ∥BC 交AC 于点E ,过E 点作EF ⊥BC 于点F ,设△ABP 的面积为S 1,四边形PDFE 的面积为S 2,则点P 在运动过程中,S 1+S 2的最大值为______.5.在平面直角坐标系中,已知()A 2,4、()P 1,0,B 为y 轴上的动点,以AB 为边构造ABC V ,使点C 在x 轴上,BAC 90.M ∠=o 为BC 的中点,则PM 的最小值为______.6.如图,在平面直角坐标系中,抛物线y=﹣x 2+4x 与x 轴交于点A,点M 是x 轴上方抛物线上一点,过点M 作MP ⊥x 轴于点P,以MP 为对角线作矩形MNPQ,连结NQ,则对角线NQ 的最大值为_________.7.如图,在平面直角坐标系中,过A (-1,0)、B (3,0)两点的抛物线交y 轴于点C,其顶点为点D,设△ACD 的面积为S 1,△ABC 的面积为S 2.小芳经探究发现:S 1︰S 2是一个定值.这个定值为________.8.如图,在平面直角坐标系中,有二次函数23333y x x =--+,顶点为H ,与x 轴交于A 、B 两点(A 在B 左侧),易证点H 、B 关于直线3:33l y x =+对称,且A 在直线l 上.过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,则HN NM MK ++的最小值为________9.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(1,0)A -,(4,)B m 两点,且抛物线经过点(5,0)C(1)求抛物线的解析式.(2)点P 是抛物线上的一个动点(不与点A 点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .当2PE ED =时,求P 点坐标;(3)如图所示,设抛物线与y 轴交于点F ,在抛物线的第一象限内,是否存在一点Q ,使得四边形OFQC 的面积最大?若存在,请求出点Q 的坐标;若不存在,说明理由.10.如图,在矩形ABCD 中,AB=18,AD=12,点M 是边AB 的中点,连结DM,DM 与AC 交于点G ,点E,F 分别是CD 与DG 上的点,连结EF,(1)求证:CG=2AG .(2)若DE=6,当以E,F,D 为顶点的三角形与△CDG 相似时,求EF 的长.(3)若点E 从点D 出发,以每秒2个单位的速度向点C 运动,点F 从点G 出发,以每秒1个单位的速度向点D 运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG 的面积的最小值.11.如图①,抛物线y=a(x 2+2x-3)(a≠0)与x 轴交于点A 和点B,与y 轴交于点C,且OC=OB.(1)直接写出点B 的坐标是( , ),并求抛物线的解析式;(2)设点D 是抛物线的顶点,抛物线的对称轴是直线l,连接BD,线段OC 上的点E 关于直线l 的对称点E'恰好在线段BD 上,求点E 的坐标;(3)若点F 为抛物线第二象限图象上的一个动点,连接BF,CF,当△BCF 的面积是△ABC 面积的一半时,求此时点F 的坐标.12.如图,抛物线y =﹣x 2+mx +2与x 轴交于点A ,B ,与y 轴交于点C ,点A 的坐标为(1,0) (1)求抛物线的解析式(2)在抛物线的对称轴l 上找一点P ,使PA +PC 的值最小,求出点P 的坐标 (3)在第二象限内的抛物线上,是否存在点M ,使△MBC 的面积是△ABC 面积的12?若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线212y x mx n =++交x 轴于A 、B 两点,直线y=kx+b 经过点A,与这条抛物线的对称轴交于点M (1,2),且点M 与抛物线的顶点N 关于x 轴对称.(1)求抛物线的函数关系式;(2)设题中的抛物线与直线的另一交点为C,已知P(x,y)为线段AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.求线段PQ的最大值及此时P坐标;(3)在(2)的条件下,求△AQC面积的最大值.14.如图,抛物线y=﹣12x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.(3)连接AD并延长,过抛物线上一点Q(Q不与A重合)作QN⊥x轴,垂足为N,与射线交于点M,使得QM=3MN,若存在,请直接写出点Q的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,点A在抛物线y=- x2 + 4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB 的长.(2)点P 为线段AB .上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H,点F 为y 轴上一点,当∆PBE 的面积最大时,求PH + HF + 12FO 的最小值. (3)在(2)中,PH+HF+12方FO 取得最小值时,将∆CFH 绕点C 顺时针旋转60°后得到∆CF'H',过点F'作CF'的垂线与直线AB 交于点Q,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.16.已知,二次函数24y x x c =-+的图像与x 轴的一个交点为O(0,0),点P (m,0)是x 轴正半轴上的一个动点.(1)如图1,求二次函数的图像与x 轴另一个交点的坐标; (2)如图2,过点P 作x 轴的垂线交直线33y x =与点C,交二次函数图像于点D, ①当PD=2PC 时,求m 的值;如图3,已知A (3,-3)在二次函数图像上,连结AP,求12AP OP +的最小值;(3如图4,在第(2)小题的基础上,作直线OD,作点C关于直线OD的对称点C’,当C’落在坐标轴上时,请直接写出m的值.17.如图1,已知抛物线y =ax2+bx +c 经过A(-3,0),B (1,0 ),C (0,3 )三点,其顶点为D,对称轴是直线l , l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求∆PBC 周长的最小值;(3)如图2,若 E 是线段AD 上的一个动点(E 与A, D 不重合),过 E 点作平行于y 轴的直线交抛物线于点 F ,交x 轴于点G ,设点 E 的横坐标为m ,四边形AODF 的面积为S 。

2020年中考数学复习专题之二次函数的综合应用问题

2020年中考数学复习专题之二次函数的综合应用问题

二次函数的综合应用二次函数的实际应用(1)增长率问题一月a增长率为x 二月a(1+x)增长率为x三月a(1+x)2(2)利润问题在这个模型中,利润=(售价-成本)×销量(3)面积问题矩形面积=长×宽材料总长a 矩形长x矩形宽1(a-2x)2题型一二次函数的应用—销售问题例7.某公司投资销售一种进价为每件15元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-20x+800,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设该公司每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?【思路点拨】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;【答案与解析】解:(1)由题意,得:w=(x﹣15)•y=(x﹣15)•(﹣20x+800)=﹣20x2+1100x﹣12000,即w=﹣20x2+1100x﹣12000(15≤x≤24);(2)对于函数w=﹣20x2+1100x﹣12000(15≤x≤24)的图象的对称轴是直线x=27.5又∵a=﹣20<0,抛物线开口向下.∴当15≤x≤24时,W随着x的增大而增大,∴当x=24时,W=2880,答:当销售单价定为24元时,每月可获得最大利润,最大利润是2880元.变式训练1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元?【思路点拨】(1)列出y=44(40﹣x)=﹣44x+1760,根据一次函数的性质求解;(2)根据题意列出y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,结合二次函数的性质求解;【答案与解析】解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元.变式训练2.为建设美丽家园,某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y(元)与x(m2)的函1数关系图象如图所示,栽花所需费用y(元)与x(m2)的函数关系式为2xy=-0.01x2-20x+30000(0剟1000).2(1)求 y (元 ) 与 x(m 2) 的函数关系式;1(2)设这块1000m 2 空地的绿化总费用为W (元 ) ,请利用W 与 x 的函数关系式,求绿化总 费用 W 的最大值.【思路点拨】(1)根据函数图象利用待定系数法即可求得y 1(元)与 x (m 2)的函数关系式 (2)总费用为 W =y 1+y 2,列出函数关系式即可求解 【答案与解析】解:(1)依题意当 0≤x≤600 时,y 1=k 1x ,将点(600,18000)代入得 18000=600k 1,解得 k 1=30∴y 1=30x当 600<x≤1000 时,y 1=k 2x+b ,将点(600,18000),(1000,26000)代入得,解得∴y 1=20x+600综上,y 1(元)与 x (m 2)的函数关系式为:(2)总费用为:W =y 1+y 2∴W=整理得故绿化总费用 W 的最大值为 32500 元.变式训练 3.某公司生产的某种商品每件成本为 20 元,经过市场调研发现,这种商品在未来 40 天内的日销售量 m (件 ) 与时间 t (天 ) 的关系如下表:时间 t (天 ) 1 3 5 10 36日销售量 m94 90 86 76 24(件 )未来 40 天内,前 20 天每天的价格 y 1(元/件)与时间 t (天)的函数关系式为 y 1= t +25(1≤t ≤20 且 t 为整数),后20 天每天的价格 y 2(元/件)与时间 t (天)的函数关系式为y 2=﹣ t +40(21≤t ≤40 且 t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的 m (件 ) 与 t (天 ) 之间的表达式;(2)请预测未来 40 天中哪一天的日销售利润最大,最大日销售利润是多少?【思路点拨】(1)从表格可看出每天比前一天少销售 2 件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前 20 天和后 20 天的日利润,根据函数性质求最大值后比较得结论.【答案与解析】解:(1)经分析知:m 与 t 成一次函数关系.设 m =kt+b (k≠0),将 t =1,m =94,t =3,m =90代入,解得,∴m=﹣2t+96;(2)前 20 天日销售利润为 P 1 元,后 20 天日销售利润为 P 2 元,则 P 1=(﹣2t+96)( t+25﹣20)=﹣ (t ﹣14)2+578,∴当 t =14 时,P 1 有最大值,为 578 元.P 2=(﹣2t+96)•( t+40﹣20)=﹣t 2+8t+1920=(t ﹣44)2﹣16,∵当 21≤t≤40 时,P 2 随 t 的增大而减小,∴t=21 时,P 2 有最大值,为 513 元. ∵513<578,∴第 14 天日销售利润最大,最大利润为 578 元.题型二 二次函数的应用—面积问题例 8.如图,用 30m 长的篱笆沿墙建造一边靠墙的矩形菜园,已知墙长18m ,设矩形的宽 AB为xm.(1)用含x的代数式表示矩形的长BC;(2)设矩形的面积为y,用含x的代数式表示矩形的面积y,并求出自变量的取值范围;(3)这个矩形菜园的长和宽各为多少时,菜园的面积y最大?最大面积是多少?【思路点拨】(1)设菜园的宽AB为xm,于是得到BC为(30﹣2x)m;(2)由面积公式写出y与x的函数关系式,进而求出x的取值范围;(3)利用二次函数求最值的知识可得出菜园的最大面积.【答案与解析】解:(1)∵AB=CD=xm,∴BC=(30﹣2x)m;(2)由题意得y=x(30﹣2x)=﹣2x2+30x(6≤x<15);(3)∵S=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,S有最大值,S=112.5,最大此时这个矩形的长为15m、宽为7.5m.答:这个矩形的长、宽各为15m、7.5m时,菜园的面积最大,最大面积是112.5m2.变式训练1.为了节省材料,小浪底水库养殖户小李利用水库的岸堤(足够长)为一边,用总长为120米的网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)请你帮养殖户小李计算一下BC边多长时,养殖区ABCD面积最大,最大面积为多少?【思路点拨】(1)三个矩形的面值相等,可知2FG=2GE=BC,可知:2BC+8FC=120,即FC=,即可求解;(2)y=﹣x2+45x=﹣(x﹣30)2+675即可求解.【答案与解析】解:(1)∵三个矩形的面值相等,可知2FG=2GE=BC,∴BC×DF=BC×FC,∴2FC=DC,2BC+8FC=120,∴FC=,∴y与x之间的函数关系式为y=3FC×BC=x(120﹣2x),即y=﹣x2+45x,(0<x<60);(2)y=﹣x2+45x=﹣(x﹣30)2+675可知:当BC为30米是,养殖区ABCD面积最大,最大面积为675平方米.变式训练 2.如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,DG2BE,设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【思路点拨】(1)根据题意可得DG=2x,再表示出AE和AG,然后利用面积可得y与x之间的函数关系式;(2)根据题意可得正方形苗圃ABCD的面积为64,进而可得矩形苗圃AEFG的面积为64,进而可得:﹣2x2+8x+64=64再解方程即可;(3)根据二次函数的性质即可得到结论.【答案与解析】解:(1)y=(8﹣x)(8+2x)=﹣2x2+8x+64,故答案为:y=﹣2x2+8x+64;(2)根据题意可得:﹣2x2+8x+64=64,解得:x1=4,x2=0(不合题意,舍去),答:BE的长为4米;故答案为:y=﹣2x2+8x+64(0<x<8);(3)解析式变形为:y=﹣2(x﹣2)2+72,所以当x=2时,y有最大值,∴当x为2时改造后的矩形苗圃AEFG的最大面积,最大面积为72平方米.变式训练3.如图,一面利用墙(墙的最大可用长度为10m),用长为24m的篱笆围成中间隔有一道篱笆的矩形花圃,设花圃的一边AB的长为x(m),面积为y(m2).(1)若y与x之间的函数表达式及自变量x的取值范围;(2)若要围成的花圃的面积为45m2,则AB的长应为多少?【思路点拨】(1)根据题意可以得到y与x的函数关系式以及x的取值范围;(2)令y=45代入(1)中的函数解析式,即可求得x的值,注意x的取值范围.【答案与解析】解:(1)由题意可得,y=x(24﹣3x)=﹣3x2+24x,∵24﹣3x≤10,3x<24,解得,x≥∴且x<8,,即y与x之间的函数表达式是y=﹣3x2+24x((2)当y=45时,45=﹣3x2+24x,解得,x1=3(舍去),x2=5,答:AB的长应为5m.题型三二次函数的应用—抛物线问题);例9.如图,已知排球场的长度O D为18米,位于球场中线处球网的高度AB为2.4米,一队员站在点O处发球,排球从点O的正上方1.6米的C点向正前方飞出,当排球运行至离点O的水平距离OE为6米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.4米时,对方距离球网0.4m的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【思路点拨】(1)根据此时抛物线顶点坐标为(6,3.4),设解析式为y=a(x﹣6)2+3.4,再将点C坐标代入即可求得;由解析式求得x=9.4时y的值,与他起跳后的最大高度为3.1米比较即可得;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C坐标代入得到用h表示a的式子,再根据球既要过球网,又不出边界即x=9时,y>2.4且x=18时,y≤0得出关于h的不等式组,解之即可得.【答案与解析】解:(1)根据题意知此时抛物线的顶点G的坐标为(6,3.4),设抛物线解析式为y=a(x﹣6)2+3.4,将点C(0,1.6)代入,得:36a+3.4=1.6,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣6)2+;由题意当x=9.5时,y=﹣(9.4﹣6)2+≈2.8<3.1,故这次她可以拦网成功;(2)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,1.6)代入,得:36a+h=1.6,即a=∴此时抛物线解析式为y=(x﹣6)2+h,,变式训练1.一位篮球运动员投篮,球沿抛物线y=-x2+运行,然后准确落入篮筐内,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.1752已知篮筐的中心距离底面的距离为3.05m.(1)求球在空中运行的最大高度为多少m?(2)如果该运动员跳投时,球出手离地面的高度为2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?【思路点拨】(1)由抛物线的顶点坐标即可得;(2)分别求出y=3.05和y=2.25时x的值即可得出答案.【答案与解析】解:(1)∵y=﹣x2+的顶点坐标为(0,),∴球在空中运行的最大高度为m;(2)当y=3.05时,﹣0.2x2+3.5=3.05,解得:x=±1.5,∵x>0,∴x=1.5;当y=2.25时,﹣0.2x2+3.5=2.25,解得:x=2.5或x=﹣2.5,由1.5+2.5=4(m),故他距离篮筐中心的水平距离是4米.变式训练2.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=-124时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点的O水平距离为7m,离地面的高度为处时,乙扣球成功,求a的值.125m的Q【思路点拨】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【答案与解析】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣解得:h=;×16+h=1,②把x=5代入y=﹣∵1.625>1.55,∴此球能过网;(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,(2)把(0,1)、(7,,)代入y=a(x﹣4)2+h,得:解得:,∴a=﹣.变式训练3.小明跳起投篮,球出手时离地面20m,球出手后在空中沿抛物线路径运动,并9在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?(3)在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)若此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19m,则乙在进攻方球员前多远才能盖帽成功?【思路点拨】(1)根据顶点坐标(4,4),设抛物线的解析式为:y=a(x﹣4)2+4,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心;(3)将由y=3.19代入函数的解析式求得x值,进而得出答案.【答案与解析】(1)设抛物线为y=a(x﹣4)2+4,将(0,)代入,得a(0﹣4)2+4=,解得a=﹣,∴所求的解析式为y=﹣(x﹣4)2+4;(2)令x=8,得y=﹣(8﹣4)2+4=∴抛物线不过点(8,3),故不能正中篮筐中心;≠3,=∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移 7/9 个单位长度,故小明需向上多跳 m 再投篮(即球出手时距离地面 3 米)方可使球正中篮筐中心.(3)由(1)求得的函数解析式,当 y =3.19 时,3.19=﹣19(x ﹣4)2+4解得:x 1=6.7(不符合实际,要想盖帽,必须在篮球下降前盖帽,否则无效),x 2=1.3∴球员乙距离甲球员距离小于 1.3 米时,即可盖帽成功.题型四 二次函数与图形面积的综合例 10.如图,抛物线 y = a(x + 1)2的顶点为 A ,与 y 轴的负半轴交于点 B ,且 OB = OA .(1)求抛物线的解析式;(2)若点 C (-3,b ) 在该抛物线上,求 S∆ABC 的值.【思路点拨】(1)由抛物线解析式确定出顶点 A 坐标,根据 OA =OB 确定出 B 坐标,将 B坐标代入解析式求出 a 的值,即可确定出解析式;(2)将 C 坐标代入抛物线解析式求出 b 的值,确定出 C 坐标,过 C 作 CD 垂直于 x 轴,三角形 ABC 面积=梯形 OBCD 面积﹣三角形 ACD 面积﹣三角形 AOB 面积,求出即可.【答案与解析】解:(1)由题意得:A (﹣1,0),B (0,﹣1),将 x =0,y =﹣1 代入抛物线解析式得:a =﹣1,则抛物线解析式为 y =﹣(x+1)2=﹣x 2﹣2x ﹣1;(2)过 C 作 CD⊥x 轴,将 C (﹣3,b )代入抛物线解析式得:b =﹣4,即 C (﹣3,﹣4),则 △S ABC =S 梯形 OBCD △﹣S ACD △﹣S A OB ×3×(4+1)﹣ ×4×2﹣ ×1×1=3.变式训练1.如图,已知二次函数图象的顶点为(1,-3),并经过点C(2,0).(1)求该二次函数的解析式;(2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和∆AOB的面积;【思路点拨】(1)设抛物线的解析式为y=a(x﹣1)2﹣3,由待定系数法就可以求出结论;(2)由抛物线的解析式与一次函数的解析式构成方程组,求出其解即可求出B的坐标,进而可以求出直线AB的解析式,就可以求出AB与x轴的交点坐标,就可以求出△AOB的面积;【答案与解析】解:(1)抛物线的解析式为y=a(x﹣1)2﹣3,由题意,得0=a(2﹣1)2﹣3,解得:a=3,∴二次函数的解析式为:y=3(x﹣1)2﹣3;(2)由题意,得,解得:.∵交点不是原点,∴B(3,9).如图2,设直线AB的解析式为y=kx+b,由题意,得,△+S,△+S△+S解得:,∴y=6x﹣9.当y=0时,y=1.5.∴E(1.5,0),∴OE=1.5,△∴SAOB=SA OE BOE=+,=9.答:B(3,9),△AOB的面积为9;变式训练2.如图,抛物线y=x2+x-2与x轴交于A、B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.【思路点拨】(1)利用待定系数法即可解决问题.(2)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.(3)过点M作MN⊥x轴与点N,设点M(x,x2+x﹣2),则AN=x+2,0N=﹣x,0B=1,0C=2,MN=﹣(x2+x﹣2)=﹣x2﹣x+2,根据S四边形ABCM△=SAOM OCM BOC构建二次函数,利用二次函数的性质即可解决问题.【答案与解析】解:(1)由y=0,得x2+x﹣2=0解得x=﹣2x=l,∴A(﹣2,0),B(l,0),由x=0,得y=﹣2,∴C(0,﹣2).(2)连接AC与对称轴的交点即为点P.△+S + =设直线 AC 为 y =kx+b ,则﹣2k+b =0,b =﹣2:得 k =﹣l ,y =﹣x ﹣2.对称轴为 x =﹣ ,当 x =﹣ 时,y =_(﹣ )﹣2=﹣ ,∴P(﹣ ,﹣ ).(3)过点 M 作 MN⊥x 轴与点 N ,设点 M (x ,x 2+x ﹣2),则 AN =x+2,0N =﹣x ,0B =1,0C =2,MN =﹣(x 2+x ﹣2)=﹣x 2﹣x+2,S四边形 ABCM△=S AOM OCM △S BOC (x+2)(﹣x 2﹣x+2)+ (2﹣x 2﹣x+2)(﹣x )+ ×1× 2=﹣x 2﹣2x+3=﹣(x+1)2+4.∵﹣1<0,∴当 x =_l 时,S 四边形 ABCM 的最大值为 4.变式训练 3.如图,二次函数 y = ax 2 + b x 的图象经过点 A(2,4) 与 B(6,0) .(1)求 a , b 的值;(2)点 C 是该二次函数图象上 A , B 两点之间的一动点,横坐标为 x (2 < x < 6) ,写出四边形 OACB 的面积 S 关于点 C 的横坐标 x 的函数表达式,并求 S 的最大值.△=△=△=△+S△+S【思路点拨】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【答案与解析】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂线,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,SOADOD•AD=×2×4=4;SACDAD•CE=×4×(x﹣2)=2x﹣4;SBCDBD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=SOAD ACD BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.。

专题六二次函数十大考点中考题型归纳2022年中考数学一轮专题复习讲义

专题六二次函数十大考点中考题型归纳2022年中考数学一轮专题复习讲义

专题六 二次函数考点题型归纳考点一:求二次函数的解析式1.根据下列已知条件,求二次函数的解析式.(1)已知二次函数的顶点在原点,且过另一点(2,-4),则二次函数的解析式为;(2)已知二次函数的顶点在y 轴上,且纵坐标为2,过另一点(1,4),则二次函数的解析式为 ;(3)已知二次函数的顶点在x 轴上,且横坐标为2,过另一点(1,-4),则二次函数的解析式为;(4)已知二次函数的图象经过点(-3,0),(1,0),(0,3),则二次函数的解析式为;(5)已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1),则二次函数的解析式为 ;(6)已知二次函数图象经过点A(3,0),对称轴为直线x =1,与y 轴正半轴交于点C ,且OC =2,则二次函数的解析式为;(7)将抛物线y =4x 2向上平移3个单位长度,再向左平移2个单位长度,所得抛物线的解析式为. 考点二:二次函数的图像与性质1.如图,抛物线y =ax 2+bx +c(a ≠0)与x 轴交于点(-3,0),其对称轴为直线x =-12,结合图象分析下列结论:①abc>0;②3a +c>0;③当x<0时,y 随x 的增大而增大;④一元二次方程cx 2+bx +a =0的两根分别为x 1=-13,x 2=12;⑤b 2-4ac4a <0;⑥若m ,n(m<n)为方程a(x +3)(x -2)+3=0的两个根,则m<-3且n>2,其中正确的结论有( )A .3个B .4个C .5个D .6个2. 在同一平面直角系中,若抛物线42)12(2-+-+=m x m x y 与n x n m x y ++-=)3(2关于y 轴对称,则m= ,n= .3. 如图,抛物线是二次函数1322-+-=a x ax y 的图像,那么a 的值为 。

4. 在同一直角坐标系XOY 中,一次函数ax y =与二次函数a ax y -=2的图像可能是( )5.已知(﹣3,y 1),(1,y 2),(5,y 3)是抛物线y =﹣2x 2﹣4x +m 上的点,则( ) A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 1=y 2>y 3D .y 1>y 2=y 36.已知二次函数y =﹣(x ﹣k )2+h ,当x >2时,y 随x 的增大而减小,则函数中k 的取值范围是( ) A .k ≥2B .k ≤2C .k =2D .k ≤﹣27.如图,点A 、B 在y =x 2的图象上.已知A 、B 的横坐标分别为﹣2、4,直线AB 与y 轴交于点C ,连接OA 、OB . (1)求直线AB 的函数表达式; (2)求△AOB 的面积;(3)若函数y =x 2的图象上存在点P ,使△PAB 的面积等于△AOB 的面积的一半,则这样的点P 共有 个.考点三:根据二次函数图像判断a 、b 、c 关系式与0的关系1.如图,已知点A (﹣1,0)和点B (1,1),若抛物线y =x 2+c 与线段AB 有公共点,则c 的取值范围是( ) A .﹣1≤c ≤0B .﹣1≤c ≤C .﹣1≤c ≤D .0≤c ≤2.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,在下列五个结论中: ①2a ﹣b <0;②abc <0;③a +b +c <0;④a ﹣b +c >0;⑤4a +2b +c >0. 其中正确的个数有( ) A .1个B .2个C .3个D .4个3.对称轴为直线x =1的抛物线y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)如图所示,现有结论:①abc <0,②b 2>4ac ,③3a +c >0,④ac ﹣bc +c 2<0.其中结论正确的有( ) A .1个B .2个C .3个D .4个考点四:二次函数中平移、旋转问题⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧︒︒=--=:得到抛物线绕原点旋转:得到抛物线绕顶点旋转:轴对称得到抛物线沿:轴翻折后得到抛物线沿:)对称得到抛物线,关于点(个单位得到抛物线轴向右平移沿:已知抛物线76543221180)6180).5).4y ).312).2:3).14)1(.1C C C x C C C x x y C 2. 已知抛物线C 1:222--=ax ax y 的顶点M ,直线l :a x y -=2与x 轴、y 轴分别交于点A 、B 。

2020年初三数学下册中考专题复习 二次函数的存在性问题【含答案】

2020年初三数学下册中考专题复习 二次函数的存在性问题【含答案】

2020年初三数学下册中考专题复习二次函数的存在性问题一.解答题(共20小题)1.如图,在▱OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和▱OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,▱O1A1B1C1与▱OABC重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W1的顶点为F,若点M是x 轴上的动点,点N是抛物线W1上的动点,是否存在这样的点M、N,使以D、F、M、N 为顶点的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.2.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点A(1,0)、B(5,0)、C(0,4)三点.(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由(请在图2中探索)3.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.5.如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.6.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.7.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.8.如图,抛物线y=ax2+2x+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线与直线y=﹣x﹣1交于A,E两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得△AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B的左侧,若以P,B,C为顶点的三角形与△ABE相似,求点P的坐标.9.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)如图1,连接BC,PB,PC,设△PBC的面积为S.求S关于t的函数表达式,并求出当t为何值时,△PBC的面积S有最大值;(3)如图2,设抛物线的对称轴为直线l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.10.综合与探究如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为,点P的坐标为;(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.11.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(l)求抛物线的表达式;(2)如图l,若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时E点的坐标;(3)如图2,在x轴上是否存在一点D使得△ACD为等腰三角形?若存在,请求出所有符合条件的点D的坐标;若不存在,请说明理由.12.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.13.如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,已知点P为抛物线第一象限上一动点,连接PB、PC、BC.(1)求抛物线的解析式,并直接写出抛物线的顶点坐标;(2)当△PBC的面积最大时,求出点P的坐标;(3)如图②,当点P与抛物线顶点重合时,过点B的直线与抛物线交于点E,在直线BE上方的抛物线上是否存在一点M,使得∠BEM=∠PBC?若存在,求出点M 的坐标;若不存在,请说明理由.14.如图,抛物线y=﹣x2+2x+3与坐标轴分别交于A,B,C三点,连接AC,BC.(1)直接写出A,B,C三点的坐标;(2)点M是线段BC上一点(不与B,C重合),过点M作x轴的垂线交抛物线于点N,连接CN.若点M关于直线CN的对称点M'恰好在y轴上,求出点M的坐标;(3)在平面内是否存在一点P,使△AOC关于点P的对称△A'O'C'(点A',O',C'分别是点A,O,C的对称点)恰好有两个顶点落在该抛物线上?若存在,求出点P的坐标;若不存在,说明理由.如果没有解题思路,可以这样考虑:变换后,A'O'与AO,O'C'与OC有什么样的位置关系?进而分析点O',A',C'的坐标关系!15.如图1,过原点的抛物线与x轴交于另一点A,抛物线顶点C的坐标为,其对称轴交x轴于点B.(1)求抛物线的解析式;(2)如图2,点D为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点D的坐标;(3)在对称轴上是否存在点P,使得点A关于直线OP的对称点A'满足以点O、A、C、A'为顶点的四边形为菱形.若存在,请求出点P的坐标;若不存在,请说明理由.16.综合与探究如图,已知抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,对称轴为直线l,顶点为D.(1)求抛物线的解析式及点D坐标;(2)在直线l上是否存在一点M,使点M到点B的距离与到点C的距离之和最小?若存在,求出点M的坐标;若不存在,请说明理由.(3)在x轴上取一动点P(m,0),﹣3<m<﹣1,过点P作x轴的垂线,分别交抛物线,AD,AC于点E,F,G.①判断线段FP与FG的数量关系,并说明理由②连接EA,ED,CD,当m为何值时,四边形AEDC的面积最大?最大值为多少?17.如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A、B,已知点A坐标(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a、b、k的值;(2)在该抛物线的对称轴上是否存在点P使得△POB为等腰三角形?若存在请求出所有的P点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M,恰使得MA=MB=MO,现要求在y轴上找出点Q使得△BQM的周长最小,请求出M的坐标和△BQM周长的最小值.18.如图,已知,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,过点A的直线y=kx+k与该抛物线交于点C,点P是该抛物线上不与A,B重合的动点,过点P 作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)若k=﹣1,当PE=2DE时,求点P坐标;(3)当(2)中直线PD为x=1时,是否存在实数k,使△ADE与△PCE相似?若存在请求出k的值;若不存在,请说明你的理由.19.如图,抛物线y=ax2+bx﹣过点A(﹣,0)和点B(,2),连结AB交y轴于点C.(1)求抛物线的函数解析式;(2)点P在线段AB下方的抛物线上运动,连结AP,BP.设点P的横坐标为m,△ABP 的面积为s.①求s与m的函数关系式;②当s取最大值时,抛物线上是否存在点Q,使得S△ACQ=s.若存在,求点Q的坐标;若不存在,说明理由.20.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y =﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF =BF时,求sin∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.详细答案一.解答题(共20小题)1.【解答】解:(1)设抛物线W的函数解析式为y=ax2+bx,图象经过A(4,0),C(﹣2,3)∴抛物线W的函数解析式为,顶点D的坐标为(2,﹣1);(2)根据题意,由O(0,0),C(﹣2,3),得O1(4,﹣m),C1(2,3﹣m)设直线O1C1的函数解析式为y=kx+b把O1(4,﹣m),C1(2,3﹣m)代入y=kx+b得:,直线O1C1与x轴交于点H∴过C1作C1E⊥HA于点E,∵0<m<3∴,∴,∵,抛物线开口向下,S有最大值,最大值为∴当时,;(3)当时,由D(2,﹣1)得F(6,)∴抛物线W1的函数解析式为,依题意设M(t,0),以D,F,M,N为顶点的四边形是平行四边形,分情况讨论:①以DF为边时∵D(2,﹣1),F点D,F横坐标之差是4,纵坐标之差是,若点M、N的横纵坐标与之有相同规律,则以D,F,M,N为顶点的四边形是平行四边形,∵M(t,0),∴把分别代入得t1=0,t2=4,t3=6,t4=14∴M1(0,0),M2(4,0),M3(6,0),M4(14,0)②以DF为对角线时,以点D,F,M,N为顶点不能构成平行四边形.综上所述:M1(0,0),M2(4,0),M3(6,0),M4(14,0).2.【解答】解:(1)将点A、B的坐标代入二次函数表达式得:y=a(x﹣1)(x﹣5)=a(x2﹣6x+5),则5a=4,解得:a=,抛物线的表达式为:y=(x2﹣6x+5)=x2﹣x+4,函数的对称轴为:x=3,顶点坐标为(3,﹣);(2)连接B、C交对称轴于点P,此时PA+PC的值为最小,将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得:,直线BC的表达式为:y=﹣x+4,当x=3时,y=,故点P(3,);(3)存在,理由:四边形OEBF是以OB为对角线且面积为12的平行四边形,=OB×|y E|=5×|y E|=12,则S四边形OEBF点E在第四象限,故:则y E=﹣,将该坐标代入二次函数表达式得:y=(x2﹣6x+5)=﹣,解得:x=2或4,故点E的坐标为(2,﹣)或(4,﹣).3.【解答】解:(1)把A(﹣3,0),B(1,0),C(0,3)代入抛物线解析式y=ax2+bx+c 得,解得,所以抛物线的函数表达式为y=﹣x2﹣2x+3.(2)如解(2)图1,过P点作PQ平行y轴,交AC于Q点,∵A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,设P点坐标为(x,﹣x2﹣2x+3.),则Q点坐标为(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.=,∴S△P AC∴,解得:x1=﹣1,x2=﹣2.当x=﹣1时,P点坐标为(﹣1,4),当x=﹣2时,P点坐标为(﹣2,3),综上所述:若△PAC面积为3,点P的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D点作DF垂直x轴于F点,过A点作AE垂直BC于E点,∵D为抛物线y=﹣x2﹣2x+3的顶点,∴D点坐标为(﹣1,4),又∵A(﹣3,0),∴直线AD为y=2x+6,AF=2,DF=4,tan∠DAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直线BC解析式为y=﹣3x+3.∵AB=4,∴AE=AB•sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠DAB=2,∴∠ACB=∠DAB,∴使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM=∠CAB=45°时,△ABC∽△OMA,即OM为y=﹣x,设OM与AD的交点M(x,y)依题意得:,解得,即M点为(﹣2,2).Ⅱ.若∠AOM=∠CBA,即OM∥BC,∵直线BC解析式为y=﹣3x+3.∴直线OM为y=﹣3x,设直线OM与AD的交点M(x,y).则依题意得:,解得,即M点为(,),综上所述:存在使得以M,A,O为顶点的三角形与△ABC相似的点M,其坐标为(﹣2,2)或(,),4.【解答】解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)如图1,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,=1,∴S△AEB=,∵S△AOC∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).5.【解答】解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx﹣中,得0=﹣4k﹣,解得k=,∴直线l解析式为y=x﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m=•(﹣2m)﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB=,在x轴下方过点O作OH⊥OE,在OH上截取OH=OE=,过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y=﹣x,解方程组,得,,∴点P的横坐标为:或.6.【解答】解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2,则点C(0,2),函数的对称轴为:x=﹣1;(2)连接OP,设点P(x,﹣x2﹣x+2),=S△APO+S△CPO﹣S△ODC=×AO×y P+×OC×|x P|﹣×CO×OD 则S=S四边形ADCP=(﹣x2﹣x+2)×2×(﹣x)﹣=﹣x2﹣3x+2,∵﹣1<0,故S有最大值,当x=﹣时,S的最大值为;(3)存在,理由:△MNO为等腰直角三角形,且∠MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(△M1N1O):设点N1的坐标为(x,﹣x2﹣x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∠FN1O+∠M1N1E=90°,∠M1N1E+∠EM1N1=90°,∴∠EM1N1=∠FN1O,∠M1EN1=∠N1FO=90°,ON1=M1N1,∴△M1N1E≌△N1OF(AAS),∴M1E=N1F,即:x+1=﹣x2﹣x+2,解得:x=(舍去负值),则点N1(,);N2的情况(△M2N2O):同理可得:点N2(,);②当点N在x轴下方时,点N的位置为N3、N4,同理可得:点N3、N4的坐标分别为:(,)、(,);综上,点N的坐标为:(,)或(,)或(,)或(,).7.【解答】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t=S△P AF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)∴S△P AB2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.8.【解答】解:(1)将A(﹣1,0),C(0,3)代入y=ax2+2x+c,得,解得,,∴抛物线的解析式为:y=﹣x2+2x+3;(2)联立,解得,或,∴E(4,﹣5),如图1,当点Q在x轴上时,设Q(m,0),∵AE为底边,∴QA=QE,∴QA2=QE2,即(m+1)2=52+(m﹣4)2,解得,m=4,∴Q1(4,0);当点Q在y轴上时,设Q(0,n),∵AE为底边,∴QA=QE,∴QA2=QE2,即n2+12=42+(n+5)2,解得,n=﹣4,∴Q2(0,﹣4);综上所述,Q1(4,0),Q2(0,﹣4);(3)如图2,过点E作EH⊥x轴于点H,∵A(﹣1,0),E(4,﹣5),∴AH=EH=5,AE==5,∠BAE=45°,又OB=OC=3,∴∠ABC=45°,AB=4,BC==3,设P(t,0),则BP=3﹣t,∵∠BAE=∠ABC=45°,∴只可能存在△PBC∽△BAE和△PBC∽△EAB两种情况,当△PBC∽△BAE时,,∴=,∴t=,∴P1(,0);当△PBC∽△EAB时,,∴=,∴t=﹣,∴P2(﹣,0),综上所述,点P的坐标为(,0)或(﹣,0).9.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得,,解得,,∴抛物线的表达式为y=﹣x2+2x+3;(2)如图1,过点P作PF∥y轴,交BC于点F,设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得,,解得,,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+,∵﹣<0,∴当t=时,S取最大值,最大值为;(3)如图2,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,∵x D﹣x C=1,∴x P﹣x M=1,∴x P=2,∴P(2,3),在y=﹣x2+2x+3中,当x=0时,y=3,∴C(0,3),∴y C﹣y D=3,∴y M﹣y P=3,∴y M=6,∴点M的坐标为(1,6);当x P≠2时,不存在,理由如下,若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为1,∴点P的横坐标t=1×2﹣0=2,又∵x P≠2,∴不存在,综上所述,点M的坐标为(1,6).10.【解答】解:(1)∵在抛物线y=ax2+bx+c中,当x=﹣4和x=2时,二次函数y=ax2+bx+c 的函数值y相等,∴抛物线的对称轴为x==﹣1,又∵抛物线y=ax2+bx+c与x轴交于A(﹣3,0)、B两点,由对称性可知B(1,0),∴可设抛物线的解析式为y=a(x+3)(x﹣1),将C(0,)代入y=a(x+3)(x﹣1),得,﹣3a=,解得,a=﹣,∴此抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣x+;(2)△ABC为直角三角形,理由如下:∵A(﹣3,0),B(1,0),C(0,),∴OA=3,OB=1,OC=,∴AB=OA+OB=4,AC==2,BC==2,∵AC2+BC2=16,AB2=16,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)∵点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,∴BM=BN=t,由翻折知,△BMN≌△PMN,∴BM=PM=BN=PN=t,∴四边形PMBN是菱形,∴PN∥AB,∴△CPN∽△CAB,设PM与y轴交于H,∴==,即==,解得,t=,CH=,∴OH=OC﹣CH=﹣=,∴y P=,设直线AC的解析式为y=kx+,将点A(﹣3,0)代入y=kx+,得,k=,∴直线AC的解析式为y=x+,将y P=代入y=x+,∴x=﹣1,∴P(﹣1,),故答案为:,(﹣1,);(4)设直线BC的解析式为y=kx+,将点B(1,0)代入y=kx+,得,k=﹣,∴直线BC的解析式为y=﹣x+,由(2)知△ABC为直角三角形,∠ACB=90°,如图2,当∠ACF=90°时,点B,C,F在一条直线上,在y=﹣x+中,当x=﹣1时,y=2,∴F1(﹣1,2);当∠CAF=90°时,AF∥BC,∴可设直线AF的解析式为y=﹣x+n,将点A(﹣3,0)代入y=﹣x+n,得,n=﹣3,∴直线AF的解析式为y=﹣x﹣3,在y=﹣x﹣3中,当x=﹣1时,y=﹣2,∴F2(﹣1,﹣2);∴点F的坐标为F1(﹣1,2),F2(﹣1,﹣2).11.【解答】解:(1)将点A(1,0),B(﹣3,0)代入y=ax2+bx+3,得,,解得,,∴抛物线表达式为y=﹣x2﹣2x+3;(2)如图1,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴===,最大,且最大值为;∴当时,S四边形BOCE当时,,此时,点E坐标为;(3)如图2,连接AC,①当CA=CD时,此时CO为底边的垂直平分线,满足条件的点D1,与点A关于y轴对称,点D1坐标为(﹣1,0);②当AD=AC时,在Rt△ACO中,∵OA=1,OC=3,由勾股定理得,AC==,以点A为圆心,AC的长为半径作弧,交x轴于两点D2,D3,即为满足条件的点,此时它们的坐标分别为,;③当DA=DC时,线段AC的垂直平分线与x轴的交点D4,即为满足条件的点,设垂直AC的垂直平分线交y轴于点P,过AC中点Q,∵∠AOC=∠BOC=∠PQC=∠PQA=90°,∠D4PO=∠CPQ,∴∠ACO=∠OD4P,∴△D4AQ∽△CAO,∴=,即=,∴D4A=5,∴OD4=D4A﹣OA=4,∴点D4的坐标为(﹣4,0);综上所述,存在符合条件的点D,其坐标为D1(﹣1,0)或或或D 4(﹣4,0).12.【解答】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,得,解得,,∴二次函数的解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线BM的解析式为y=kx+b,将点B(3,0),M(1,4)代入,得,解得,∴直线BM的解析式为y=﹣2x+6,∵PD⊥x轴且OD=m,∴P(m,﹣2m+6),=PD•OD=m(﹣2m+6)=﹣m2+3m,∴S=S△PCD即S=﹣m2+3m,∵点P在线段BM上,且B(3,0),M(1,4),∴1≤m≤3;②∵S=﹣m2+3m=﹣(m﹣)2+,∵﹣1>0,∴当m=时,S取最大值,∴P(,3);(3)存在,理由如下:如图2﹣1,当∠CPD=90°时,∵∠COD=∠ODP=∠CPD=90°,∴四边形CODP为矩形,∴PD=CO=3,将y=3代入直线y=﹣2x+6,得,x=,∴P(,3);如图2﹣2,当∠PCD=90°时,∵OC=3,OD=m,∴CD2=OC2+OD2=9+m2,∵PD∥OC,∴∠PDC=∠OCD,∴cos∠PDC=cos∠OCD,∴=,∴DC2=PD•OC,∴9+m2=3(﹣2m+6),解得,m1=﹣3﹣3(舍去),m2=﹣3+3,∴P(﹣3+3,12﹣6),当∠PDC=90°时,∵PD⊥x轴,∴不存在,综上所述,点P的坐标为(,3)或(﹣3+3,12﹣6).13.【解答】解:(1)将点A(﹣1,0)、B(3,0)代入y=ax2+bx+3,得,解得,∴抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为(1,4);(2)如图1,过点P作x轴的垂线,交BC于点N,在y=﹣x2+2x+3中,当x=0时,y=3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,得3k+3=0,∴k=﹣1,∴直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3),则N(x,﹣x+3),∴PN=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,=×PN×OB=(﹣x2+3x)×3=﹣(x﹣)2+,∴S△PBC∴当x=时,△PBC的面积最大,∴P(,);(3)存在,如图2,过点P作PH⊥x轴于H,设直线与y轴交于点Q,则Q(0,﹣),在Rt△OBQ中,tan∠OBQ===,在Rt△PHB中,tan∠BPH===,∴∠OBQ=∠BHP,∵∠BPH+∠PBH=90°,∴∠OBQ+∠PBH=90°,即∠PBE=90°,将点B(3,0)代入直线,得3k﹣=0,∴k=,∴y=x﹣,联立,解得,x1=3,x2=﹣,∴E(﹣,﹣),过点E作EF⊥BC于点F,则∠FEB+∠FBE=90°,∵∠PBC+∠FBE=90°,∴∠FEB=∠PBC,则此时射线EF与抛物线的交点即为所求的点M,∵BC==3,PC==,PB==2,∴BC2+PC2=PB2,∴△PCB为直角三角形,且∠PCB=90°,∴sin∠PBC===,∴sin∠FEB==,∵EB==,∴FB=,过点F作FD⊥x轴于点D,∵OB=OC=3,∴∠OBC=∠OCB=45°,∴∠DBF=∠DFB=45°,∴DB=DF=FB=,∴F(,),设直线EF的解析式为y=kx+b,将点E(﹣,﹣),F(,)代入y=kx+b,得,解得,∴直线EF的解析式为y=x﹣,联立,解得,x1=,x2=﹣,当x=时,y=,∴M(,).14.【解答】解:(1)在抛物线y=﹣x2+2x+3中,当y=0时,x1=﹣1,x2=3;当x=0时,y=3,∴A(﹣1,0),B(3,0),C(0,3)(2)∵点M'与点M关于直线CN对称,且点M'在y轴上,∴∠M'CN=∠MCN,∵MN∥y轴,∴∠M'CN=∠CNM,∴∠MCN=∠CNM,∴MN=CM,∵点C的坐标为(0,3),∴可设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,得,3k+3=0,∴k=﹣1,∴直线BC的解析式为y=﹣x+3,设点M的横坐标为t,则M(t,﹣t+3),N(t,﹣t2+2t+3),∴MN=(﹣t2+2t+3)﹣(﹣t+3)=﹣t2+3t,,∴,∵t≠0,∴,∴,(3)根据题意,A'O'平行于x轴,O'C'平行于y轴,A'O'=1,O'C'=3,点A'在点O'的右边,点C'在点O'的下方,设点O'的横坐标为m,则A'的横坐标为m+1,点C'的横坐标为m,①若A'、O'在抛物线上,则﹣m2+2m+3=﹣(m+1)2+2(m+1)+3,∴,∴,则点P在OO'的中点处,∴;②若A'、C'在抛物线上,则﹣(m+1)2+2(m+1)+3=﹣m2+2m+3+3∴m=﹣1,∴O'(﹣1,3),则点P在OO'的中点处,∴,综上所述,存在点或,使△AOC关于点P的对称△A'O'C'恰好有两个顶点落在该抛物线上.15.【解答】解:(1)设抛物线解析式为y=a(x﹣h)2+k,(a≠0)∵顶点,∴,又∵图象过原点,∴,解出:,∴,即;(2)令y=0,即,解得:x1=0,x2=4,∴A(4,0),设直线AC的解析式为y=kx+b,将点A(4,0),代入,得,解得,∴直线AC的解析式为y=﹣x+4,过点D作DF∥y轴交AC于点F,设,则,∴,∴=,有最大值,∴当m=3时,S△ACD当m=3时,,∴;(3)∵∠CBO=∠CBA=90°,OB=AB=2,,∴,∴OA=OC=AC=4,∴△AOC为等边三角形,①如图3﹣1,当点P在C时,OA=AC=CA'=OA',∴四边形ACA'O是菱形,∴;②作点C关于x轴的对称点C',当点A'与点C'重合时,OC=AC=AA'=OA',∴四边形OCAA'是菱形,∴点P是∠AOA'的角平分线与对称轴的交点,记为P2,∴,∵∠OBP2=90°,OB=2,∴OP2=2BP2,∵∠OBP2=90°,OB=2,∴OP2=2BP2,设BP2=x,∴OP2=2x,又∵,∴(2x)2=22+x2,解得或,∴;综上所述,点P的坐标为或.16.【解答】解:(1)由抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;由y=﹣x2﹣2x+3=﹣(x+1)2+4,得,点D坐标为(﹣1,4);(2)在直线l上存在一点M,到点B的距离与到点C的距离之和最小,根据抛物线对称性MA=MB,∴MB+MC=MA+MC,∴使MB+MC的值最小的点M应为直线AC与对称轴l:x=﹣1的交点,当x=0时,y=3,∴C(0,3),设直线AC解析式为直线y=kx+b,把A(﹣3,0)、C(0,3)分别代入y=kx+b,得,,解得,,∴直线AC解析式为y=x+3,把x=﹣1代入y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)①PF=2FG,理由如下,设直线AD解析式为y=k'x+b',把A(﹣3,0)、D(﹣1,4)分别代入直线y=k'x+b',得,,解得,∴直线AD解析式为y=2x+6,则点F的坐标为(m,2m+6),同理G的坐标为(m,m+3),则FG=(2m+6)﹣(m+3)=m+3,FP=2m+6=2(m+3),∴FP=2FG;②根据题意得点E的坐标为(m,﹣m2﹣2m+3),设直线l与x轴交于点N,EF=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3=﹣(m+2)2+1=S△AEF+S△EFD==∴S△AED,的最大值为1,∴当m为﹣2时,S△AED如图,过点D作DH∥x轴,交y轴于点H,在△DHC中,∠DHC=180°﹣∠AOB=90°,,在Rt△AOC中,,在Rt△ADN中,,∵,∴DC2+AC2=AD2,∴∠ACD=90°,∴,∴,∴当m为﹣2时,四边形AEDC的面积最大,最大值为4.17.【解答】解:(1)将A(1,4)代入y=,得,k=4,∴双曲线解析式为y=,设B(m,)(m<0),连接AB,交x轴于点C,设直线AB的解析式为y=kx+b,将点A(1,4),B(m,)代入,得,解得,,∴直线AB的解析式为y=﹣x+,当y=0时,x=m+1,∴C(m+1,0),OC=﹣m﹣1,=OC•(y A﹣y B)∴S△AOB=(﹣m﹣1)(4﹣),∵△AOB的面积为3,∴(﹣m﹣1)(4﹣)=3,整理,得2m2+3m﹣2=0,解得,m1=(舍去),m2=﹣2,∴B(﹣2,﹣2),将A(1,4),B(﹣2,﹣2)代入y=ax2+bx,得,,解得,,∴抛物线的解析式为y=x2+3x,∴a=1,b=3,k=4;(2)在抛物线y=x2+3x中,对称轴为x=﹣,设P(﹣,y),∵O(0,0),B(﹣2,﹣2),∴PO2=+y2,OB2=8,PB2=+(y+2)2,。

2020年中考数学一轮复习讲义(上海专版) 专题16 二次函数(解析版)

2020年中考数学一轮复习讲义(上海专版) 专题16  二次函数(解析版)

专题16 二次函数一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

如果没有交点,则不能这样表示。

三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值。

中考数学专题复习资料-二次函数

中考数学专题复习资料-二次函数

专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。

抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2.二次函数y=ax 2+bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=-(2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c ) (4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大; 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。

3.二次函数的解析式三种形式。

(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。

(3)交点式 12()()y a x x x x =--专题知识回顾已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。

4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。

(2)b ——对称轴与a 左同右异。

(3)抛物线与y 轴交点坐标(0,c ) 5.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2+bx+c=0(a ≠0)的根。

抛物线y=ax 2+bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2+bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。

2020年中考数学考前专题复习——二次函数压轴专题 课件(共22张PPT)

2020年中考数学考前专题复习——二次函数压轴专题 课件(共22张PPT)

类型三 特殊三角形存在性问题
1. 如图,抛物线y=x 2+bx+c(c<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点 为D,且OB=OC=3.点E为线段BD上的一个动点,EF⊥x轴于F.
(1)求抛物线的解析式;
(2)是否存在点E,使△ECF为直角三角形?若存在,求点E的坐标;若不存在,请说明理由.
当x b 时, y最大值为 4ac b2
2a
4a
3、求解析式的三种方法
1、一般式:已知抛物线上的三点,通常设解析式为
_y_=__a_x_2_+_b_x_+__c_(a__≠_0)
2,顶点式:已知抛物线顶点坐标(h, k),通常
设抛物线解析式为__y__=_a_(_x_-_h_)_2+__k_(_a≠0)
变式一:
2. 如图,抛物线y=x²+(m+2)x+4的顶点C在x轴正半轴上,直线y=x+2与抛物线交于A,B两点 (点A在点B的左侧). (1)求抛物线的函数表达式; (2)点P是抛物线上一点,若S△PAB=2S△ABC,求点P的坐标; (3)将直线AB上下平移,平移后的直线y=x+t与抛物线交于A′、B′两点(A′在B′的左侧),当 以点A′、B′、(2)中第二象限的点P为顶点的三角形是直角三角形时,求t的值.
A: y (x 4)2 6 C: y (x 2)2 2
B: y (x 4)2 2 D: y (x 1)2 3
5.二次函数与一元二次方程和不等式的关系
当b2 4ac 0时,方程ax2 bx c 0a 0有两个不相等的实数根;
x1,2 b
b2 4ac .
2a
当b2 4ac 0时,方程ax2 bx c 0a 0有两个相等的实数根:

2020年中考数学复习专题13 二次函数的应用 全面复习系列讲座 (2)

2020年中考数学复习专题13 二次函数的应用 全面复习系列讲座 (2)

3. [2019·衢州]某宾馆有若干间标准房,当标准房的价格为 200 元时,每天入住 的房间数为 60 间.经市场调查表明,该馆每间标准房的价格在 170~240 元之间(含 170 元,240 元)浮动时,每天入住的房间数 y(间)与每间标准房的价格 x(元)的数据 如下表:
x(元) … 190 200 210 220 … y(间) … 65 60 55 50 … (1)根据所给数据在如图 15-7 所示的坐标系中描出相应的点,并画出图象; (2)求 y 关于 x 的函数表达式,并写出自变量 x 的取值范围;
③小球抛出 3 秒时速度为 0;
④小球的高度 h=30 m 时,t=1.5 s.
其中正确的是( )
图 15-2
A.①④ D
B.①②
C.②③④
D.②③
【解析】 ①由图象知小球在空中达到的最大高度是 40 m,故①错误; ②小球抛出 3 秒后,速度越来越快,故②正确; ③小球抛出 3 秒时达到最高点即速度为 0,故③正确; ④设函数表达式为 h=a(t-3)2+40, 把 O(0,0)代入得 0=a(0-3)2+40,解得 a=-490, ∴函数表达式为 h=-490(t-3)2+40, 把 h=30 代入表达式得 30=-490(t-3)2+40, 解得 t=4.5 或 t=1.5, ∴小球的高度 h=30 m 时,t=1.5 s 或 4.5 s,故④错误.
方法
命题角度 1 二次函数的实际应用——类型1 抛物线型问题
例1
思路分析 (1)先根据题意设出抛物线的顶点式,再利用待定系数法求解即可.(2)令 y=1.8,求得x的值,再根据抛物线的对称性即可确定范围.(3)先根据题意设出新抛物 线的函数表达式,再利用待定系数法求解即可.

2020届中考数学总复习讲义课件:第三单元 第15课时 二次函数的应用

2020届中考数学总复习讲义课件:第三单元  第15课时 二次函数的应用

1.根据数量关系列函数表达式并求最大(小)值或设计 方案 在生产和生活中,经常会涉及求最大利润,最省费用等问题,这类问题经常利用 函数来解答,其步骤一般是:先列出函数表达式,再求出自变量的取值范围,最 后根据函数表达式和自变量的取值范围求出函数的最大(小)值. 2.根据点的坐标,求距离、长度等 在实际问题中,有些物体的运动路线是抛物线,有些图形是抛物线,经常会涉及 求距离、长度等问题,一般可以把它转化成求点的坐标问题.
2.数形结合思想 数形结合是重要的数学思想,对于解答函数应用题、选择题的关键是读懂函数图 象;解答综合题的关键是运用数形结合思想,先求表达式;求运动过程中的函数 表达式的关键是“以静制动”,抓住其中不变的量.此类题型是中考的热点考题.
类型一 利用二次函数解决抛物线型问题 典例 [2018·衢州]某游乐园有一个直径为 16 m 的圆形喷水池,喷水池的周边有一 圈喷水头,喷出的水柱为抛物线,在距水池中心 3 m 处达到最高,高度为 5 m, 且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图 15-4 所示,以水 平方向为 x 轴,喷水池中心为原点建立直角坐标系. (1)求水柱所在抛物线(第一象限部分)的函数表达式; (2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高 1.8 m 的王师傅站立时必须在离水池中心多少米以内?
(3)当 x=0 时,y=-15(x-3)2+5=156. 设改造后水柱所在抛物线(第一象限部分)的函数表达式为 y=-15x2+bx+156, ∵该函数图象过点(16,0), ∴0=-15×162+16b+156,解得 b=3, ∴改造后水柱所在抛物线(第一象限部分)的函数表达式为 y=-15x2+3x+156=-15 x-1252+22809. ∴扩建改造后喷水池水柱的最大高度为22809 m.

2020年中考数学二轮复习压轴专题:二次函数(题目+解析版)

2020年中考数学二轮复习压轴专题:二次函数(题目+解析版)

解:(1)y=ax2﹣8ax+12a=a(x﹣6)(x﹣2), 故 OA=2,OB=6,
△OCA∽△OBC,则
,即:OC2=OA•OB,
解得:CO=2 ;
(2)过点 C 作 CD⊥x 轴于点 D,
2020 年中考数学二轮复习压轴专题 微信:东方君编辑
△OCA∽△OBC,则

设 AC=2x,则 BC=2 x,而 AB=4, 故 16=(2x)2+(2 x)2,解得:x=1, 故 AC=2,BC=2 ,
2020 年中考数学二轮复习压轴专题
3.如图已知直线 y= x+ 与抛物线 y=ax2+bx+c 相交于 A(﹣1,0),B(4,m)两点,抛 物线 y=ax2+bx+c 交 y 轴于点 C(0,﹣ ),交 x 轴正半轴于 D 点,抛物线的顶点为 M. (1)求抛物线的解析式; (2)设点 P 为直线 AB 下方的抛物线上一动点,当△PAB 的面积最大时,求△PAB 的面积 及点 P 的坐标; (3)若点 Q 为 x 轴上一动点,点 N 在抛物线上且位于其对称轴右侧,当△QMN 与△MAD 相似时,求 N 点的坐标.
2020 年中考数学二轮复习压轴专题
9.如图 1,过原点的抛物线与 x 轴交于另一点 A,抛物线顶点 C 的坐标为 对称轴交 x 轴于点 B.
,其

(1)求抛物线的解析式; (2)如图 2,点 D 为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点 D 的坐标; (3)在对称轴上是否存在点 P,使得点 A 关于直线 OP 的对称点 A'满足以点 O、A、C、A' 为顶点的四边形为菱形.若存在,请求出点 P 的坐标;若不存在,请说明理由.

中考数学复习知识点专题讲解9---二次函数考点探究

中考数学复习知识点专题讲解9---二次函数考点探究
2 / 18
是( ) A.a>0 B.当 x>1 时,y 随 x 的增大而增大 C.c<0 D.3 是方程 ax2+bx+c=0 的一个根 考点二、利用二次函数图象判断 a,b,c 的符号 【例 2】如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:
①a+b+c=0;②b>2a;③ax2+bx+c=0 的两根分别为-3 和 1;④a-2b+c>0.其 中正确的命题是__________.(只要求填写正确命题的序号)
8 / 18
点 A(1,0)及点 B.
(第 5 题图) (1)求二次函数与一次函数的解析式; (2)根据图象,写出满足 kx+b≥(x-2)2+m 的 x 的取值范围. 6.已知:如图,抛物线 y=a(x-1)2+c 与 x 轴交于点 A(1- 3,0)和点 B,将抛 物线沿 x 轴向上翻折,顶点 P 落在点 P′(1,3)处.
3. ∴抛物线的解析式为 y=- 3(x-2)2+ 3. 解法二:设这个抛物线的解析式为 y=ax2+bx+c,由已知抛物线经过 A(1,0),
B(3,0),C(2, 3)三点,
a+b+c=0, 得9a+3b+c=0,
4a+2b+c= 3,
a=- 3, 解这个方程组,得b=4 3,
c=-3 3.
∴抛物线的解析式为 y=- 3x2+4 3x-3 3.
(1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级 5 班的小明在解答此题时顿生灵感:过点 P′作 x 轴的平行线交抛物线于 C,D 两点,将翻折后得到的新图象在直线 CD 以上的部分去 掉,设计成一个“W”型的班徽,“5”的拼音开头字母为 W,“W”图案似大鹏展翅,寓意 深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分

2020年中考数学 考前大专题复习:函数(解析版)

2020年中考数学 考前大专题复习:函数(解析版)

2020中考数学考前大专题复习:函数(含答案)一、选择题(本大题共6道小题)1. 二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大2. 正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是 ()3. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,-1)D.(2020,0)4. 如图,☉O的半径为2,双曲线的解析式分别为y=1x和y=-1x,则阴影部分的面积为()A.4πB.3πC.2πD.π5. 如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACCB=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.52,52C.83,83D.(3,3)6. 如图,函数y={1x(x>0),-1x(x<0)的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q二、填空题(本大题共6道小题)7. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图K11-3是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.图K11-38. 如图,已知直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为.9. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是(填写序号).10. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=kx(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.11. 如图,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.12. 如图,抛物线y=-14x2+12x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.三、解答题(本大题共5道小题)13. 已知二次函数y=2x2+bx+1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.14. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表: 售价x(元/件) 50 60 80周销售量y(件) 100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.15. 如图①,在平面直角坐标系xOy中,已知抛物线y=ax2-2ax-8a与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q,使得以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.①16. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.17. 如图,在直角坐标系中,抛物线经过点A(0,4)、B(1,0)、C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2020中考数学考前大专题复习:函数-答案一、选择题(本大题共6道小题)1. 【答案】C[解析]选项A,由对称轴为直线x=2可得--a2=2,∴a=4,正确;选项B,∵a=4,b=-4,∴代入解析式可得,y=x2-4x-4,当x=2时,y=-8,∴顶点的坐标为(2,-8),正确;选项C,由图象可知,x=-1时,y<0,即1+4+b<0,∴b<-5,∴错误;选项D,由图象可以看出当x>3时,在对称轴的右侧,y随x的增大而增大,正确,故选C.2. 【答案】A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.3. 【答案】C[解析]点P运动一个半圆用时为2π2÷π2=2(秒).∵2019=1009×2+1,∴2019秒时,P在第1010个半圆的中点处,∴此时点P坐标为(2019,-1).故选C.4. 【答案】C[解析]根据反比例函数y=1x,y=-1x及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴S阴影=12π×22=2π.故选C.5. 【答案】C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=14x+2,解方程组{y=14x+2,y=x,得{x=83,y=83.∴P83,83.故选C.6. 【答案】A[解析]∵函数y=1x(x>0)与y=-1x(x<0)的图象关于y轴对称,∴直线MP是y轴所在直线,∵两支曲线分别位于一、二象限,∴直线MN是x轴所在直线,∴坐标原点为M.二、填空题(本大题共6道小题)7. 【答案】(32,4800)[解析]根据题意,得{s=240(t-12),s=150t,解得{t=32,s=4800.故答案为(32,4800).8. 【答案】-2≤x≤-1[解析]如图,直线OA的解析式为y=-2x,当-2≤x≤-1时,0≤kx+b≤-2x.9. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-b2a=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax 2+bx +c ,得y=a -b +c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a -b +c=0,故②错误;当x=1时,y=a +b +c>0.∵b=-2a ,∴-b2+b +c>0,即b +2c>0,故③正确; 由图象可以直接看出④正确.故答案为:①③④.10. 【答案】4[解析]过点D 作DH ⊥x 轴于H 点,交OE 于M ,∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴S △ODH =S △ODA =S △OEC =k2,∴S △ODH -S △OMH =S △OEC -S △OMH ,即S △OMD =S 四边形EMHC , ∴S △ODE =S 梯形DHCE =3,设D (m ,n ),∵D 为AB 的中点,∴B (2m ,n ).∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴E 2m ,n2,∴S 梯形DHCE =12n 2+nm=3, ∴k=mn=4.11. 【答案】8[解析]过点B 作BE ⊥x 轴,垂足为点E ,过点A 作AF ⊥x 轴,垂足为点F ,直线AB 交y 轴于点D ,因为△ABC 与△ABE 同底等高, 所以S △ABE =S △ABC =4, 因为四边形ABEF 为矩形, 所以S 矩形ABEF =2S △ABE =8, 因为k 1=S 矩形OF AD ,k 2=S 矩形OEBD , 所以k 1-k 2=S 矩形OF AD -S 矩形OEBD =S 矩形ABEF =8.12. 【答案】2√5 [解析]当y=0时,-14x 2+12x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-14x 2+12x +2=2,∴点C 的坐标为(0,2). 当y=2时,-14x 2+12x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0), 将A (-2,0),D (2,2)代入y=kx +b ,得{-2k +b =0,2k +b =2,解得{k =12,b =1,∴直线AD 的解析式为y=12x +1.当x=0时,y=12x +1=1,∴点E 的坐标为(0,1). 当y=1时,-14x 2+12x +2=1,解得x 1=1-√5,x 2=1+√5, ∴点P 的坐标为(1-√5,1),点Q 的坐标为(1+√5,1), ∴PQ=1+√5-(1-√5)=2√5.三、解答题(本大题共5道小题)13. 【答案】解:(1)∵二次函数y=2x 2+bx +1的图象过点(2,3), ∴3=8+2b +1,∴b=-3,∴该二次函数的表达式为y=2x 2-3x +1. (2)∵点P (m ,m 2+1)在该二次函数的图象上, ∴m 2+1=2m 2-3m +1,解得m 1=0,m 2=3, ∴点P 的坐标为(0,1)或(3,10).14. 【答案】解:(1)①设y 与x 的函数关系式为y=kx +b ,依题意,有{50k +b =100,60k +b =80,解得{k =-2,b =200,∴y 与x 的函数关系式是y=-2x +200..②设进价为t 元/件,由题意,1000=100×(50-t ),解得t=40,∴进价为40元/件; 周销售利润w=(x -40)y=(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800.(2)依题意有,w=(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m=-2x -m+14022+12m 2-60m +1800.∵m>0,∴对称轴x=m+1402>70,∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x=65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m=5.15. 【答案】[解析](1)令y=0求得点A ,B 坐标,再由点C 坐标求得抛物线的解析式及线段AC 的长;(2)过点C 作x 轴的平行线交抛物线于点P ,通过分类讨论确定点Q 坐标. 解:(1)点A 的坐标为(-2,0),点B 的坐标为(4,0); 线段AC 的长为2√5, 抛物线的解析式为:y=12x 2-x -4. (2)过点C 作x 轴的平行线交抛物线于点P .∵点C (0,-4),∴-4=12x 2-x -4,解得x 1=2,x 2=0,∴P (2,-4).∴PC=2,若四边形BCPQ 为平行四边形,则 BQ=CP=2,∴OQ=OB +BQ=6,∴Q (6,0).若四边形BPCQ 为平行四边形,则BQ=CP=2, ∴OQ=OB -BQ=2,∴Q (2,0).故以点B ,C ,P ,Q 为顶点的四边形是平行四边形时,Q 点的坐标为(6,0),(2,0).16. 【答案】(1)根据题意得,ab 2 =3,即b =-6a ,则抛物线的解析式为y =ax 2-6ax +4,将B (8,0)代入得,0=64a -48a +4,解得a =-14,b =32,∴抛物线的解析式为y =-14x 2+32x +4;(2)设直线BC 的解析式为y =kx +d ,由抛物线解析式可知:当x =0时,y =4,即点C (0,4),将B (8,0),C (0,4)代入得:804k d d +=⎧⎨=⎩,解得⎩⎪⎨⎪⎧k =-12d =4,∴直线BC 的解析式为y =-12x +4,设点M 的横坐标为x (0<x <8),则点M 的纵坐标为-14x 2+32x +4,点N 的纵坐标为-12x +4,∵点M 在抛物线上,点N 在线段BC 上,MN ∥y 轴,∴MN =-14x 2+32x +4-(-12x +4)=-14x 2+32x +4+12x -4=-14x 2+2x=-14(x -4)2+4,∴当x =4时,MN 的值最大,最大值为4;(3)存在.理由如下:令-14x 2+32x +4=0,解得x 1=-2,x 2=8,∴A (-2,0),又∵C (0,4),由勾股定理得,AC =22+42=25,如解图,过点C 作CD ⊥对称轴于点D ,连接AC .解图∵抛物线对称轴为直线x =3,则CD =3,D (3,4).①当AC =CQ 时,DQ =CQ 2-CD 2=(25)2-32=11,当点Q 在点D 的上方时,点Q 到x 轴的距离为4+11,此时,点Q 1(3,4+11),当点Q 在点D 的下方时,点Q 到x 轴的距离为4-11,此时点Q 2(3,4-11);②当AQ =CQ 时,点Q 为对称轴与x 轴的交点,AQ =5,CQ =32+42=5, 此时,点Q 3(3,0);③当AC =AQ 时,∵AC =25,点A 到对称轴的距离为5,25<5,∴不可能在对称轴上存在Q 点使AC =AQ ,综上所述,当点Q 的坐标为(3,4+11)或(3,4-11)或(3,0)时,△ACQ 为等腰三角形.17. 【答案】(1)设抛物线的解析式为y =a (x -1)(x -5)(a ≠0),把点A (0,4)代入上式,解得a =45,∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165,∴抛物线的对称轴是直线x =3;(2)存在,P 点坐标为(3,85).理由如下:如解图①,连接AC 交对称轴于点P ,连接BP ,BA ,解图①∵点B 与点C 关于对称轴对称,∴PB =PC ,∴C △P AB =AB +AP +PB =AB +AP +PC =AB +AC ,∴此时△P AB 的周长最小,设直线AC 的解析式为y =kx +b (k ≠0),把A (0,4),C (5,0)代入y =kx +b 中,得⎩⎨⎧=+=054b k b ,解得,454⎪⎩⎪⎨⎧=-=b k ∴直线AC 的解析式为y =-45x +4,∵点P 的横坐标为3,∴y =-45×3+4=85,∴P 点坐标为(3,85);(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如解图②,设N 点的横坐标为t ,此时点N (t ,45t 2-245t +4)(0<t <5). 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作AD ⊥NG ,垂足为点D .解图②由(2)可知直线AC 的解析式为y =-45x +4,把x =t 代入y =-45x +4得y =-45t +4,则G (t ,-45t +4).此时NG =-45t +4-(45t 2-245t +4)=-45t 2+4t ,∵AD +CF =OC =5,∴S △NAC =S △ANG +S △CNG=12NG ·AD +12NG ·CF=12NG ·OC=12×(-45t 2+4t )×5=-2t 2+10t=-2(t -52)2+252,∴当t =52时,△NAC 的面积最大,最大值为252,由t =52,得y =45t 2-245t +4=-3,∴N 点坐标为(52,-3).。

二次函数十大基本问题

二次函数十大基本问题

第九讲:二次函数十大基本问题知识模块与方法知识模块一:二次函数的定义问题1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. (2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.知识、题型、方法例1:若x m m m y 232)3(+--=是二次函数,则=m 。

变式练习: 已知x mm m m y 19922)972(+---=,试讨论m 分别为何值时为正比例函数、反比例函数、二次函数?课堂演练一:1. 二次函数62)3(2+-=-x y 的二次项系数是 ,一次项系数是 ,常数项是 。

2. 若y =(m +1)x mm -2-3x +1是二次函数,则m 的值为__________.3. 已知函数4312--+=x x y x,则自变量x 的取值范围是 。

4. 某广告公司欲设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000米,设 矩形的一边长为x 米,所花费用为y 元。

则y 与x 之间的函数关系式为 。

5. 已知函数xm m y 232)12(--=,当m 为何值时:(1)y 是x 的正比例函数,且y 随着x 增大而增大。

(2)函数图象是位于第二、四象限的双曲线。

(3)函数图象是开口向上的抛物线。

知识模块二:二次函数的图象及其性质1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()00,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.0a <向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a <向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.0a <向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.二次函数图象的过点问题与交点问题中考方法点拨:二次函数图象的过点问题与交点问题实际上就是方程问题、代入求值问题的综合,只要紧紧抓住函数图象经过的点或交点的横坐标与纵坐标都满足 函数解析式,然后代入解析式可得方程(组),从而求解。

初三数学二次函数知识点总结材料及经典习题含问题详解

初三数学二次函数知识点总结材料及经典习题含问题详解

初三数学 二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;九矿新概念辅导班 二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【精品】2020年中考数学总复习专题讲义★☆
第九讲:二次函数十大基本问题
知识模块与方法
知识模块一:二次函数的定义问题
1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:
(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. (2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.
知识、题型、方法
例1:若x m m m y 232
)3(+--=是二次函数,则=m 。

变式练习: 已知x m
m m m y 19
92
2
)972
(+---=,试讨论m 分别为何值时为正比例函数、反比例函数、
二次函数?
课堂演练一:
1. 二次函数62
)
3(2
+-=-x y 的二次项系数是 ,一次项系数是 ,
常数项是 。

2. 若y =(m +1)x m
m -2-3x +1是二次函数,则m 的值为__________.
3. 已知函数4
31
2
--+=
x x y x
,则自变量x 的取值范围是 。

4. 某广告公司欲设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000米,设 矩形的一边长为x 米,所花费用为y 元。

则y 与x 之间的函数关系式为 。

5. 已知函数x
m m y 23
2
)
12(--=,当m 为何值时:
(1)y 是x 的正比例函数,且y 随着x 增大而增大。

(2)函数图象是位于第二、四象限的双曲线。

(3)函数图象是开口向上的抛物线。

知识模块二:二次函数的图象及其性质
1. 二次函数基本形式:2y ax =的性质:
a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:
上加下减。

3. ()2
y a x h =-的性质:
左加右减。

4. ()2
y a x h k =-+的性质:
二次函数图象的过点问题与交点问题
中考方法点拨:二次函数图象的过点问题与交点问题实际上就是方程问题、代入求值问题
的综合,只要紧紧抓住函数图象经过的点或交点的横坐标与纵坐标都满足 函数解析式,然后代入解析式可得方程(组),从而求解。

知识、题型、方法
例2:已知抛物线x y 2
-
=和直线m x y +=3都经过点(2-,n )。

(1)求m ,n 的值。

(2)是否存在另一个交点?若存在,请求出。

变式练习:
1.(2008,长春)已知,如图,直线l 经过)0,4(A 和)4,0(B 两点,它与抛物线2
ax y =在
第一象限内相交于点P ,又知AOP ∆的面积为4,求a
第1题图 第2题图
2.(2008,辽宁大连)如图10,直线m x y +=和抛物线c bx x y ++=2
都经过点A (1,0),B (3,2).
(1)求m 的值和抛物线的解析式;
(2)求不等式m x c bx x +>++2
的解集(直接写出答案)。

课堂演练二:
1.二次函数22
-=x a y 的图象经过两点A (4-,2)
,B (m ,2),则=m 。

2.若抛物线c x a
y x
++=2
与x 轴的交点坐标是(1-,0)则
=+c a 。

3. 已知函数)0(2
≠=a a
y x 的图象与直线32-=x y 交于点(1,b )
, A
O B P
y
O y
x
B
A
则求=a 。

4. 如图,是二次函数y =ax 2-x +a 2-1的图象,则a =____________. 第4题图
二次函数图象的单调性问题:
中考方法点拨: 判断二次函数的单调性要紧紧抓住抛物线的开口方向和对称轴2b x a
=-
, 对称轴2b
x a
=-
是二次函数单调性的分界点,即: 1. 当0a >时,抛物线开口向上: 在2b x a <-
范围内,y 随x 的增大而减小;在2b
x a
>-范围内,y 随x 的增大而增大;当2b
x a
=-时,y 有最小值244ac b a -。

2. 当0a <时,抛物线开口向下:
在2b x a <-
范围内,y 随x 的增大而增大;在2b
x a
>-范围内,y 随x 的增大而减小; 当2b
x a
=-时,y 有最大值244ac b a -。

知识、题型、方法
例3:(2011,浙江舟山)如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),
(1,-2),当y 随x 的增大而增大时,x 的取值范围是 。

例3图
c
+。

相关文档
最新文档