2011高考金牌数学复习11第十一章概率

合集下载

2011年高考数学专题讲义: 概率与统计

2011年高考数学专题讲义: 概率与统计

第十一讲 概率与统计★★★高考在考什么 【考题回放】1.(重庆卷)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( )A .41 B .12079 C .43 D .2423解:可从对立面考虑,即三张价格均不相同,11153231031.4C C C P C⇒=-=选C2.(辽宁卷)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球 是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码 是偶数的概率是( ) A .122B .111C .322D .211解: 从中任取两个球共有66212=C 种取法,其中取到的都是红球,且至少有1个球的号码是偶数的取法有122326=-C C 种取法,概率为1126612=,选D.3.(广东卷) 甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。

现分别从甲、乙两袋中各随机抽取一个球,则取出的两球是红球的概率为______(答案用分数表示)解:P=64⨯61=914.(上海卷) 在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).解: 212335310C C C==3.05. 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为.(用数值作答)解:由题意知所求概率37310111522128p C ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭6.(全国II) 在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .解:在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0),正态分布图象的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率于ξ在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8。

高考文科数学第11章概率11.1 随机事件的概率

高考文科数学第11章概率11.1 随机事件的概率

【答案】 B
高考总复习·数学文科(RJ)
第十一章 概率
3.(2015·湖北)我国古代数学名著《数书九章》有“米
谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米
内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批
米内夹谷约为( )
A.134石
B.169石
C.338石
D.1 365石
【解析】 因为样品中米内夹谷的比为22584,所以这批米内夹
③是互斥事件且是对立事件. “至少有1名男生”,即“选出的2人不全是女生”,它与 “全是女生”不可能同时发生,且其并事件是必然事件,所 以两个事件互斥且对立.
高考总复习·数学文科(RJ)
第十一章 概率 题型二 随机事件的频率与概率 【例2】 (2015·北京)某超市随机选取1 000位顾客,记
录了他们购买甲、乙、丙、丁四种商品的情况,整理成如 下统计表,其中“√”表示购买,“×”表示未购买.
高考总复习·数学文科(RJ)
第十一章 概率
【解析】 ①错,不一定是 10 件次品;②错,73是频率而非概 率;③错,频率不等于概率,这是两个不同的概念.
【答案】 0
高考总复习·数学文科(RJ)
第十一章 概率
5.(教材改编)袋中装有9个白球,2个红球,从中任取3 个球,则①恰有1个红球和全是白球;②至少有1个红球和 全是白球;③至少有1个红球和至少有2个白球;④至少有 1个白球和至少有1个红球.在上述事件中,是对立事件的 为________.
高考总复习·数学文科(RJ)
第十一章 概率
(3)至多有一张移动卡包含“一张移动卡,一张联通卡”、 “两张全是联通卡”两个事件,它是“2张全是移动卡”的对 立事件,故选A.

高三数学第一轮复习第十一章概率教师用书

高三数学第一轮复习第十一章概率教师用书

§11.2互斥事件有一个发生的概率【知识概要】1.互斥事件:若事件A 与B 不可能同时发生,则事件A 与B 为互斥事件。

AB φ=2.对立事件:其中必有一个发生的互斥事件叫对立事件。

事件A 的对立事件记作A ,A A φ=,A A U =(U 为全集);3.互斥事件与对立事件的区别与联系,两个事件对立是这两个事件互斥的充分不必要条件; 4.互斥事件的加法公式:()()()P A B P A P B +=+;()()1P A P A +=;()1()P A P A =-; 【基础训练】1.从装有2个红球和2个白球的的口袋内任了两个球,那么下列事件中互斥的个数是(C ) ①至少有1个红球,都是白球;②至少有一个白球,至少有一个红球; ③恰有1个白球,恰有两个白球;④至少有一个白球;都是红球; A .0 B .1 C .2 D .3 2.甲、乙两人下棋,甲不输的概率是0.8,两人下成和棋的概率是0.5,则甲胜的概率为(A ) A .0.3 B .0.8 C .0.5 D .0.43.某班委会由4名男生与3名女生组成,现从中选出2人担任正、副班长,其中至少有1名女生当选的概率是574.若10把钥匙中只有2把能打开某锁,则从中任取2把能将锁打开的概率为1745【典型例题】例1.袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率(1)摸出2个或3个白球;(2)至少摸出一个黑球;解(1)22315353448837C C C C P C C =+=(2)45481114C P C =-= 例2.袋中有9个编号分别为1,2,…,9的小球,从中随机地取出2个,求至少有一个球的编号为奇数的概率。

解:记“从9个球中任取2个,其中恰有一个编号是奇数”为事件A ,“恰有两个球的编号是奇数”为事件B ,则1154295()9C C P A C ==,25295()18C P B C ==则555()()()9186P A B P A P B +=+=+=例3.有4位同学,每人买一X 彩票,求至少有两位同学彩票的末位数字相同的概率。

高中数学第十一章知识点复习总结(精华版)——概率

高中数学第十一章知识点复习总结(精华版)——概率

高中数学第十一章-概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验. 考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n 次独立重复试验中恰好发生κ次的概率.§11. 概率 知识要点1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K”有261522B)P(A ==⋅,因此有)B P(A P(B)P(A)⋅=⋅.推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.互斥对立iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件. ④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. 4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+第十二章-概率与统计考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样. (2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. ⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是得我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0CC C k)P(ξnNkn MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm=,则k 的范围可以写为k=0,1,…,n.〕 ⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有nb a )(+个可能结果,等可能:k)(η=含kn k k n b a C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nk n k k n =+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.二、数学期望与方差.n n 2211期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1)⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =(如图阴影部分)的曲线叫ξ的密度曲线,以其作为 图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ”是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:2221)(σσπ-=ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).S 阴=0.5S a =0.5+S。

(整理版)高中数学第十一章概率

(整理版)高中数学第十一章概率

高中数学第十一章-概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:〔1〕了解随机事件的发生存在着规律性和随机事件概率的意义.〔2〕了解等可能性事件的概率的意义,会用排列组合的根本公式计算一些等可能性事件的概率。

〔3〕了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.〔4〕会计算事件在n 次独立重复试验中恰好发生κ次的概率.§11. 概率 知识要点1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个根本领件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率n m P(A)=. 3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃〞与抽到“黑桃〞互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌〞与抽到黑色牌“互为对立事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P 〔AB 〕等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌〔52张〕中任抽一张设A :“抽到老K 〞;B :“抽到红牌〞那么 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌〞即“抽到红桃老K 或方块老K 〞有261522B)P(A ==⋅,因此有)B P(A P(B)P(A)⋅=⋅. 推广:假设事件n 21,A ,,A A 相互独立,那么)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅. 注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个互斥对立事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.④独立重复试验:假设n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,那么称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:k n k k n n P)(1P C (k)P --=. 4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+。

高考数学(文)(北师大版)大一轮复习讲义第十一章 概率第十一章 11.3

高考数学(文)(北师大版)大一轮复习讲义第十一章 概率第十一章 11.3

1.几何概型向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.借助模拟方法可以估计随机事件发生的概率. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( )A.12B.13C.14 D .1 答案 B解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东)在区间[0,2]上随机地取一个数x ,则事件“-1≤121log ()2x +≤1”发生的概率为( )A.34B.23C.13D.14 答案 A解析 由-1≤121log ()2x +≤1,得12≤x +12≤2, ∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率 P =32-02-0=34.3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.(2017·济南月考)一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是( ) A.π180 B.π150 C.π120 D.π90 答案 C解析 屋子的体积为5×4×3=60(立方米),捕蝇器能捕捉到的空间体积为18×43π×13×3=π2(立方米).故苍蝇被捕捉的概率是π260=π120.5.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________.答案 π4解析 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.题型一 与长度、角度有关的几何概型例1 (1)(2016·全国甲卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B.58 C.38 D.310(2)(2017·太原联考)在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为________. 答案 (1)B (2)13解析 (1)至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, 所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.本例(3)中,若将“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3,P (BM <1)=11+3=3-12. 思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)(2016·全国乙卷)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)B (2)16解析 (1)如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.(2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型 命题点1 与平面图形面积有关的问题例2 (2016·全国甲卷)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n 答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn ,∴π=4mn,故选C.命题点2 与线性规划知识交汇命题的问题 例3 (2016·武汉模拟)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACD S △OAB=2-142=78.(1)(2016·昌平模拟)设不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x ≤4,y ≥-2表示的平面区域为D .在区域D内随机取一个点,则此点到直线y +2=0的距离大于2的概率是( )A.413B.513C.825D.925(2)(2016·江西吉安一中第二次质检)已知P 是△ABC 所在平面内一点,4PB →+5PC →+3P A →=0,现将一粒红豆随机地撒在△ABC 内,则红豆落在△PBC 内的概率是________. 答案 (1)D (2)14解析 (1)作出平面区域D ,可知平面区域D 是以A (4,3),B (4,-2),C (-6,-2)为顶点的三角形区域.当点在△AEF 区域内时,点到直线y +2=0的距离大于2. ∴P =S △AEF S △ABC =12×6×312×10×5=925.(2)如图,令PD →=4PB →, PE →=5PC →,PF →=3P A →, 连接DE ,EF ,FD . ∵4PB →+5PC →+3P A →=0, ∴PD →+PE →+PF →=0, 即P 是△DEF 的重心,此时,△PDE ,△PEF ,△PDF 的面积相等, 则△PDE 的面积是△PBC 的面积的20倍, △PEF 的面积是△P AC 的面积的15倍, △PDF 的面积是△P AB 的面积的12倍,故△ABC 的面积是△PBC 的面积的4倍,将一粒红豆随机撒在△ABC 内,则红豆落在△PBC内的概率是14.题型三 与体积有关的几何概型例4 (1)(2016·贵州黔东南州凯里一中期末)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,则称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A.18 B.16 C.127 D.38(2)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率是( ) A.78 B.34 C.12 D.14 答案 (1)C (2)A解析 (1)由题意知小蜜蜂的安全飞行范围为以这个正方体的中心为中心,且棱长为1的小正方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞行的概率为P =127.(2)当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件去求.(2016·哈尔滨模拟)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.答案 23解析 如图,三棱锥S -ABC 与三棱锥S -APC 的高相同,要使三棱锥S -APC 的体积大于V3,只需△APC 的面积大于△ABC 的面积的13.假设点P ′是线段AB 靠近点A 的三等分点,记事件M 为“三棱锥S -APC 的体积大于V3”,则事件M 发生的区域是线段P ′B . 从而P (M )=P ′B AB =23.12.几何概型中的“测度”典例 (1)在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________.(2)在长为1的线段上任取两点,则这两点之间的距离小于12的概率为( )A.14B.12C.34D.78 错解展示解析 (1)因为∠C =90°,∠CAM =30°, 所以所求概率为3090=13.(2)两点之间线段长为12时,占长为1的线段的一半,故所求概率为12.答案 (1)13 (2)B现场纠错解析 (1)因为点M 在直角边BC 上是等可能出现的,所以“测度”是长度.设直角边长为a ,则所求概率为33a a =33.(2)设任取两点所表示的数分别为x ,y , 则0≤x ≤1,且0≤y ≤1.由题意知|x -y |<12,所以所求概率为P =1-2×12×12×121=34.答案 (1)33(2)C 纠错心得 (1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“测度”是面积.1.(2016·佛山模拟)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96,以此实验数据为依据可以估计出椭圆的面积约为( )A .16.32B .15.32C .8.68D .7.68 答案 A解析 设椭圆的面积为S ,则S 4×6=300-96300,故S =16.32.2.(2016·南平模拟)设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( )A.15B.25C.35D.45 答案 C解析 方程有实数根,则Δ=p 2-4≥0,解得p ≥2或p ≤-2(舍去), 故所求概率为P =5-25-0=35,故选C.3.(2016·四川宜宾筠连中学第三次月考)如图所示,在边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D.13 答案 B解析 正方形中随机撒一粒豆子,它落在阴影区域内的概率P =S 阴影S 正方形.又∵S 正方形=4,∴S 阴影=83,故选B.4.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形,所以△ABD 为钝角三角形的概率为1+26=12.5.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1π C.2π D.1π答案 A解析 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC . 不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整体图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.6.欧阳修的《卖油翁》中写到:“(翁)乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是________.答案49π解析 依题意,所求概率为P =12π·(32)2=49π.7.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.8.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.9.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为______.答案 12+1π解析 半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa2=12+1π.10.(2016·湖南衡阳八中月考)随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________. 答案 1-π24解析 由题意作图,如图,则点P 应落在深色阴影部分,S △=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=1-π24.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36,由a ·b =-1,得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个, 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}, 满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解 ∵函数f (x )=ax 2-4bx +1的图像的对称轴为直线x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba≤1,即2b ≤a .依条件可知事件的全部结果所构成的区域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(a ,b )⎪⎪⎪⎪⎩⎨⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分. 所求概率区间应满足2b ≤a .由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为(163,83),故所求事件的概率为P =12×8×8312×8×8=13.13.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.。

高考数学复习 第十一章 概率11章 综合测试

高考数学复习 第十一章 概率11章 综合测试

第十一章 概率综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.两个事件互斥是这两个事件对立的( )条件 ( ) A .充分非必要 B .必要非充分 C .充分必要 D .既不充分又不必要 答案:B解析:互斥、对立事件的定义,对立一定互斥而互斥不一定对立.故选B.2.一个口袋中,有红、黑、白球各一个,从中任取一个球后,再放回进行第二次抽取,这样连续抽了3次,记3次抽取球颜色不全相同的概率为P 1,3次抽取球颜色全不同的概率为P 2,3次抽取球全无红色的概率为P 3,则 ( )A .P 1=89 P 2=29 P 3=827B .P 1=89 P 2=827 P 3=29C .P 1=827 P 2=29 P 3=89D .P 1=29 P 2=89 P 3=827答案:A解析:P 1=1-3·13·13·13=89,P 2=C 13C 123×3×3=29,P 3=C 12C 12C 123×3×3=827.3.(2009·黄冈市高三年级2月质检)在正方体上任取三个顶点连成三角形,则所得的三角形是等腰三角形的概率是 ( )A.114B.17C.314D.47 答案:D 解析:依题意得,从正方体的8个顶点中任取3个顶点可形成的等腰三角形的个数按所选取的三个顶点是否来自于该正方体的同一个面来分类:(1)若所选取的三个顶点来自于该正方体的同一个面,这样的三角形共有4×6=24个;(2)若所选取的三个顶点不是来自于该正方体的同一个面,这样的三角形共有8个.而从正方体的8个顶点中任取3个顶点可形成的三角形共有C 38=56个.于是,所求的概率等于24+856=47,选D.4.(2009·湖北八校联考二)要从10名女生和5名男生中选出6名学生组成课外兴趣小组,如果按性别依比例分层随机抽样,则组成此课外兴趣小组的概率为 ( )A.C 410C 25C 615B.C 310C 35C 615C.C 615A 615D.A 410A 25C 615 答案:A解析:从10名女生和5名男生中选出6名学生组成课外兴趣小组的方法有C 615,按性别依比例分层随机抽样,则女生有4人,男生有2人,选法有C 410C 25,组成此课外兴趣小组的概率为C 410C 25C 615,故选A.5.(2009·江西,10)甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛.则甲、乙相遇的概率为( ) A.16B.14C.13 D.12答案:D解析:甲、乙在同一组:P 1=13.甲、乙不在同一组,但相遇的概率:P 2=23·12·12=16,综上所述,甲、乙相遇的概率为P =13+16=12. 6.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该食品5袋,能获奖的概率为 ( )A.3181B.3381C.4881D.5081 答案:D解析:本题考查的是古典概型,其中n =35,不能获奖的取法有C 23(25-1)种,故获奖概率P =1-C 23(25-1)35=5081,故选D. 7.某校A 班有学生40名,其中男生24人,B 班有学生50名,其中女生30人,现从A 、B 两班各找一名学生进行问卷调查,则找出的学生是一男一女的概率为 ( )A.1225B.1325C.1625D.925 答案:B解析:所找学生为A 班男生B 班女生的概率为35×35,为B 班男生A 班女生的概率为25×25.故所求概率为1325,选B.8.有一个篮球运动员投篮三次,三次投篮命中率均为35,则这个篮球运动员投篮至少有一次投中的概率是 ( )A .0.216B .0.504C .0.72D .0.936 答案:D解析:至少有一次投中的概率为1-(1-35)3=0.936,故选D.9.箱内有大小相同的6个红球和4个黑球,从中每次取1个球记下颜色后再放回箱中,则前3次恰有1次取到黑球的概率为 ( )A.12B.36125C. 310D.54125 答案:D解析:每一次取到黑球的概率均为410=25,则前3次恰有1次取到黑球的概率为C 13(25)·(35)2=54125.故选D. 10.(2009·安徽,10)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于 ( )A .1 B.12 C.13D .0答案:A解析:正方体六个面的中心任取三个只能组成两种三角形,一种是等腰直角三角形,如图甲.另一种是正三角形如图乙.若任取三个点构成的是等腰直角三角形,剩下的三个点也一定构成等腰直角三角形,若任取三个点构成的是正三角形,剩下的三点也一定构成正三角形.这是一个必然事件,因此概率为1.11.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是 ( )A.29B.118C.13D.23 答案:D解析:由题意,P (A )·P (B )=19,P (A )P (B )=P (A )P (B ),设P (A )=x ,P (B )=y , 则⎩⎪⎨⎪⎧(1-x )(1-y )=19(1-x )y =x (1-y ),即⎩⎪⎨⎪⎧1-x -y +xy =19,x =y∴x 2-2x +1=19,∴x -1=-13或x -1=13(舍去),∴x =23.12.(2010·江西重点中学模拟)连掷两次骰子得到的点数分别为m 和n ,记向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈(0,π2]的概率是( )A.512B.12C.712D.56 答案:C解析:∵m >0,n >0,∴a =(m ,n )与b =(1,-1)不可能同向. ∴夹角θ≠0.∵θ∈(0,π2]⇔a ·b ≥0,∴m -n ≥0,即m ≥n .当m =6时,n =6,5,4,3,2,1; 当m =5时,n =5,4,3,2,1; 当m =4时,n =4,3,2,1; 当m =3时,n =3,2,1; 当m =2时,n =2,1; 当m =1时,n =1.∴概率是6+5+4+3+2+16×6=712.故选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。

高考数学 复习第十一章 概率(理)北师大版

高考数学 复习第十一章  概率(理)北师大版

第十一章 概率1、从编号分别为1,2,…,9的9张卡片中任意抽取3张,将它们的编号从小到大依次记为x ,y ,z ,则y - x ≥2,z - y ≥2的概率为( )A 、13B 、512C 、14D 、5281、B【思路分析】法一:(1)当x = 1,y 分别取3 , 4 ,5 , 6 , 7时,对应的取法分别有5 , 4 , 3 , 2 , 1种;(2)当x =2,y 分别取4 , 5 , 6 , 7时,对应的取法分别有4 , 3 , 2 , 1种;……共有5种情况,故适合y – x ≥2,z – y ≥ 2的取法共有 (5+4+3+2+1) + (4+3+2+1) + (3+2+1) + (2+1) + 1 = 35种.故31035512p C ==为所求. 法二(插空法):实质是“从1 , 2 ,…,9中任取三数,求这三个数不相邻的概率”,故所求概率为37310512C p C ==.【命题分析】考查两个计数基本原理,排列、组合以及古典概型,枚举法等基础知识与方法,转化化归的数学思想.2、俊、杰兄弟俩分别在P 、Q 两篮球队效力,P 队、Q 队分别有14和15名球员,且每个队员在各自队中被安排首发上场的机会是均等的,则P 、Q 两队交战时,俊、杰兄弟俩同为首发上场交战的概率是(首发上场各队五名队员)( )A .2101 B .425 C .4225 D .412、解:P (俊首发)=145 P (杰首发)=155=31P (俊、杰同首发)=42531145=⨯ 选B 评析:考察考生等可能事件的概率与相互独立事件的概率问题。

3、一块电路板上有16个焊点,其中有2个不合格的虚焊点,但不知是哪两个,现要逐一检查,直到查出所有虚焊点为止,设K 是检查出两个虚焊点时已查焊点的个数,现有人工和机械两种方式,设人工检查时K=15的概率为1P ,机械检查时K=15的概率为2P ,则有( )A.21P P =B.21P P <C.21P P >D.不能确定 3、C 人工检查时k 的最大值为15,,当检查完前面15个焊点时就可以断定最一 个焊点的虚实情况,最后一个不需要检查,此时,当k=15时 120282142161=⨯=C P ;机械检查时,在未检查出所有虚焊点均必须继续检查,此时k =15时, 12014142162==C P , ∴ 21P P >.4、(文)一个班共有学生50人,其中男生30人,女生20人,为了了解这50名学生的身体状况有关的某项指标,今决定采用分层抽样的方法,抽取的一个容量为20的样本,则男生张某被抽取的概率是_________ . 4、 (文)52 每个人抽取的机会均等525020= .5.如图是一个正方体的纸盒纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是 A 、16B 、115C 、160D 、11205、B【思路分析】:由题易知1,6;2,5;3,4、分别填入M 、N 、P 中,有32223222A A A A ,不考虑其它条件有66A 种,则概率为3222322266115A A A A A = 【命题分析】:本题考察排列组合与概率的应用6、两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是701”,根据这位负责人的话可以推断出参加面试的人数为 ( )A 、21B 、35C 、42D 、706、(分析:设参加面试的有n 人,则他们同时被招聘的概率为701)1(6312=-=-n n C C nn ∴21=n 故选A 项)(文)一班级有学生50人,其中男生30人,女生20人,为了了解50名学生与身体状况有关的某项指标,今决定采用分层抽样的方法,抽取一个容量为20的样本,则其中某男生恰被抽中的概率是(文)(在抽样中每一个个体入样概率是相等的,所以525020==P ) 7.袋中装有4个红球和3个白球,从中一次摸出2个球,颜色恰好不同的概率为 。

高考数学复习第十一章概率11

高考数学复习第十一章概率11

符号表示
包含 关系
如果事件 A 发生,则事件 B_一__定__发__生_,这时称事件 B
__B_⊇__A___
包含事件 A(或称事件 A 包含 (或 A⊆B)
于事件 B)
相等 关系
若 B⊇A 且 A⊇B,那么称事 件 A 与事件 B 相等
A=B
5/51
定义
符号表示
若某事件发生当且仅当 并事件 _事__件__A__发__生__或__事__件___B_发__生__, A∪B
9/51
(2)某射手在同一条件下进行射击,结果如下:
射击次 10 20 50 100 200 500

击中靶 8 19 44
心次数
92 178 455
这个射手射击一次,击中靶心的概率约是___0_.9_0_____.
解析:击中靶心的频率依次为 0.8,0.95,0.88,0.92,0.89,0.91,
对立 事件
定义
符号表示
若 A∩B 为_不__可__能___事件, A∩B=∅
那么称事件 A 与事件 B 互斥
若 A∩B 为_不__可__能___事件,A ∪B 为_必 ___然____事件,那么 称事件 A 与事件 B 互为对立 事件
A∩B=∅ 且 A∪B
=U
7/51
[教材习题改编]从 6 名男生、2 名女生中任选 3 人,则下列 事件:①3 人都是男生;②至少有 1 名男生;③3 人都是女生; ④至少有 1 名女生.其中是必然事件的序号有____②______.
18/51
考点 2 随机事件的概率
19/51
1.频率和概率 (1)在相同的条件 S 下重复 n 次试验,观察某一事件 A 是否 出现,称 n 次试验中事件 A 出现的__次__数____nA 为事件 A 出现的 频数,称事件 A 出现的比例 fn(A)=nnA为事件 A 出现的频率. (2)对于给定的随机事件 A,如果随着试验次数的增加,事件 A 发生的频__率___f_n(_A_)_稳定在某个常数上,把这个常数记作 P(A), 称为事件 A 的概率,简称为 A 的概率.

高考数学复习第十一章概率11.2古典概型文本市赛课公开课一等奖省名师优质课获奖PPT课件

高考数学复习第十一章概率11.2古典概型文本市赛课公开课一等奖省名师优质课获奖PPT课件
)
8
A.15
1
B.8
1
C.15
1
D.30
关闭
密码的前两位共有 15 种可能,其中只有 1 种是正确的密码,因此所求
1
概率为 .故选 C.
15
关闭
C
解析
答案
7/32
-8知识梳理
双基自测
自测点评
1
2
3
4
5
5.记一个两位数个位数字与十位数字和为A.若A是不超出5奇数,
从这些两位数中任取一个,其个位数为1概率为
思索求古典概型概率普通思绪是怎样?
10/32
-11考点1
考点2
考点3
答案: (1)C
(2)C
解析: (1)两张卡片排在一起能组成的两位数有
12,13,20,30,21,31,共 6 个,其中奇数有 13,21,31,共 3 个,因此所组成的
3
1
两位数为奇数的概率是6 = 2,故选 C.
(2)(方法一)若认为两个花坛有区别,则总的基本事件是:红黄,白
2
(1,3),(3,9),故 a⊥b 的概率为 P(B)=9.
21/32
-22考点1
考点2
考点3
1

(2)由题意可知直线 l1 的斜率 k1=-,直线 l2 的斜率 k2=-6.
∵l1∥l2,∴k1=k2.
1

∴-=-6.∴ab=6.
∴能使 l1∥l2 的情况有(1,6),(2,3),(3,2),(6,1),共 4 种.
又总的基本事件数有 36 种.
4
1
8
∴能使 l1∥l2 的概率为 p1=36 = 9,不能平行的概率为 p2=9.

2011年高考数学 概率

2011年高考数学 概率

2011高考——概率1、四川文(理)2.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,大于或等于31.5的数据约占(A )211(B ) 13(C )12(D )232、安徽文(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A )110(B ) 18(C ) 16(D ) 153、山东文(理)8.某产品的广告费用x 与销售额y 的统计数据如下表 广告费用x (万元)4 2 35 销售额y (万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元4、新课标文(理)6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A .13B . 12C .23D .345、江西文7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( )A.e o m m x ==B.e o m m x =<C.e o m m x <<D.o e m m x <<6、江西文8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:A .1y x =-B .1y x =+C .1882y x =+D .176y =7、浙江文(8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是A .110B .310C .35D .9108、湖北文5.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间)10,12⎡⎣内的频数为A .18B .36C .54D .729、湖南文(理)5.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:由2222()110(40302030)7.8()()()()60506050n ad bc KKa b c d a c bd -⨯⨯-⨯==≈++++⨯⨯⨯算得,附表:参照附表,得到的正确结论是( )A . 有99%以上的把握认为“爱好该项运动与性别有关”B . 有99%以上的把握认为“爱好该项运动与性别无关”C . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”10、福建文4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。

高考数学复习 第十一章 第一节概率课件

高考数学复习 第十一章 第一节概率课件

下一页
末页
首页
上一页
第九页,共29页。
下一页
末页
首页
上一页
第十页,共29页。
下一页
末页
首页
上一页
第十一页,共29页。
下一页
末页
首页
上一页
第十二页,共29页。
下一页
末页
首页
上一页
第十三页,共29页。
下一页
末页
首页
上一页
第十四页,共29页。
下一页
末页
首页
上一页
第十五页,共29页。
下一页
末页
首页
上一页
第一页,共29页。
下一页
末页
首页
上一页
第二页,共29页。
下一页
末页
首页
上一页
第三页,共29页。
下一页
末页
首页
上一页
第四页,共29页。
下一页
末页
首页
上一页
第五页,共29页。
下一页
末页
首页
上一页
第六页,共29页。
下一页
末页
首页
上一页
第七页,共29页。
下一页
末页
首页
上一页
第八页,共29页。
末页
首页
上一页
第十六页,共29页。
下一页
末页
首页
上一页
第十七页,共29页。
下一页
末页
首页
上一页
第十八页,共29页。
下一页
末页
首页
上一页
第十九页,共29页。
下一页
末页
首页
上一页
第二十页,共29页。

2011年高考数学理第一轮复习精品课件第11单元概率3

2011年高考数学理第一轮复习精品课件第11单元概率3

│要点探究
【点评】求解离散型随机变量的实质是概率计算, 在基本事件等可能的情况下就是古典概型,求解古典概 型的关键是找到随机事件所包含的基本事件的个数,在 一些问题中要善于通过列表等方法解决问题.
│要点探究
变式题 从装有 6 个白球、4 个黑球和 2 个黄球的箱 中随机地取出两个球,规定每取出一个黑球赢 2 元,而每 取出一个白球输 1 元,取出黄球无输赢,以 X 表示赢得 的钱数,随机变量 X 可以取哪些值呢?求 X 的分布列.
5
9
(2,5),(1,5)
(6,6),(6,5),(6,4),(6,3),(6,2),(6,1),(5,6),
6
11
(4,6),(3,6),(2,6),(1,6)
由古典概型可知 X 的概率分布如下表所示
X1 2 3 4 5 6
1 3 5 7 9 11 P 36 36 36 36 36 36
从而 P(2<X<5)=P(X=3)+P(X=4)=356+376=13.
有 X 件次品,则事件{X=k}发生的概率为 P(X=k)=CkM·CCnNnN--kM,k
=0,1,2,…,m,其中 m=min{M,n},且 n≤N,M≤N,n,M, N∈N*,称分布列
X
0
1

m
P
C0MCnN--0M CnN
C1MCnN--1M CnN

CmMCnN--mM CnN
为超几何分布列,如果随机变量 X 的分布列为超几何分布列,
X 的值
出现的点
情况数
1 (1,1)
1
2 (2,2),(2,1),(1,2)
3
3 (3,3),(3,2),(3,1),(2,3),(1,3)

【绿色通道】2011高考数学总复习 11-4随机事件的概率 新人教A版

【绿色通道】2011高考数学总复习 11-4随机事件的概率 新人教A版

第11模块 第4节[知能演练]一、选择题1.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面向上.因此,出现正面向上的概率是37;③随机事件发生的频率就是这个随机事件发生的概率. A .0 B .1 C .2 D .3解析:要明确在试验中,虽然随机事件发生的频率m n不是常数,但它具有稳定性,且总是接近于某个常数,在其附近波动,这个常数叫做概率,所以随机事件发生的频率和它的概率是不一样的.由此可知①②③都是不正确的.答案:A2.对某电视机厂生产的电视机进行抽样检测,数据如下:抽取台数 50 100 200 300 500 1000 优等品数4792192185478954( )A .0.92B .0.94C .0.95D .0.96解析:由概率的定义可知,检测次数越多越接近概率值. 答案:C3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则log 2X Y =1的概率为( )A.16B.536C.112D.12解析:由log 2X Y =1得Y =2X ,满足条件的X 、Y 有3对,而骰子朝上的点数X 、Y 共有6×6=36对.∴概率为336=112.答案:C4.在10支铅笔中,有8支正品和2支次品,从中不放回地任取2支,至少取到1支次品的概率是( )A.29B.1645C.1745D.25解析一:(直接法).“至少取到1支次品”包括:A =“第一次取到次品,第二次取到正品”;B =“第一次取到正品,第二次取到次品”;C =“第一、二次均取到次品”三种互斥事件,所以所求事件的概率为P (A )+P (B )+P (C )=2×8+8×2+2×110×9=1745.解析二:(间接法)“至少取到1支次品”的对立事件为“取到的2支铅笔均为正品”,所以所求事件的概率为1-8×710×9=1745. 答案:C 二、填空题5.设有关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则上述方程有实根的概率为________.解析:设事件A 为“方程x 2+2ax +b 2=0有实根”,当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件a ≥b .基本事件共有12个:(0,0),(0,1)(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34.答案:346.定义集合A 与B 的差集A -B ={x |x ∈A 且x ∉B },记“从集合A 中任取一个元素x ,x ∈A -B ”为事件E ,“从集合A 中任取一个元素x ,x ∈A ∩B ”为事件F .P (E )为事件E 发生的概率,P (F )为事件F 发生的概率,当a ,b ∈Z ,且a <-1,b ≥1时,设集合A ={x ∈Z |a <x <0},集合B ={x ∈Z |-b <x <b },给出以下判断:①当a =-4,b =2时,P (E )=23,P (F )=13;②总有P (E )+P (F )=1成立; ③若P (E )=1,则a =-2,b =1; ④P (F )不可能等于1.其中所有判断正确的序号为________.解析:对于①,当a =-4,b =2时,A ={x ∈Z |-4<x <0}={-3,-2,-1},B ={x ∈Z |-2<x <2}={-1,0,1},A -B ={-3,-2},A ∩B ={-1},P (E )=23,P (F )=13,因此①正确;对于②,依题意知,对于集合A 中的任一元素x ,要么x 属于A -B ,要么x 属于A ∩B ,二者必居其一,因此P (E )+P (F )=1,②正确;对于③,由P (E )=1得A ∩B =Ø,结合题意分析可知此时b =1,a 可以取-2、-3、-4等,因此③不正确;对于④,当a =-3,且b =4时,A ={-2,-1},B ={-3,-2,-1,0,2,3},此时A ∩B =A ,P (F )=1,因此④不正确.综上所述,其中所有正确命题的序号是①②.答案:①② 三、解答题7.同时掷两颗骰子一次,(1)“点数之和是13”是什么事件?其概率是多少?(2)“点数之和在2~13X 围之内”是什么事件?其概率是多少? (3)“点数之和是7”是什么事件?其概率是多少?解:(1)由于点数最大是6,和最大是12,不可能得13,因此此事件是不可能事件,其概率为0.(2)由于点数之和最小是2,最大是12,在2~13X 围之内,它是必然事件,其概率为1.(3)由(2)知,和是7是有可能的,此事件是随机事件,事件“点数和为7”包含的基本事件有{1,6},{2,5},{3,4},{4,3},{5,2},{6,1}共6个,因此P =66×6=16.8.口袋里装有不同的红色球和白色球共36个,且红色球多于白色球.从袋子中取出2个球,若是同色的概率为12,求:(1)袋中红色、白色球各是多少?(2)从袋中任取3个小球,至少有一个红色球的概率为多少?解:(1)令红色球为x 个,则依题意得C 2x C 236+C 236-xC 236=12,所以2x 2-72x +18×35=0,得x =15或x =21, 又红色球多于白色球,所以x =21, 所以红色球为21个,白色球为15个.(2)设从袋中任取3个小球,至少有一个红色球的事件为A ,均为白色球的事件为B ,则P (A )=1-P (B )=1-C 315C 336=191204.[高考·模拟·预测]1.(2009·某某某某高新区期末)一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个,其两面涂有油漆的概率是( )A.112B.110 C.325D.12125解析:每条棱上有8块,共8×12=96块. ∴概率为8×121000=12125.答案:D2.(2009·某某模拟)福娃是2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福娃中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为( )A.110B.15C.35D.45解析:本题分甲选中吉祥物和乙选中吉祥物两种情况,先甲选后乙选的方法有5×4=20,甲选中乙没有选中的方法有2×3=6,概率为620=310,乙选中甲没有选中的方法有2×3=6,概率为620=310,∴恰有一个被选中的概率为310+310=35. 答案:C3.(2009·某某某某模拟)某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________.解析:依题意知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 答案:0.54.(2009·某某通州调研)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为________.解析:基本事件有6×6×6=216个,点数依次成等差数列的有: (1)当公差d =0时,1,1,1及2,2,2,…,共6个.(2)当公差d =±1时,1,2,3及2,3,4;3,4,5;4,5,6,共4×2个. (3)当公差d =±2时,1,3,5;2,4,6,共2×2个. ∴P =6+4×2+2×26×6×6=112.答案:1125.(2009·某某某某一模)某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如右图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率; (2)该队员最多属于两支球队的概率.解:(1)设“该队员只属于一支球队”为事件A ,则事件A 的概率P (A )=1220=35.(2)设“该队员最多属于两支球队”为事件B ,则事件B 的概率为P (B )=1-220=910.[备选精题]6.班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5X 相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一X 卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2X 卡片,求取出的2人不全是男生的概率; (2)为了选出2人分别表演独唱和朗诵,抽取并观察第一X 卡片后,又放回箱子中,充分混合后再从中抽取第二X 卡片,求:独唱和朗诵由同一个人表演的概率.解:(1)利用树形图我们可以列出连续抽取2X 卡片的所有可能结果(如下图所示).由上图可以看出,试验的所有可能结果数为20,因此每次都随机抽取,因此这20种结果出现的可能性是相同的,试验属于古典概型.用A 1表示事件“连续抽取2人一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A 2表示事件“连续抽取2X 卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公式,可得P (A 1∪A 2)=P (A 1)+P (A 2)=1220+220=710=0.7,即连续抽取2X 卡片,取出的2人不全是男生的概率为0.7.(2)有放回地连续抽取2X 卡片,需注意同一X 卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出.概型.用A 表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A 的结果共有5种,因此独唱和朗诵由同一个人表演的概率P (A )=525=15=0.2.。

2011年高考数学第一轮复习各个知识点攻破11-1随机事件的概率

2011年高考数学第一轮复习各个知识点攻破11-1随机事件的概率

[答案] D
• [拓展提升] 本题的实质是允许重复的排 列问题,即3个元素在5个位置上进行排列, 总的事件数目可以通过乘法原理解决,但 具体的排列情况就需要灵活运用排列、组 合的知识进行分析处理. 命题者以这样的问 题为切入点,设计了一道有实际应用背景 的试题,考查的核心是利用排列、组合知 识分析问题、解决问题的能力,是一道以 能力考查为主要目的的试题,试题难度有 点大.
[解法二] 对于所有次品恰好在第 4 次检验时被 检出这一事件,其前 4 次取出的元件情况共有 3 种: 正、次、次、次;次、正、次、次;次、次、正、次, 所以这一事件的概率为 7 3 2 3 7 2 3 2 7 1 1 P=(10×9×8+10×9×8+10×9×8)×7=40.
• [拓展提升] 求解等可能性事件的概率, 首先明确等可能性事件中的基本事件是什 么,其次要明确由基本事件组成的一般事 件中包含基本事件的可能结果有多少种, 最后由定义求解其概率. • 解等可能性事件的概率问题,关键是利用 排列、组合的有关知识,正确求出基本事 件总数和所求事件包含的基本事件数.
• (2)放回抽取与不放回抽取的问题 • 摸球等问题有“取后放回”和“取后不放 回”两种情况,取后放回的可以继续选取 已取到过的球,相当于是重复排列,取后 不放回相当于不重复排列,两种排列的计 算有很大的差异,平时不作特别说明的都 是取后不放回问题.
• 3.求随机事件概率的注意点 • (1)搞清随机事件概率的定义是解决随机事 件概率的基础,在P(A)= 中,n是可能 出现的所有结果的数量,m是事件A可能出 现的结果的数量; • (2)用公式P(A)= 计算时,关键在于求 出n、m,在求n时,必须注意这n个结果必 须是等可能性的,做到不重复不遗漏; • (3)求随机事件发生的结果的数量是解题的 关键,这就要求熟练掌握排列组合的基本 知识.

绿色通道2011高考数学总复习 11-4随机事件的概率课件 新人教A版要点

绿色通道2011高考数学总复习 11-4随机事件的概率课件 新人教A版要点

用已有的信息可以估计出王小慧下学期修李老师的高 等数学课得分的概率如下:
(1)得“90分以上”记为事件A,则P(A)≈0.067;
(2)得“60分~69分”记为事件B,则P(B)≈0.140; (3) 得“ 60分以上 ”记为事件 C,则 P(C)≈0.067+ 0.282 +0.403+0.140=0.892.
(2)取出 1 球为红球或黑球或白球的概率为 5 4 2 11 P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)= + + = . 12 12 12 12
解法二:(利用对立事件求概率) (1)由解法一知,取出 1 球为红球或黑球的对立事件为取 出 1 球为白球或绿球,即 A1∪A2 的对立事件为 A3∪A4,所以 取出 1 球为红球或黑球的概率为 2 1 P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1-12-12 3 =4. (2)因为 A1∪A2∪A3 的对立事件为 A4,所以 1 11 P(A1∪A2∪A3)=1-P(A4)=1-12=12.
考纲要求
1.了解随机事件发生的不确定性和 频率的稳定性,了解概率的意义,了 解频率与概率的区别. 2.了解两个互斥事件的概率加法公 式. 1.以概率的意义和性质为重点,结 合实际,多角度考查概率问题. 2.结合现实生活、概率的性质,对 互斥事件和对立事件的考查成为新的 热点.
热点提示
一、随机事件和确定事件 1.在条件S下, 一定会发生 的事件,叫做相对于条 件S的必然事件,简称必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条 件S的不可能事件,简称不可能事件.
现的频数,称事件A出现的比例 频率. 2.对于给定的随机事件A,如果随着试验次数的增加, 事件A发生的 fn频率 (A)稳定在某个 上,把这个 常数 记 常数 作 P(A),称为事件A的概率,简称为A的概率. 为事件A出现的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章概率知识网络第1讲 随机事件及其概率★ 知 识 梳 理 ★1- 2 - 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率mn 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .特别提醒:只有在每一种可能出现的概率都相同的前提下,计算出的基本事件的个数才是正确的,才能用等可能事件的概率计算公式()P A =mn 来进行计算3. 概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形5 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥特别提醒:若事件A 与B 不是互斥事件而是相互独立事件,那么在计算()P A B +的值时绝对不可以使用()()()P A B P A P B +=+这个公式6.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=- 7.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++ =12()()()n P A P A P A +++特别提醒:一. 对于互斥事件要抓住如下的特征进行理解: 1.互斥事件研究的是两个事件之间的关系; 2.所研究的两个事件是在一次试验中涉及的;3.两个事件互斥是从试验的结果不能同时出现来确定的.从集合角度来看,A 、B 两个事件互斥,则表示A 、B 这两个事件所含结果组成的集合的交集是空集. 二. 对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件,集合A 的对立事件记作A ,从集合的角度来看,事件A 所含结果的集合正是全集U 中由事件A 所含结果组成集合的补集,即A ∪A =U ,A ∩A =∅.对立事件一定是互斥事件,但互斥事件不一定是对立事件.三.事件A 、B 的和记作A+B ,表示事件A 、B 至少有一个发生.当A 、B 为互斥事件时,事件A+B 是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的.★ 重 难 点 突 破 ★1.重点:了解随机事件,了解两个互斥事件的概率加法公式。

2.难点:会用基本公式计算相关的概率问题.3.重难点:.(1) “有序”与“无序”混同.问题1: 从10件产品(其中次品3件)中,一件一件地不放回地任意取出4件,求4件中恰有1件次品的概率。

错解:因为第一次有10种取法,第二次有9种取法,第三次有8种取法,第四次有7种取法,由乘法原理可知从10件取4件共有10×9×8×7种取法,故从10件产品(其中次品3件)中,一件一件地不放回地任意取出4件含有 10×9×8×7个可能的结果。

设A=“取出的4件中恰有1件次品”,则A 含有3713C C ⨯种结果(先从3件次品中取1件,再从7件正品中取3件),.48178910)(3713=⨯⨯⨯⨯=C C A P点拨:计算所有可能结果个数是用排列的方法,即考虑了抽取的顺序;而计算事件A 所包含结果个数时是用组合的方法,即没有考虑抽取的顺序。

正解:(1)都用排列方法所有可能的结果共有410A 个,事件A 包含371314A A A ⋅⋅个结果(4件中要恰有1件次品,可以看成四次抽取中有一次抽到次品,有14A 种方式,对于每一方式,从3件次品中取一件,再从7件正品中一件一件地取3件,共有371314A A A ⋅⋅种取法) 21)(410371314=⋅⋅=∴A A A A A P (2)都用组合方法一件一件不放回地抽取4件,可以看成一次抽取4件,故共有410C 个可能的结果,事件A 含有3713C C ⋅种结果。

.21)(4103713=⋅=∴C C C A P (2)“互斥”与“对立”混同问题2: 从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .至少有1个白球,都是白球B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球 错误答案(D )点拨: 本题错误的原因在于把“互斥”与“对立”混同要准确解答这类问题,必须搞清对立事件与互斥事件的联系与区别,这二者的联系与区别主要体现在以下三个方面:(1)两事件对立,必定互斥,但互斥未必对立;(2)互斥的概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生。

正解(A ),(B )不互斥,当然也不对立,(C )互斥而不对立,(D )不但互斥而且对立 所以正确答案应为(C )。

★ 热 点 考 点 题 型 探 析★ 考点一:随机事件的概率 题型1.椭机事件的判断[例1](1)给出下列四个命题:①“当R x ∈时,1cos sin ≤+x x ”是必然事件;②“当R x ∈时,1cos sin ≤+x x ”是不可能事件;③“当R x ∈时,2cos sin <+x x ”是随机事件;④“当R x ∈时,2cos sin <+x x ”是必然事件;其中正确的命题个数是:0 B 1 C 2 D 3(2)判断是否正确:“若某疾病的死亡率是90℅,一地区已有9人患此病死亡,则第10个病人必能成活。

”(3) 判断是否正确:“某次摸彩的彩票共有10万张,中大奖的概率是10万分子1,若已有9万9千张彩票已被摸出而且没有大奖,某人包下剩下的1千张彩票,那么此人必能中大奖。

” (4问:随着这位运动员投篮次数的无穷增加,他的进球的概率会是多少? [解题思路]:正确理解概率的相关概念. 解析:(1)B ;(2)否;(3)是;(4)0.8.[例2] (四川省成都市新都一中高2008级12月月考)已知非空集合A 、B 满足A ≠⊂B ,给出以下四个命题:①若任取x ∈A ,则x ∈B 是必然事件 ②若x ∉A ,则x ∈B 是不可能事件 ③若任取x ∈B ,则x ∈A 是随机事件 ④若x ∉B ,则x ∉A 是必然事件 其中正确的个数是( )A 、1B 、2C 、3D 、4 答案:C[解题思路]:本题主要考查命题、随机事件等基本概念及其灵活运用. 解析:①③④正确,②错误.【名师指引】正确理解概率辩证的概念,它既不是机械的也不是虚无缥缈的.此类题目多见于选择判断题,比较简单,但要求对相关的的概念要掌握牢固,否则易出现混淆。

【新题导练】1. (江苏省南通通州市2008届高三年级第二次统一测试)从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下:则这堆苹果中,质量小于120克的苹果数约占苹果总数的 %. 答案:302.(2009年广东省广州市高三年级调研测试数学(文 科))某校高三文科分为四个班.高三数学调研测试后, 随机地 在各班抽取部分学生进行测试成绩统计,各班被抽取的学 生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形 图如图5所示,其中120~130(包括120分但不包括130分) 的频率为0.05,此分数段的人数为5人. 0(1) 问各班被抽取的学生人数各为多少人?(2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.解:(1) 由频率分布条形图知,抽取的学生总数为51000.05=人. ……4分∵各班被抽取的学生人数成等差数列,设其公差为d , 由4226d ⨯+=100,解得2d =.∴各班被抽取的学生人数分别是22人,24人,26人,28人. ……8分(2) 在抽取的学生中,任取一名学生, 则分数不小于90分的概率为0.35+0.25+0.1+0.05=0.75. 题型2。

求随机事件的概率[例3] (广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条. (1)求3个旅游团选择3条不同的线路的概率 (2)求恰有2条线路没有被选择的概率.[解题思路]:分别找出总事件和所求事件的个数,即可求出随机事件的概率。

解析:(1)3个旅游团选择3条不同线路的概率为:3413348A p ==频率分数901001101201300.050.100.150.200.250.300.350.408070(2)恰有两条线路没有被选择的概率为:222432239416C C Ap⋅⋅==【名师指引】在确定应用公式P(A)=mn后,关键是要把,m n的值求正确。

【新题导练】3. (广东省北江中学2009届高三月考)将一颗骰子先后抛掷2次,观察向上的点数,求:(Ⅰ)两数之和为8的概率;(Ⅱ)两数之和是3的倍数的概率;解: 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件-----------1分记“两数之和为8”为事件A,则事件A中含有5个基本事件,所以P(A)=5 36;答:两数之和为6的概率为536。

--------------------------------------- 5分(2)记“两数之和是3的倍数”为事件B,则事件B中含有12个基本事件,所以P(B)=1 3;答:两数之和是3的倍数的概率为13。

------------------------------9分4.(珠海市斗门中学2009届高三上学期第三次模拟)小明、小华用4张扑克牌(分别是黑桃2、黑桃4,黑桃5、梅花5)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回,各抽一张.(1)若小明恰好抽到黑桃4;①请绘制出这种情况的树状图②求小华抽出的牌的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之,则小明负,你认为这个游戏是否公平,说明你的理由.解:(1)①小明抽出的牌小华抽出的牌结果2 (4,2)4 5 (4,5)5 (4,5)3分②由①可知小华抽出的牌面数字比4大的概率为:236分(2)小明获胜的情况有:(4,2)、(5,4)、(5,4)、(5,2)、(5,2)故小明获胜的概率为:512,因为571212<,所以不公平. 13分考点二: 互斥事件、对立事件的概率题型1:互斥事件、对立事件的概念考查[例4]18个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,则这两个强队被分在一个组内的概率是;[解题思路]:正确理解互斥事件、对立事件的概念。

相关文档
最新文档