九年级数学锐角三角函数的专项培优练习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学锐角三角函数的专项培优练习题及答案
一、锐角三角函数
1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且
10
cos B =. (1)求AB 的长度;
(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.
(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.
【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】
【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;
(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=
1
3
,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,
∵AB=AC ,AF ⊥BC ,∴BF=CF=1
2BC=1, 在RtΔAFB 中,BF=1,∴AB=10
cos 10
BF B == (2)连接DG ,
∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,
连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,
∴FG=
13

∴AD•AE=AF•AG=AF•(AF+FG)=3×10
=10;
3
(3)连接CD,延长BD至点N,使DN=CD,连接AN,
∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,
∴∠ADC=∠ADN,
∵AD=AD,CD=ND,
∴△ADC≌△ADN,
∴AC=AN,
∵AB=AC,∴AB=AN,
∵AH⊥BN,
∴BH=HN=HD+CD.
【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.
2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.
(1)求∠CAO'的度数.
(2)显示屏的顶部B'比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?
【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.
【解析】
试题分析:(1)通过解直角三角形即可得到结果;
(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得
BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;
(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.
试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,
∴sin∠CAO′=,
∴∠CAO′=30°;
(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,
∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,
∠CAO′=30°,
∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,
∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,
∴显示屏的顶部B′比原来升高了(36﹣12)cm;
(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,
理由:∵显示屏O′B与水平线的夹角仍保持120°,
∴∠EO′F=120°,
∴∠FO′A=∠CAO′=30°,
∵∠AO′B′=120°,
∴∠EO′B′=∠FO′A=30°,
∴显示屏O′B′应绕点O′按顺时针方向旋转30°.
考点:解直角三角形的应用;旋转的性质.
3.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.
图1 图2
【答案】(1)BE="FH" ;理由见解析
(2)证明见解析
(3)=2π
【解析】
试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明
(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长
试题解析:(1)BE=FH.理由如下:
∵四边形ABCD是正方形∴∠B=90°,
∵FH⊥BC ∴∠FHE=90°
又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°
∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF
∴△ABE≌△EHF(SAS)
∴BE=FH
(2)∵△ABE≌△EHF
∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"
∴CH=FH
∴∠FCH=45°,∴∠FCM=45°
∵AC是正方形对角线,∴∠ACD=45°
∴∠ACF=∠FCM +∠ACD =90°
(3)∵AE=EF,∴△AEF是等腰直角三角形
△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°
过E作EN⊥AC于点N
Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=
Rt△ENA中,EN =
又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)
∴∠EAC=30°
∴AE=
Rt△AFE中,AE== EF,∴AF=8
AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°
=2π·4·(90°÷360°)=2π
考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数
4.在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.
(1)若点P在线CD上,如图1,
①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;
(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)
【答案】(1)①如图;②AH=PH,AH⊥PH.证明见解析(2)或
【解析】
试题分析:(1)①如图(1);②(1)法一:轴对称作法,判断:AH=PH,
AH⊥PH.连接CH,根据正方形的每条对角线平分一组对角得:△DHQ等腰Rt△,根据平移的性质得DP=CQ,证得△HDP≌△△HQC,全等三角形的对应边相等得PH=CH,等边对等角得∠HPC=∠HCP,再结合BD是正方形的对称轴得出∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.
(2)轴对称作法同(1)作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°
∴∠DCH=17°.设DP=x,则.由代入HR,CR解方程即可得出x的值. 四点共圆作法,A、H、D、P共向,∴∠APD=∠AHB=62°,
∴.
试题解析:(1)①
法一:轴对称作法,判断:AH=PH,AH⊥PH
证:连接CH,得:△DHQ等腰Rt△,又∵DP=CQ,∴△HDP≌△△HQC,∴PH=CH,∠HPC=∠HCP
BD为正方形ABCD对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.
法二:四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.
(2)法一:轴对称作法
考虑△DHQ等腰Rt△,PD=CQ,作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,
∴∠DAH=17°
∴∠DCH=17°.设DP=x,则.
由得:,∴.即PD=
法二:四点共向作法,A、H、D、P共向,∴∠APD=∠AHB=62°,
∴.
考点:全等三角形的判定;解直角三角形;正方形的性质;死电脑共圆
5.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.
(1)求菱形ABCD的周长;
(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;
(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.
【答案】解:(1)在菱形ABCD中,
∵AC⊥BD,AC=80,BD=60,∴。

∴菱形ABCD的周长为200。

(2)过点M作MP⊥AD,垂足为点P.
①当0<t≤40时,如答图1,
∵,
∴M P=AM•sin∠OAD=t。

S=DN•MP=×t×t=t2。

②当40<t≤50时,如答图2,MD=70﹣t,
∵,
∴MP=(70﹣t)。

∴S△DMN=DN•MP=×t×(70﹣t)=t2+28t=(t﹣35)2+490。

∴S关于t的解析式为。

当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480;当40<t≤50时,S随t的增大而减小,最大值不超过480。

综上所述,S的最大值为480。

(3)存在2个点P,使得∠DPO=∠DON。

如答图3所示,过点N作NF⊥OD于点F,
则NF=ND•sin∠ODA=30×=24,
DF=ND•cos∠ODA=30×=18。

∴OF=12。

∴。

作∠NOD的平分线交NF于点G,过点G作GH⊥ON于点H,
则FG=GH。

∴S△ONF=OF•NF=S△OGF+S△OGN=OF•FG+ON•GH=(OF+ON)•FG。

∴。

∴。

设OD中垂线与OD的交点为K,由对称性可知:∠DPK=∠DPO=∠DON=∠FOG,∴。

∴PK=。

根据菱形的对称性可知,在线段OD的下方存在与点P关于OD轴对称的点P′。

∴存在两个点P到OD的距离都是
【解析】
试题分析:本题考查了相似三角形的判定与性质、菱形、等腰三角形、中垂线、勾股定理、解直角三角形、二次函数极值等知识点,涉及考点较多,有一定的难度.第(2)问中,动点M在线段AO和OD上运动时,是两种不同的情形,需要分类讨论;第(3)问中,满足条件的点有2个,注意不要漏解.
(1)根据勾股定理及菱形的性质,求出菱形的周长;
(2)在动点M、N运动过程中:①当0<t≤40时,如答图1所示,②当40<t≤50时,如答图2所示.分别求出S的关系式,然后利用二次函数的性质求出最大值;
(3)如答图4所示,作ON的垂直平分线,交EF于点I,连接OI,IN.过点N作
NG⊥OD,NH⊥EF,垂足分别为G,H.易得△DNG∽△DAO,由EF垂直平分OD,得到OE=ED=15,EG=NH=3,再设OI=R,EI=x,根据勾股定理,在Rt△OEI和Rt△NIH中,得到关于R和x的方程组,解得R和x的值,把二者相加就是点P到OD的距离,即PE=PI+IE=R+x,又根据对称性可得,在BD下方还存在一个点P′也满足条件,故存在两个点P,到OD的距离也相同,从而问题解决.
试题解析:(1)如图①)在菱形ABCD中,OA=AC=40, OD=BD=30,
∵AC⊥BD,
∴AD==50,
∴菱形ABCD的周长为200;
(2)(如图②)过点M作MH⊥AD于点H.
① (如图②甲)①当0<t≤40时,
∵sin∠OAD===,
∴MH=t,
∴S=DN·MH=t2.
②(如图②乙)当40<t≤50时,
∴MD=80-t,
∵sin∠ADO=-,
∴MH=(70-t),
∴S=DN·MH,
=-t2+28t
=-(t-35)2+490.
∴S=,
当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480.当40<t≤50时,S随t的增大而增大,当t=40时,最大值为480.综上所述,S的最大值为480;
(3)存在2个点P,使得∠DPO=∠DON.
(如图④)作ON的垂直平分线,交EF于点I,连接OI,IN.
过点N作NG⊥OD,NH⊥EF,垂足分别为G,H.
当t=30时,DN=OD=30,易知△DNG∽△DAO,
∴NG=24,DG=18.
∵EF垂直平分OD,
∴OE=ED=15,EG=NH=3,
设OI=R,EI=x,则
在Rt△OEI中,有R2=152+x2……①,
在Rt△NIH中,有R2=32+(24-x)2……②,
由①,②可得:,
∴PE=PI+IE=.
根据对称性可得,在BD下方还存在一个点P′也满足条件,
∴存在两个点P,到OD的距离都是.
考点:相似性综合题.
6.水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.
【答案】故大坝的截面的周长是(345)米,面积是1470平方米.
【解析】
试题分析:先根据两个坡比求出AE和BF的长,然后利用勾股定理求出AD和BC,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC,梯形的面积公式可得出答案.
试题解析:∵迎水坡坡比(DE与AE的长度之比)为1:0.6,DE=30m,
∴AE=18米,
在RT△ADE中,22
+34
DE AE
∵背水坡坡比为1:2,
∴BF=60米,
在RT△BCF中,22
+5
CF BF
∴周长345(345)米,
面积=(10+18+10+60)×30÷2=1470(平方米).
故大坝的截面的周长是(634+305+98)米,面积是1470平方米.
7.已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D作⊙O的切线交AC于E.
(1)求证:AE=CE
(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.
(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=3
4
,DE=
39
4
时,N
为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.
【答案】(1)详见解析;(2)详见解析;(3)
4013
13 NL
【解析】
【分析】
(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.
(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.
(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=4
3
a,再由相交弦定理
得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.
【详解】
解:
(1)证明:如图1中,连接AD.
∵AB是直径,
∴∠ADB=∠ADC=90°,
∵EA、ED是⊙O的切线,
∴EA=ED,
∴∠EAD=∠EDA,
∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,
∴ED=EC,
∴AE=EC.
(2)证明:如图2中,连接AD.
∵AC是切线,AB是直径,
∴∠BAC=∠ADB=90°,
∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,
∵∠EDC=∠C,
∴∠BAD=∠EDC,
∵∠DBF=∠DAF,
∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.
(3)解:如图3中,
由(1)可知,DE=AE=EC,∵DE=39
4

∴AC=39
2

∵tan∠ABC=3
4

AC
AB


39 32 4AB ,
∴AB=26,
∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=4
3
a,∵GH•HF=BH•AH,
∴4a2=4
3a(26﹣
4
3
a),
∴a=6,
∴FH=12,BH=8,AH=18,
∵GH=HF,
∴AB⊥GF,
∴∠AHG=90°,
∵∠NFH+∠CAF=∠AHG,
∴∠NFH+∠CAF=90°,
∵∠NFH+∠HLF=90°,
∴∠HLF=∠CAF,
∵AC∥FG,
∴∠CAF=∠AFH,
∴∠HLF=∠AFH,
∵∠FHL=∠AHF,
∴△HFL∽△HAF,
∴FH2=HL•HA,
∴122=HL•18,
∴HL=8,
∴AL
=10,BL=16,FL=
∵LN•LF=AL•BL,

LN=10•16,
∴LN=
13
.
【点睛】
本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.
8.如图①,抛物线y=ax2+bx+c经过点A(﹣2,0)、B(4,0)、C(0,3)三点.
(1)试求抛物线的解析式;
(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;
(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233
384
y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为3
34
y x =
+或3
34
y x =--.
【解析】 【分析】
(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=4
5
PC ,所以5PA+4PC =5(PA+
4
5
PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=
18
5
,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】
解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣
38
∴抛物线解析式为y =﹣
38(x+2)(x ﹣4)=﹣38x 2+34
x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90°
∵∠DCP =∠OCB ∴△CDP ∽△COB ∴
PC PD
BC OB
= ∵B (4,0),C (0,3)
∴OB
=4,OC =3,BC ∴PD =
45
PC ∴5PA+4PC =5(PA+
4
5
PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB•OC =1
2
BC•AE ∴AE =
6318
55
AB OC BC ⨯==n ∴5AE =18
∴5PA+4PC 的最小值为18.
(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,
∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q
∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°
∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =
3
5
FQ TF = ∵Rt △FGQ 中,cos ∠QFT =
3
5
FG FQ = ∴FG =
35FQ =95
∴x Q =1﹣9455=-,QG 125==
①若点Q 在x 轴上方,则Q (412
55
-,)
设直线l解析式为:y=kx+b

40 412 55 k b
k b
-+=



-+=
⎪⎩
解得:
3
4
3
k
b

=


⎪=

∴直线l:33
4
y x
=+
②若点Q在x轴下方,则Q(
412
55
--,)
∴直线l:33
4
y x
=--
综上所述,直线l的解析式为
3
3
4
y x
=+或
3
3
4
y x
=--
【点睛】
本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论
9.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.
(1)求证:∠EPD=∠EDO;
(2)若PC=3,tan∠PDA=
3
4
,求OE的长.
【答案】(1)见解析;(25.【解析】
【分析】
(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=3
4
,可求出CD=2,进而求得
OC=3
2
,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.
【详解】
(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,
∵DE⊥PO,
∴∠PAO=∠E=90°,
∵∠AOP=∠EOD,
∴∠APO=∠EDO,
∴∠EPD=∠EDO.
(2)连接OC,
∴PA=PC=3,
∵tan∠PDA=3
4

∴在Rt△PAD中,
AD=4,22
PA AD
+,∴CD=PD-PC=5-3=2,
∵tan∠PDA=3
4

∴在Rt△OCD中,
OC=3
2

22
OC CD
+
5
2

∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,
∴PD
DO =
PE
DE
=
DE
OE
=2,
∴DE=2OE,
在Rt △OED 中,OE 2
+DE 2
=OD 2
,即5OE 2
=2
52⎛⎫ ⎪⎝⎭
=254,
∴OE=
5
2

【点睛】
本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan ∠PDA=
3
4
,得线段的长是解题关键.
10.阅读下面材料:
观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sin B =AD c ,sin C =AD
b
,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即
sin sin b c B C = .同理有:sin sin c a
C A
=,sin sin a b A B
=,所以sin sin sin a b c
A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.
(1)如图,△ABC 中,∠B =75°,∠C =45°,BC =60,则AB = ;
(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB . (3)在(2)的条件下,试求75°的正弦值.(结果保留根号)
【答案】(1)206;(2)15
6海里;(3)6+2
4
. 【解析】 【分析】
(1)根据材料:在一个三角形中,各边和它所对角的正弦的比相等,写出比例关系,代入数值即可求得AB 的值.
(2)此题可先由速度和时间求出BC 的距离,再由各方向角得出∠A 的角度,过B 作BM ⊥AC 于M ,求出∠MBC=30°,求出MC ,由勾股定理求出BM ,求出AM 、BM 的长,由勾股定理求出AB 即可;
(3)在三角形ABC 中,∠A=45,∠ABC=75,∠ACB=60,过点C 作AC 的垂线BD ,构造直角三角形ABD ,BCD ,在直角三角形ABD 中可求出AD 的长,进而可求出sin75°的值. 【详解】
解:(1)在△ABC 中,∠B=75°,∠C=45°,BC=60,则∠A=60°, ∵AB sinC =sin BC
A , ∴
45AB sin o =60
sin60o
, 即2 =3,
解得:AB=206. (2)如图,
依题意:BC=60×0.5=30(海里) ∵CD ∥BE , ∴∠DCB+∠CBE=180° ∵∠DCB=30°, ∴∠CBE=150° ∵∠ABE=75°.
∴∠ABC=75°,∴∠A=45°,
在△ABC中,
sin AB ACB
∠=
BC
sin A
∠即60?
AB
sin
=
30
45?
sin,
解之得:AB=156.
答:货轮距灯塔的距离AB=156海里.
(3)过点B作AC的垂线BM,垂足为M.
在直角三角形ABM中,∠A=45°,6,
所以3BDC中,∠BCM=60°,BC=30°,可求得CM=15,所以3,
由题意得,15315
75
sin o

6
60
sin o
,sin75°=
6+2
4

【点睛】
本题考查方向角的含义,三角形的内角和定理,含30度角的直角三角形,等腰三角形的性质和判定等知识点,解题关键是熟练掌握解直角三角形方法.
11.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣6,0),点
C在y轴正半轴上,且cos B=3
5
,动点P从点C出发,以每秒一个单位长度的速度向D点
移动(P点到达D点时停止运动),移动时间为t秒,过点P作平行于y轴的直线l与菱形的其它边交于点Q.
(1)求点D坐标;
(2)求△OPQ的面积S关于t的函数关系式,并求出S的最大值;
(3)在直线l移动过程中,是否存在t值,使S=3
20ABCD
S
菱形
?若存在,求出t的值;若
不存在,请说明理由.
【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =
24(04)220
(410)3
3t t t t t ⎧⎪
⎨-+<⎪⎩剟
…,S 的最大值为503.(3)3或7. 【解析】 【分析】
(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,2220
1233
t t -+= 【详解】
解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =
35
, 10cos OB
BC B
∴=
= 228OC BC OB ∴=-=∵四边形ABCD 为菱形,CD ∥x 轴, ∴点D 的坐标为(10,8).
(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示.
①当0≤t ≤4时,PQ =OC =8,OQ =t ,
∴S =1
2PQ •OQ =4t ,
∵4>0,
∴当t =4时,S 取得最大值,最大值为16;
②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:
4k b 010k b 8+=⎧⎨
+=⎩,解得:4k 3
16b 3⎧=⎪⎪⎨⎪=-⎪⎩

∴直线AD 的解析式为41633
y x =-. 当x =t 时,416
33
y t =
-, 4164
8(10)3
33PQ t t ⎛⎫∴=--=- ⎪⎝⎭
21220
233
S PQ OP t t ∴=
⋅=-+ 22202502
(5),033333S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为
503
. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)3
3t t t t t ⎧⎪
⎨-+<⎪⎩剟
…,S 的最大值为503.
(3)S 菱形ABCD =AB •OC =80. 当0≤t ≤4时,4t =12, 解得:t =3; 当4<t ≤10时,2220
33
t t -
+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =
3
20
ABCD S 菱形,t 的值为3或5+7.
【点睛】
考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.
12.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .
(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3
tan 4
F =
时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203
CF =. 【解析】 【分析】
(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;
(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;
②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=4
3
BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =3
4
,即可求出CF . 【详解】
解:(1)AB 是O e 的直径,且D 为O e 上一点,
90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,
180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.
42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴.
CE DB ⊥Q , OC CF ∴⊥.
又OC Q 为O e 的半径, CF ∴为O e 的切线.
②由(1)知//CF AD ,
BAD F ∴∠=∠,
3tan tan 4
BAD F ∴∠==, 3
4
BD AD ∴
=. 6BD =Q
4
83
AD BD ∴==,
226810AB ∴=+=,5OB OC ==.
OC CF Q ⊥, 90OCF ∴∠=︒,
3
tan 4OC F CF ∴==,
解得203
CF =. 【点睛】
本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.
13.现有一个“Z “型的工件(工件厚度忽略不计),如图所示,其中AB 为20cm ,BC 为60cm ,∠ABC =90,∠BCD =60°,求该工件如图摆放时的高度(即A 到CD 的距离).(结果精确到0.1m ,参考数据:
≈1.73)
【答案】工件如图摆放时的高度约为61.9cm.
【解析】
【分析】
过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.
【详解】
解:如图,过点A作AP⊥CD于点P,交BC于点Q,
∵∠CQP=∠AQB,∠CPQ=∠B=90°,
∴∠A=∠C=60°,
在△ABQ中,∵AQ=(cm),
BQ=AB tan A=20tan60°=20(cm),
∴CQ=BC﹣BQ=60﹣20(cm),
在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,
∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),
答:工件如图摆放时的高度约为61.9cm.
【点睛】
本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.
14.
如图,△ABC中,AC=BC=10,cosC=3
5
,点P是AC边上一动点(不与点A、C重合),
以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.
(1)当⊙P与边BC相切时,求⊙P的半径.
(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.
(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.
【答案】(1)
40
9
R=;(2)2
5
880
320
x
y x x
x
=-+
+
(3)505
-
【解析】【分析】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=3
5
,则
sinC=4
5
,sinC=
HP
CP

10
R
R
-

4
5
,即可求解;
(2)首先证明PD∥BE,则EB BF
PD PF
=,即:20
2
4
588
x y
x
x
x
-+
--
=,即可求解;
(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=5
【详解】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,
连接HP,则HP⊥BC,cosC=3
5
,则sinC=
4
5

sinC=HP
CP

10
R
R
-

4
5
,解得:R=
40
9

(2)在△ABC中,AC=BC=10,cosC=3
5

设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,
则BH=ACsinC=8,
同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2,BP=22
8+(4)
x-=2880
x x
-+,
DA=25
x,则BD=45﹣25x,
如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,
tanβ=2,则cosβ
5,sinβ
5

EB =BDcosβ=(45﹣25
x )×5=4﹣25
x ,
∴PD ∥BE ,
∴EB BF
PD PF
=,即:202
4588x y x x
x y
-+--=,
整理得:y =
25x
x 8x 803x 20
-++;
(3)以EP 为直径作圆Q 如下图所示,
两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦, ∵点Q 是弧GD 的中点, ∴DG ⊥EP , ∵AG 是圆P 的直径, ∴∠GDA =90°, ∴EP ∥BD ,
由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG =EP =BD ,
∴AB =DB+AD =AG+AD =5 设圆的半径为r ,在△ADG 中, AD =2rcosβ5DG 5
AG =2r , 5=52r 51
+, 则:DG 5
50﹣5 相交所得的公共弦的长为50﹣5 【点睛】
本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.
15.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=43,过A,D两点作⊙O,交AB于点E,
(1)求弦AD的长;
(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?
(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.
【答案】(1)23
(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形
(3)不变,理由见解析
【解析】
【分析】
(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;
(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后
根据含30°的直角三角形三边的关系得DN=1
2
3
3

当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,
∠DEA=60°,DE=2,于是OE=DE=2,OH=1,
又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到
∠DNO=45°,根据等腰直角三角形的性质得到33;
(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得
∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,3DP-DQ的值.
【详解】
解:(1)∵∠BAC=90°,点D是BC中点,BC=3
∴AD=1
2
BC=3
(2)连DE、ME,如图,∵DM>DE,
当ED 和EM 为等腰三角形EDM 的两腰,
∴OE ⊥DM ,
又∵AD =AC ,
∴△ADC 为等边三角形,
∴∠CAD =60°,
∴∠DAO =30°,
∴∠DON =60°,
在Rt △ADN 中,DN =
12AD ,
在Rt △ODN 中,ON =3
DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形;
当MD =ME ,DE 为底边,如图3,作DH ⊥AE ,
∵AD =
∠DAE =30°,
∴DH ∠DEA =60°,DE =2,
∴△ODE 为等边三角形,
∴OE =DE =2,OH =1,
∵∠M =∠DAE =30°,
而MD =ME ,
∴∠MDE =75°,
∴∠ADM =90°﹣75°=15°,
∴∠DNO =45°,
∴△NDH 为等腰直角三角形,
∴NH =DH
∴ON ﹣1;
综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;
(3)当⊙O 变动时DP ﹣DQ 的值不变,DP ﹣DQ =.理由如下:
连AP 、AQ ,如图2,
∵∠C =∠CAD =60°,
而DP ⊥AB ,
∴AC ∥DP ,
∴∠PDB =∠C =60°,
又∵∠PAQ =∠PDB ,
∴∠PAQ =60°,
∴∠CAQ =∠PAD ,
∵AC =AD ,∠AQC =∠P ,
∴△AQC ≌△APD ,
∴DP =CQ ,
∴DP﹣DQ=CQ﹣DQ=CD=23.
【点睛】
本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.。

相关文档
最新文档