工程实例说明热网运行中的水力计算方法

合集下载

供热工程》第5章热水供暖系统的水力计算

供热工程》第5章热水供暖系统的水力计算

供热工程》第5章热水供暖系统的水力计算
一、热水供暖系统水力计算的基本原理
热水供暖系统水力计算是根据物理流体流动的基本原理,通过正确的方法,解决热水供暖系统每个回路部分的水力参数问题,以保证供暖系统的正常运行。

水力参数的计算是热水供暖系统设计中必不可少的,水力计算可以求出:
1.水流量,即总进出水量及每支管道的流量;
2.水压,即系统压力,每个环节的压力,以及最大和最小的压力;
3.管道长度,即当前系统的总长度及每支管道的长度;
4.水力损失,即每支管道的水力损失;
5.管道直径,即每支管道的外径及内径;
6.管材的选择,即根据水流量,压力和水力损失等参数选择合适的管材,确定系统的一致性;
7.扬程,即每支管道的扬程及总体扬程;
8.系统功率,即整个系统功率。

二、热水供暖系统水力计算的步骤
1.获取热水供暖系统的基本参数,包括系统回路数、每个回路总长、循环水量、供暖热水温度差等;
2.确定管道长度,包括机组与循环泵之间的管路长度,以及每个回路的长度;
3.计算水流量,确定每个回路的水流量;
4.选择管材。

供热管网水力平衡计算及分析

供热管网水力平衡计算及分析

供热管网水力平衡计算及分析1 问题的提出中南建筑设计院西区(生活区)集中低温热水采暖系统于1991年完成设计及施工,并于当年年底投入运行。

系统运行至今已有十年,大大改善了我院职工的生活条件。

但该热水采暖系统自运行之初起,就存在着热力失衡问题。

后随着用户的增加,管网作用半径的增大,随着燃煤蒸汽锅炉、汽-水换热器、热水循环泵运行效率的降低,也随着采暖系统阀件及沿程管道性能的弱化,采暖系统运行效率降低,热力失衡问题越来越严重,具体表现在管网末端用户的采暖效果越来越差。

为配合我院沿街开发的形势,院西区两栋临街多层住宅拆除,由于采暖用户(以下均指单栋或单元建筑)减少采暖外网须相应调整,此举可部分程度缓解采暖系统效果恶化情况,但热力管网水力失衡问题尚未得到解决。

2 管网水力计算及平衡分析基于上述原因,我们对院西区采暖热网进行水力计算及分析,拟采取水力平衡阀等技术措施对该采暖热网进行水力平衡,以期改善西区整体采暖效果。

2.1 计算条件已知条件(1)外网各环路管段管径及沿程长度,各单位采暖设计热负荷及总设计热负荷。

各环路用户采暖热负荷说“表1”表一1,34,7北大28单29单幼儿幼儿用户名称单元单元单元单元单元板元元园南园北热负荷126.1 126.1 160.0 51.0 33.6 44.1 38.0 70.7 70.7 78.2 (kw) 续表一3334357,1011,14中南海15,21用户名称 23户中单单元单元单元单元单元单元热负荷(kw) 55.7 60.9 60.9 155.8 184.7 184.7 527.6 115.0(2)各环路用户室采暖水系统所需资用压头,由各单体采暖设计图纸及资料获得,参见“表四”及“表五”中“用户所需资用压头”项。

假定条件:(1)由于锅炉及换热器效率的降低,根据该系统运行经验采暖供水最高温度为80?,最大供回水温差15,18?。

采暖供回水温度取80/60?。

(2)由于系统运行多年外管内壁粗糙度增大,外管内壁粗糙度取K=0.5mm。

供热工程-第九章 热水网络的水力计算及水压图

供热工程-第九章 热水网络的水力计算及水压图
1、 利用水压曲线, 可以确定管道中任何一点的压力值; 2、利用水压曲线,可以表示出各管段的压力损失值
2 P P2 v12 v2 1 ( ) + ( Z1 - Z 2 ) + ( ) = D H1- 2 rg rg 2g 2g
由于流速差别不大, 所以在公式中, 可以忽略流速 水头的差,
( P P 1 - 2 ) + ( Z1 - Z 2 ) = D H1- 2 , 所以 D H1- 2 =两点的测压管水头的高 rg rg
度之差。 3、根据坡度可以确定管段的单位管长的压降的大小; 4、只要已知或固定管路上任意一点的压力,管路中其 它各点的压力也就已知或固定。
四、热水供暖系统的水压图
1、一般水压图包括以下内容 (1) 、横坐标表示供热系统的管段单程长度,以米为单位。
ì 下半部:表示供热系统的纵向标高,包括管网,散热器, ï ï ï ï 循环水泵,地形及建筑物的标高.对于室外热水 ï ï ï ï 供热系统,当纵坐标无法将供热系统组成表示 ï ï 清楚时,可在水压图的下部标出供热系统示意图. (2) 、纵坐标 ï í ï ï ï 上半部:供热系统的测压管水头线,包括动水压线(表示供 ï ï ï 热系统在运行状态下的压力分布)和静水压线(在 ï ï ï ï 停止运行的压力分布). ï î
2 P v12 P2 v2 1 + Z1 + = + Z2 + + D H1- 2 rg 2g r g 2g
v12r P 1 + Z1r g + 2
——总水头
P1 rg
——压强水头
Z1
——位置水头 ——测压管水头
2
P 1 + Z1 rg
D H1- 2

第一讲热水网路水力计算与实验-精选文档

第一讲热水网路水力计算与实验-精选文档

1)对只有供暖热负荷的热水供暖系统,用户的计算流量 可用下式确定:
(9-13) 2)对具有多种热源用户的并联闭式热水供热系统,采用 按供暖热负荷进行集中质调节时,网路计算管道的设计 流量应按下式计算:
t/h
Q Q Q n t r G G G G A ( ) t/h (9-14) z h n t r 1 2 1 2 . t 1 2 . r
0.19
dbi
(9-8)
(9-9)
K b i lshd l l . b i.d b i.d m s h K
0 .2 5
(9-10)
PR ( l l ) R l 此时, d z h
Pa
(9-11)
在进行估算时,局部阻力的当量长度 l d 可按管道实际长度 l 百分数来计算。 的
[例题9-1]某厂区热水供热系统,网路的计算供水温度 =130℃,计算回水温度=70℃。用户P、F、D的设计 热负荷分别为:3.518、2.513和5.025GJ/h。 热用户内部阻力损失为 Pa。试进行改热水网路的水 力计算(见图9-2)。
第三节 水压图的基本概念
水力计算只能确定热水 管道中各管段的压力损失 (压差)值,但不能确定 热水管道上各点的压力 (压头)值。通过绘制水 压图的方法,可以清晰地 表示出热水管路中各点的 压力。总水头线与测压管 水头线:图9-3
Pa / m
(9-2) (9-3) (9-4)
m
t/h
0 .5 2 2 5 ( R ) d.6 G 1 2 .0 6 t 0 .1 2 5 K 其中 K 0.5 mm 。
当计算时可采用附录9-1,若条件不同时,则有: (1)K 值不同的修正 0 .2 5 K s h R m R Pa / m R s h b i b i b i K o n s t) (2) 不同的修正( Gc

热力管网工程水力计算

热力管网工程水力计算

热力管网工程水力计算一、水力计算5.1 计算条件与计算参数5.1.1 依据热用户对蒸汽参数的要求,确定管网水力计算参数如下:(1)中压负荷:最大蒸汽流量 171.2t/h;最小蒸汽流量 144t/h。

(2)低压负荷:最大蒸汽流量 193.8t/h;最小蒸汽流量 150.8t/h。

5.1.2 计算中需要控制的参数如下:末端低压用户参数:P:~0.5MPa,T:150~180℃;末端中压用户参数:P:2.3~2.4MPa,T:230~240℃。

5.2 热网工程系统水力计算5.2.1 水力计算依据本项目设计根据近期最大负荷确定管径,综合投资比较,确定最优管径方案。

至用户的管径是根据用户的参数要求、负荷情况确定的。

5.2.2 水力计算结果最小负荷144t/h 时,从电厂以3.3MPa,365℃外供,主管管径DN700,能够满足各用户的参数需求。

最大负荷193.8t/h 时,从电厂以1.6MPa,285℃外供,主管管径DN800,能够满足各用户的参数需求。

最大负荷150.8t/h 时,从电厂以1.35MPa,305℃外供,主管管径DN800,能够满足各用户的参数需求。

5.2.3 水力计算结果汇总表5.2.3-1 水力计算结果汇总表5.2.4 安全运行负荷管道在超低负荷运行时,管道沿途和用户末端会产生大量冷凝水,为避免水击撞管造成管道系统破坏,适当位置设大流量连续疏水,保证冷凝水及时排出同时加强沿途管网安全巡视,保障管网疏排水的畅通和对周围环境的安全防护。

此外,管道在超低负荷运行状态下管损十分突出,对管道实际运行的经济性将大大折扣。

根据管网设计计算要求,通过水力计算模拟结果确定管网运行的安全负荷临界位置;结合本项目热网布置特点,运行热负荷流量主要集中在管网中后段金峰镇的风阳工业园区范围内(图F 、G 点附近),该处集中分布中压约50%的热负荷和低压约40%的热负荷,通过计算该位置在最低负荷运行状态下介质过热程度可作为衡量项目管网的安全运行状态的重要依据;通过水力计算得出低压运行负荷在最大设计负荷50%状态下(流量约97t/h ),末端参考点(F 、G 点)的介质参数近似饱和状态;中压运行负荷在最大设计负荷45%状态下(流量约77t/h ),末端参考点(F 、G 点)的介质参数近似饱和状态;考虑风阳工业园区内介质参数为理论计算的末端参数,实际运行需要对此处及后段管网沿途设置大流量连续疏水,加强运行巡视等工作;此状态下低压流量设定为低压参数管网最低安全运行负荷。

供热工程第九章热水网络的水力计算和水压图

供热工程第九章热水网络的水力计算和水压图

(1)、横坐标表示供热系统的管段单程长度,以米为单位。
下半部:表示供热系统的纵向标高,包括管网,散热器,
循环水泵,地形及建筑物的标高.对于室外热水
供热系统,当纵坐标无法将供热系统组成表示
(2)、纵坐标
清楚时,可在水压图的下部标出供热系统示意图.
上半部:供热系统的测压管水头线,包括动水压线(表示供
热系统在运行状态下的压力分布)和静水压线(在
(4)画动水压线
O点处的压头不论在系统工作时还是停止运 行时,都是不变的,等于膨胀水箱的高度, 那么动压线的起点与静压线在此处重合, 即图中的O点。当系统工作时,由于水泵驱 动水在系统中循环流动,A点的测压管水头 必然高于O点的测压管水头,两者之间的差 值就是OA的压力损失,这样A点的测压管 水头就确定了,即图中的点,同理可以确 定其它各点的测压管水头高度。
二、绘制热水网路水压图的步骤和方法
1、以网路循环水泵的中心线的高度(或其它方便的高度) 为基准面,一定的比例尺作出标高的刻度。
2、选定静水压曲线的位置。 静水压曲线是网路循环水泵停止工作时,网络上
各点的测压管水头的连接线,是一条水平的直线,静 水压曲线的高度必须满足下列的技术要求: (1)、在与热水网路直接连接的用户系统内,底层散热 器的所承受的静水压力不应超过散热器的承压能力。 (2)、热水网路及与它直接连接的用户系统内,不会出 现汽化和倒空。
一、热水网路压务状况的基本技术要求
1、在与热水网路直接连接的用户系统内,压 力不应超过该用户系统用热设备及其管道 构件的承压能力。(保证设备不压坏)
如柱形铸铁散热器的承压能力 4 105为Pa, 作用在该用户系统最底层散热器的表压力, 无论在网络运行或停止运行时都不得超过 Pa。 4 105

热网水力计算讲解

热网水力计算讲解
G
式中
3.6Q ct g t h
G ———管段计算流量, t h ;
Q ———计算管段的热负荷, kW ;
t g , t h ———热水管网的设计供、回水温度, C ;
c ———水的比热容,取 c 4.187kJ
kg C 。

模块一
集中供热管网施工
(2)确定热水管网的主干线及其沿程比摩阻 热水管网水力计算是从主干线开始计算的,主干线是管网 中平均比摩阻最小的一条管线。通常,热水管网各用户 要求预留的作用压差是基本相同的,所以从热源到最远
方形补偿器3 12.5 37.5m 总当量长度ld 42.34m
模块一
(3)支线计算
集中供热管网施工
管段 BE 的资用压差为:
P 14627 26767 Pa BE P BC P CD 12140
设局部损失与沿程损失的估算比值 j 0.6 ,则比摩阻大致可控制为
R P 1 j ) 26767 / 70(1 0.6) 239Pa / m BE / l BE (
' 根据 R ' 和 GBE 14t / h ,由表 2.1 查得
DN BE 70m m , RBE 278 .5Pa / m; v 1.09m / s
管段 BE 中局部阻力的当量长度 l d ,查热水网路局部阻力当量长度表。得: 三通分流: 1 3.0 3.0m ;方形补偿器 2 6.8 13 .6m ;闸阀 2 1.0 2.0m , 总当量长度 l d 18.6m 管段.6m 管段 BE 的压力损失
P .5 88.6 24675 Pa BE Rm l zh 278
用同样方法计算支管 CF 。

供热工程9.2 热水网络水力计算方法和例题

供热工程9.2  热水网络水力计算方法和例题

第二节热水网络水力计算方法和例题热水网络水力计算所需资料:1.网路的平面布置图(平面图上应标明管道所有的附件和配件);2.热用户热负荷的大小;3.热源的位置以及热媒的计算温度。

热水网路的水力计算方法及步骤:1.确定热水网路中各个管段的计算流量管段的计算流量就是该管段所负担的各个用户的计算流量之和,以此计算流量确定管段的管径和压力损失。

1)对只有供暖热负荷的热水供暖系统,用户的计算流量可用下式确定:(9—13)式中'nQ ——供暖用户系统的设计负荷,通常可用GJ/h 、MW 或610kcal/h;'1τ、'2τ——网路的设计、回水温度,℃;c——水的质量比热,c=4.1868kj/(kg·℃)=1kcal/(kg·℃)A——采用不同计算单位系数;2)对具有多种热源用户的并联闭式热水供热系统,采用按供暖热负荷进行集中质调节时,网路计算管道的设计流量应按下式计算:(9—14)式中'shG ——计算管段的设计流量,t/h ;'n G 、't G 、'r G ——计算管段担负供暖、通风、热水供应的热负荷设计流量,t/h ;'nQ 、't Q 、'r Q ——计算管段担负的供暖、通风和热水供应的设计热负荷,通常可以GJ/h 、MW 或610kcal/h 表示;A——采用不同计算单位时的系数;'''1τ——在冬季通风室外设计算温度'w.tt 时的网路供水温度,℃;'''t .2τ——在冬季通风室外设计算温度'w.t t 时,流出空气加热器的网路回水温度,采用与供暖热负荷质调节时相同的回水温度,℃;''1τ——供热开始或开始间歇调节时的网路供水温度,℃;''2.rτ——供热开始或开始间歇调节时,流出热水供应的水-水换热器的1212()()n n n Q Q G A c ττττ'''==''''--121 2.1 2.()n t r shn t r t r Q Q Q G G G G A ττττττ'''''''=++=++''''''''''''---网路回水温度,℃。

热网水力计算讲解

热网水力计算讲解

模块一 集中供热管网施工
管段BC DN? 125mm 管段CD DN? 125mm 直流三通1? 4.4? 4.4m 直流三通1? 3.3? 3.3m 异径接头1? 0.44? 0.44m 异径接头1? 0.33? 0.33m 方形补偿器3? 9.8 ? 29.4m 方形补偿3器?12.5? 37.5m 总当量长l度d ? 42.34m
3 .6 Q
? ? G ? c tg ? th
式中
G ———管段计算流量,
t h;
Q ———计算管段的热负荷,
kW ;
t g , t h ———热水管网的设计供、回水温度,
c ———水的比热容,取
? ? c ? 4 . 187 kJ kg ? ? C 。
?C ;
模块一 集中供热管网施工
(2)确定热水管网的主干线及其沿程比摩阻 热水管网水力计算是从主干线开始计算的,主干线是管网
2 ? 6 . 8 ? 13 . 6 m ;闸阀 2 ? 1 . 0 ? 2 . 0 m ,
总当量长度
l d ? 18 . 6 m
管段 BE 的折算长度 管段 BE 的压力损失
管段 的管径和相应的比摩阻 值。
模块一 集中供热管网施工
? 管段 中局部阻力的当量长度 ,可由热水网路局部阻力当量长度表查 出,
? 闸阀 ;方形补偿器 ; ? 局部阻力当量长度之和 ? 管段 的折算长度 ? 管段 的压力损失 ? ? 用同样的方法,可计算干线的其余管段 、 ,确定其管径和压力损失
。 ? 管段 和 的局部阻力当量长度 值如下:
学习项目二 热网水力计算
模块一 集中供热管网施工
单元2
热网水力计算
一、热水供热管网水力计算的步骤

第八章 热水网路的水力计算和水压图

第八章 热水网路的水力计算和水压图

[例题9—1]
2.热水网路主干线计算 因各用户内部的阻力损失相等,所以从热源到最远用户D的管线是主干线。 首先取主干线的平均比摩阻在R=40一80 Pa/m范围之内,确定主干线各管段的 管径。 管段AB:计算流量根据管段AB的计算流量和R值的范围,从附录9-1中可确定 管段AB的管径和相应的比摩阻R值。
HE'D'
D'
HD'B'C'
E'
HB'A'
HjE'
C'
静水压曲线
j j
B' A'
D' j
j
j
HjB Hjc
HA'j
1
j
1
C
B F B' A'
C
B 0'
HjE
Hjo
HjD
动水压曲线
HjA
D
D
3
E E
3
o A o
2
o o
2
A
0'
图9-4 室内热水供暖系统的水压图 1-膨胀水箱;2-循环水泵;3-锅炉
图9-5 膨胀水箱连接在热水供暖系统 供水干管上的水压图 1-膨胀水箱;2-循环水泵;3-锅炉
热水网路水力计算的方法及步骤



2.确定热水网路的主干线及其沿程比摩阻热水网路水力计算是 从主干线开始计算。网路中平均比摩阻最小的一条管线,称为 主干线。在一般情况下,热水网路各用户要求预留的作用压差 是基本相等的,所以通常从热源到最远用户的管线是主干线。 主干线的平均比摩阻R值,对确定整个管网的管径起着决定性 作用。 根据《热网规范》,在一般的情况下,热水网路主干线的设计 平均比摩阻,可取40一80Pa/m进行计算。对于采用间接连接的 热水网路系统,根据北欧国家的设计与运行经验,采用主干线 的平均比摩阻值比上述规定的值高,有达到l00Pa/m的。

供热管道网络设计中的水力计算方法

供热管道网络设计中的水力计算方法

供热管道网络设计中的水力计算方法供热管道网络设计中的水力计算方法是工程专家和国家专业建造师在设计供热系统时必须考虑的一个重要步骤。

水力计算是为了保证热水在管道中的顺畅流动和供热回路中的合理供热分配。

本文将从供热管道网络水力计算的意义、常用计算方法和实际案例三个方面展开论述。

首先,供热管道网络设计中的水力计算具有重要的意义。

合理的水力计算能够确保供热系统的正常运行、高效运行和安全运行。

在供热管道网络设计中,我们需要考虑到热水的流量、流速、压力损失、水头、泵的选择等因素。

通过水力计算,我们可以确定管道的直径、流量分配、泵的参数等关键参数,从而保证供热系统能够满足设计要求。

其次,供热管道网络设计中常用的水力计算方法有很多种。

其中,最常见的方法包括简化法、系数法和模型法。

简化法是指采用经验公式和经验系数来进行水力计算,它简便快捷,但精度相对较低。

系数法是指根据实际情况选择一些系数进行计算,能够提高计算精度。

模型法是指利用专业软件模拟整个供热系统,根据实际情况进行精确计算。

这些方法各有优缺点,在实际工程设计中需要根据具体情况选择最合适的方法。

最后,我们来看一个实际的案例。

某小区供热管道网络设计中,需要进行水力计算以确定管道的直径和泵的参数。

根据小区的总热负荷和供热回路的数量,我们利用系数法进行水力计算。

首先,我们需要根据小区的总热负荷和供热回路的数量计算出每个回路的热负荷。

然后,根据每个回路的热负荷和回路的长度,计算出回路的水力压力损失。

接下来,我们需要根据回路的水力压力损失和泵的特性曲线,选择合适的泵。

最后,根据泵的参数和管道的水力特性,确定供热管道的直径。

总结起来,供热管道网络设计中的水力计算是一个重要的环节,它直接关系到供热系统的运行效果和运行安全。

在设计过程中,我们可以根据具体情况选择简化法、系数法或模型法等不同的计算方法。

通过合理的水力计算,我们可以确定供热管道的直径和泵的参数,从而保证供热系统的正常运行和高效供热。

热水系统讲配水管网水力计算

热水系统讲配水管网水力计算

热水系统讲配水管网水力计算热水系统的配水管网水力计算是确定管网的水力特性参数,以保证热水在管网中的正常运行和供热效果。

本文将从计算方法、影响因素和实例分析等方面详细介绍热水系统配水管网水力计算。

一、计算方法热水系统的配水管网水力计算可以采用管道流量法或优化法进行。

管道流量法是根据管道的流量、水力特性和水力损失来计算管网的水力参数。

而优化法则是根据设计参数和约束条件来确定最佳的管径和流量分配,以达到最大节能效果。

管道流量法计算步骤如下:1.确定供热点和回水点的温度差,一般取设计温差;2.根据供热点和回水点的流量和设计温差,计算供热点的热负荷;3.根据供热点的热负荷和热水的流动速度,计算供热点和回水点的流量;4.根据管道的长度、直径和水力特性,计算管道的水力损失;5.根据管道的水力损失和流量,计算管道的水力参数,如流速、水头损失和压力损失。

优化法计算步骤如下:1.设定管径的上下限,根据设计条件和约束条件确定管径的范围;2.根据管径的范围,选择合适的流量分配系数,如等比流量分配法或力对比法;3.根据流量分配系数和供热点的热负荷,计算供热点和回水点的流量;4.根据管径和流量,计算管道的水力损失;5.根据管道的水力损失和管径,判断管径是否满足设计要求,如果不满足,则进行下一次优化计算,直到满足设计要求为止。

二、影响因素热水系统配水管网水力计算的结果受到多个因素的影响,包括管径、管道长度、管材、流量和水力特性等。

管径是影响热水系统水力计算的重要因素,过小的管径会导致管网阻力增大,水力损失加大;而过大的管径则会增加成本和能耗。

因此,在计算过程中需要合理选择管径。

管道长度也会影响热水系统水力计算的结果。

长管道会增加水力压力损失,导致供水压力不足;而短管道则会减少水力损失,提高供水压力。

因此,在计算过程中需要准确测量管道长度。

管材的选择也会对热水系统的水力计算产生影响。

不同材质的管道具有不同的摩擦阻力和水力特性,因此需要根据实际情况选择合适的管材。

供热网路水力计算

供热网路水力计算
上一页 下一页 返回
任务一 供热网路水力计算基本原理
• 每个管段的压力损失应为沿程损失与局部损失之和。即
• 供热管网的总损失,按阻力叠加方法,就应等于各串联管段总损失之 和。即
上一页
返回
任务二 热水网路的水力计算
• 室外热水供热管网的水力计算是在确定了各用户的热负荷、热源位置 及热媒参数,并且绘制出管网平面布置计算图后进行的。绘制管网平 面布置图时,须标注清楚热源与各热用户的热负荷(或流量)等参数 ,计算管段长度及节点编号、管道附件、补偿器以及有关设备位置等 。
• 对选用d/DN<0.2的孔板,调压板的孔径可近似按下式计算:
上一页 下一页 返回
任务二 热水网路的水力计算
• 对选用d/DN >0.2的调压板,宜根据有关节流装置的专门资料 ,利用计算公式或线算图来选择调压板的孔径。
• 调压板的孔径较小时,易于堵塞,而且调压板不能随意调节,手动调 节阀门,运行效果较好。手动调节阀门阀杆的启升程度,能调节要求 消除的剩余压头值,并对流量进行控制。此外,装设自控型的流量调 节器,自动消除剩余压头,保证用户的流量。
• 一、沿程压力损失的计算
• 沿程压力损失是由沿程阻力而引起的能量损失,而沿程阻力是流体在 断面和流动方向不变的直管道中流动时产生的摩擦阻力。
• 单位长度沿程损失,可根据达西—维斯巴赫公式计算:
• 实际工程计算中往往已知流量,则流速可用流量来表示:
上一页 下一页 返回
任务一 供热网路水力计算基本原理
• 对网水压图,进而控制和调整供热管网的水力工况 ,并为确定管网与用户的连接方式提供依据。
• 根据流体力学的基本原理可知,水在管道内流动,必然要克服阻力产 生能量损失。
下一页 返回

热水网路水力计算方法

热水网路水力计算方法

第六步、进行管网水力计算
水力计算的主要任务是: (1)按已知的热媒流量和压力损失,确定管道
的直径; (2)按已知热媒流量和管道直径,计算管道的
压力损失; (3)按已知管道直径和允许压力损失,计算或
校核管道中的流量。
第七步、确定管网敷设方式
• 管道敷设方式一般分为地上和地下两种方式,
第八步、进行管道热补偿设计、管 道活动及固定支架跨距及强度计算
第二步、确定设计范围及设计原则
• 1. 设计的指导思想和设计原则。 • 2. 设计规范及对以后发展或扩建的考虑。 • 3. 供热的协作关系。 • 4.改建、扩建工程,应说明对原有管线的
拆除、更换和利用情况。 • 5. 主干线要靠近热负荷集中的区域设置,
以利于节约管材 • 和减少地沟内的中途热损失。

5.管道制作、安装、保温等费用,一般为设备费的20%~40%。(根据
系统的复杂程度来确定)。
•6.土建费用(应另行计源自)。•7.工程设计费,取以上所有费用合计的2.5%~3%。

8.工程的其他费用(包括各种税费、工程临时设施费、冬雨季施工费、
利润等),一般取以上所有费用合计的5%~8%。

上述所有费用之和即工程总造价。
热力网管道的热补偿设计,应考虑如下各点: 1. 充分利用管道的转角等进行自然补偿。 2. 采用弯管补偿器或轴向波纹管补偿器时,应考虑安装时的冷
紧。 3. 采用套筒补偿器时,应计算各种安装温度下的安装长度,保
证管道在可能出最高和最低温度下,补偿器留有不小于20mm 的补偿余量。 4. 采用波纹管轴向补偿器时,管道上应安装防止波纹管失稳的 导向支座,当采用套筒补偿器、球形补偿器、铰接波纹管补 偿器,补偿管段过长时,亦应在适当地点设导向支座。 5. 采用球形补偿器、铰接波纹管补偿器,且补偿管段较长时, 宜采取减小管道摩擦力的措施。 6. 直埋敷设管道,宜采用无补偿敷设方式。 7. 管道活动、固定支架允许跨度计算应按强度及刚度两个条件 确定,取其最小值作为最大允许跨距。

热网水力工况实验报告

热网水力工况实验报告

热网水力工况实验报告热网水力工况实验报告实验一热网水力工况实验一、实验目的1.了解不同水力工况下热网水压图的变化情况,巩固热水网路水力工况计算的基本原理。

2.能够绘制各种不同工况下的水压图。

3.了解和掌握热网水力工况分析方法,验证热网水压图和水力工况的理论。

二、实验原理在室外热水网路中,水的流动状态大多处于阻力平方区。

流体的压力降与流量、阻抗的关系如下:流体压降与流量的关系?P?SV2 ?H?SHV2并联管路流量分配关系V1:V2:V3?水力失调度X?V变V正常1s1?P变:1s2?:1s3?H变?H正常P正常式中?P——管网计算管段的压力降,Pa;H——管网计算管段的水头损失,mH2O;3V——网路计算管段的水流量m/h;S——管路计算管段的阻力数,Pa/(m3/h)2;SH——管路计算管段的阻力数,mH2O/(m3/h)2;V变—工况变化后各用户的流量m3/h;V正常—正常工况下各用户的流量m3/h;?P变?H变,—工况变化后各用户资用压力;?P正常?H正常,—正常工况下各用户的资用压力;三、实验设备及实验装置1、测压玻璃管2、阀门3、管网(以细水管代替暖气片)4、锅炉(模型)5、循环水泵6、补给水箱7、稳压罐8、膨胀水箱9、转子流量计图1 热网水力工况实验台示意图四、实验步骤1.运行初调节先打开系统中的手动放气阀,然后启动水泵。

待系统充满水,膨胀水箱水位到达所需的定压高度后,关闭阀门L,保持水箱水位稳定。

调节供水干管和各支管(代表用户)的阀门,使各节点之间有适当的压差,待系统稳定后记录各点的压力和流量,并依此绘制正常工况水压图。

2.节流总阀门缓慢关小供干管上的总阀门A,待系统稳定后,记录新工况下各点的压力和水流量,绘制新水压图,并与正常水压图进行比较。

3.节流供水干管中途阀门将总阀A恢复原状,使水压图变回正常工况,不一定强求与原来的正常水压图完全吻合,待系统稳定后,记录下各点的压力和水流量。

供热工程课程设计-水力计算

供热工程课程设计-水力计算

水力计算(以右支路为例)1、 在轴测图上进行管段编号,立管编号并注明各管段的热负荷和管长,如图1所示。

2、 确定最不利环路,本系统为异程式单管系统,一般取最远立管的环路做为最不利环路,如图1,两个支路的最不利环路为是从人口到立管IV 和入口到立管VI ,这个环路包括管段1到管段6到管段15和管段1到管段11到管段15。

3、 计算最不利环路各管段的管径采用平均比摩阻pj R 大致为60~120Pa/m 来确定最不利环路各管段的管径,首先根据''0.86QG hg t t -=确定各管段的流量,根据G 和选用的pj R 值,查附录表4-1,将查出的各管段d 、R 、v 值列入表1的水力计算表中,最后算出最利环路的总压力损失,右支路:Pa 6681)P P (6,15~1j y =∆+∆∑入口处的剩余循环压力,用调节阀节流消耗掉.4、 确定立管Ⅲ的管径立管Ⅲ与末端供回水干管和立管IV,即管段4、5为并联环路,根据并联环路节点压力平衡原理,立管Ⅲ的资用压力'IIIP ∆可由下式确定:)Pa P -P ()P P (P 'III 'IV 4,5j y 'III ∆∆-∆+∆∑=∆由于两根立管各层热负荷的分配比例大致相等,'III'IV P P ∆=∆,因而a P 3264)P P (P 4,5j y 'III =∆+∆∑=∆立管Ⅲ的平均比摩阻为m a l R pj /P 7.977.1632645.0P 5.0'III =⨯=∑∆=根据pj R 和G 值,选立管Ⅲ的立、支管管径,取DN15×15,计算出立管Ⅲ的总压力损失2333Pa,与立管IV 的并联环路相比,其不平衡百分率%5.28X III =,超过允许值,剩余压头用立管阀门消除。

5、 确定立管Ⅱ的管径立管Ⅱ与管段3~6并联,同理,资用压力Pa 4015)P P (P 6~3j y 'II =∆+∆∑=∆立管选用管径DN20×20,计算结果,立管Ⅱ总压力损失2099Pa,不平衡百分率%7.47X II =超过允许值,剩余压头用立管阀门消除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1 中 山 路地 区一 级 管 网现 状 图
3 . 1 . 1 供、 回水 流量按 下式计 算
管 道长 度 、 计 算 管道 长度 、 各 段管 径 等数 据分
G = 3 . 6 [ Q / C( T h ) ] x l O 式中: G ——供、 回水设计 流量 , t / h :
1 项 目概 况
根 据管 网实 际运 行情 况 , 一 级 网供 、 回水 计 算温 度 : l 1 0  ̄ C / 7 0  ̄ C, 供、 回水 温差 4 0 o C: 群 众 路 热 源 厂 锅 炉 现 状 及 运 行 参 数 要
求: ( 1 ) 锅 炉参数 : 2 0 1 1 年 度运行 一 台 7 0 MW
9 — —设 计热 负荷 , MW ; 水 的 比热 , 4 . 1 8 6 k J / k g  ̄ C;

( 1 )
别 填人 绘制好 的水力 计算 表 中 ,再 查询设 计 手册中的“ 热 水 管道 水 力 计 算 表 ” , 根据 相 应 的管段 管径 对照 表 中 的参 数 查 到该段 的热水
路 热 源供 热 负担 ,将 原 玉涧 堡供 热 区域 的中 山路 地 区切换 至 群众 路 西线 管 网供 热 。为 了 寻找 一个 合理 切 换点 ,对群 众路 西 线至 引 渭 路 一级 主管 道进 行 了本 次水 力计 算 。
2 计 算依 据和 资料 供 热 管 网水 力计 算 依据 《 城 市 热力 网设
宝 鸡 市集 中供 热 工程 根 据 区域 划分 为 多
个 热 源厂 分 区供热 , 管 网 已实 现 了部 分联 网 。 为 了实 现 多热 源联 网供热 ,需对 管 网进 行 详 细 的水 力计 算 和校 核 计算 ,找 出适 合 的切 换 阀 门的位 置 。 目前 群 众路 热 源 与玉 涧堡 热 源
热 水锅炉 , 最 小额定 流量 7 0 0 t / h 。 ( 2 ) 循 环泵 参数 : 流量 Q = 2 4 0 0 m 3 / h扬 程 H= 8 4 m 2台 ( 一

, 9一
区域 供 热
2 0 1 3 . 2期
用一 备 )
群 众路 及 中 山路地 区现 状热 负 荷及 潜在
AP - = ( 1 + a ) R・ L x l O
至计 算 终点 的单 管外 网总 阻力损 失计 算 了 出 来, 则供 、 回水 的循 环外 网 总阻力 就是 表 中合 计 总压 降 的 2倍 , 再 折算 成扬 程 , 就 可与 我们 允 许 的压 降或扬 程进 行对 比了 , 至此 , 水 力计 算 表计算 完成 。
区域 供 热
2 01 3 . 2期
工程 实例说 明热 网运行 中的水力计算方法
陕 西省 宝鸡 市热 力有 限责任公 司 黄建 春
中铁 宝桥 股份 有 限公 司 张

【 摘 要 】根 据 工程 实例 说 明 了两热 源联 网时 管 网水 力计 算 及校 核 计 算 的全 过
程, 选取 了合理 的切 换 阀位置 , 并根 据 具体 情 况提 出 了切 合 实际 可行 的解 决 方案 , 实
计规范》 ( C J J 3 4 — 2 0 0 0 ) 进 行 计算 , 管 网局 部 阻
力 损失 的计 算采用 当量长度 法计 算 。
整 理 出计 算 所需 的基础 技术 资 料 .具 体
计 算参 数和 资料 如下 :
核计算 及 解决 相关 问题 的具 体 过程 ,和大 家
共 同讨 论学 习 。
去确定 各 管段 的管径 、阻力 损 失 以及 网路 的
总 阻力 损 失 , 选 择循 环水泵 的扬 程 。分析 和计 算热 水 网路 的水 力工 况 时正 好 相反 ,是对 已 经设计 完 毕 的或需 要 改 扩建 的热 网 ,在 已知 循 环水 泵 的 型号 以及 各 管段 的 管径 时 ,来 确 定各 管段 和热用 户 的流量 。 用 以下 工 程 实 例 举 例 说 明水 力 计 算 、 校
流 量 Q= 1 2 0 0 m3 / h扬 程 H= 8 1 m 1台 ( 前
期) 宝鸡 市群 众 路西 线 至引 渭路 一级 网供 热 现状 管径 、 长度及 变径位 置见 图 1 :
热 负荷 , 2 0 1 0年 度 一级 管 网沿线 换 热 站供 热 热 负荷情 况见 图 1 。 3 水力计 算说 明 3 . 1 水 力计算 公式
从 图 1中 的管 径 标 示 及 变 径 方 向 可 看
践 后取 得 了良好 的供 热效 果 。
【 关 键词 】 水 力言
的管 网已实 现联 网 ,可 对群 众路 热 源 与玉 涧 堡 热 源 的供 热实 行切 换 。由于 玉涧 堡热 源 的 供 热 热负 荷 已饱 和 ,需 要 由新建 的群众 路 热 源 对 中山路供 热 区域 进 行分 区供 热 。为 了使
流速、 比摩 阻 , 填 人 我们 用 于计算 的水 力计 算
表 中, 再根 据上 述公 式 ( 2 ) 计 算 出每 段相 应 的 阻力损 失 , 填入 表 中。表 中合 计就 将热 源 出 口
( 2 )
设计供 回水 温度 , 1 1 0 / 7 0  ̄ C 。
3 . 1 . 2 热 网阻力 损失按 下式 计算
玉涧 堡热 源 东线 的 热用 户尽 可 能 多地 由群 众
随着 我 国供 热事 业 的发 展 ,城 市 里 的用 热 区域越 来越 大 , 用 热量 也越 来 越 大 , 供热 管 网相 应 的变得 越来 越 庞 大 ,其 结构 也 越来 越
复杂 。在 管 网 的新 建 和 扩建 中 , 准确 、 迅速 的 供 热 管 网 水 力 计 算 是 实 现 高 质 量 的管 网 设 计、 施 工 以及运 行调 度 的必 要 条件 。 设 计 热水 网路 时是 用 已知 的用 户 热负 荷
相关文档
最新文档