山东省济宁市兖州区2018届九年级数学下学期学业模拟考试试题(一)(扫描版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济宁市兖州区2018届九年级数学下学期学业模拟考试试题(一)
兖州第一次模拟考试数学参考答案及评分标准
一、选择题(每小题3分,共30分)
1——10题:1.A.2.B.3.D.4.A.5.D.6.A.7.D.8.B. 9.C. 10.C
二、填空题(每小题3分,共15分)
11.6700000=6.7×106.12.2(2a+1)(2a﹣1).13.丙.14.(﹣2,).15.45.
三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.
16.(5分)解:原式=1﹣6×+3﹣2……………………4分(算对一个知识点得1分)
=﹣1.……………………5分
17. (7分)解:(1)由两种统计表可知:总人数=4÷10%=40人,
∵3D打印项目占30%,
∴3D打印项目人数=40×30%=12人,
∴m=12﹣4=8,
∴n=40﹣16﹣12﹣4﹣5=3,
故答案为:8,3;……………………2分
(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,
故答案为:144;……………………4分
(3)列表得:
由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.
所以P( 1名男生、1名女生)=.……………………7分
18. (7分)解:(1)如图所示,射线CM即为所求;
……………………3分
(2)∵∠ACD=∠ABC,∠CAD=∠BAC,
∴△ACD∽△ABC,
∴=,即=,
∴AD=4.……………………7分
19.(8分)解:(1)设y与x之间的函数解析式为y=kx+b,
,
得,
即y与x之间的函数表达式是y=﹣2x+200;……………………3分
(2)由题意可得,
W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,
即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;……………………6分
(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,
∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,
当x=70时,W取得最大值,此时W=1800,
答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.……………………8分
20.(8分)解:(1)∵点A的坐标为(m,2),A C平行于x轴,
∴OC=2,AC⊥y轴,
∵OD=OC,
∴OD=1,
∴CD=3,
∵△ACD的面积为6,
∴CD•AC=6,
∴AC=4,即m=4,……………………2分
则点A的坐标为(4,2),将其代入y=可得k=8,……………………4分
∵点B(2,n)在y=的图象上,
∴n=4;……………………6分
(2)如图,过点B作BE⊥AC于点E,则BE=2,
∴S△ABC=AC•BE=×4×2=4,
即△ABC的面积为4.……………………8分
21.(9分)解:(1)如图①,延长AE交DC的延长线于点F,
∵AB∥DC,
∴∠BAF=∠F,
∵E是BC的中点,
∴CE=BE,
在△AEB和△FEC中,
,
∴△AEB≌△FEC,
∴AB=FC,
∵AE是∠BAD的平分线,
∴∠DAF=∠BAF,
∴∠DAF=∠F,
∴DF=AD,
∴AD=DC+CF=DC+AB,
故答案为:AD=AB+DC;……………………3分(2)AB=AF+CF,
证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,
∴CE=BE,
∵AB∥DC,
∴∠BAE=∠G,
在△AEB和△GEC中,
,
∴△AE B≌△GEC,
∴AB=GC,
∵AE是∠BAF的平分线,
∴∠BAG=∠FAG,
∵AB∥CD,
∴∠BAG=∠G,
∴∠FAG=∠G,
∴FA=FG,
∴AB=CG=AF+CF;……………………6分
(3)AB=(CF+DF),
证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,
∴△AEB∽△GEC,
∴==,即AB=CG,
∵AB∥CF,
∴∠A=∠G,
∵∠EDF=∠BAE,
∴∠FDG=∠G,
∴FD=FG,
∴AB=CG=(CF+DF).……………………9分
22.(11分)解:(1)∵CD∥x轴,CD=2,
∴抛物线对称轴为x=1.
∴.……………………1分
∵OB=OC,C(0,c),
∴B点的坐标为(﹣c,0),
∴0=c2+2c+c,解得c=﹣3或c=0(舍去),
∴c=﹣3;……………………3分
(2)设点F的坐标为(0,m).
∵对称轴为直线x=1,
∴点F关于直线l的对称点F的坐标为(2,m).
由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴E(1,﹣4),
∵直线BE经过点B(3,0),E(1,﹣4),
∴利用待定系数法可得直线BE的表达式为y=2x﹣6.
∵点F在BE上,
∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);……………………7分(3)存在点Q满足题意.
设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.
作QR⊥PN,垂足为R,
∵S△PQN=S△APM,
∴,
∴QR=1.
①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).
∴在Rt△QRN中,NQ2=1+(2n﹣3)2,
∴时,NQ取最小值1.此时Q点的坐标为;
②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).
同理,NQ2=1+(2n﹣1)2,
∴时,NQ取最小值1.此时Q点的坐标为.
综上可知存在满足题意的点Q,其坐标为或.…………11分。