河南省南阳市2019年七年级上学期数学期末教学质量检测试题(模拟卷二)

合集下载

七年级数学上学期期末复习检测试卷(2)

七年级数学上学期期末复习检测试卷(2)

2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)﹣3的相反数是()A.B.C.3 D.﹣32.(3分)﹣3πxy2z3的系数和次数是()A.﹣3,6 B.﹣3π,5 C.﹣3π,6 D.﹣3,5 3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段4.(3分)A看B的方向是北偏东21°,那么B看A的方向()A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是()A.2 B.3 C.3.5 D.46.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1 B.1 C.0或1 D.﹣17.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是()A.3.5×105 km2B.3.5×106 km2C.3.5×107 km2D.3.5×108 km28.(3分)有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是()A.①②B.①③C.①②③D.①②③④9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<aC.b<﹣a<a<﹣b D.﹣a<﹣b<b<a10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3二、填空题(每小题3分,共15分)11.(3分)绝对值大于1而小于4的整数有个.12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .13.(3分)9时45分时,时钟的时针与分针的夹角是.14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为cm.15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.三、解答题(共75分)16.(8分)计算题(1)﹣22×2+(﹣3)3×(﹣)(2)×(﹣5)+(﹣)×9﹣×8.17.(8分)解方程.(1)=1﹣(2) [(x﹣2)﹣6]=118.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB 的度数.20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B 地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.21.(12分)用火柴棒按下列方式搭建三角形:(1)填表:(2)当三角形的个数为n时,火柴棒的根数多少?(3)求当n=1000时,火柴棒的根数是多少?22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.(1)某用户每月上网40小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)请你设计一个方案,使用户能合理地选择上网方式.参考答案一、选择题(每小题3分,共30分)1.(3分)﹣3的相反数是()A.B.C.3 D.﹣3【分析】根据相反数的概念解答即可.【解答】解:∵互为相反数相加等于0,∴﹣3的相反数,3.故选:C.【点评】此题主要考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)﹣3πxy2z3的系数和次数是()A.﹣3,6 B.﹣3π,5 C.﹣3π,6 D.﹣3,5【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.所有字母指数的和是次数.【解答】解:﹣3πxy2z3的系数是:﹣3π,次数是6.故选:C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段【分析】此题为数学知识的应用,由题意弯曲的河道改直,肯定为了尽量缩短两地之间的里程,就用到两点间线段最短定理.【解答】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:C.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.4.(3分)A看B的方向是北偏东21°,那么B看A的方向()A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°【分析】根据A看B的方向是北偏东21°,是以A为标准,反之B看A的方向是以B为标准,从而得出答案.【解答】解:A看B的方向是北偏东21°,那么B看A的方向南偏西21°;故选:D.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以哪个图形为参照物是本题的关键.5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是()A.2 B.3 C.3.5 D.4【分析】根据相反数和倒数求出a+b=0,xy=1,代入求出即可.【解答】解:∵a,b互为相反数,x,y互为倒数,∴a+b=0,xy=1,∴(a+b)+xy=×0+×1==3.5,故选:C.【点评】本题考查了相反数、倒数和求代数式的值,能求出a+b=0和xy=1是解此题的关键.6.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1 B.1 C.0或1 D.﹣1【分析】根据一元一次方程的定义即可求出答案.【解答】解:由题意可知:解得:m=﹣1故选:D.【点评】本题考查一元一次方程的定义,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.7.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是()A.3.5×105 km2B.3.5×106 km2C.3.5×107 km2D.3.5×108 km2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3500000km2用科学记数法表示为3.5×106 km2,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是()A.①②B.①③C.①②③D.①②③④【分析】要判断两角的关系,可根据角的性质,两角互余,和为90°,互补和为180°,据此可解出本题.【解答】解:①锐角的补角一定是钝角;根据补角的定义和钝角的定义可判断其正确性,故此选项正确;②一个角的补角一定大于这个角;当这个角为钝角时,它的补角小于90°,故此选项错误;③如果两个角是同一个角的补角,那么这两个角相等;利用同补角定义得出,此选项正确;④中没有明确指出是什么角,故此选项错误.故正确的有:①③,故选:B.【点评】此题主要考查了补角以及同位角定义与性质,理解补角的定义中数量关系是解题的关键.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<a C.b<﹣a<a<﹣b D.﹣a<﹣b<b<a【分析】根据a>0,b<0,且|a|<|b|,可用取特殊值的方法进行比较.【解答】解:设a=1,b=﹣2,则﹣a=﹣1,﹣b=2,因为﹣2<﹣1<1<2,所以b<﹣a<a<﹣b.故选:C.【点评】此类题目比较简单,由于a,b的范围已知,可用取特殊值的方法进行比较,以简化计算.10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3【分析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,利用三个数相邻的两个图形进行判断即可.二、填空题(每小题3分,共15分)11.(3分)绝对值大于1而小于4的整数有 4 个.【分析】求绝对值大于1且小于4的整数,即求绝对值等于2或3的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.【解答】解:绝对值大于1且小于3的整数有±2,±3.故答案为:4.【点评】主要考查了绝对值的性质,绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .【分析】把x=2代入方程mx﹣1=2,即可求得m的值.【解答】解:把x=2代入方程mx﹣1=2,得:2m﹣1=2,解得:m=.故答案为:.【点评】本题考查的是一元一次方程解的概念:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.13.(3分)9时45分时,时钟的时针与分针的夹角是22.5°.【分析】9点45分时,分针指向9,时针在指向9与10之间,则时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算0.5°×45即可.【解答】解:∵9点45分时,分针指向9,时针在指向9与10之间,∴时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,即0.5°×45=22.5°.故答案为22.5°.【点评】本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为10cm.【分析】由已知条件可知,AC+BD=AD+BC,又因为E,F分别是AB,CD的中点,则EB+CF=0.5(AB+CD)=0.5(AD﹣BC),故EF=BE+CF+BC可求.【解答】解:由图可知BC=AC+BD﹣AD=10+10﹣16=4cm,∵E,F分别是AB,CD的中点,∴EB+CF=0.5(AB+CD)=0.5(AD﹣BC)=0.5(16﹣4)=6cm,∴EF=BE+CF+BC=6+4=10cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了20或25 张电影票.【分析】本题分票价每张60元和票价每张60元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【解答】解:①1200÷60=20(张);②1200÷(60×0.8)1200÷48=25(张).答:他们共买了20或25张电影票.故答案为:20或25.【点评】考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系..三、解答题(共75分)16.(8分)计算题(1)﹣22×2+(﹣3)3×(﹣)(2)×(﹣5)+(﹣)×9﹣×8.【分析】(1)根据幂的乘方、有理数的乘法和加法可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)﹣22×2+(﹣3)3×(﹣)=﹣4×=﹣9+8=﹣1;(2)×(﹣5)+(﹣)×9﹣×8===﹣7.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(8分)解方程.(1)=1﹣(2) [(x﹣2)﹣6]=1【分析】(1)首先去分母,再去括号移项合并同类项解方程得出答案;(2)直接去括号再移项合并同类项解方程得出答案.【解答】解:(1)=1﹣2(x+3)=12﹣3(3﹣2x),则2x+6=12﹣9+6x,故﹣4x=﹣3解得:x=;(2) [(x﹣2)﹣6]=1x﹣2﹣8=1,则x=11,解得:x=55.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.18.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=﹣2x2﹣y2+x2﹣y2﹣3=﹣x2﹣y2﹣3,当x=﹣1,y=﹣2时,原式=﹣1﹣10﹣3=﹣14.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB 的度数.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B 地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.【分析】由于C的位置不确定,此题要分情况讨论:(1)C地在A、B之间;(2)C地在A地上游.设A、B间的距离是x千米,则根据共用时间可列方程求解.【解答】解:设A、B两地间的距离为x千米,(1)当C地在A、B两地之间时,依题意得:+=4,解得:x=20;(2)当C地在A地上游时,依题意得:+=4,解得:x=.答:A、B两地间的距离为20千米或千米.【点评】考查了一元一次方程的应用,注意此题由于C点的位置不确定,所以一定要考虑两种情况.还要注意顺水速、静水速、水流速三者之间的关系.21.(12分)用火柴棒按下列方式搭建三角形:(1)填表:(2)当三角形的个数为n时,火柴棒的根数多少?(3)求当n=1000时,火柴棒的根数是多少?【分析】(1)按照图中火柴的个数填表即可;(2)当三角形的个数为:1、2、3、4时,火柴棒的个数分别为:3、5、7、9,由此可以看出三角形的个数每增加一个,火柴棒的个数增加2根,所以当三角形的个数为n时,三角形个数增加n ﹣1个,那么此时火柴棒的个数应该为:3+2(n﹣1);(3)当n=1000时,直接代入(2)所求的规律中即可.【解答】解:(1)由图可知:该表中应填的数依次为:3、5、7、9(2)当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:每当三角形的个数增加1个时,火柴棒的个数相应的增加2,所以,当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.(3)由(2)得出的规律:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1,所以,当n=1000时,2n+1=2×1000+1=2001.【点评】考查了规律型:图形的变化类,本题解题关键根据第一问的结果总结规律,得到规律:三角形的个数每增加一个,火柴棒的个数增加2根,然后由此规律解答第三问.22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?【分析】先设□=m,再把x=2代入方程即可求出m的值.【解答】解:设□=m,则由原方程,得﹣=﹣.∵所给方程的解是x=2,∴,解得:m=4.【点评】本题考查了一元一次方程的解法,解决此题的关键是把方程的解代入原方程再求被污染的内容.23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.(1)某用户每月上网40小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)请你设计一个方案,使用户能合理地选择上网方式.【分析】(1)根据上网时间分别计算费用,比较后回答问题;(2)根据上网所用费用,分别计算出时间,比较后回答问题;(3)设每月上网x小时,收费y元,根据题意得:y A=x+0.1x=1.1x,y B=80+0.1x,分别计算出当y A=y B 时,当y A>y B时,当y A<y B时的上网时间,合理地选择上网方式.【解答】解:(1)A种上网方式:40×1+0.1×40=44(元),B种上网方式:80+40×0.1=84(元),答:每月上网40小时,选A种方式比较合适;(2)设每月上网x小时,A种上网方式:x+0.1x=100,解得:x=(小时),B种上网方式:80+0.1x=100,解得:x=200(小时);答:每月有100元钱用于上网,选B种方式比较合算;(3)设每月上网x小时,收费y元,根据题意得:y A=x+0.1x=1.1x,y B=80+0.1x,当y A=y B时,即1.1x=80+0.1x,解得:x=80,当y A>y B时,即1.1x>80+0.1x,解得:x>80,当y A<y B时,即1.1x<80+0.1x,解得:x<80,∴当每月上网为80小时时,选择两种上网方式都可以;当每月上网大于80小时时,选择乙种上网方式合算;当每月上网小于80小时时,选择甲种上网方式合算.【点评】此题考查一元一次方程的实际运用,理解两种收费方式,正确利用关系式表示,列出方程解决问题.。

河南省南阳市方城县2019-2020学年七年级上学期期末考试数学试题(图片版)

河南省南阳市方城县2019-2020学年七年级上学期期末考试数学试题(图片版)

2019年秋期期终教学调研测试七年级数 学(参考答案)11、 5 12、 222y xy x +- 13、 34°15′14、 -12 15、 50 三、解答题(本大题共8个小题,共75分)()()分分解:4 (4)39564112 (53253)14121132541315211325413152111-=--=-⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-=----=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-++-⎪⎭⎫ ⎝⎛+()分分4 (4)38343655162 (83)4321315163224321315132=⨯⨯⨯=⨯⨯⎪⎭⎫ ⎝⎛+⨯=÷⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⨯ 题 号 1 2 3 4 5 6 7 8 9 10 答 案 DBCCBBBCDA得 分 二、填空题(每小题3分,共15分)评卷人得 分 16、(12分)评卷人得 分 一、选择题(每小题3分,共30分)评卷人()()()()()()分分4 (96)4143821812.............................432181438421334=++-=⨯--⎪⎭⎫⎝⎛-⨯-+-=⎪⎭⎫⎝⎛--⨯-+-=⎥⎦⎤⎢⎣⎡--÷⨯-+-解:(1)① 画图如图所示.....................................................................................2分 ②如图,当点D 在点A 的左侧时,BD=AB+AD=2+3=5cm. 当点D 在点A 的右侧时,BD=AD-AB=3-2=1cm.∴线段BD 的长为5cm 或1cm...............................................................4分(2)画图如图所示,.....................................................................................6分 测量数据PA ≈2.8cm ,PA ≈1.6cm ,PA ≈1.3cm ,线段PE.......................8分(注:测量数据误差在0.1--0.2cm 都视为正确)()()()分原式时,当分分解:8.................................21-43-411-2123-211,216 (23)4 (2)13222421322242132236322222222222222222222222==⨯⨯⎪⎭⎫ ⎝⎛=-==-=+-+--=⎪⎭⎫ ⎝⎛-+---=⎥⎦⎤⎢⎣⎡-+-+--y x xy x xy x y x xy y x x xy x y x xy y x x xy x y x xy y x x得 分 17、(8分)评卷人得 分 18、(8分)评卷人解:∵CD AB ⊥,EF AB ⊥( 已知 )∴EF ∥CD_(在同一平面内,垂直于同一条直线的两条直线平行) ∴BEF ∠=∠BCD (两直线平行,同位角相等)......................................3分 又∵180B BDG ︒∠+∠=(已知) ∴BC ∥DG (同旁内角互补,两直线平行)∴CDG ∠=∠BCD (两直线平行,内错角相等).................................7分 ∵BEF ∠=∠BCD (已证)∴BEF ∠=∠CDG (等量代换)...................................................9分解:(1)588566>,>=+=-Θ,∴第8号和第10号轮胎不合格..............................2分 第8号轮胎的实际直径是:600-6=594mm ,第10号轮胎的实际直径是:600+8=608mm...........................................................................4分(2)%%80100108=⨯ 答:批轮胎的合格率大约是80%......................................................................................6分 (3)(+5-2+2+0-3-4+3-6+3+8)÷10+600=6÷10+600=600.6≈601mm.答:这10个轮胎的平均直径约为601mm.......................................................................9分 解:(1)∵∠AOB 是直角,∠AOC=40°.∴∠BOC=∠AOB+∠AOC=90°+40°=130°..........................................................2分 ∵ON 是∠AOC 的平分线,OM 是∠BOC 的平分线 ∴∠COM=21∠BOC=21×130°=65°,∠CON=21∠AO C=21×40°=20°, ∴∠MON=∠COM-∠CON=65°-20°=45°............................................................5分 (2)当锐角∠AOC 的大小为︒x 时,∠MON 的大小不发生改变,即∠MON=45°.............6分理由:当∠AOC=︒x 时,∠BOC=∠AOB+∠AOC=90°+︒x∵ON 是∠AOC 的平分线,OM 是∠BOC 的平分线得 分 19、(9分)评卷人得 分 21、(9分)评卷人得 分 20、(9分)评卷人∴∠COM=21∠BOC=21×(90°+︒x )=45°+21︒x ,∠CON=21∠AOC =21︒x , ∴∠MON=∠COM-∠CON=45°+21︒x -21︒x =45°.............................................................9分(注:只要过程合理即可得分) 解:(1)∠APC 与∠PAB 、∠PCD 之间的关系是:∠APC+∠PAB+∠PCD=360° (或∠APC=360°-(∠PAB+∠PCD ) 只要关系式形式正确即可) 理由:如图①-2,过点P 作PE ∥AB. ∵PE ∥AB (作图)∴∠PAB+∠APE=180°( 两直线平行,同旁内角互补 ) ∵AB ∥CD (已知) PE ∥AB (作图)∴PE ∥ CD (如果两条直线都和第三条直线平行,那么这两条直线也互相平行) ∴∠CPE+∠PCD= 180°(两直线平行,同旁内角互补)..................................................3分 ∴∠PAB+∠APE+∠CPE+∠PCD=180°+180°=360°(等量代换) 又∵∠APE+∠CPE=∠APC (角的和差) ∴∠APC+∠PAB+∠PCD=360°(等量代换)(2)∠APC 与∠PAB 、∠PCD 之间的关系是:∠APC=∠PAB+∠PCD .....................4分理由:过点P 作PE ∥AB.∴∠PAB=∠APE (两直线平行,内错角相等) ∵AB ∥CD (已知) PE ∥AB (作图)∴PE ∥ CD (如果两条直线都和第三条直线平行,那么这两条直线也互相平行) ∴∠PCD=∠CPE (两直线平行,内错角相等) ∵∠APE+∠CPE=∠APC (角的和差)∴∠APC=∠PAB+∠PCD (等量代换).....................................................8分 (3)∠P=56°...............................................................................................10分得 分 22、(10分)评卷人解:(1)到甲店购买所需费用:48×5+12(x -5)=12x +180(元)........................2分 到乙店购买所需费用:(48×5+12x )×0.9=10.8x +216(元).............................4分(2)当x =40时,12x +180=12×40+180=660元10.8x +216=10.8×40+216=648元<660元.................................................7分 答:去乙商店购买较为合算...........................................................................8分(3)购买方法:到甲店购买5副乒乓球拍,并赠送5盒乒乓球.再到乙店购买35盒乒乓球. 所需费用为:48×5+35×12×0.9=618元............................................................................................10分得 分 23、(10分)评卷人。

河南省南阳市卧龙区2019-2020学年七年级数学(上)期末试卷

河南省南阳市卧龙区2019-2020学年七年级数学(上)期末试卷

河南省南阳市卧龙区2019-2020学年七年级上学期期末试题数学一、选择题(每小题3分,共30分) 1.43-的相反数是( ) A. 43 B. 43- C. 34 D. 34- 2.要在墙上钉牢一根木条,至少需要( )颗钉子.A. 1B. 2C. 3D. 4 3.多项式222122127x y x xy --+最高次项的系数是( ) A. 2 B. 12- C. 17- D. 27- 4.某立体图形的三视图如图所示,则该立体图形的名称是( )A. 正方体B. 长方体C. 圆柱体D. 圆锥体5.如图,直线a 、b 被直线m 所截,若//a b ,262∠=︒,则1∠=( )A. 62︒B. 108︒C. 118︒D. 128︒6.若3x y -=,则代数式422x y -+的值是( )A. 2-B. 3-C. 6D. 107.下列说法:①a -必是负数;②绝对值最小的数是0;③在数轴上,原点两旁的两个点表示的数必互为相反数;④在数轴上,左边的点比右边的点所表示的数大,其中正确的有( )A. 0个B. 1个C. 2个D. 3个8.下列各图中,不是正方体的平面展开图的是( )A. B. C. D. 9.已知两个数的积是负数,它们的商的绝对值是1,则这两个数的和是( )A. 正数B. 负数C. 零D. 无法确定 10.若142m x y --与613n xy +-是同类项,则22m n -的值是( ) A. 2- B. 0 C. 1 D. 4二、填空题(每小题3分,共15分)11.比较大小:311- ________0.273-(填“>”或“=”或“<”) 12.四舍五入法,把130542精确到千位是_____.13.若A ∠的余角是501728︒''',则A ∠的补角是_________ .14.如图,下列结论:①2∠与3∠是内错角;②2∠与B 是同位角;③A ∠与B 是同旁内角;④A ∠与ACB ∠不是同旁内角,其中正确的是___________(只填序号).15.如图,在从同一点出发的七条射线OA 、OB 、OC 、OD 、OE 、OF 、OG 组成的图形中,共有_____ 个锐角.三、解答题16.计算:(1)1133224(5)2684⎡⎤⎛⎫++-⨯÷- ⎪⎢⎥⎝⎭⎣⎦. (2)34110.57(2)(2)23⎛⎫+⨯---÷- ⎪⎝⎭.17.化简求值:()223232(2)2x xy x xy y y ⎡⎤--++-⎣⎦,其中32,4x y =-=.18.七年级二班的几位同学正在一起讨论一个关于数轴上的点表示数的题目:甲说:“这条数轴上的两个点A 、B 表示的数都是绝对值是4的数”;乙说:“点C 表示负整数,点D 表示正整数,且这两个数的差是3”;丙说:“点E 表示的数的相反数是它本身”.(1)请你根据以上三位同学的发言,画出一条数轴,并描出A 、B 、C 、D 、E 五个不同的点. (2)求这个五个点表示数的和.19.如图,已知//AB CD ,直线MN 与AB 、CD 分别交于点E 、F ,EG 平分MEB ∠,FH 平分MFD ∠, //AB CD ,根据可知MEB MFD ∠=∠.又EG 平分MEB ∠,FH 平分MFD ∠,于是可得MEG ∠和MFH ∠的大小关系是MEG ∠ MFH ∠.而MEG ∠和MFH ∠是EG 、FH 被直线MN 所截得的 角,根据 ,可判断角平分线EG 、FH 的位置关系是 .20.已知线段2AB =,延长线段AB 到C ,使2BC AB =,点D 是AC 的中点. (1)画出图形; (2)求线段AC 长; (3)求线段BD 的长. 21.如图,DO 、EO 分别是AOB ∠和BOC ∠平分线,若62AOD ∠=︒,求:(1)DOE ∠; (2)∠BOE .22.我们定义一种新运算:22(,),(,)a b ab a b a b a ab b ∆=++∇=-+,试求[(2,3),(3,2)]∆∆∇的值.23.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题.河南省南阳市卧龙区2019-2020学年七年级上学期期末数学试题一、选择题(每小题3分,共30分)1.A2.B3.D4.C5.C6.A7.B8.D9.C 10.B二、填空题(每小题3分,共15分)11.> 12.1.31×105 13.1401728︒''' 14.①②③ 15.21三、解答题16.(1)1133224(5)2684⎡⎤⎛⎫++-⨯÷- ⎪⎢⎥⎝⎭⎣⎦ =1(491585)()2++-⨯- =1(5)()525-⨯- =1()525-⨯- =12;(2)34110.57(2)(2)23⎛⎫+⨯---÷- ⎪⎝⎭ =11(8)1652213⎛⎫+⨯---÷ ⎪⎝⎭ =112252⎛⎫+-+ ⎪⎝⎭ =32-.17.由题意得:()223232(2)2x xy x xy y y ⎡⎤--++-⎣⎦=22363422x xy x xy y y ----+=10xy -, ∵32,4x y =-=,∴原式=10xy -=15.18.(1)∵两点A 、B 表示的数都是绝对值是4的数,∴4A =,B 4=-或4A =-,4B ;∵点C 表示负整数,点D 表示正整数,且这两个数的差是3,∴3D C -=,∴2D =,1C =-或1D =,2C =-;∵点E 表示的数的相反数是它本身,∴0E =;综上所述,当4A =,B 4=-,2D =,1C =-,0E =时,数轴如下:当4A =,B 4=-,1D =,2C =-,0E =时,数轴如下:当4A =-,4B ,2D =,1C =-,0E =时,数轴如下:当4A =-,4B ,1D =,2C =-,0E =时,数轴如下:(2)由(1)可得:①当4A =,B 4=-,2D =,1C =-,0E =时,五个点表示数的和为:1, ②当4A =,B 4=-,1D =,2C =-,0E =时,五个点表示数的和为:1-, ③当4A =-,4B,2D =,1C =-,0E =时,五个点表示数的和为:1, ④当4A =-,4B ,1D =,2C =-,0E =时,五个点表示数的和为:1-, 综上所述,五个点表示的数的和为1或1-.19.//AB CD ,根据 两直线平行,同位角相等 可知MEB MFD ∠=∠. 又EG 平分MEB ∠,FH 平分MFD ∠,于是可得MEG ∠和MFH ∠的大小关系是 MEG ∠ = MFH ∠.而MEG ∠和MFH ∠是EG 、FH 被直线MN 所截得的 同位 角,根据 同位角相等,两直线平行 ,可判断角平分线EG 、FH的位置关系是 EG ∥FH .20.(1)如图所示: ; (2)∵2AB =,2BC AB =,∴4BC =,∴AC=AB+BC=6;(3)由(2)得AC=6,∵D 是AC 中点,∴AD=3,∴BD=AD −AB=1.21.(1)∵DO 是∠AOB 的角平分线,62AOD ∠=︒, ∴∠DOB=∠AOD=62°,∠AOB=2∠AOD=124°, ∴∠BOC=180°−∠AOB=56°,∵EO 是∠BOC 的角平分线,∴∠BOE=∠COE=28°,∴∠DOE=∠DOB+∠BOE=90°;(2)由(1)得:∠BOC=56°,∵EO 是∠BOC 的角平分线,∴∠BOE=∠COE=28°.22.∵22(,),(,)a b ab a b a b a ab b ∆=++∇=-+, ∴[(2,3),(3,2)]∆∆∇=(6+2+3,96+4)∆-=(11,7)∆=117+11+7⨯=95.23.(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件.(2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.。

南阳市人教版七年级上册数学期末考试试卷及答案

南阳市人教版七年级上册数学期末考试试卷及答案

南阳市人教版七年级上册数学期末考试试卷及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .123.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=- D .()2121826x x ⨯=- 4.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣75.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③ D .④ 6.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4B .﹣4C .1D .﹣17.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .8.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm9.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+110.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .111.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 15.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.16.﹣30×(1223-+45)=_____. 17.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.18.若a 、b 是互为倒数,则2ab ﹣5=_____. 19.若∠1=35°21′,则∠1的余角是__.20.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.21.﹣225ab π是_____次单项式,系数是_____.22.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 23.钟表显示10点30分时,时针与分针的夹角为________. 24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、解答题25.如图,已知∠1=∠2,∠BAC=∠DEC ,试判断AD 与FG 的位置关系,并说明理由.26.解下列方程或方程组: (1)3(2x ﹣1)=2(1﹣x )﹣1(2)111234x y x y -+⎧+=⎪⎨⎪+=⎩27.直线AB ,CD 交于点O ,将一个三角板的直角顶点放置于点O 处,使其两条直角边OE ,OF ,分别位于OC 的两侧.若OC 平分∠BOF ,OE 平分∠COB . (1)求∠BOE 的度数;(2)写出图中∠BOE 的补角,并说明理由.28.已知,若2(1)20a b ++-=,关于x 的方程2x+c=1的解为-1.求代数式22282(4)abc a b ab a b ---的值.29.已知:四点A B C D 、、、的位置如图所示,根据下列语句,画出图形.()1画直线AD、直线,BC画射线AB;()2画一点O,使点O既在直线AD上又在直线,BC上;()3在上面所作的图形中,以A B C D O、、、、为端点的线段共有条.30.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.四、压轴题31.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.32.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1=?PQ AB2()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.33.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【分析】x x x的定义分情况讨论即可求解.利用max{}2,,【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.3.D解析:D 【解析】 【分析】设分配x 名工人生产螺栓,则(26-x )名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程. 【详解】解:设分配x 名工人生产螺栓,则(26-x )名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个, ∴可得2×12x=18(26-x ). 故选:D . 【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.4.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.5.A解析:A【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.6.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.7.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 8.B解析:B【分析】由CB =4cm ,DB =7cm 求得CD=3cm ,再根据D 是AC 的中点即可求得AC 的长 【详解】∵C ,D 是线段AB 上两点,CB =4cm ,DB =7cm , ∴CD =DB ﹣BC =7﹣4=3(cm ), ∵D 是AC 的中点, ∴AC =2CD =2×3=6(cm ). 故选:B . 【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.9.B解析:B 【解析】 【分析】 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】考点:规律型:数字的变化类.10.D解析:D 【解析】 【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案. 【详解】解:因为2|2|(1)0a b ++-=, 所以a +2=0,b -1=0, 所以a =-2,b =1, 所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D. 【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键.11.D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.3试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.14.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 17.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关18.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.19.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.20.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.21.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.23.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.24.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、解答题25.AD//FG,理由见解析.【解析】【分析】由∠BAC=∠DEC,根据同位角相等,两直线平行可得AB//DE,继而可得∠BAD=∠2,由等量代换可得∠1=∠BAD,再根据同位角相等,两直线平行即可求得答案.【详解】AD//FG,理由如下:∵∠BAC=∠DEC,∴AB//DE,∴∠BAD=∠2,∵∠1=∠2,∴∠1=∠BAD,∴AD//FG.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定方法与性质定理是解题的关键.26.(1)x=12;(2)15xy=-⎧⎨=⎩.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=12,(2)111234x yx y-+⎧+=⎪⎨⎪+=⎩,整理得:3x+2y=72x+2y=8①②⎧⎨⎩,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:15xy=-⎧⎨=⎩.【点睛】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键. 27.(1)30°;(2)∠BOE的补角有∠AOE和∠DOE.【解析】【分析】(1)根据OC平分∠BOF,OE平分∠COB.可得∠BOE=∠EOC=12∠BOC,∠BOC=∠COF,进而得出,∠EOF=3∠BOE=90°,求出∠BOE;(2)根据平角和互补的意义,通过图形中可得∠BOE+∠AOE=180°,再根据等量代换得出∠BOE+∠DOE=180°,进而得出∠BOE的补角.【详解】解:(1)∵OC平分∠BOF,OE平分∠COB.∴∠BOE=∠EOC=12∠BOC,∠BOC=∠COF,∴∠COF=2∠BOE,∴∠EOF=3∠BOE=90°,∴∠BOE=30°,(2)∵∠BOE+∠AOE=180°∴∠BOE的补角为∠AOE;∵∠EOC+∠DOE=180°,∠BOE=∠EOC,∴∠BOE+∠DOE=180°,∴∠BOE的补角为∠DOE;答:∠BOE的补角有∠AOE和∠DOE;【点睛】考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.28.-34.【解析】根据非负数之和为0,则每个非负数都为0,解出a ,b 的值,然后将x=-1代入方程求出c 的值,最后将代数式化简,代入数据求值.【详解】解:因为2(1)|2|0++-=a b ,(a+1)2 ≥0,|2|0-≥b所以a+1=0,b-2=0解得:a=-1,b=2因为关于x 的方程2x+c=1的解为-1所以2×(-1)+c=1 ,解得c=3因为8abc -2a 2b -(4ab 2-a 2b)=8abc-2a 2b-4ab 2+a 2b=8abc-a 2b-4ab 2把a=-1,b=2,c=3代入代数式8abc-a 2b-4ab 2中,得8×(-1)×2×3-(-1)2×2-4×(-1)×22=-48-2-(-16)=-34.【点睛】本题考查非负数的性质,一元一次方程的解,以及代数式化简求值,熟记非负数的性质求出a 、b 的值是解题的关键.29.()1见解析;()2见解析;()37【解析】【分析】(1)根据直线、射线的性质画图即可;(2)画出直线AD 和直线BC 的交点即可得出答案;(3)根据线段的定义分别得出各条线段即可.【详解】解:(1)(2)如图所示:(3)根据图形可知线段有: AO , AB ,AD ,BO , BC ,CO ,OD ,共7条.故答案为:7【点睛】此题主要考查了简单作图,解答此题需要熟练掌握直线、射线、线段的性质,认真作图解答即可.【解析】【分析】由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.【详解】解:如图所示.从正面看从侧面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.四、压轴题31.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A 在原点O 的右侧,a 的值为212. 当A 在原点的左侧时(如图),a=-212综上,a 的值为±212. (3)解:当点A 在原点的右侧,点B 在点C 的左侧时(如图), c=-285.当点A 在原点的右侧,点B 在点C 的右侧时(如图), c=-8.当点A 在原点的左侧,点B 在点C 的右侧时,图略,c=285. 当点A 在原点的左侧,点B 在点C 的左侧时,图略,c=8. 综上,点c 的值为:±8,±285. 【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.32.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t. (3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.33.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.。

河南省南阳市内乡县2019-2020学年七年级(上)期末考试数学试卷 解析版

河南省南阳市内乡县2019-2020学年七年级(上)期末考试数学试卷  解析版

2019-2020学年七年级(上)期末数学试卷一.选择题(共10小题)1.若在记账本上把支出6元记为﹣6.则收入3元应记为()A.+3 B.﹣3 C.+6 D.﹣62.如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是()排球甲乙丙丁球重﹣1.5 ﹣0.5 ﹣0.6 0.8A.甲B.乙C.丙D.丁3.如图,几何体的主视图是()A.B.C.D.4.将﹣2﹣(+5)﹣(﹣7)+(﹣9)写成省略括号的和的形式是()A.﹣2+5﹣7﹣9 B.﹣2﹣5+7+9 C.﹣2﹣5﹣7﹣9 D.﹣2﹣5+7﹣9 5.下列关于多项式ab﹣a2b﹣1的说法中,正确的是()A.该多项式的次数是2B.该多项式是三次三项式C.该多项式的常数项是1D.该多项式的二次项系数是﹣16.如图,下列条件中,不能判定AB∥CD的是()A.∠D+∠BAD=180°B.∠1=∠2C.∠3=∠4 D.∠B=∠DCE7.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.近似数8.4和0.7的精确度不一样C.2.46万精确到百分位D.317500四舍五入精确到千位可以表示为31.8万8.盛世中华,国之大典,今年10月1日,20余万军民以盛大的阅兵仪式和群众游行欢庆新中国70华诞,全球瞩目,精彩不断.数据20万用科学记数法可表示为()A.20×104B.2×104C.2×105D.0.2×1069.下列运算正确的是()A.﹣7﹣2×5=﹣9×5=﹣45 B.3C.﹣(﹣2)3=6 D.12÷()=﹣7210.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次收费(元)A类1500 100B类3000 60C类4000 40例如,购买A类会员年卡,一年内健身20次,消费1500+100×20=3500元.若一年内在该健身俱乐部健身55次,则最省钱的方式为()A.购买C类会员年卡B.购买B类会员年卡C.购买A类会员年卡D.不购买会员年卡二.填空题(共5小题)11.化简:﹣|﹣|=.12.定义一种新运算,m*n=(m+n)×(m﹣n),则3*5=.13.如图是一个几何体的三视图,则这个几何体的侧面积是cm2.14.如图1所示的是从长方形中剪掉一个较小的长方形,使得剩余两端的宽度相等,用5个这样的图形紧密地拼成如图2所示的图形,则它的长为.(结果用含m、n的代数式表示)15.这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:虚线上第一行0,第二行6,第三行21…,第4行的数是.三.解答题(共8小题)16.计算:(1)(﹣8)+10+2+(﹣1)(2)(﹣5)×6×(﹣)×(3)(﹣)÷×3﹣22+3×(﹣1)202017.先化简,再求值:﹣(3x2+3xy﹣)+(+3xy+),其中x=﹣,y =2.18.一张长方形桌子可坐6人,按图3将桌子拼在一起.(1)2张桌子拼在一起可坐人,4张桌子拼在一起可坐人,n张桌子拼在一起可坐人;(2)一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?19.一种书每本定价m元,邮购此图书,不足100本时,另加书价的5%作为邮资.(1)要邮购x(x<100的正整数)本,总计金额是多少元?(2)当一次邮购超过100本时,书店除免付邮资外,还给予10%的优惠,计算当m=3.1元时,邮购130本时的总金额是多少元?20.如图,已知AB∥CD,∠1=∠2,∠3=∠4,则AD∥BE.完成下列推理过程:证明:∵AB∥CD(已知)∴∠4=()∵∠3=∠4(已知)∴∠3=()∵∠1=∠2(已知)∴∠CAE+∠1=∠CAE+∠2即∠=∠∴∠3=∴AD∥BE()21.如图所示,观察数轴,请回答:(1)点C与点D的距离为,点B与点D的距离为;(2)点B与点E的距离为,点A与点C的距离为;发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为MN=(用m,n表示)(3)利用发现的结论解决下列问题:数轴上表示x的点P与B之间的距离是1,则x的值是.22.已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.23.问题情境:以直线AB上一点O为端点作射线OM、ON,将一个直角三角形的直角顶点放在O处(∠COD=90°).(1)如图1,直角三角板COD的边OD放在射线OB上,OM平分∠AOC,ON和OB重合,则∠MON=°;(2)直角三角板COD绕点O旋转到如图2的位置,OM平分∠AOC,ON平分∠BOD,求∠MON的度数.(3)直角三角板COD绕点O旋转到如图3的位置,OM平分∠AOC,ON平分∠BOD,猜想∠MON的度数,并说明理由.参考答案与试题解析一.选择题(共10小题)1.若在记账本上把支出6元记为﹣6.则收入3元应记为()A.+3 B.﹣3 C.+6 D.﹣6【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【解答】解:∵支出6元记为﹣6元,∴收入3元应记为+3元,故选:A.2.如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是()排球甲乙丙丁球重﹣1.5 ﹣0.5 ﹣0.6 0.8A.甲B.乙C.丙D.丁【分析】由已知和要求,只要求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.【解答】解:通过求4个排球的绝对值得:|﹣1.5|=1.5,|﹣0.5|=0.5,|﹣0.6|=0.6,|0.8|=0.8,﹣0.5的绝对值最小.所以乙球是最接近标准的球.故选:B.3.如图,几何体的主视图是()A.B.C.D.【分析】直接利用主视图的观察角度分析得出答案.【解答】解:如图,几何体的主视图是:.故选:B.4.将﹣2﹣(+5)﹣(﹣7)+(﹣9)写成省略括号的和的形式是()A.﹣2+5﹣7﹣9 B.﹣2﹣5+7+9 C.﹣2﹣5﹣7﹣9 D.﹣2﹣5+7﹣9 【分析】根据有理数的加减法法则将括号去掉.【解答】解:﹣2﹣(+5)﹣(﹣7)+(﹣9)=﹣2﹣5+7﹣9.故选:D.5.下列关于多项式ab﹣a2b﹣1的说法中,正确的是()A.该多项式的次数是2B.该多项式是三次三项式C.该多项式的常数项是1D.该多项式的二次项系数是﹣1【分析】根据多项式的概念判断即可.【解答】解:多项式ab﹣a2b﹣1的次数是3,常数项是﹣1,二次项系数是+1,是三次三项式,故选:B.6.如图,下列条件中,不能判定AB∥CD的是()A.∠D+∠BAD=180°B.∠1=∠2C.∠3=∠4 D.∠B=∠DCE【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;进行判断即可.【解答】解:根据∠D+∠BAD=180°,可得AB∥CD;根据∠1=∠2,可得AB∥CD;根据∠3=∠4,可得BC∥AD;根据∠B=∠DCE,可得AB∥CD;故选:C.7.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.近似数8.4和0.7的精确度不一样C.2.46万精确到百分位D.317500四舍五入精确到千位可以表示为31.8万【分析】根据近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.【解答】解:A、近似数5千精确到千位,而5000精确到个位,故本选项错误;B、近似数8.4和0.7的精确度一样,都是精确到十分位,故本选项错误;C、2.46万精确到百位,故本选项错误;D、317500四舍五入精确到千位可以表示为31.8万,故本选项正确;故选:D.8.盛世中华,国之大典,今年10月1日,20余万军民以盛大的阅兵仪式和群众游行欢庆新中国70华诞,全球瞩目,精彩不断.数据20万用科学记数法可表示为()A.20×104B.2×104C.2×105D.0.2×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据20万用科学记数法可表示为20×104=2×105.故选:C.9.下列运算正确的是()A.﹣7﹣2×5=﹣9×5=﹣45 B.3C.﹣(﹣2)3=6 D.12÷()=﹣72【分析】A、先算乘法,再算减法即可求解;B、将除法变为乘法,再约分计算;C、根据乘方的计算法则计算即可求解;D、先算小括号里面的减法,再算括号外面的除法.【解答】解:A、﹣7﹣2×5=﹣7﹣10=﹣17,故选项错误;B、3÷×=3××=,故选项错误;C、﹣(﹣2)3=8,故选项错误;D、12÷()=12÷(﹣)=﹣72,故选项正确.故选:D.10.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次收费(元)A类1500 100B类3000 60C类4000 40例如,购买A类会员年卡,一年内健身20次,消费1500+100×20=3500元.若一年内在该健身俱乐部健身55次,则最省钱的方式为()A.购买C类会员年卡B.购买B类会员年卡C.购买A类会员年卡D.不购买会员年卡【分析】首先求出一年内在该健身俱乐部健身55次,购买A类、B类、C类会员年卡的情况下各消费多少元;然后把它和不购买会员年卡的情况下健身55次的费用比较大小即可.【解答】解:购买A类会员年卡,一年内健身55次,消费1500+100×55=7000(元)购买B类会员年卡,一年内健身55次,消费3000+60×55=6300(元)购买C类会员年卡,一年内健身55次,消费4000+40×55=6200(元)不购买会员年卡,一年内健身55次,消费180×55=9900(元)∵6200<6300<7000<9900,∴最省钱的方式为购买C类会员年卡.故选:A.二.填空题(共5小题)11.化简:﹣|﹣|=﹣.【分析】根据绝对值的性质化简即可求解.【解答】解:﹣|﹣|=﹣.故答案为:﹣.12.定义一种新运算,m*n=(m+n)×(m﹣n),则3*5=﹣16 .【分析】根据m*n=(m+n)×(m﹣n),求出3*5的值是多少即可.【解答】解:∵m*n=(m+n)×(m﹣n),∴3*5=(3+5)×(3﹣5)=8×(﹣2)=﹣16.故答案为:﹣16.13.如图是一个几何体的三视图,则这个几何体的侧面积是36cm2.【分析】首先判断出该几何体是三棱柱,然后根据圆柱的侧面积公式计算这个几何体的侧面积即可.【解答】解:观察三视图知:该几何体为三棱柱,高为3cm,长为4cm,侧面积为:3×4×3=36cm2.则这个几何体的侧面积是36cm2.故答案为:3614.如图1所示的是从长方形中剪掉一个较小的长方形,使得剩余两端的宽度相等,用5个这样的图形紧密地拼成如图2所示的图形,则它的长为4n+m.(结果用含m、n的代数式表示)【分析】根据图形中的数据,可以用含m、n的代数式表示出用5个这样的图形紧密地拼成图形的总的长度.【解答】解:由图可得,用5个这样的图形紧密地拼成如图2所示的图形,则它的长为:3m+2[n﹣(m﹣n)]=3m+2(n﹣m+n)=3m+4n﹣2m=m+4n,故答案为:4n+m.15.这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:虚线上第一行0,第二行6,第三行21…,第4行的数是45 .【分析】根据图形可得三角形各边上点的数字变化规律,进而得出第4行的数字.【解答】解:∵虚线上第一行0,第二行6,第三行21…,∴利用图象即可得出:第四行是21+7+8+9=45,故第n行的公式为:(3n﹣3)(3n﹣2),故答案为:45.三.解答题(共8小题)16.计算:(1)(﹣8)+10+2+(﹣1)(2)(﹣5)×6×(﹣)×(3)(﹣)÷×3﹣22+3×(﹣1)2020【分析】(1)根据有理数的加减法运算,可得原式=﹣8+10+2﹣1=3;(2)根据有理数的乘法运算法则,从左向右依次运算,可得原式=﹣30×(﹣)×=24×=6;(3)先乘方运算,再乘除运算,最后加减运算,可得原式=(﹣)÷×3﹣4+3×1=(﹣)××3﹣4+3×1=﹣﹣4+3=﹣.【解答】解:(1)原式=﹣8+10+2﹣1=3;(2)原式=﹣30×(﹣)×=24×=6;(3)原式=(﹣)÷×3﹣4+3×1=(﹣)××3﹣4+3×1=﹣﹣4+3=﹣.17.先化简,再求值:﹣(3x2+3xy﹣)+(+3xy+),其中x=﹣,y =2.【分析】本题要先去括号再合并同类项,对原代数式进行化简,然后把x,y的值代入计算即可.【解答】解:﹣(3x2+3xy﹣)+(+3xy+)=﹣3x2﹣3xy+++3xy+=y2.当x=﹣,y=2时,原式=22=4.18.一张长方形桌子可坐6人,按图3将桌子拼在一起.(1)2张桌子拼在一起可坐8 人,4张桌子拼在一起可坐12 人,n张桌子拼在一起可坐(4+2n)人;(2)一家餐厅有40张这样的长方形桌子,按照上图的方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?【分析】(1)根据题目中的图形,可以发现所座人数的变化规律,从而可以解答本题;(2)根据(1)中的发现和题意,可以求得40张桌子可拼成8张大桌子,共可坐多少人.【解答】解:(1)由图可得,2张桌子拼在一起可坐:4+2×2=4+4=8(人),4张桌子拼在一起可坐:4+2×4=4+8=12(人),n张桌子拼在一起可坐:(4+2n)人,故答案为:8,12,(4+2n);(2)由题意可得,40张桌子可拼成8张大桌子,共可坐:(4+2×5)×8=(4+10)×8=14×8=112(人),即40张桌子可拼成8张大桌子,共可坐112人.19.一种书每本定价m元,邮购此图书,不足100本时,另加书价的5%作为邮资.(1)要邮购x(x<100的正整数)本,总计金额是多少元?(2)当一次邮购超过100本时,书店除免付邮资外,还给予10%的优惠,计算当m=3.1元时,邮购130本时的总金额是多少元?【分析】(1)由于少于100本,总计金额=书价+邮价;(2)超过100本,总计金额=书价×(1﹣10%),依此代值计算即可求解.【解答】解:(1)xm+xm×5%=1.05mx(元);(2)mx×(1﹣10%),当m=3.1,x=130时,原式=3.1×130×(1﹣10%)=362.7(元).答:当m=3.1元时,邮购130本时的总金额是362.7元.20.如图,已知AB∥CD,∠1=∠2,∠3=∠4,则AD∥BE.完成下列推理过程:证明:∵AB∥CD(已知)∴∠4=∠BAE(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠BAE(等量代换)∵∠1=∠2(已知)∴∠CAE+∠1=∠CAE+∠2即∠BAE=∠DAC∴∠3=∠DAC∴AD∥BE(内错角相等,两直线平行)【分析】根据平行线的性质得出∠4=∠BAE,求出∠3=∠BAE,根据∠1=∠2求出∠BAE =∠DAC,求出∠3=∠DAC,根据平行线的判定得出即可.【解答】证明:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等),∵∠3=∠4(已知)∴∠3=∠BAE(等量代换),∵∠1=∠2(已知)∴∠CAE+∠1=∠CAE+∠2,即∠BAE=∠DAC,∴∠3=∠DAC∴AD∥BE(内错角相等,两直线平行),故答案为:∠BAE,两直线平行,同位角相等,∠BAE,等量代换,BAE,DAC,∠DAC,内错角相等,两直线平行.21.如图所示,观察数轴,请回答:(1)点C与点D的距离为 3 ,点B与点D的距离为 2 ;(2)点B与点E的距离为 4 ,点A与点C的距离为7 ;发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为MN=|m ﹣n| (用m,n表示)(3)利用发现的结论解决下列问题:数轴上表示x的点P与B之间的距离是1,则x的值是﹣3或﹣1 .【分析】(1)直接根据数轴上两点间距离的定义解答即可;(2)根据数轴上两点间距离的定义进行解答,再进行总结规律,即可得出MN之间的距离;(3)根据(2)得出的规律,进行计算即可得出答案.【解答】解:(1)由图可知,点C与点D的距离为3,点B与点D的距离为2.故答案为:3,2;(2)由图可知,点B与点E的距离为4,点A与点C的距离为7;如果点M对应的数是m,点N对应的数是n,那么点M与点N之间的距离可表示为MN=|m﹣n|.故答案为:4,7,|m﹣n|;(3)由(1)可知,数轴上表示x和﹣2的两点P与B之间的距离是1,则|x+2|=1,解得x=﹣3或x=﹣1.故答案为:﹣3或﹣1.22.已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.【分析】(1)利用同旁内角互补,说明GD∥CA;(2)由GD∥CA,得∠A=∠GDB=∠2=40°=∠ACD,由角平分线的性质可求得∠ACB 的度数.【解答】解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.23.问题情境:以直线AB上一点O为端点作射线OM、ON,将一个直角三角形的直角顶点放在O处(∠COD=90°).(1)如图1,直角三角板COD的边OD放在射线OB上,OM平分∠AOC,ON和OB重合,则∠MON=135 °;(2)直角三角板COD绕点O旋转到如图2的位置,OM平分∠AOC,ON平分∠BOD,求∠MON的度数.(3)直角三角板COD绕点O旋转到如图3的位置,OM平分∠AOC,ON平分∠BOD,猜想∠MON的度数,并说明理由.【分析】(1)由∠MON=∠MOC+∠COD求出即可;(2)由∠MON=∠MOC+∠DON+∠COD求出即可;(3)猜想∠MON的度数是135°,根据∠MON=∠MOC+∠BON+∠COB说明理由.【解答】解:(1)∵∠COD=90°,OM平分∠AOC,ON和OB重合,∴∠MOC=∠AOC=(∠AOB﹣∠COD)=45°,∴∠MON=∠MOC+∠COD=45°+90°=135°,故答案为:135;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC,∠DON=∠BOD,∵∠COD=90°,∴∠MOC+∠DON=∠AOC+∠BOD=(∠AOC+∠BOD)=(∠AOB﹣∠COD)=(180°﹣90°)=45°,∴∠MON=∠MOC+∠DON+∠COD=45°+90°=135°,即∠MON的度数是135°;(3)猜想∠MON的度数是135°,理由是:∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC,∠BON=∠BOD,∵∠COD=90°,∴∠MOC+∠BON=∠AOC+∠BOD=(∠AOC+∠BOD)=(∠AOB﹣∠COB+∠BOD)=[∠AOB﹣(∠COD﹣∠BOD)+∠BOD] =[∠AOB﹣∠COD+∠BOD+∠BOD]=[180°﹣90°+∠BOD+∠BOD]=45°+∠BOD∴∠MON=∠MOC+∠BON+∠COB=45°+∠BOD+∠COB=45°+∠COD=135°,即∠MON的度数是135°.。

南阳市七年级上册数学期末试卷及答案-百度文库

南阳市七年级上册数学期末试卷及答案-百度文库

南阳市七年级上册数学期末试卷及答案-百度文库一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .32.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒3.﹣3的相反数是( ) A .13-B .13C .3-D .34.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .35.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)36.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .6 7.方程3x +2=8的解是( ) A .3B .103C .2D .128.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱9.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .110.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠211.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60 B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6012.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④二、填空题13.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.14.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 15.化简:2xy xy +=__________. 16.单项式﹣22πa b的系数是_____,次数是_____.17.分解因式: 22xy xy +=_ ___________18.因式分解:32x xy -= ▲ . 19.若方程11222m x x --=++有增根,则m 的值为____. 20.如果一个数的平方根等于这个数本身,那么这个数是_____. 21.将520000用科学记数法表示为_____.22.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.23.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______. 24.观察“田”字中各数之间的关系:则c 的值为____________________.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.26.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.27.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.28.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________ (3)用含n 的式子列式,并计算第n 个图的钢管总数.29.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

南阳市七年级上册数学期末试卷及答案-百度文库

南阳市七年级上册数学期末试卷及答案-百度文库

南阳市七年级上册数学期末试卷及答案-百度文库一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109 D .1289×107 2.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( )A .π,3B .π,2C .1,4D .1,33.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=4.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =15.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .380 6.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣17.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 8.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y9.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0 10.下列各组数中,互为相反数的是( )A.2与12B.2(1)-与1 C.2与-2 D.-1与21-11.下列调查中,调查方式选择正确的是( )A.为了了解1 000个灯泡的使用寿命,选择全面调查B.为了了解某公园全年的游客流量,选择抽样调查C.为了了解生产的一批炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查12.把1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是()A.1685 B.1795 C.2265 D.2125二、填空题13.单项式2x m y3与﹣5y n x是同类项,则m﹣n的值是_____.14.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.15.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.16.多项式2x3﹣x2y2﹣1是_____次_____项式.17.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期交易明细10.16乘坐公交¥ 4.00-10.17转帐收入¥200.00+10.18体育用品¥64.00-10.19 零食¥82.00- 10.20 餐费¥100.00-18.如果向东走60m 记为60m +,那么向西走80m 应记为______m.19.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.20.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.21.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 22.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.23.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______ 24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题25.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.26.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.27.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.28.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.29.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点. (1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.30.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.31.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.32.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0. (1)求A,B 两点之间的距离;(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动. 设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109. 故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.3.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.4.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程;【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.5.B解析:B 【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点, 第二个图3条直线相交最多有3个交点, 第三个图4条直线相交,最多有6个, 而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190. 故选B .点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.6.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.7.A解析:A【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程. 【详解】解:长方形的一边为10厘米,故设另一边为x 厘米. 根据题意得:2×(10+x )=10×4+6×2. 故选:A . 【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.8.B解析:B 【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可. 详解:原式=2x ﹣3y ﹣12x +6y =﹣10x +3y . 故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.C解析:C 【解析】 【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |, ∴a +b <0,ab <0,a ﹣b <0,a ÷b <0. 故选:C .10.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;故选:C .【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.11.B解析:B【解析】选项A 、C 、D ,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B ,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B .12.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx 是同类项,∴m =1,n =3,∴m ﹣n =1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.15.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】>-,此时就需要将结果返首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1<-,才能输出结果.回重新计算,直到结果1【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.16.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.17.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.18.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.19.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n +1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.20.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.21.8+x=(30+8+x).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】 设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.22.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.23.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.24.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、压轴题25.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI))=12∠AOB=12×120°=60°,∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.26.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.27.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.28.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.。

南阳市人教版七年级上册数学期末考试试卷及答案

南阳市人教版七年级上册数学期末考试试卷及答案

南阳市人教版七年级上册数学期末考试试卷及答案一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,33.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π4.下列因式分解正确的是() A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+5.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30C .32D .346.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=18.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.79.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC;其中正确的结论有()A.1个B.2个C.3个D.4个10.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N是BC 的中点,则线段MN的长度是()A.6cm B.3cm C.3cm或6cm D.4cm11.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣112.已知a=b,则下列等式不成立的是()A.a+1=b+1 B.1﹣a=1﹣b C.3a=3b D.2﹣3a=3b﹣2 13.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠414.图中是几何体的主视图与左视图, 其中正确的是( )A.B.C.D.15.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=1二、填空题16.把一张长方形纸按图所示折叠后,如果∠AOB′=20°,那么∠BOG的度数是_____.17.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.18.化简:2xy xy +=__________. 19.单项式﹣22πa b的系数是_____,次数是_____.20.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________21.已知23,9n mn aa -==,则m a =___________.22.如图,若12l l //,1x ∠=︒,则2∠=______.23.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.24.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 25.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.26.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.27.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.28.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程_____.29.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为_____度.30.a※b是新规定的这样一种运算法则:a※b=a﹣b+2ab,若(﹣2)※3=_____.三、压轴题31.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.32.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.33.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.34.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.35.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)36.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.37.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.38.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】解:单项式2r hπ的系数和次数分别是π,3;故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.3.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94aπ,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.4.D解析:D 【解析】 【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D . 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.5.B解析:B 【解析】 【分析】根据同底数幂的乘除法法则,进行计算即可. 【详解】解:(1.8−0.8)×220=220(KB ), 32×211=25×211=216(KB ), (220−216)÷215=25−2=30(首), 故选:B . 【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.6.C解析:C 【解析】 【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论. 【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm ,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.8.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.9.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.10.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.11.D解析:D【解析】【分析】根据同类项的概念,首先求出m与n的值,然后求出m n-的值.解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩,121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.12.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A 、∵a =b ,∴a+1=b+1,故本选项正确;B 、∵a =b ,∴﹣a =﹣b ,∴1﹣a =1﹣b ,故本选项正确;C 、∵a =b ,∴3a =3b ,故本选项正确;D 、∵a =b ,∴﹣a =﹣b ,∴﹣3a =﹣3b ,∴2﹣3a =2﹣3b ,故本选项错误.故选:D .【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.13.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b ,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b ,故不符合题意;C. ∠1+∠4=90°,不能判定a//b ,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b ,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.15.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.二、填空题16.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键.17.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b =0,c =﹣,m =2或﹣2,当m =2时,原式=2(a+b )解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a +b =0,c =﹣13,m =2或﹣2, 当m =2时,原式=2(a +b )﹣3c +2m =1+4=5;当m =﹣2时,原式=2(a +b )﹣3c +2m =1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.19.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 20.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.23.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.24.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.25.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.26.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.27.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.28.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.29.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14030.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、压轴题31.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a -20=0,c +10=0, ∴a =20,c =﹣10. 设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ). 解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t . ∵Q 到B 的距离与P 到B 的距离相等, ∴|﹣10+5t ﹣10|=|20+2t ﹣10|, 即5t ﹣20=10+2t 或20﹣5t =10+2t , 解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|. ∵点M 为线段PR 的中点,点N 为线段RQ 的中点, ∴点M 对应的数为224202x x ++-=442x+,点N 对应的数为2052x x-+=2x +10, ∴MN =|442x+﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25. 分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413;当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.33.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.34.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】。

河南省南阳市2019年七年级上学期数学期末教学质量检测试题(模拟卷一)

河南省南阳市2019年七年级上学期数学期末教学质量检测试题(模拟卷一)

河南省南阳市2019年七年级上学期数学期末教学质量检测试题(模拟卷一)一、选择题1.如图,若延长线段AB 到点C ,使BC=AB ,D 为AC 的中点,DC=5cm ,则线段AB 的长度是( )A.10cmB.8cmC.6cmD.4cm2.小华在小凡的南偏东30°方位,则小凡在小华的( )方位A .南偏东60° B.北偏西30° C.南偏东30° D.北偏西60°3.下列说法正确的是( )①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的封面是长方形.A .①②B .①③C .②③D .①②③4.用“∆”表示一种运算符号,其意义是2a b a b ∆=-,若(13)2x ∆∆=,则x 等于( )A.1B.12C.32D.25.某车间有22名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母20个或螺栓12个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.20x=12(22-x)B.12x=20(22-x)C.2×12x=20(22-x)D.20x=2×12(22-x) 6.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A.6B.5C.4D.3 7.一个代数式减去-2x 得-2x 2-2x+1,则这个代数式为( ) A .21x -+B .2241x x --+C .221x -+D .224x x -- 8.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a ,b (a >b ),则a-b 等于( )A .9B .10C .11D .129.下列各组数中互为相反数的一组是( )A.3与13B.2与|-2|C.(-1) 2与1D.-4与(-2) 210.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是111.如图,点A ,B 在数轴上,以AB 为边作正方形,若正方形的面积是49,点A 对应的数是-2,则点B 对应的数是( )A.3B.5C.7D.9 12.将方程去分母,得( )A.B.C.D.二、填空题13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果AOD 128∠=︒,那么BOC ∠= ______ .14.上午9点钟的时候,时针和分针成直角,则下一次时针和分针成直角的时间是_____.15.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____.16.已知方程的解也是方程的解,则=_________.17.下列每个三角形中的4个数之间都有相同的规律,根据这种规律,第4个三角形中的中间数字x 为__________,第n 个三角形的中间数字用含n 的代数式表示为________.18.计算:﹣4+(﹣5)=________19.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m 2015+2016n+c 2017的值为20.如图,有两个矩形的纸片面积分别为 26 和 9,其中有一部分重叠,剩余空白部分的面积分别为 m 和 n (m >n ),则 m ﹣n=______.三、解答题21.探究题:如图①,已知线段AB=14cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 中点,则DE=_____cm ;(2)若AC=4cm ,求DE 的长;(3)试利用“字母代替数”的方法,设AC="a" cm 请说明不论a 取何值(a 不超过14cm ),DE 的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C 画射线OC ,若OD 、OE 分别平分∠AOC 和∠BOC ,试说明∠DOE=60°与射线OC 的位置无关.22.如图,一副三角板的两个直角顶点重合在一起.(1)若∠EON=110°,求∠MOF 的度数;(2)比较∠EOM 与∠FON 的大小,并写出理由;(3)求∠EON+∠MOF 的度数.23.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?24.(8分)在A 、B 两地之间要修一条笔直的公路,此工程由甲、乙、丙三支施工队伍共同建设.已知甲单独做要30天完成,乙单独做要12天完成,丙单独做要15天完成.甲、丙先合做了4天后,甲因事离去,由乙和丙完成剩下工作,那么还需要几天才能完成?25.计算:(1)(-1)2×5+(-2)3÷4;(2) 52()83-×24+14÷3(12)-+|-22|; (3)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab].26.计算:(1)(4311[13)3⎤-÷⨯---⎦ (2)()21213112()12344⎛⎫-++⨯--- ⎪⎝⎭ ()3化简求值:()()()2222x xy y 2xy 3x 32y xy -+---+-,其中x 1=-,y 2=-.27.计算:(1)10﹣(﹣5)+(﹣9)+6(2)(﹣2)3÷49+6×(1﹣13)+|﹣2|28.-15-(-8)+(-11)-12.【参考答案】***一、选择题二、填空题13.5214.9时32分.15.11a+20.16.17. SKIPIF 1 < 0 ; SKIPIF 1 < 018.-919.020.17三、解答题21.(1)6cm;(2)6cm;(3)理由见解析;(4)理由见解析.22.(1)∠MOF=70°,(2)∠EOM=∠FON,(3)∠EON+∠MOF=180°.23.(1) 该超市第一次购进甲种商品150件、乙种商品90件.(2) 1950元.24.还需要4天才能完成25.(1)3;(2)19;(3)7a2-2b2+ab.26.(1)-78;(2)36116-;(3)22545x xy y-+;17.27.(1)12 (2)-12 28.-30。

南阳市人教版七年级上学期期末数学试题题

南阳市人教版七年级上学期期末数学试题题

南阳市人教版七年级上学期期末数学试题题一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×107 2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( ) A . B .C .D . 3.-2的倒数是( )A .-2B .12-C .12D .2 4.在223,2,7-四个数中,属于无理数的是( ) A .0.23 B 3 C .2- D .2275.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a -6.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( )A .50°B .130°C .50°或 90°D .50°或 130° 7.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对8.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2 C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×2 9.下列各数中,绝对值最大的是()A.2 B.﹣1 C.0 D.﹣310.如果方程组223x yx y+=⎧⎨-=⎩的解为5xy=⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A.14,4 B.11,1 C.9,-1 D.6,-411.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是()A.513 B.﹣511 C.﹣1023 D.102512.下列变形中,不正确的是( )A.若x=y,则x+3=y+3 B.若-2x=-2y,则x=yC.若x ym m=,则x y=D.若x y=,则x ym m=二、填空题13.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____.14.已知|x|=3,y2=4,且x<y,那么x+y的值是_____.15.在灯塔O处观测到轮船A位于北偏西54︒的方向,同时轮船B在南偏东15︒的方向,那么AOB∠的大小为______.16.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.17.已知线段AB=8 cm,在直线AB上画线段BC,使得BC=6 cm,则线段AC=________cm.18.若关于x的多项式2261x bx ax x-++-+的值与x的取值无关,则-a b的值是________19.﹣213的倒数为_____,﹣213的相反数是_____. 20.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.21.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.22.五边形从某一个顶点出发可以引_____条对角线.23.已知代数式235x -与233x -互为相反数,则x 的值是_______. 24.观察“田”字中各数之间的关系:则c 的值为____________________.三、压轴题25.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为 (2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.26.综合试一试 (1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.27.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?28.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.29.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.30.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.31.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?32.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.3.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握 4.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意, 故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.5.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.6.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC ⊥OD ,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC ⊥OD ,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D .【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.7.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.8.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.9.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.10.B解析:B【解析】【分析】把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.11.D解析:D【解析】【分析】观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1,第10个数是(﹣2)10+1=1024+1=1025故选:D .【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.12.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.二、填空题13.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.14.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.15.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】根据题意可得:∠AOB=(90解析:141【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.16.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.17.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.18.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261x bx ax x-++-+=(a-1)x2+(b-6)x+1,由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.19.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.20.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线, ∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.21.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++.【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.22.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.23.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.24.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

七年级上册南阳数学期末试卷达标检测卷(Word版 含解析)

七年级上册南阳数学期末试卷达标检测卷(Word版 含解析)

七年级上册南阳数学期末试卷达标检测卷(Word 版 含解析)一、选择题1.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( ) A .180元B .202.5元C .180元或202.5元D .180元或200元2.如图所示的图形绕虚线旋转一周,所形成的几何体是( )A .B .C .D .3.3-的倒数是( ) A .3B .13C .13-D .3-4.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A .B .C .D .5.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×1066.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种7.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D 8.下列算式中,运算结果为负数的是( )A .()3--B .()33--C .()23-D .3--9.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .10.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45 000 000用科学记数法表示应为( ) A .0.45×108B .45×106C .4.5×107D .4.5×10611.甲、乙两人在长为25米泳池内始终以匀速游泳,两人同时从起点出发,触壁后原路返回,如是往返;甲的速度是1米/秒,乙的速度是0.6米/秒,那么第十次迎面相遇时他们离起点( ) A .7.5米B .10米C .12米D .12.5米12.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤13.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变D .商品的销售量不变14.若关于x y 、的单项式33nx y -与22mx y 的和是单项式,则()nm n -的值是 ( ) A .-1B .-2C .1D .215.下列各图中,是四棱柱的侧面展开图的是( ) A .B .C .D .二、填空题16.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________.17.数a ,b ,c 在数轴上的对应的点如图所示,有这样4个结论:①c a b >>;②0b a +>;③||||a b >;④0abc >其中,正确的是________.(填写序号即可)18.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.19.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”). 20.若3842α'∠=︒,则α∠的余角等于_______. 21.有5个面的棱柱是______棱柱.22.用两钉子就能将一根细木条固定在墙上,其数学原理是______. 23.如果向北走20米记作+20米,那么向南走120米记为______米.24.若代数式M =5x 2﹣2x ﹣1,N =4x 2﹣2x ﹣3,则M ,N 的大小关系是M ___N (填“>”“<”或“=”) 25.观察下面两行数第一行: 1,4,9,16,25,36---⋯ 第二行: 3,2,11,14,27,34---⋯ 则第二行中的第8个数是 __________.三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ; ()4线段AE 的长度是点______到直线______的距离; ()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)28.解下列方程:(1)3(45)7x x --=; (2)5121136x x +-=-. 29.某车间在计划时间内加工一批零件,若每天生产40个,则差20个而不能完成任务,若每天生产50个,则可提前1天完成任务,且超额10个,问这批零件的个数? 30.已知,OM 平分AOC ∠,ON 平分BOC ∠.(1)如图1,若OA OB ⊥,60BOC ∠=︒,求MON ∠的度数;(2)如图2,若80AOB ∠=︒,:2:7MON AOC ∠∠=,求AON ∠的度数.31.为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如表: 居民每月用电量 单价(元/度) 不超过50度的部分0.5 超过50度但不超过200度的部分 0.6 超过200度的部分0.8已知小智家上半年的用电情况如表(以200度为标准,超出200度记为正、低于200度记为负) 一月份 二月份 三月份 四月份 五月份 六月份 ﹣50+30﹣26﹣45+36+25根据上述数据,解答下列问题(1)小智家用电量最多的是 月份,该月份应交纳电费 元; (2)若小智家七月份应交纳的电费200.6元,则他家七月份的用电量是多少? 32.计算: (1)35|3|44⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(2)23151(32)21428⎛⎫---⨯-+⎪⎝⎭ 33.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

河南省南阳市七年级上册数学期末考试试卷

河南省南阳市七年级上册数学期末考试试卷

河南省南阳市七年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 4的相反数是()A . -4B . 4C .D . -2. (2分)一辆汽车从P站出发向东行驶40千米,然后再向西行驶30千米,此时汽车的位置是在()A . P站东70千米B . P站东10千米C . P站西10千米D . P站西70千米3. (2分)(2019·余姚会考) 4月上旬,宁波市统计局组织开展了2019年一季度交通出行公众满意度调查,采集样本1889个,其中“1889”用科学记数法表示为()A . 0.1889×104B . 0.1889×103C . 1.889×104D . 1.889×1034. (2分) (2017七上·宁城期末) 在下面四个立体图形中,从左面看与从正面看所得到的平面图形不相同的是()A . 正方体B . 长方体C . 球D . 圆锥5. (2分) (2016七上·庆云期末) 小马虎在计算16﹣ x时,不慎将“﹣”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A . 15B . 13C . 7D . ﹣16. (2分) (2017八上·建昌期末) 下列计算正确的是()A . x4+x4=2x8B . (x2y)3=x6yC . ﹣(x2)3=x5D . ﹣x3•(﹣x)5=x87. (2分)不论a、b为任何实数,式子的值()A . 可能为负数B . 可以为任何实数C . 总不大于8D . 总不小于38. (2分)图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角。

关于这七个角的度数关系,正确的是()A . ∠2=∠4+∠7B . ∠3=∠1+∠6C . ∠1+∠4+∠6=180°D . ∠2+∠3+∠5=360°9. (2分) (2017七上·三原竞赛) 在有理数(-1)2 ,-24 ,-(+ )3 , 0,-,-(-5),(-2)3中负数的个数有()A . 1个B . 2个C . 3个D . 4个10. (2分)下列图形不是正方体的展开图的是()A .B .C .D .二、填空题 (共7题;共18分)11. (2分)﹣3的倒数是________ ﹣3的绝对值是________12. (1分) (2017七上·港南期中) 比较大小: ________ (填写<,=,>号)13. (1分) (2020七上·海沧月考) 一个数在数轴上所对应的点向右移动4个单位后,得到它的相反数的对应点,则这个数是________.14. (1分) (2020七上·昌平期末) 如果x=2是关于x的方程的解,那么m的值是________.15. (1分) (2018七上·金堂期末) 如图,已知∠BOC = 2∠AOB , OD平分∠AOC,∠BOD = 14°,求∠AOB 的度数________.16. (1分)如图,点C、D在线段AB上,点C为AB中点,若AC=5cm,BD=2cm,则CD=________ cm.17. (11分) (2020七上·苍南期末) 点O在直线PQ上,过点O作射线OC,使∠POC=130°,将一直角三角板的直角顶点放在点O处。

河南省南阳市夏集初中2019-2020学年七年级上学期期末考试数学试卷

河南省南阳市夏集初中2019-2020学年七年级上学期期末考试数学试卷

七年级上学期期末考试数学试题一,选择题(每小题3分,共45分)1,如果+5米表示一个物体向东运动5米,那么﹣3米表示( ) A .向西走3米 B .向北走3米 C .向东走3米D .向南走3米2,下列式子是多项式的是( ) A.5210⨯ B.222x zπ-C.2abD.1a +3,计算﹣2×3结果正确的是( ) A .6B .﹣6C .5D .﹣54,2020的相反数是( ) A.2020 B. -2020 C.20201 D. 20201- 5,某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( ) A .1800元 B .1700元C .1710元D .1750元6,下列语句中,叙述准确规范的是( ) A.直线a ,b 相交于点m B.延长直线ABC.线段ab 与线段bc 交与点bD.延长线段AC 至点B.使BC-AC 7,已知∠1=43°27′,则∠1的余角为( )A .46°33′B .46°73′C .46°73′D .46°33′ 8,下列说法正确的个数是( ) (1)连接两点之间的线段叫两点间的距离(2)两点之间,线段最短(3)若AB=2CB,则点C是AB的中点(4)角的大小与画出的角的两边的长短无关A.1个B.2个C.3个D.4个9,如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,且∠DOE=60°,∠BOE=∠EOC,则下列四个结论正确的个数有()①∠BOD=30°;②射线OE平分∠AOC;③图中与∠BOE互余的角有2个;④图中互补的角有6对.A.1个B.2个C.3个D.4个10,如图,点C是线段AB上的点,点D是线段BC的中点,若AB=16cm,AC=10cm,则线段CD的长是()A.1cmB. 2cmC. 3cmD. 4cm11,如果﹣2a m b2与a5b n是同类项,那么m+n的值为()A.5 B.6 C.7 D.812,用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2 B.(3a﹣b)2 C.3a﹣b2 D.(a﹣3b)2 13,如图是一个运算程序:,如果输入的x值为﹣2,则输出的结果为()A.6 B.﹣6 C.14 D.﹣1414,我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100 B.﹣3(100﹣x)=100C.3x﹣=100 D.3x+=10015,有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<0 D.a÷b>0二,填空题(每小题3分,共15分)16,如果是一个正文体的表面展开图,则原正方体中“喜”面所对面上的字是。

南阳市七年级上学期数学期末试卷及答案-百度文库

南阳市七年级上学期数学期末试卷及答案-百度文库

南阳市七年级上学期数学期末试卷及答案-百度文库一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×1062.﹣3的相反数是()A.13-B.13C.3-D.33.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是()A.1个B.2个C.3个D.4个4.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()A.171 B.190 C.210 D.3805.计算32a a⋅的结果是()A.5a;B.4a;C.6a;D.8a.6.已知线段 AB=10cm,直线 AB 上有一点 C,且 BC=4cm,M 是线段 AC 的中点,则 AM 的长()A.7cm B.3cm C.3cm 或 7cm D.7cm 或 9cm7.方程3x+2=8的解是()A.3 B.103C.2 D.128.﹣3的相反数是()A.13-B.13C.3-D.39.按如图所示图形中的虚线折叠可以围成一个棱柱的是()A.B.C.D.10.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .311.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 14.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.15.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省南阳市2019年七年级上学期数学期末教学质量检测试题(模拟卷二)
一、选择题
1.ABC 中BC 边上的高作法正确的是( )
A. B.
C. D.
2.如果一个角等于60°,那么这个角的补角是( )
A .30° B.60° C.90° D.120°
3.如图,直线AB 与CD 相交于O ,0
,,DOF 57⊥⊥∠=OE CD OF AB ,则∠BOE 是( )
A.43°
B.47°
C.57°
D.33°
4.某车间有56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,y 名工人生产螺母,每天生产的螺栓和螺母按1∶2配套,下面所列方程组正确的是( )
A.5621624x y x y +=⎧⎨⨯=⎩
B.5622416x y y x +=⎧⎨⨯=⎩
C.281624x y x y +=⎧⎨=⎩
D.362416x y x y +=⎧⎨=⎩
5.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( )
A .﹣2x 2+y 2
B .2x 2﹣y 2
C .x 2﹣2y 2
D .﹣x 2+2y 2
6.如图,题中图形是用棋子按照一定规律摆成的,按照这种摆法,第n 个图形中共有棋子( )
A .2n 枚
B .(n 2+1)枚
C .(n 2-n )枚
D .(n 2+n )枚 7.下列说法错误的是( )
A .5y 4是四次单项式
B .5是单项式
C .24
3
a b 的系数是13 D .3a 2+2a 2b ﹣4b 2是二次三项式 8.一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的
成本价是( ) A .150元 B .80元 C .100元 D .120元
9.计算:3(-= )
A.3
B.-3
C.1
3 D.-1
3
10.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )
A.84.610⨯
B.84610⨯
C.94.6
D.94.610⨯
11.在数轴上表示有理数a ,b ,c 的点如图所示.若ac<0,b+a<0,则一定成立的是
A.|a|>|b|
B.|b|<|c|
C.b+c<0
D.abc<0 12.将方程
去分母,得( )
A.
B.
C.
D.
二、填空题
13.计算:21°17′×5=___________.(结果用度、分、秒表示)
14.若一个角比它的补角大36°48',则这个角为______°_____'.
15.日历上竖列相邻的三个数,它们的和是39,则第一个数是_____.
16.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.
17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.
18.把四张大小相同的长方形卡片(如图①)按图②、图③两种放法放在一个底面为长方形(长比宽多
6)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C 2,图③中阴影部分的周长为C 3,则C 2-C 3=______.
19.绝对值不大于4.5的整数有________.
20.计算:2
1()2-=______.
三、解答题
21.如图,∠AOD =120°,∠2=2∠1=60°,
求:(1)∠DOC 的度数;(2)∠BOD 的度数.
22.如图①所示,将一副三角尺的直角顶点重合在点O 处.
(1)①∠AOD 和∠BOC 相等吗?(不要求说明理由)
②∠AOC 和∠BOD 在数量上有何种关系?(不要求说明理由)
(2)若将这副三角尺按如图②摆放,三角尺的直角顶点重合在点O 处.
①∠AOD 和∠BOC 相等吗?说明理由;
②∠AOC 和∠BOD 在数量上有何种关系?说明理由.
23.(8分)在A 、B 两地之间要修一条笔直的公路,此工程由甲、乙、丙三支施工队伍共同建设.已知甲单独做要30天完成,乙单独做要12天完成,丙单独做要15天完成.甲、丙先合做了4天后,甲因事离去,由乙和丙完成剩下工作,那么还需要几天才能完成?
24.(1)先化简,再求值32225(3)3(5)a b ab ab a b --+,其中13
a =,12
b =-. (2)有一道题是一个多项式减法“2146x x +-”,小强误当成了加法计算,得到的结果是
“223x x -+”,请求出正确的计算结果.
25.(1)计算:(1572912
-+)×(﹣36) (2)计算:100÷(﹣2)2﹣(﹣2)÷(﹣
23) (3)化简:(﹣x 2+3xy ﹣212y )﹣(﹣12x 2+4xy ﹣32
y 2) (4)先化简后求值:x 2+(2xy ﹣3y 2)﹣2(x 2+yx ﹣2y 2),其中x=﹣
12,y=3. 26.先阅读下面的材料,再回答后面的问题: 计算:10÷(12-13+16
). 解法一:原式=10÷
12-10÷13+10÷16=10×2-10×3+10×6=50; 解法二:原式=10÷(36-26+16
)=10÷26=10×3=30; 解法三:原式的倒数为(12-13+16)÷10 =(12-13+16)×110=12×110-13×110+16×110=130 故原式=30.
(1)上面得到的结果不同,肯定有错误的解法,你认为解法 是错误的。

(2)请选择一种上述的正确方法解决下面的问题: 计算:(128-)÷(111124714
-+-). 27.计算题: (1)23+17+(-7)+(-16);(2)(-5
14)+(-3.5); (3)(+23)+(-34
);(4)23+(-15)+(-1)+13. 28.一套仪器由一个A 部件和三个B 部件构成,用1m 3钢材可做40个A 部件或240个B 部件,现要用6m 3钢材制作这种仪器,为使所做的A 部件和B 部件刚好配套,则做A 部件和B 部件的钢材各需多少m 3?
【参考答案】***
一、选择题
13.106°25′
14.24
15.
16.15
17.1
18.12
19.±4,±3,±2,±1,0.
20. SKIPIF 1 < 0 .
解析:1
4

三、解答题
21.(1) 60°;(2) 150°.
22.(1)①相等;②互补;(2)①相等,理由见解析;②互补,理由见解析.23.还需要4天才能完成
24.(1)2
8ab
-,
2
3
-;(2)2915
x
-+.
25.(1)-19;(2)22;(3)﹣1
2
x2﹣xy+y2;(4)8
3
4

26.(1)一;(2)
1 9 -
27.(1)17(2)-8.75(3)-
1
12
(4)-
1
5
28.为使所做的A部件和B部件刚好配套,则应用4m3钢材做A部件,2m3钢材做B部件.。

相关文档
最新文档