第20章《数据的分析》能力测试题

合集下载

最新新人教版八年级数学下第20章《数据的分析》测试题含答案

最新新人教版八年级数学下第20章《数据的分析》测试题含答案

2015—2016学年度第二学期新课程素质能力测试八年级(下)数学试题第二十章数据的分析测试题时限.100分钟满分.120分命题人:周艺班级____姓名_____得分_____一.选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

题号123456789101112答案1.数据5,3,2,1,4的平均数是A. 2B. 5C. 4D. 32.六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,这六个数的中位数是A.3B.4C.5D.63.10名学生的体重分别是41,48,50,53,49,53,53,51,67(单位:kg),这组数据的众数是A.67B.53C.50D.494.人数相等的甲.乙两班学生参加了同一次数学测验,班平均分和方差分别为 =82分,82分, 245分190分那么成绩较为整齐的是A.甲班B.乙班C.两班一样整齐D.无法确定5.某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90,96, 91,96,95,94,这组数据的中位数是A.95B.94C.94.5D.966、数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是A.4B.5C.5.5D.67.某车间对生产的零件进行抽样调查,在10天中,该车间生产的零件次品数如下(单位:个):0,3,0,1,2,1,4,2,1,3,在这10天中,该车间生产的零件次品数的A.中位数是2B.平均数是1C.众数是1D.以上均不正确8.从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为A. 300千克B.360千克C.36千克D.30千克9.一个射手连续射靶22次,其中三次射中10环,7次射中9环,9次射中8环,3次射中7环,则射中环数的中位数和众数分别为A.8,9B.8,8C.8.5,8D.8.5,910.若样+1,+1,…, +1的平均数为10,方差为2,则对于样本,x2+2,…, x n+2,下列结论正确的是A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为411.已知甲、乙两组数据平均数都是5,甲组数据的方差=,乙组数据的方差=下列结论正确的是A.甲组数据比一组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据和乙组数据的波动一样大D.甲组数据和乙组数据的波动不能比较12.一组数据共分6个小组,其中一个小组的数据占整个数据组的,那么这个小组在扇形统计图中所对应的圆心角的度数是A. B. C. D.二.填空题(本大题共4个小题,每小题3分,共12分。

(完整版)八年级下册第二十章数据的分析测试题及答案(人教版)及答案

(完整版)八年级下册第二十章数据的分析测试题及答案(人教版)及答案

八年级数学第二十章数据的分析测试题(人教版)及答案 A(时限:100分钟 满分;100分)一、细心选一选(在每小题给出的四个答案中,只有一个是符合题目要求,请把 正确答案的代号填入题后的括号内,每小题 3分,共30分)1 •为了了解参加某运动会的 200名运动员的年龄情况, 从中抽查了 20名运动员的年龄, 就 这个问题来说,下面说法正确的是( )A . 200名运动员是总体B .每个运动员是总体 C. 20名运动员是所抽取的一个样本D .样本容量是202. 已知一组数据-2,-2,3,-2,-x ,-1的平均数是-0.5,?那么这组数据的众数与中位数 分别是() A . -2 和 3 B . -2 和 0.5 C . -2 和-1 D . -2 和-1.53.一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化,?有四个苗圃生产基地投标(单株树的价格都一样).?采购小组从四个苗圃中都任意抽查了 20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购( )A .甲苗圃的树苗B .乙苗圃的树苗;C.丙苗圃的树苗4 .将一组数据中的每一个数减去50后,所得新的一组数据的平均数是据的平均数是( )A . 50B . 52C. 48D . 25、某服装销售商在进行市场占有率的调查时,他最应该关注的是( 的平均数;B .服装型号的众数;C .服装型号的中位数;D .最小的服装型号D. 丁苗圃的树苗 2, ?则原来那组数)A .服装型号 6 .一组数据— 1, 0, 3, 5,x 的极差是7,那么x 的值可能有( ). (A )1 个7•样本数据3, 6, a,(B )2 个(C )4 个2的平均数是4,则这个样本的方差是((D)6 个A. 2C. 3D.&关于数据—4, 1, 2, —1, 2,下面结果中,错误的是((A )中位数为1(B )方差为26(C )众数为2(D )平均数为09 .已知样本X 1、X 2,,x n 的方差是2,则样本3x 1 + 2, 3x 2 + 2, •-3X n + 2的方差是((A)6 (B)— 2(C)6 或一2(D )不能确定10. 某工厂共有50名员工,他们的月工资方差是s2,现在给每个员工的月工资增加200元,那么他们的新工资的方差().二、耐心填一填(本大题共分10小题,每小题3分共30分)11. _______________________________________________ 一组数据100, 97, 99, 103, 101中,极差是 ____________________________________________ ,方差是 _____ . 12. 一组数据-1 , 0, 1, 2, 3的方差是__ .13.一个样本的方差 S 2 —,则样本容量是 ,样本平均数是1214•在一组数据中,受最大的一个数据值影响最大的数据代表是 ___________ .15、 5个数据分别减去100后所得新数据为8, 6,— 2, 3, 0,则原数据的平均数为 ____________ . 16.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3 , 9.5 , 9.9 , 9.4 , 9.3 , 8.9 ,9.2 , 9.6 ,若去掉一个最高分和一个最低分后的平均分为得分, 则这名歌手最后得分约为 17. 一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是18. _________________________________________________________________ 若X 1, X 2 , X 3的平均数为7 ,贝y X 1+ 3 , X 2 + 2 , X 3 + 4的平均数为 _________________________ . 19•为了估计湖里有多少鱼, 我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,?则估计湖里约有鱼 ______ 条太稳定,那么根据图的信息,估计小张和小李两人中新手是三、、解答题仔细想一想,(本大题共40 分)21 (本小题6分)某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有 1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1) 求出样本平均数、中位数和众数; (2) 估计全年级的平均分.22. (6分)下表是某校八年级(1)班20名学生某次数学测验的成绩统计表(A)变为 s 2 + 200 (B)不变 (C)变大了 (D)变小了20、小张和小李去练习射击, 第一轮10枪打完后两人的成绩如图所示,?通常新手的成绩不■小张▲小李(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.23(本小题7分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:⑴你根据图中的数据填写下表:⑵从平均数和方差相结合看,分析谁的成绩好些24. (本小题7分某乡镇企业生产部有技术工人15人,?生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260 (件),?你认为这个定额是否合理,为什么?25、(本小题7分•为检测一批橡胶制品的弹性,现抽取15条皮筋的抗拉伸程度的数据(单位:牛):544457335566366(1) __________________________________ 这批橡胶制品的抗拉伸程度的极差为牛;(2)若生产产品的抗拉伸程度的波动方差大于 1.3,这家工厂就应对机器进行检修,现在这家工厂是否应检修生产设备?通过计算说明.26 (本小题7分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)?班这三个班中推荐一个班为市级先进班集体的候选班,?现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)(1)请问各班五项考评分的平均数、?中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,?设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),?按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班作为市级先进班集体的候选班.八年级数学第二十章数据的分析测试题(人教版)答案A .选择题1 . D2. D3.D4.B 5. B6 .B. 7.A;&B.9. B. 10. B. 、填空题1 1 . 6;4. 12. 213.12;3. 14. 平均数. 15.1031 6 .9.4分.17. 10318.10 ;19. 1500. 20.小李三、解答题解21. (1)样本平均数是8分,中位数是80分,众数是85分;(2)估计全年级平均80分.解:22. (1) x=5, y=7; (2) a=90, b=80.解23.⑴甲:6, 6, 0.4 乙:6, 6, 2.8⑵甲、乙成绩的平均数都是6,且打<3 ,所以,甲的成绩较为稳定,甲成绩比乙成绩要好些•解:24. (1 )平均数:260 (件)中位数:240 (件)众数:240 (件);(2)不合理,?因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,?尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.解25. (1)4 ;⑵方差约是1.5,大于1.3,说明应该对机器进行检修.26. 解:(1)(1)设P1, P4, P8顺次为3个班考评分的平均数;W1, W4, W8顺次为三个班考评分的中位数;乙,Z4, Z8顺次为三个班考评分的众数.1贝P1= (10+10+6+10+7)=8.6 (分).51 1F4=—(8+8+8+9+10)=8.6 (分),P8=(9+10+9+6+9)=8.6 (分);5 5W1=10 (分),W4=8 (分),W8=9 (?分);乙=10 (分),Z4=8 (分),Z8=9 (分)•••平均数不能反映这三个班的考评结果的差异,而用中位数(或众数)?能反映差异,且W1>W8>W4 (Z1 >Z8>乙)(2)给出一种参考答案,选定行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3: 2 : 1:1设K1、K4、K8顺次为3个班的考评分,贝K1=0.3 X 10+0.3 X 10+0.2 X 6+0.1 X 10+0.1 X 7=8.9K4=0.3 X 10+0.3 X 8+0.2 X 8+0.1 X 9+0.1 X 8=8.7K8=0.3 X 9+0.3 X 10+0.2 X 9+0.1 X 6+0.1 X 9=9.0T K8>K1>K4,•••推荐初三(8)班为市级先进班集体的候选班较合适.。

第二十章 数据的分析综合测试卷 人教版八年级数学下册

第二十章  数据的分析综合测试卷 人教版八年级数学下册

第二十章数据的分析综合测试卷(时间:100分钟满分:100分)一、选择题(本大题共10小題,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.某班有48人,在一次数学测验中,全班平均分为81分,已知不及格人数为6人,他们的平均分为46分,则及格学生的平均分是()A.78分B.86分C.80分D.82分2.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4B92C.5D1123.某学校把学生的纸笔测试,实践能力两项成绩分别按60%,40%的比例计入学期总成绩,小颗实践能力这一项成绩是81分,若想学期总成绩不低于90分,则纸笔测试的成绩至少是()A.96分B.97分C.98分D.99分4.为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:则本次调查中阅读时间的中位数和众数分别是()A.0.7和0.7B.0.9和0.7C.1和0.7D.0.9和1.15.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.46.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大7.下表是某公司员工月收入的资料:能够反映该公司全体员工月收人水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差8.已知一组数据1,2,3,x,5,它们的平均数是3,则这组数据的方差为()A.1B.2C.3D.49.某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是()A.平均数B.中位数C.众数D.方差10.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是()A.2,13B.2,1 c.4,23D.4,3二、填空题(本大题共4小题,每小题3分,共12分。

第二十章 数据的分析 单元测试

第二十章 数据的分析 单元测试

2022年春人教版初中八年级数学下册第二十章数据的分析班级:________ 姓名:________ 分数:________一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况为:一班4.5 kg,二班4.4 kg,三班5.1 kg,四班3.3 kg,五班5.7 kg,则每个班级回收废纸的平均重量为( )A.5 kg B.4.8 kg C.4.6 kg D.4.5 kg2.某校为加强学生出行的安全意识,学校每月都要对学生进行安全A.95,95 B.95,96 C.96,96 D.96,973.八年级二班在一次体重测量中,小明体重54.5 kg,低于全班半数学生的体重,分析得到结论所用的统计量是()A.中位数 B.众数 C.平均数 D.方差4.现有一列数:6,3,3,4,5,4,3,增加一个数x后,这列数的中位数仍不变,则x可能是( )A.1 B.2 C.3 D.45.若一组数据:1,5,7,x的众数为5,则这组数据的平均数是( )A.6 B.5 C.4.5 D.3.56.甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( )A.甲 B.乙 C.丙 D.丁7.一家公司招考某工作岗位,只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,如果小明数学得分为80分,估计综合得分最少要达到84分才有希望,那么他的物理最少要考( ) A.86分 B.88分 C.90分 D.92分8.已知数据x1,x2,x3,x4,x5的平均数为k1;数据x6,x7,x8,x9,x10的平均数为k2;k1与k2的平均数是k;数据x1,x2,x3,…,x8,x9,x10的平均数为m,那么k与m的关系是( )A.k>m B.k=m C.k<m D.不能确定9.小明在计算一组数据的方差时,列出的算式如下:s2=1n[(7-x)2+(8-x)2+(8-x)2+(8-x)2+(9-x)2],根据算式信息,下列说法中错误的是( )A.数据个数是5 B.数据平均数是8C.数据众数是8 D.数据的方差是010.已知一组数据:2,5,x,7,9的平均数是6,则这组数据的众数是( )A.9 B.7 C.5 D.211.某楼四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据唯一的众数与平均数相等,则这组数据的中位数是( ) A.8 B.9 C.10 D.1212.近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2 000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B种支付方式的使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1 000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1 500元.其中正确的是( )A.①③ B.③④ C.①② D.②④二、填空题:每小题4分,共16分.13.某8种食品所含的热量值分别为120,134,120,119,126,120,118,124,则这组数据的众数为___.14.某公司招聘员工,对应聘者进行三项素质测试:创新能力、综合知识、语言表达,某应聘者三项得分分别为70分,80分,90分,如果将这三项成绩按照5∶3∶2计入总成绩,则他的总成绩为__ __分.15.小孔同学根据朗诵比赛中9位评委给出的分数,制作了一张表格(如图表所示).如果去掉一个最高分和一个最低分,则表中数据一16.个数,得到七个数据,并对数据进行整理和分析,得出如图表所示信据之和可能为42;④m的值可能为5.其中正确推断的序号是__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)4 660,4 540,4 510,4 670,4 620,4 580,4 580,4 600,4 620,4 620.(1)全厂员工的月平均收入是__ __元;(2)平均每名员工的年薪是__ __元;(3)财务科本月应准备多少钱发工资?18.(本题满分10分)如图是交警在一个路口统计的某个时段来往的车速情况(单位:km/h).这些车的平均速度为52.28 km/h.(1)车速为54 km/h的车有____辆;(2)该样本数据的众数为__ _,中位数为__ __;(3)若某车以51.5 km/h的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.19.(本题满分10分) 某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表.(单位:分)(1)甲、乙两人“三项测试”的平均成绩分别为________分、________分;(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的成绩,请计算甲、乙两人的平20.(本题满分10分)有甲、乙两种新品种的水稻,在进行杂交配系时要选取产量高、稳定性较好的一种,种植后各抽取5块田获取数据,每亩产量分别如表:(单位:kg)(1)哪一品种平均亩产较高?(2)哪一品种稳定性较好?(3)21.(本题满分10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图所示是其中的甲、乙两段台阶的示意图.请用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)分别求出两段台阶高度的中位数;(2)哪段台阶走起来更舒服?为什么?22.(本题满分10分)云南特产褚橙味甜皮薄,每年上市后供不应求.某超市水果销售部有营业员15人,某月该超市这15名营业员销(1)(2)为了调动大多数营业员的积极性,实行“每天定额售量,超出有奖”的措施.如果你是管理者,你选择确定“定额”的统计量为________(选填“中位数”或“众数”).23.(本题满分12分) 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.(1)a=____,b=__ __;(2)从方差的角度看,__ __(选填“甲”或“乙”)种西瓜的得分较稳定;(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.24.(本题满分12分) 某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?25.(本题满分12分) 八一中学为普及抗疫防疫知识,在七、八年级举行了一次防疫知识竞赛,为了解这两个年级学生的竞赛成绩,分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析,给出了如下信息.各年级成绩分布如表:(注:成绩在60分以下为不合格,80分及以上(1)表中,a=__ __,b=___;(2)小明的成绩在此次抽样之中,与他所在年级的抽样相比,小明的成绩高于平均数,却排在了后十名,则小明是__ __(选填“七”或“八”)年级的学生;(3)请推断出哪个年级的竞赛成绩更好,并说明理由(至少从三个不同的角度说明).参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况为:一班4.5 kg,二班4.4 kg,三班5.1 kg,四班3.3 kg,五班5.7 kg,则每个班级回收废纸的平均重量为( C)A.5 kg B.4.8 kg C.4.6 kg D.4.5 kg2.某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:A.95,95 B.95,96 C.96,96 D.96,973.八年级二班在一次体重测量中,小明体重54.5 kg,低于全班半数学生的体重,分析得到结论所用的统计量是( A)A.中位数 B.众数 C.平均数 D.方差4.现有一列数:6,3,3,4,5,4,3,增加一个数x后,这列数的中位数仍不变,则x可能是( D)A.1 B.2 C.3 D.45.若一组数据:1,5,7,x的众数为5,则这组数据的平均数是( C)A.6 B.5 C.4.5 D.3.56.甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( C)A.甲 B.乙 C.丙 D.丁7.一家公司招考某工作岗位,只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,如果小明数学得分为80分,估计综合得分最少要达到84分才有希望,那么他的物理最少要考( C) A.86分 B.88分 C.90分 D.92分8.已知数据x1,x2,x3,x4,x5的平均数为k1;数据x6,x7,x8,x9,x10的平均数为k2;k1与k2的平均数是k;数据x1,x2,x3,…,x8,x9,x10的平均数为m,那么k与m的关系是( B)A.k>m B.k=m C.k<m D.不能确定9.小明在计算一组数据的方差时,列出的算式如下:s2=1n[(7-x)2+(8-x)2+(8-x)2+(8-x)2+(9-x)2],根据算式信息,下列说法中错误的是( D)A.数据个数是5 B.数据平均数是8C.数据众数是8 D.数据的方差是010.已知一组数据:2,5,x,7,9的平均数是6,则这组数据的众数是( B)A.9 B.7 C.5 D.211.某楼四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据唯一的众数与平均数相等,则这组数据的中位数是( C) A.8 B.9 C.10 D.1212.近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2 000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B种支付方式的使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1 000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1 500元.其中正确的是( A)A.①③ B.③④ C.①② D.②④二、填空题:每小题4分,共16分.13.某8种食品所含的热量值分别为120,134,120,119,126,120,118,124,则这组数据的众数为__120__.14.某公司招聘员工,对应聘者进行三项素质测试:创新能力、综合知识、语言表达,某应聘者三项得分分别为70分,80分,90分,如果将这三项成绩按照5∶3∶2计入总成绩,则他的总成绩为__77__分.15.小孔同学根据朗诵比赛中9位评委给出的分数,制作了一张表格(如图表所示).如果去掉一个最高分和一个最低分,则表中数据一16.个数,得到七个数据,并对数据进行整理和分析,得出如图表所示信息,已知小宇投中了4个,下列判断:据之和可能为42;④m的值可能为5.其中正确推断的序号是__①④__.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)4 660,4 540,4 510,4 670,4 620,4 580,4 580,4 600,4 620,4 620.(1)全厂员工的月平均收入是__4_600__元;(2)平均每名员工的年薪是__55_200__元;(3)财务科本月应准备多少钱发工资?解:(3)从(1)得到员工的月平均收入为4 600元,工厂共有220名员工,∴财务科本月应准备4 600×220=101.2(万元).18.(本题满分10分)如图是交警在一个路口统计的某个时段来往的车速情况(单位:km/h).这些车的平均速度为52.28 km/h.(1)车速为54 km/h的车有__4__辆;(2)该样本数据的众数为__52_km/h__,中位数为__52_km/h__;(3)若某车以51.5 km/h的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.解:(3)不能.理由:因为由(2)知样本的中位数为52,所以可以估计该路段的车辆大约有一半的车速要快于52 km/h,该车的速度是51.5 km/h,小于52 km/h,所以不能说该车的速度要比一半以上车的速度快.19.(本题满分10分) 某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表.(单位:分)(1)甲、乙两人“三项测试”的平均成绩分别为________分、________分;(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的成绩,请计算甲、乙两人的平解:(1)85;86.(2)甲的平均成绩为86.5分,乙的平均成绩为85.8分,∴应该录取甲.20.(本题满分10分)有甲、乙两种新品种的水稻,在进行杂交配系时要选取产量高、稳定性较好的一种,种植后各抽取5块田获取数据,每亩产量分别如表:(单位:kg)(1)哪一品种平均亩产较高?(2)哪一品种稳定性较好?(3)解:(1)x甲=乙(2)s2甲=2 kg2,s2乙=3.6 kg2,∵s2甲<s2乙,∴甲品种稳定性较好.(3)应选择甲品种做杂交配系.21.(本题满分10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图所示是其中的甲、乙两段台阶的示意图.请用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)分别求出两段台阶高度的中位数;(2)哪段台阶走起来更舒服?为什么?解:(1)将甲路段台阶高度重新排列为14,14,15,15,16,16,乙路段台阶高度重新排列为10,11,15,17,18,19,所以甲路段高度的中位数为15+152=15, 乙路段高度的中位数为15+172=16. (2)甲路段台阶走起来更舒服一些,理由:由题意知,甲路段台阶的高度波动小于乙路段台阶高度波动,即甲路段的台阶高度方差小.22.(本题满分10分)云南特产褚橙味甜皮薄,每年上市后供不应求.某超市水果销售部有营业员15人,某月该超市这15名营业员销(1)(2)为了调动大多数营业员的积极性,实行“每天定额售量,超出有奖”的措施.如果你是管理者,你选择确定“定额”的统计量为________(选填“中位数”或“众数”).解:(1)这15名营业员该月销售量数据的平均数、中位数及众数分别为278件,180件,90件.(2)中位数.23.(本题满分12分) 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.(1)a =__88__,b =__90__;(2)从方差的角度看,__乙__(选填“甲”或“乙”)种西瓜的得分较稳定;(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.解:(3)小明的理由为:甲种西瓜得分的众数比乙种的高.小军的理由为:乙种西瓜得分的中位数比甲种的高.24.(本题满分12分) 某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?解:(1)中位数为(6.4+6.8)÷2=6.6;从平均数与中位数的差异可得大部分居民家庭去年的月均用水量小于平均数,有节约用水观念,少数家庭用水比较浪费.(2)∵100×75%=75,第75个家庭去年的月均用水量为11 t,所以为了鼓励节约用水,要使75%的家庭水费支出不受影响,即要使75户的家庭水费支出不受影响,故家庭月均用水量应该定为11 t.25.(本题满分12分) 八一中学为普及抗疫防疫知识,在七、八年级举行了一次防疫知识竞赛,为了解这两个年级学生的竞赛成绩,分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析,给出了如下信息.各年级成绩分布如表:(注:成绩在60分以下为不合格,80分及以上(1)表中,a=__68.5__,b=__35%__;(2)小明的成绩在此次抽样之中,与他所在年级的抽样相比,小明的成绩高于平均数,却排在了后十名,则小明是__七__(选填“七”或“八”)年级的学生;(3)请推断出哪个年级的竞赛成绩更好,并说明理由(至少从三个不同的角度说明).解:(3)七年级学生成绩较好,从平均数、中位数和合格率上看,七年级均较高,且七年级的竞赛成绩较稳定,因此七年级的竞赛成绩更好.。

2022年八年级人教版数学下册第二十章【数据的分析】综合测试卷附答案

2022年八年级人教版数学下册第二十章【数据的分析】综合测试卷附答案

2022年八年级数学下册第二十章【数据的分析】综合测试卷(满分100分)一、选择题(本大题共6个小题,每小题3分,共18分)1.已知一组数3、6、7、4、7,那么这组数的众数是()A.3B.4C.6D.72.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数3.若一组数据1,3,4,6,m 的平均数为4,则这组数据的中位数和众数分别是()A.4,6B.4,4C.3,6D.3,44.某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有一个数据丢失):日期一二三四五平均气温最高气温1℃2℃﹣2℃0℃1℃则这个被丢失的数据是()A.2℃B.3℃C.4℃D.5℃5.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S 甲2>S 乙2;②S 甲2<S 乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④6.已知:一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据31x ﹣2,32x ﹣2,33x ﹣2,34x ﹣2,35x ﹣2的平均数和方差分别是()A.2,13B.2,1C.4,23D.4,3二、填空题(本大题共6个小题,每小题3分,满分18分)7.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是元.8.若一组数据3,4,x ,6,8的平均数为5,则这组数据的众数是.9.生命在于运动.运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.10.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S 甲22=0.6,则两人射击成绩比较稳定的是(填“甲”或“乙”).=1.4,S乙11.某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是.12.一组从小到大排列的数据:a,3,5,5,6,(a为正整数),唯一的众数是5,则该组数据的平均数是.三、解答题(共64分)13.(4分)有一组数据:5,4,3,6,7,求这组数据的方差.14.(4分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图.请根据相关信息,解答下列问题:(1)求统计的这组数据的平均数、中位数;(2)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?15.(4分)一养鱼专业户为了估计池塘里有多少条鱼,先捕上100条鱼做上标记,然后放回湖里,过了一段时间,待带标记的鱼完全混合于鱼群后,再捕捞了五次,记录如下:第一次捕上90条鱼,其中带标记的有11条;第二次捕上100条鱼,其中带标记的有9条;第:三次捕上120条鱼,其中带标记的有12条;第四次捕上100条鱼,其中带标记的有9条;第五次捕上80条鱼,其中带标记的有8条;池塘里大约有多少条鱼?16.(5分)某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:57,51,45,51,44,46,45,42,48.(1)求第10场比赛的得分;(2)直接写出这10场比赛的中位数,众数和方差.17.(5分)现在5G手机非常流行,某公司第一季度总共生产80万部5G手机,三个月生产情况如图.(1)求三月份生产了多少部手机?(2)5G手机速度很快,比4G下载速度每秒多95MB,下载一部1000MB的电影,5G比4G要快190秒,求5G手机的下载速度.18.(6分)车间有20名工人,某一天他们生产的零件个数统计如下表.生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?19.(6分)为隆重纪念中国共产党成立100周年,进一步激发师生的爱党爱国热情,某校开展了四项庆祝活动:A、感党恩•我们诵;B、听党话•我们唱;C、跟党走•我们画;D、学党史•我们写.其中C项活动全体同学参与,预计成绩95<x≤100可获一等奖,成绩90<x≤95可获二等奖,随机抽取50个同学的作品进行打分并对成绩进行整理、分析,得到频数分布直方图如图:收集其中90<x≤100这一组成绩如下:n939298959596919496整理该组数据得下表:组别平均数中位数众数获奖组94.59595根据以上信息,回答下列问题:(1)频数分布直方图中m=;(2)90<x≤100组中n=;(3)已知该校有1200名学生,估计本次活动获一等奖的同学有多少人?20.(7分)某校为了选择一名数学成绩优秀的学生去参加本次全市“数学竞赛”,对在上学期六次数学测试中成绩最优秀的两名同学的数学成绩进行统计分析,列表如下:学生月考一月考二月考三月考四期中期末小明118120114119115116小刚120118120108116120(1)直接写出小刚六次数学测试成绩的中位数和众数;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,你会选择哪一个学生去参加“数学竞赛”?为什么?21.(7分)暑期将至,某校组织学生进行“防溺水”安全知识竞赛,老师从中随机抽取了部分学生的成绩(得分取整数,满分为100分),整理后绘制成如图所示的不完整的扇形统计图和频数分布直方图.其中A组的频数a比B组的频数b小15.请根据以上信息,解答下列问题:(1)本次共抽取名学生,a的值为;(2)在扇形统计图中,n=,E组所占比例为%;(3)补全频数分布直方图;(4)若全校共有1500名学生,请根据抽样调查的结果,估计成绩在80分以上的学生人数.22.(7分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是,这组数据的众数为元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.23.(9分)南康某中学为了抗疫宣传,在七、八年级开展了“防疫知识”大赛.为了解参赛学生的成绩情况,从两个年级中各随机抽取了10名学生的成绩(单位:分),数据如下:七年级:889490948494999499100八年级:84938894939893989799整理数据:按如下分数段整理样本数据:成绩x (分)年级80≤x<8585≤x<9090≤x<9595≤x ≤100七年级1153八年级a144分析数据:统计量年级平均数中位数众数方差七年级93.694b23.6八年级93.7c9320.4根据以上信息,回答下列问题:(1)a=,b=,c=;(2)由统计数据可知,年级选手的成绩比较接近;(3)学校规定,成绩不低于90分的选手可以获奖,若该校七年级有200人参加比赛,请估计有多少人获奖.答案1.D 2.A 3.A 4.C 5.C6.D7.378.49.1.310.乙11.0.312.4.2或4.13.解:5576345=++++=x ,S 2=51×[(5﹣5)2+(4﹣5)2+(3﹣5)2+(6﹣5)2+(7﹣5)2]=2.14.解:(1)观察条形统计图,52.14161411540.2168.1145.1112.150.1=++++⨯+⨯+⨯+⨯+⨯=x ,所以这组数据的平均数是1.52,将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,这组数据的中位数是1.5.(2)在所抽取的样本中,质量为2.0kg 的数量有4只,504=0.08,所以由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.2500×8%=200(只).故质量为2.0kg 的约有200只.15.解:根据题意得:100÷100080100120100908912911=++++++++(条),答:池塘里大约有鱼1000条;16.解:(1)∵10场比赛的平均得分为48分,∴第10场比赛的得分=48×10﹣57﹣51﹣45﹣41﹣44﹣46﹣45﹣42﹣48=51(分),(2)把这10个数从小到大排列为;42、44、45、45、84、48、48、51、51、57,最中间两个数的平均数是(46+48)÷2=47,则这10场比赛得分的中位数为47分,∵51都出现了最多次数3次,所以众数为51,方差=101[(42﹣48)2+(44﹣48)2+2×(45﹣48)2+(46﹣48)2+(48﹣48)2+3×(51﹣48)2+(57﹣48)2]=18.217.解:(1)80×(1﹣30%﹣25%)=36(万部),答:三月份生产了36万部手机;(2)设5G 手机的下载速度是每秒xMB .则4G 手机的下载速度是每秒(x ﹣95)MB .+190=,解得:x 1=100,x 2=﹣5(不合题意,舍去),经检验,x 1=100是原方程的解,答:5G 手机的下载速度是每秒100MB .18.解:(1)x =201×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);(2)中位数为1221212=+(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.19.解:(1)m =12;(2)n =95;(3)抽取50个同学的作品成绩95<x ≤100的人数为3,∴1200×=72(人),答:估计本次活动获一等奖的同学有72人.(2)乙班同学的方差为:51×[(7﹣8.5)2+2×(10﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2]=1.6,∵甲班5名同学成绩的方差是0.7,0.7<1.6,∴甲班选手的成绩较为稳定.20.解:(1)小刚成绩重新排列为:108、116、118、120、120、120,所以小刚成绩的中位数为=119,众数为120;(2)选择小明参加“数学竞赛”,理由如下:小明成绩的平均数为=117,方差为×[(114﹣117)2+(115﹣117)2+(116﹣117)2+(118﹣117)2+(119﹣117)2+(120﹣117)2]=;小刚成绩的平均数为=117,方差为×[(108﹣117)2+(116﹣117)2+(118﹣117)2+3×(120﹣117)2]=;∵小明与小刚的平均成绩相等,而小明成绩的方差小于小刚,∴小明的成绩稳定,∴选择小明参加“数学竞赛”.21.解:(1)150,a =12;(2)144,4;(3)补全频数分布直方图如图所示:(4)1500×=660(人),答:估计成绩在80分以上的学生人数大约为660人.22.解:(1)本次调查的样本容量是6+11+8+5=30,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为=12(元);(3)估计该校学生的捐款总数为600×12=7200(元).23.解:(1)由样本数据知,八年级在80≤x<85段的人数a=1.将八年级10名学生的成绩重新排列为84,88,93,93,93,94,97,98,98,99,所以其中位数c=(93+94)÷2=93.5,七年级94分人数最多,故众数b=94.故答案为1,94,93.5.(2)由表知八年级成绩的方差20.4小于七年级成绩的方差23.6,∴八年级的成绩更稳定,即成绩比较接近.故答案为八.(3)估计七年级的获奖人数为1601035200=+⨯(人).。

第二十章数据的分析 试卷2022-2023学年八年级数学人教版下册

第二十章数据的分析 试卷2022-2023学年八年级数学人教版下册

2022-2023学年八年级数学人教版(下) 《数据的分析》一、选择题(本大题共10道小题)1. 下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个2. 若x,y,z 的平均数是6,则5x +3,5y -2,5z +5的平均数是( ).A.6B.30C.33D.323. 一组数据a 1,a 2,a 3,…,a n 的方差是2,那么一组新数据2a 1,2a 2,…,2a n 的方差是( )A.2B.4C.8D.164. 学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘成了条形统计图(如图),则30名学生参加活动的平均次数是( )A.2B.2.8C.3D.3.35. 从某市5000名初一学生中,随机地抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是( )A.平均数B.中位数C.众数D.方差6. 人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级是( )A.甲班B.乙班C.两班成绩一样稳定D.无法确定7. 甲乙两人在跳远练习中,6次成绩分别为(单位:米):甲:3.8 3.8 3.9 3.9 4 4;乙:3.8 3.9 3.9 3.9 3.9 4.则这次跳远练习中,甲乙两人成绩方差的大小关系是( ).A.2甲s >2乙sB.2甲s <2乙sC.2甲s =2乙sD.无法确定8. 在一次向“灾区献爱心”捐款的活动中,已知小刚的捐款数比他所在的学习小组中13人捐款的平均数多2元,则下列判断中,正确的是( )A.小刚在小组中捐款数不可能是最多的B.小刚在小组中捐款数可能排在第12位C.小刚在小组中捐款数不可能比捐款数排在第7位的同学的少D.小刚在小组中捐款数可能是最少的9. 已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成了15岁.经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( )A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=1310. 对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(本大题共8道小题)11. 有一位同学平时的七次测验成绩分别是:83,75,88,69,92,84,90,则这组数据的中位数是___.12. 已知一组数据:-2,-2,3,-2,x,-1,若这组数据的平均数是0.5,则这组数据的中位数是______.13. 某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为___℃.14. 已知一个样本含有20个数据:8,9,10,6,8,5,4,5,9,2,7,6,5,7,3,5,4,1,5,6.如果取组距为2,那么应分成 组,4.5~6.5这一小组的频数为 .15. 甲、乙两人在相同情况下各射靶10次,环数的方差分别是2甲s =1.4,2乙s =1.2,则射击稳定性高的是______.16. 小芳测得连续5天日最低气温并整理后得出下表:那么空缺的两个数据是 , .17. 为考察某地区中考数学成绩情况,从中抽取数学试卷10袋,每袋30份,则抽取样本的样本容量是 .18. 为估计新疆巴音布鲁克草原天鹅湖中天鹅的数量,先捕捉10只,全部做上标记后放飞;过一段时间后,重新捕捉40只,数一数带有标记的天鹅有2只.据此可估算出该地区大约有______天鹅三、解答题(本大题共6道小题)19. 为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对这三种水果7天的销售量进行了统计,统计结果如图所示.(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是 ;A.西瓜B.苹果C.香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?20. 学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.21. 七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答下列问题.(1)分别求一班和二班选手进球数的平均数、众数、中位数.(2)如果要从这两个班中选出一个班代表本年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?22. 王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活率为98%,现已挂果,经济效益初步显现.为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵树的产量如折线统计图.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算估计,哪个山上的杨梅产量较稳定.23. 今年3月5日,花溪中学组织全体学生参加了“走出校门,服务社会”的活动.九年级一班高伟同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据高伟同学所作的两个图形,解答:(1)九年级一班有多少名学生?(2)补全直方图的空缺部分.(3)若九年级有800名学生,估计该年级去敬老院的人数.24. 市区某公司对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3,那么作为人事主管,你应该录用哪一位应聘者?为什么?(3)在(2)的条件下,你对落聘者有何建议?。

人教版数学八年级下册 第二十章 数据的分析 能力提优测试卷(含解析)

人教版数学八年级下册 第二十章 数据的分析 能力提优测试卷(含解析)

人教版数学八年级下册第二十章能力提优测试卷一、选择题1.某班40名学生,老师第一次统计这个班的数学平均成绩为82分,在复查时发现漏记了一个学生的成绩94分,那么这个班学生的实际平均成绩为( )A.84.35分B.82.5分C.83分D.83.6分2.在音乐比赛中,常用如下办法得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是( )A.平均数B.中位数C.众数D.方差3.某排球队6名场上队员的身高(单位:cm)是180、184、188、190、192、194.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高( )A.平均数变小,中位数变小B.平均数变小,中位数变大C.平均数变大,中位数变小D.平均数变大,中位数变大4.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3:5:2变成5:3:2.成绩变化情况是()A.小明的成绩增加最多B.小亮的成绩增加最多C.小丽的成绩增加最多D.三人的成绩都增加5.2019年第9号台风“利奇马”的中心于8月11日20时50分在山东省青岛市黄岛区沿海再次登陆,山东多个地区因台风影响受灾严重.“天灾无情,人间有爱”,某公司全体员工进行了爱心捐款行动,下表是对捐款金额进行统计的结果:根据表中提供的信息,捐款金额的众数和中位数分别是( )A.16元、50元B.30元、30元C.30元、40元D.30元、50元6.下表记录了两位射击运动员的8次训练成绩:根据以上数据,设甲、乙的平均数分别为,甲、乙的方差分别为,则下列结论正确的是( )A. B.C.D.7.某企业为了推选代表队参加市职业技能大赛,对甲、乙两个车间进行了5次测试,其中甲车间5次成绩的平均数是90分,中位数是91分,方差是2.4分²;乙车间5次成绩的平均数是90分,中位数是89分,方差是4.4分².下列说法正确的是( ) A.甲车间成绩的平均水平高于乙车间B.甲、乙两车间成绩一样稳定C.甲车间成绩优秀的次数少于乙车间(成绩不低于90分为优秀)D.若选派甲车间去参加比赛,取得好成绩的可能性更大8.若一组数据x1+1、x2+1、x n+1的平均数为17,方差为2,则另一组数据x1+1、x2+1、x n+1的平均数和方差分别为( )A.17、2B.18、2C.17、3D.18、39.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( ) A.50元、50元B.50元、30元C.80元、50元D.30元、50元10.如图所示为某班35名学生投篮成绩的条形统计图,其中上面部分数据破损导致数据不完全,已知此班学生投篮成绩的中位数是5,则根据图,无法确定下列哪一选项中的数值()A.进球数4个以下的人数B.进球数5个以下的人数C.进球数6个以下的人数D.进球数7个以下的人数二、填空题1.已知一组数据3、4、1、a、2、a的平均数为2,则这组数据的中位数是______.2.已知5个正数a、b、c、d、e的平均数是m,则3a+1、3b+1、3c+1、3d+1、3e+1这5个数的平均数是_____________.3.射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是________环.4.某学校抽查了30名学生参加“学雷锋社会实践活动”的次数,并根据数据绘制成了如图所示的条形统计图,则30名学生参加活动的次数的中位数是_______次.5.某班学生的中考英语听力口语模拟考试的成绩如下:该班中考英语听力口语模拟考试成绩的众数比中位数多_______分.6.已知一组数据x1、x2、x3、…x n。

第二十章《数据的分析》单元测试题(含答案)-

第二十章《数据的分析》单元测试题(含答案)-

第二十章《数据的分析》单元测试题一、选择题)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是()A.200名运动员是总体 B.每个运动员是总体C.20名运动员是所抽取的一个样本 D.样本容量是202.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购() A.甲苗圃的树苗 B.乙苗圃的树苗; C.丙苗圃的树苗 D.丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是()A.50 B.52 C.48 D.24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为() A.8,9 B.8,8 C.8.5,8 D.8.5,95.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:那么,8月份这100户平均节约用水的吨数为(精确到0.01t)()A.1.5t B.1.20t C.1.05t D.1t6.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是()A.-2和3 B.-2和0.5 C.-2和-1 D.-2和-1.57.方差为2的是()A.1,2,3,4,5 B.0,1,2,3,5 C.2,2,2,2,2 D.2,2,2,3,38.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()A.甲 B.乙丙 C.甲乙 D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有() A.1个B.2个 C.3个 D.4个二、填空题12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km ,在前60km 内,时速为90km ,在后40km 内,时速为120km ,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____. 20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________. 三、解答题(60分)22.(8分)为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨? 23.(8分)下表是某校八年级(1)班20名学生某次数学测验的成绩统计表(1)若这20名学生成绩的平均分数为82分,求x 和y 的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a ,中位数为b ,求a ,b 的值.24.某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?26.(10分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)•班这三个班中推荐一个班为市级先进班集体的候选班,•现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)(1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,•设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),•按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班作为市级先进班集体的候选班.2、中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=甲x 82分,=乙x 82分,=2甲s 245分2,=2乙s 190分2。

(人教版)沈阳八年级数学下册第二十章《数据的分析》测试题(答案解析)

(人教版)沈阳八年级数学下册第二十章《数据的分析》测试题(答案解析)

一、选择题1.数据2-,1-,0,1,2的方差是()A.0 B.2C.2 D.4C解析:C【分析】先计算平均数,再计算方差.方差的定义一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(x1+x2+…+x n),则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].【详解】解:平均数x=15(-2-1+0+1+2)=0,则方差S2=15[(-2-0)2+(-1-0)2+(0-0)2+(1-0)2+(2-0)2]=2.故选:C.【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,x=1 n(x1+x2+…+x n),则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.平均数是54 D.方差是29D解析:D【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.【详解】这组数据按照从小到大的顺序排列为:40,50,50,50,55,55,60,60,60,60,则众数为:60,中位数为:55,平均数为:405050505555606060606010++++++++++=54,方差为:22221(4054)3(5054)2(5554)4(6054)10⎡⎤-+⨯-+⨯-+⨯-⎣⎦=39. 故选D .3.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6 D .5或6C解析:C 【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5, ∴x=1或6, 故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.4.小亮同学想知道自己的体重在班级中是否属于中等水平,则需了解全班同学体重的( ) A .平均数 B .中位数C .众数D .极差B解析:B 【分析】根据中位数的定义进行解答即可. 【详解】∵小亮同学想知道自己的体重在班级中是否属于中等水平, ∴需了解全班同学体重数据的中间的数据,即中位数, 故选:B . 【点睛】本题主要考查统计的有关知识,中位数是一组数据中,最中间的数据;对统计量进行合理的选择和恰当的运用是解题关键.5.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12 B .10C .2D .0A解析:A 【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x 的方差比数据5791113,,,,的方差大, ∴这组数据可能是x (x<0),2,4,6,8或2,4,6,8,x (x>10), 观察只有A 选项符合, 故选A .6.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定B解析:B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的()A.平均数改变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数不变,方差不变A解析:A【解析】试题分析:根据平均数、方差的计算公式即可判断.由题意得该数组的平均数改变,方差不变,故选A.考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.8.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁C解析:C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14(80+80+90+90)=85;方差为S 丁214=[2×(80﹣85)2+2×(90﹣85)2]=25, 所以四个人中丙的方差最小,成绩最稳定. 故选C . 【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大. 9.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( ) A .8,16 B .10,6C .3,2D .8,8A解析:A 【分析】如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变. 【详解】根据题意可知:这组数据的平均数为:2×5-2=8;方差为:24216⨯=. 故选:A 【点睛】本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.10.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.二、填空题11.已知一组数据:x1,x2,x3,…,x n的平均数是2,方差是3,另一组数据:3x1﹣2,3x2﹣2,…3x n﹣2的方差是__________.27【分析】根据方差的定义得到把数据x1x2x3…xn都扩大3倍则方差扩大3的平方倍然后每个数据减2方差不变于是得到3x1﹣23x2﹣2…3xn﹣2的方差为27【详解】∵x1x2x3…xn的平均数是解析:27【分析】根据方差的定义得到把数据x1,x2,x3,…x n都扩大3倍,则方差扩大3的平方倍,然后每个数据减2,方差不变,于是得到3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.【详解】∵x1,x2,x3,…x n的平均数是2,方差是3,∴3x1,3x2,…3x n的方差=3×32=27,∴3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.故答案为27.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的平均分是____分.885【分析】首先求出10名选手的总成绩再求出平均分即可【详解】解:根据统计图可知这10名选手成绩的平均分为=885(分)故答案为885【点睛】本题主要考查了加权平均数的知识掌握加权平均数的计算公式解析:88.5【分析】首先求出10名选手的总成绩,再求出平均分即可.【详解】解:根据统计图可知,这10名选手成绩的平均分为28018559029510⨯+⨯+⨯+⨯=88.5(分),故答案为88.5.【点睛】本题主要考查了加权平均数的知识,掌握加权平均数的计算公式是解题的关键. 13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个解析:2 【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变. 【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变. 故答案为:2. 【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的中位数是________cm .40【分析】根据中位数的概念中位数是指将数据按大小顺序排列起来形成一个数列居于数列中间位置的那个数据再根据题中所给表格找出中位数【详解】将所卖衬衫按照领口尺寸从小到大排列后处于中间的衬衫领口尺寸为4解析:40 【分析】根据中位数的概念,中位数,是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,再根据题中所给表格,找出中位数. 【详解】将所卖衬衫按照领口尺寸从小到大排列后,处于中间的衬衫领口尺寸为40cm ,此中位数是40cm 故答案:40【点睛】本题首先要掌握中位数的概念,能看懂题中所给表格,根据中位数的概念来解答的. 15.已知点(x 1,y 1),(x 2,y 2),(x 3,y 3)都在函数y=-2x +7的图象上,若数据x 1,x 2,x 3的方差为5,则另一组数据y 1,y 2,y 3的方差为_________.20【解析】【分析】把x1x2x3分别代入y=-2x+7得出y1y2y3设这组数据x1x2x3的平均数为由方差S2=5则另一组新数据-2x1+7-2x2+7-2x3+7的平均数为-2+7方差为S′2解析:20. 【解析】 【分析】把x 1、x 2、x 3分别代入y=-2x+7,得出y 1、y 2、y 3,设这组数据x 1,x 2,x 3的平均数为x ,由方差S 2=5,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,方差为S′2,代入公式S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可. 【详解】设这组数据x 1,x 2,x 3的平均数为x ,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7, ∵S 2=13[(x 1-x )2+(x 2-x )2+(x 3-x )2]=5, ∴方差为S′2=13[(-2x 1+7+2x -7)2+(-2x 2+7+2x -7)2+(-2x 3+7+2x -7)2] =13 [4(x 1-x )2+4(x 2-x )2+4(x 3-x )2] =4S 2 =4×5 =20,故答案为:20. 【点睛】本题说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.16.某次数学竞赛共有15道题,下表是对于做对n (n=0,1,2…15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了______人.200【解析】【分析】设统计的总人数为x答对11道题的人数为a根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人解析:200【解析】【分析】设统计的总人数为x,答对11道题的人数为a,根据做对4个题和4个以上的人数乘以其平均分加上做对4个以下题的人答对的总题数等于所有被统计的人答对的总题数;做对10个题和10个以下的人数乘以其平均分加上做对10个以上题的人答对的总题数等于所有被统计的人答对的总题数.做对10个题和10个以下的人数乘以其平均分加上做对11,12,13,14道题的人答对的总题数等于所有被统计的人答对的总题数列方程求解即可.【详解】设统计的总人数为x,答对11道题的人数为a.∵做对4个题和4个以上的人数为(x-7-8-10-21)=(x-46)人,∴所有学生做的总题数为:(x-46)×6+0×7+1×8+2×10+3×21=6x-185;又∵做对10个题和10个以下的人数为(x-a-15-6-3-1)=(x-a-25)人,∴所有学生做的总题数为:(x-a-25)×4+15×1+14×3+13×6+12×15+11a=4x+215+7a,∴6x-185=4x+215+7a,2x=400+7a,x=200+ 72 a,∵a为自然数,∴当a=0时x取最小值200.所以至少统计了200人.故答案为200【点睛】本题考查了加权平均数及方程的应用,有一定的难度.解题关键是根据答对的总题数不变列方程.17.如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为__________岁.155【解析】【分析】将该小组年龄按照从小到大顺序排列找出中位数即可【详解】根据题意排列得:131314141415151515161616161617171717则该小组组员年龄的中位数为(15+解析:15.5【解析】【分析】将该小组年龄按照从小到大顺序排列,找出中位数即可.【详解】根据题意排列得:13,13,14,14,14,15,15,15,15,16,16,16,16,16,17,17,17,17,则该小组组员年龄的中位数为12(15+16)=15.5岁,故答案为15.5【点睛】此题考查了条形统计图,以及中位数,弄清中位数的计算方法是解本题的关键.18.为迎接2018年的体育中考,甲、乙两位同学参加排球训练,体育老师根据训练成绩算出他们成绩的方差分别为S甲2=1.6,S乙2=2.8,则_____(填“甲”或“乙”)成绩较稳定.甲【分析】根据方差的意义即方差越小波动越小方差越大波动越大解答【详解】∵<∴甲稳定【点睛】本题考查的知识点是方差解题的关键是熟练的掌握方差解析:甲【分析】根据方差的意义,即方差越小波动越小,方差越大波动越大解答.【详解】∵2S甲<2S乙,∴甲稳定.【点睛】本题考查的知识点是方差,解题的关键是熟练的掌握方差.19.某校对开展贫困地区学生捐书活动,某班40名学生捐助数量(本)绘制了折线统计图,在这40名学生捐助数量中,中位数是_____,众数是_____.2323【解析】【分析】根据中位数和众数的定义求解即可【详解】解:由折线统计图可知阅读20本的有4人21本的有8人23本的有20人24本的有8人共40人∴其中位数是第2021个数据的平均数即=23众解析:23 23【解析】【分析】根据中位数和众数的定义求解即可.【详解】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即23232=23,众数为23, 故答案为23、23. 【点睛】本题考查了折线统计图及中位数、众数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算.20.某班一次数学竞赛考试成绩如下表所示,已知全班共有38人,且众数为60分,中位数为70分,则x 2-2y=_________.=15结合众数为50分中位数为60分分情况讨论即可确定xy 之值从而求出x2-2y 之值【详解】∵全班共有38人∴x+y=38-(解析:50 【分析】由于全班共有38人,则x+y=38-(2+3+5+6+3+4)=15,结合众数为50分,中位数为60分,分情况讨论即可确定x 、y 之值,从而求出x 2-2y 之值. 【详解】 ∵全班共有38人,∴x+y=38-(2+3+5+6+3+4)=15, 又∵众数为60分,∴x≥8,当x=8时,y=7,中位数是第19,20两个数的都为70分,则中位数为70分,符合题意; 当x=9时,y=6,中位数是第19,20两个数的平均数,则中位数为(60+70)÷2=65分,不符合题意;同理当x=10,11,12,13,14,15时,中位数都不等于70分,不符合题意. 则x=8,y=7. 则x 2-2y=64-14=50. 故答案为50. 【点睛】此题主要考查了中位数和众数的应用,关键是根据众数的人数和中位数的数值进行分类讨论x 、y 的取值.三、解答题21.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E . (1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD的面积是.解析:(1)证明见解析;(2)4.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.22.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.解析:(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.23.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?解析:(1)二,一;(2)乙同学的推断比较科学合理,理由见解析.【分析】(1)根据方差的大小即可判断出波动的大小;结合合格率和优秀率则要先数值大的,由此即(2)结合条形统计图,根据平均分、中位数、众数的优缺点进行解答即可.【详解】(1)一班的方差为2.11,二班的方差为4.28,用方差推断,二班的成绩波动较大;一班的合格率为92.5% ,优秀率为20%,二班的合格率为85%,优秀率为10%,一班的合格率与优秀率均比二班的大,因此用优秀率和合格率推断,一班的阅读水平更好些,故答案为二;一;(2)乙同学的推断比较科学合理.理由:虽然二班成绩的平均分比一班低,但从条形图中可以看出,二班有3名学生的成绩是1分,它在该组数据中是一个极端值,平均数受极端值影响较大,而中位数或众数不易受极端值的影响,所以,乙同学的推断更客观些.【点睛】本题考查了数据的收集整理与描述,涉及了平均数,方差,众数和中位数等知识,熟练掌握相关知识以及各自的优缺点是解题的关键.24.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.解析:(1)85;(2)最终候选人E将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90, 则名候选人模拟说题比赛成绩的中位数是85分; 故答案为:85; (2)∵C 的平均成绩是:952803905235⨯+⨯+⨯++=88(分),E 的平均成绩是:852903905235⨯+⨯+⨯++=89(分),∴88<89,∴最终候选人E 将参加说题比赛. 【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义. 25.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照04x ≤<,48x ≤<,…,2832x ≤<分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由. 解析:(1)100,14.72;(2)不合理,见解析 【分析】(1)先确定a 的值,然后求这些数据的加权平均数即可;(2)由14.72在1216x ≤<内,然后确定小于16t 的户数,再求出小于16t 的户数占样本的百分比,最后用这个百分比和70%相比即可说明. 【详解】解:(1)依题意得a=(1000-40-180-280-220-60-20)÷2=100. 这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==,∴估计这1000户家庭月均用水量的平均数是14.72. (2)不合理.理由如下:由(1)可得14.72在1216x ≤<内, ∴这1000户家庭中月均用水量小于16t 的户数有40100180280600+++=(户),∴这1000户家庭中月均用水量小于16t 的家庭所占的百分比是600100%60%1000⨯=, ∴月均用水量不超过14.72t 的户数小于60%.∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%70%<,∴用14.72作为标准m 不合理. 【点睛】本题考查了频数分布直方图、用样本估计总体、加权平均数,正确求得加权平均数是解答本题的关键.26.某单位招聘员工两名,采取笔试与面试相结合的方式进行,两项成绩原始分满分均为100分,前六名选手的得分如下:(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比; (3)在(2)的情况下________,(填序号)选手会被录取.解析:(1)84.5,84;(2)笔试成绩占40%,面试成绩占60%;(3)4号. 【分析】(1)先将笔试成绩从小到大重新排列,再根据中位数和众数的定义求解可得. (2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案. 【详解】解:(1)这6名选手笔试成绩重新排列为80,84,84,85,90,92, ∴这6名选手笔试成绩的中位数为:84852=84.5+(分),众数为84分, 故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分比是x ,y , 根据题意得:1859088x y x y +=⎧⎨+=⎩, 解得:0.40.6x y =⎧⎨=⎩,笔试成绩和面试成绩各占的百分比是40%,60%; (3)2号选手的综合成绩是92×0.4+83×0.6=86.6(分), 3号选手的综合成绩是84×0.4+82×0.6=82.8(分), 4号选手的综合成绩是90×0.4+90×0.6=90(分), 5号选手的综合成绩是84×0.4+80×0.6=81.6(分), 6号选手的综合成绩是80×0.4+85×0.6=83(分), 则在(2)的情况下4号选手会被录取. 故答案为:4号. 【点睛】此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.27.山青养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,统计了它们的质量(单位:kg ),并绘制出如下的统计图1和图2.请根据以上信息解答下列问题: (1)图1中m 的值为 ;(2)统计的这组数据的众数是 ;中位数是 ;(3)求出这组数据的平均数,并估计这2500只鸡的总质量约为多少kg . 解析:(1)28;(2)1.8kg ,1.5kg ;(3)平均数是1.52kg ,总质量约为3800kg . 【分析】(1)根据各种质量的百分比之和为1可得m 的值; (2)根据众数、中位数、加权平均数的定义计算即可;(3)根据平均数的计算公式求出这组数据的平均数,再乘以总只数即可得出鸡的总质量. 【详解】(1)图①中m 的值为100﹣(32+8+10+22)=28, 故答案为:28;(2)∵1.8kg出现的次数最多,∴众数为1.8kg,把这些数从小到大排列,则中位数为1.5 1.52+=1.5(kg);故答案为:1.8kg,1.5kg;(3)这组数据的平均数是:151114164++++×(5×1+11×1.2+14×1.5+16×1.8+4×2),=150⨯(5+13.2+21+28.8+8),=1.52(kg),∴2500只鸡的总质量约为:1.52×2500=3800(kg),所以这组数据的平均数是1.52kg,2500只鸡的总质量约为3800kg.【点睛】此题考查统计计算,正确掌握部分百分比的计算方法,众数的定义、中位数的定义,平均数的计算方法是解题的关键.28.为响应我市创建“全国文明城市”的号召,我区某校举办了一次“秀美巴中,绿色家园”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀,这次演讲比赛中甲、乙两组学生(各10名学生)成绩分布的条形统计图如下图:(1)补充完成下列的成绩统计分析表:组别平均分中位数众数方差合格率优秀率甲 6.76 3.4190%20%乙7.17.5 1.6980%10%可知,小王是________组的学生;(填“甲”或“乙”)(3)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.解析:(1)6;8;(2)甲;(3)乙组的成绩更好一些.【分析】(1)先根据条形统计图得出甲、乙两组各学生的成绩,再根据中位数、众数的定义即可求得;(2)根据中位数即可判断,小明的成绩大于中位数;(3)可以从平均分、中位数、众数、方差四个方面综合分析.【详解】解:(1)∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10.∴甲组中位数为6,∵乙组的成绩为:5,5,6,7,7,8,8,8,8,9.∴乙组众数为8,故答案为:6;8.(2)∵小明的成绩为7分属中游略偏上,甲组的中位数是6,乙组的中位数为7.5,∴小明在甲组.故答案为:甲.(3)因为乙组成绩的平均分、中位数、众数均比甲高,而乙组成绩的方差又比甲组小,所以乙组的成绩比甲组更稳定,因此综合分析乙组的成绩更好一些.【点睛】本题考查平均分、中位数、众数、方差等概念,正确掌握这些概念是解题的关键.。

初级中学数学课堂学习检测-第20章-数据的分析

初级中学数学课堂学习检测-第20章-数据的分析

第二十章数据的分析测试1 平均数(一)学习要求了解加权平均数的意义和求法,会求实际问题中一组数据的平均数.课堂学习检测一、填空题1 .一组数据中有3个7 ,4个11和3个9 ,那么它们的平均数是______ .2 .某组学生进行“引体向上”测试,有2名学生做了8次,其余4名学生分别做了10次、7次、6次、9次,那么这组学生的平均成绩为______次,在平均成绩之上的有______人.3 .某校一次歌咏比赛中,7位评委给8年级(1)班的歌曲打分如下:9.65 ,9.70 ,9.68 ,9.75 ,9.72 ,9.65 ,9.78 ,去掉一个最高分,再去掉一个最低分,计算平均分为该班最后得分,则8年级(1)班最后得分是______分.二、选择题4 .如果数据2 ,3 ,x,4的平均数是3 ,那么x等于( ) .(A)2 (B)3 (C)3.5 (D)45 .某居民大院月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则每户平均用电( ) .(A)41度(B)42度(C)45.5度(D)46度三、解答题6 .甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178 177 179 178 177 178 177 179 178 179 ;乙队:178 179 176 178 180 178 176 178 177 180 .(1)(2)(3)你认为哪支仪仗队更为整齐?简要说明理由.7 .:假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6的比例来计算,那么小明和小颖的学期总评成绩谁较高?综合、运用、诊断一、填空题8 .某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人.9 .如果10名学生的平均身高为1.65米,其中2名学生的平均身高为1.75米,那么余下8名学生的平均身高是______米.10 .某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90 ,92 ,73分,则这名同学本学期的体育成绩为______分,可以看出,三项成绩中______的成绩对学期成绩的影响最大.二、选择题11 . 为了解乡镇企业的水资源的利用情况 , 市水利管理部门抽查了部分乡镇企业在一个月中的用水情况 , 其中用水15吨的有3家 , 用水20吨的有5家 , 用水30吨的有7家 , 那么平均每家企业1个月用水( ) . (A)23.7吨 (B)21.6吨 (C)20吨 (D)5.416吨12 . m 个x 1 , n 个x 2和r 个x 3 , 由这些数据组成一组数据的平均数是( ) .(A)3321x x x ++(B)3rn m ++ (C ) 3321rx nx mx ++ (D)r n m rx nx mx ++++321 三 、 解答题13 . 从小明的父亲买了一张面值600元的天然气使用卡 , 已知天然气每立方米1.70元 , 请估计这张卡是否够小明家用一个月(按30天计算) , 将结果填在后面的横线上 . (只填“够”或“不够”)结果为 : ______ . 并说明为什么 .14 . 四川汶川大地震发生后 , 某中学八年级(1)班共有40名同学参加了“我为灾区献爱心”的活动 . 活动结束后 , 生活委员小林将捐款情况进行了统计 , 并绘制成如右的统计图 .(1)求这40名同学捐款的平均数 ; (2)该校共有学生1200名 , 请根据该班的捐款情况 , 估计这个中学的捐款总数大约是多少元 ? 15 . 某地为了解从2004年以来初中学生参加基础教育课程改革的情况 , 随机调查了本地区1000名初中学习能力优秀的学生 . 调查时 , 每名学生可在动手能力 、 表达能力 、 创造能力 、 解题技巧 、 阅读能力和自主学习等六个方面中选择自己认为是优秀的项 . 调查后绘制了如下图所示的统计图 . 请根据统计图反映的信息解答下列问题 :(1)学生获得优秀人数最多的一项和最有待加强的一项各是什么 ? (2)这1000名学生平均每人获得几个项目优秀 ?(3)若该地区共有2万名初中学生 , 请估计他们表达能力为优秀的学生有多少人 ?测试2 平均数(二)学习要求加强实际问题中平均数的计算 , 体会用样本平均数估计总体平均数的思想 .课堂学习检测一 、 填空题1 . 已知7 , 4 , 5和x 的平均数是5 , 则x =______ .2 . 某校12名同学参加数学科普活动比赛 , 其中8名男同学的平均成绩为85分 , 其余的女同学的平均成绩为76分 , 则该校12名同学的平均成绩为______分 .3 . 某班50名学生平均身高168cm , 其中30名男生平均身高170cm , 则20名女生的平均身高为______cm . 二 、 选择题4 . 如果a 、 b 、 c 的平均数是4 , 那么a -1 , b -5和c +3的平均数是( ) .(A)-1 (B)3 (C)5 (D)9 5 .(A)80分 (B)81分 (C)82分 (D)83分 三 、 解答题6 . 某班有学生52人 , 期末数学考试平均成绩是72分 . 有两名同学下学期要转学 , 已知他俩的成绩分别为70分和80分 . 求他俩转学后该班的数学平均分 . 7 . 某瓜农采用大棚栽培技术种植了1亩地的两种西瓜 , 共产出了约600个西瓜 . 在西瓜上市前 ,计算这10综合 、 运用 、 诊断一 、 填空题8 . 如果一组数据中有3个6 、 4个-1 , 2个-2 、 1个0和3个x , 其平均数为x , 那么x=______ .9 . 某次射击训练中 ,若该小组的平均成绩为7.7二 、 选择题10 . 一次考试后 , 某学习小组组长算出全组5位同学数学的平均分为M , 如果把M 当成另一个同学的分数 , 与原来的5个分数一起 , 算出这6个分数的平均数为N , 那么M ∶N 为( ) . (A)5∶6 (B)1∶1 (C)6∶5 (D)2∶111 . 某辆汽车从甲地以速度v 1匀速行驶至乙地后 , 又从乙地以速度v 2匀速返回甲地 , 则汽车在这个行驶过程中的平均速度是( ) .(A)2121v v v v +(B) 2121v v vv +(C)221v v + (D) 21212v v vv +12 . 某同学在用计算器求30个数据的平均数时 , 错将其中一个数据105输入为15 , 那么由此算出的平均数与实际平均数的差为( ) .(A)3 (B)-3 (C)3.5 (D)-3.5三、解答题13 .我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭每月使用塑料袋的数量,结果如下(单位:只)65 70 85 75 79 74 91 81 95 85(1)计算这10名学生所在家庭平均每月使用塑料袋多少只?(2)“限塑令”执行后,家庭每月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1000名学生所在家庭每月使用塑料袋可减少多少只?拓展、探究、思考一、解答题14 .某中学为了了解本校学生的身体发育情况,抽测了同年龄的40名女学生的身高情况,统计人员将上述数据整理后,列出了频数分布表如下:根据以上信息回答下列问题:(1)频数分布表中的A=______ ;(2)这40名女学生的平均身高是______cm(精确到0.1cm) .15 .某人为了了解他所在地区的旅游情况,收集了该地区2004至2007年每年的旅游收入及入境旅游人数(其中缺少2006年入境旅游人数)的有关数据,整理并分别绘成图1 ,图2 .图1 图2根据上述信息,回答下列问题:(1)该地区2004至2007年四年的年旅游收入的平均数是______亿元;(2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是______万人;(3)根据第(2)小题中的信息,请把图2补画完整.测试3 中位数和众数(一)学习要求了解中位数和众数的意义,掌握它们的求法.课堂学习检测一、填空题1 .学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6 ,7 ,8 ,9 ,9 ,9 ,9 ,10 ,10 ,10 ,12 ,这组数据的众数和中位数分别是______ .2 .资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的棵数如下:10 ,10 ,x,8 ,若这组数据的众数和平均数相等,那么它的中位数是______棵.3 .已知数据1 ,2 ,x和5的平均数是2.5 ,则这组数据的众数是______ .二、选择题4 .对于数据2 ,4 ,4 ,5 ,3 ,9 ,4 ,5 ,1 ,8 ,其众数、中位数和平均数分别为( ) .(A)4 4 6 (B)4 6 4.5 (C)4 4 4.5 (D)5 6 4.55 .为了筹备班里的新年联欢会,班长以全班同学最爱吃哪几种水果做民意调查,以决定最终买什么水果.该次调查结果最终应该由数据的( )决定.(A)平均数(B)中位数(C)众数(D)无法确定6 .一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为( )(A)9与8(B)8与9(C)8与8(D)8.5与9三、解答题7 .公园里有甲、乙两群游客正在进行团体活动,两群游客的年龄如下(单位:岁) :甲群:13 13 14 15 15 15 1 5 16 17 17 ;乙群: 3 4 4 5 5 6 6 54 57 .回答下列问题:(1)甲群游客的平均年龄是______岁,中位数是______岁,众数是______ ,其中______能较好地反映这群游客的年龄特征:(2)乙群游客的平均年龄是______岁,中位数是______岁,众数是______ ,其中______能较好地反映这群游客的年龄特征.8 .某饮食公司为一学校提供午餐,有3元、4元和5元三种价格的饭菜供师生选择(每人限定一份) .如图,是五月份的销售情况统计图,这个月一共销售了10400份饭菜,那么师生购买午餐费用的平均数、中位数和众数各是多少?综合、运用、诊断一、填空题9 :那么运动员成绩的众数是______ ,中位数是______ ,平均数是______ .10 .如果数据20 ,30 ,50 ,90和x的众数是20 ,那么这组数据的中位数是______ ,平均数是______ .二、选择题11 .已知数据x,5 ,0 ,3 ,-1的平均数是1 ,那么它的中位数是( ) .(A)0 (B)2.5 (C)1 (D)0.512 .如果一组数据中有一个数据变动,那么( ) .(A)平均数一定会变动(B)中位数一定会变动(C)众数一定会变动(D)平均数、中位数和众数可能都不变三、解答题13 :(1)该班学生考试成绩的众数是______ ;(2)该班学生考试成绩的中位数是______ ;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.14 .某中学要召开运动会,决定从九年级全部的150名女生中选30人,组成一个花队(要求参加花队的同学的身高尽可能接近) .现在抽测了10名女生的身高,结果如下(单位:厘米) :166 154 151 167 162 158 158 160 162 162 .(1)依据数据估计,九年级全体女生的平均身高约是多少?(2)这10名女生的身高的中位数和众数各是多少?(3)请你依据本数据,设计一个挑选参加花队的女生的方案.(要简要说明)拓展、探究、思考一、选择题15 .国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h ;B组:0.5h≤t<1h ;C组:1h≤t<1.5h ;D组:t≥1.5h .根据上述信息,你认为本次调查数据的中位数落在( ) .(A)B组(B)C组(C)D组(D)A组二、解答题16 .为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角 为36°.根据上面提供的信息,回答下列问题:(1)写出样本容量、m的值及抽取部分学生体育成绩的中位数;(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.测试4 中位数和众数(二)学习要求进一步理解平均数、中位数和众数所代表的不同的数据特征.课堂学习检测一、填空题1 .在一组数据中,受最大的一个数据值影响最大的数据代表是______ .2 .数据2 ,2 ,1 ,5 ,-1 ,1的众数和中位数之和是______ .二、选择题3 .某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25 ,23 ,25 ,23 ,27 ,30 ,25 ,这组数据的中位数和众数分别是( )(A)23 25 (B)23 23 (C)25 23 (D)25 254 .为调查八年级学生完成作业的时间,某校抽查了8名学生完成作业的时间,依次是:75 ,70 ,90 ,70 ,70 ,58 ,80 ,55(单位:分钟) ,那么这组数据的众数、中位数和平均数依次为( ) .(A)70 70 71 (B)70 71 70 (C)71 70 70 (D)70 70 70三、解答题5 .某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1)求出样本平均数、中位数和众数;(2)估计全年级的平均分.6(2)假设副董事长的工资提升到2万元,董事长的工资提升到3万元,那么新的职工月工资的平均数、中位数和众数是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?谈一谈你的看法.综合、运用、诊断一、填空题7 .已知a<b<c<d,则数据a,a,b,c,d,b,c,c的众数为______ ,中位数为______ ,平均数为______ .8 .一组数据的中位数是m,众数是n,则将这组数据中每个数都减去a后,新数据的中位数是______ ,众数是______ .二、选择题9 .有7个数由小到大排列,其平均数是38 .如果这组数中前4个数的平均数是33 ,后4个数的平均数是42 ,那么这7个数的中位数是( ) .(A)34 (B)1 6 (C)38 (D)20三、解答题10 .文艺会演中,2班的成绩如下:(1)为什么?(2)采用怎样的方法,对参赛的班级更为公平?如果采用你提供的方法,两个班谁将获胜?11 .某同学为了完成统计作业,对全校的耗电情况进行调查.他抽查了10天中全校每天的耗电量,数据如下(单位:度) :(1)写出上表中数据的众数和平均数;(2)由(1)获得的数据,估计该校一个月(按30天计算)的耗电量;(3)若当地每度电的定价是0.5元,写出该校应付的电费y(元)与天数x(取正整数)之间的函数关系式.拓展、探究、思考一、解答题12 .在学校组织的“喜迎奥运,知荣明耻.文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.学校将某年级的1班和2班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中,2班成绩在C级以上(包括C级)的人数为______ ;(2)(3)①从平均数和中位数的角度来比较1班和2班的成绩 ; ②从平均数和众数的角度来比较1班和2班的成绩 ;③从B 级以上(包括B 级)的人数的角度来比较1班和2班的成绩 .测试5 极差和方差(一)学习要求了解极差和方差的意义和求法 , 体会它们刻画数据波动的不同特征 .课堂学习检测一 、 填空题1 . 一组数据100 , 97 , 99 , 103 , 101中 , 极差是______ , 方差是______ .2 . 数据1 ,3 , 2 , 5和x 的平均数是3 , 则这组数据的方差是______ . 3 . 一个样本的方差1212s [(x 1-3)2+(x 2-3)2+ … +(x n -3)2] , 则样本容量是______ , 样本平均数是______ . 二 、 选择题4 . 一组数据-1 , 0 , 3 ,5 , x 的极差是7 , 那么x 的值可能有( ) .(A)1个 (B)2个 (C)4个 (D)6个 5 . 已知样本数据1 , 2 , 4 , 3 , 5 , 下列说法不正确的是( ) .(A)平均数是3 (B)中位数是4 (C)极差是4 (D)方差是2 三 、 解答题6 . 甲 、 乙两组数据如下 :甲组 : 10 9 11 8 12 13 10 7 ; 乙组 : 7 8 9 10 11 12 11 12 .分别计算出这两组数据的极差和方差 , 并说明哪一组数据波动较小 .7 . 为检测一批橡胶制品的弹性 , 现抽取15条皮筋的抗拉伸程度的数据(单位 : 牛) :5 4 4 4 5 7 3 3 5 56 6 3 6 6 (1)这批橡胶制品的抗拉伸程度的极差为______牛 ;(2)若生产产品的抗拉伸程度的波动方差大于1.3 , 这家工厂就应对机器进行检修 , 现在这家工厂是否应检修生产设备 ? 通过计算说明 .综合 、 运用 、 诊断一 、 填空题8 . 随机从甲 、 乙两块试验田中各抽取100株麦苗测量高度 , 计算平均数和方差的结果 :甲x =13 , 乙x =13 , 2甲s =3.6 , 2乙s =15.8 , 则小麦长势比较整齐的试验田是______ .9 . 把一组数据中的每个数据都减去同一个非零数 , 则平均数______ , 方差______ . (填“改变”或“不变”) 二 、 选择题10 . 关于数据-4 , 1 , 2 , -1 , 2 , 下面结果中 , 错误的是( ) .(A)中位数为1 (B)方差为26 (C)众数为2 (D)平均数为011 . 某工厂共有50名员工 , 他们的月工资方差是s 2 , 现在给每个员工的月工资增加200元 , 那么他们的新工资的方差( ) . (A)变为s 2+200 (B)不变 (C)变大了 (D)变小了 12 . 数据-1 , 0 , 3 , 5 , x 的极差为7 , 那么x 等于( ) .(A)6 (B)-2 (C)6或-2 (D)不能确定 三 、 解答题13 . 甲 、 乙两个组各10名同学进行英语口语会话测试 , 每个人测试5次 , 每个同学合格的次数分别如下 :甲组 : 4 1 2 2 1 3 3 1 2 1 ; 乙组 : 4 3 0 2 1 3 3 0 1 3 .(1)如果合格3次以上(含3次)为及格标准 , 请你说明哪个小组的及格率高 ; (2)请你比较两个小组口语会话的合格次数谁比较稳定 .测试6 极差和方差(二)学习要求体会用样本方差估计总体方差的思想 , 掌握分析数据的思想和方法 .课堂学习检测一 、 选择题1 . 如图是根据某地2008年4月上旬每天最低气温绘成的折线图 , 那么这段时间最低气温的极差 、众数 、 平均数依次是( ) .A . 5° 5° 4°B . 5° 5° 4.5°C . 2.8° 5° 4°D . 2.8° 5° 4.5°2 . 已知甲 、 乙两组数据的平均数都是5 , 甲组数据的方差2甲s =121 , 乙组数据的方差2乙s =101 , 那么下列说法正确的是( ) .(A)甲组数据比乙组数据的波动大 (B)乙组数据比甲组数据的波动大 (C)甲组数据与乙组数据的波动一样大(D)甲 、 乙两组数据的波动大小不能比较 二 、 填空题3 . 已知一组数据1 , 2 , 0 , -1 , x , 1的平均数是1 , 则这组数据的极差为______ .4 . 样本数据3 , 6 , a , 4 , 2的平均数是5 , 则这个样本的方差是______ .综合 、 运用 、 诊断一 、 填空题5 . 样本数据3 ,6 , a , 4 , 2的平均数是5 , 则这个样本的方差是______ .6 . 已知样本x 1 、 x 2 , … , x n 的方差是2 , 则样本3x 1+2 , 3x 2+2 , … , 3x n +2的方差是_____ ____ .7 . 如图 , 是甲 、 乙两地5月上旬的日平均气温统计图 , 则甲 、 乙两地这6天日平均气温的方差大小关系为 : 2甲s ______2乙s (填“<”或“>”号) , 甲 、 乙两地气温更稳定的是 : ______ .二、解答题8 .星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:甲队.乙队:(1)(2)①能代表甲队游客一般年龄的统计数据是_____________________ ;②平均数能较好地反映乙队游客的年龄特征吗?为什么?9 .为了解某品牌A,B两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的销售情况进行了统计,并将得到的数据制成如下的统计表:(1)(2),对专卖店今后的进货情况提出建议(字数控制在20~50字) .参考答案第二十章 数据的分析测试1 平均数(一)1 . 9 .2 . 2 . 8 ; 2 .3 . 9.70 .4 . B .5 . C .6 . (1)略 ; (2)178 , 178 ; (3)甲队 , 理由略 .7 . 小明8 . 900 . 9 . 1 . 625 . 10 . 80.4 ; 体育技能测试 . 11 . A . 12 . D . 13 . 够用 ; ∵30×10×1.7=510<600 . 14 . (1)41元 ; (2)49200元 .15 . (1)解题技巧 , 动手能力 ; (2)2.84 ; (3)7000 .测试2 平均数(二)1 . 4 .2 . 82 .3 . 165 .4 . B .5 . C .6 .88.715070805272=--⨯(分) .7 . 10个西瓜的平均质量51013.416.429.430.524.515.5=⨯+⨯+⨯+⨯+⨯+⨯ (千克) ,估计总产量是5×600=3000(千克) .8 . 1 . 9 . 4 . 10 . B . 11 . D . 12 . B . 13 . (1)80 ; (2)4000 .14 . (1)6 ; (2)158.8 . 15 . (1)45 ; (2)220 ; (3)略 .测试3 中位数和众数(一)1 . 9 ; 9 .2 . 11 .3 . 2 .4 . C .5 . C .6 . C .7 . (1)15 , 15 , 15 , 平均数 、 中位数和众数 ; (2)16 , 5 , 4 、 5和6 , 中位数和众数 . 8 . 按百分比计算得这个月3元 、 4元和5元的饭菜分别销售10400×20%=2080份 , 10400×65%=6760份 , 10400×15%=1560份 , 所以师生购买午餐费用的平均数是95.310400515604676032080=⨯+⨯+⨯元 ; 中位数和众数都是4元 .9 . 1.75 ; 1.70 ; 1.69 . 10 . 30 ; 42 . 11 . A . 12 . A . 13 . (1)88 ; (2)86 ; (3)不能 . 因为83小于中位数 . 14 . (1)平均身高为16010162162160158162167151154166=++++++++(厘米) ;(2)中位数是161厘米 , 众数是162厘米 ;(3)根据(1)(2)的计算可知 , 大多数女生的身高应该在160厘米和162厘米之间 , 因此可以选择这部分身高的女生组成花队 . 15 . B .16 . (1)50 , 5 , 28 ; (2)300 .测试4 中位数和众数(二)1 . 平均数 .2 . 2.5或3.5 .3 . D .4 . A .5 . (1)样本平均数是80分 , 中位数是80分 , 众数是85分 ; (2)估计全年级平均80分 .6 . (1)平均数是209133200350051000115002200013500140001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元) ,中位数和众数都是1500(元) ; (2)平均数是32883320035005100011500220001185001285001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元) ,中位数和众数都是1500(元) .(3)中位数和众数都能反映该公司员工的工资水平 . 而公司中少数人的工资与大多数人的工资差别较大 , 导致平均数和中位数偏差较大 , 所以平均数不能反映该公司员工的工资水平 . 7 . ⋅++++8322;2;dc b a c b c 8 . m -a ; n -a . 9 . A . 10 . (1)3.7101437681=⨯+⨯+⨯=x (分) , 6.71011067382=⨯+⨯+⨯=x (分) , 2班将获胜 ; 我认为不公平 , 因为4号评委给两个班的打分明显有偏差 , 影响了公正性 ;(2)可以采取去掉一个最高分和一个最低分后 , 再计算平均数 , 这样1班获胜 ; 也可以用中位数来衡量标准 , 也是1班获胜 .11 . (1)众数是113度 , 平均数是108度 ;(2)估计一个月的耗电量是108×30=3240(度) ; (3)解析式为y =54x (x 是正整数) .12 . (1)21 ; (2)1班众数 : 90分 ; 2班中位数 : 80分 ; (3)略测试5 极差和方差(一)1 . 6 ; 4 .2 . 2 .3 . 12 ; 3 .4 . B .5 . B .6 . 甲组的极差是6 , 方差是3.5 ; 乙组的极差是5 , 方差是3 ; 说明乙组的波动较小 .7 . (1)4 ; (2)方差约是1.5 , 大于1.3 , 说明应该对机器进行检修 .8 . 甲 . 9 . 改变 ; 不变 . 10 . B . 11 . B . 12 . C . 13 . (1)甲组及格率是30% , 乙组及格率是50% , 乙组及格率高 ;(2)甲x =2 , 乙x =2 , 2甲s =1 , 2乙s =1.8 , 甲组更稳定 . 测试6 极差和方差(二)1 . B .2 . B.3 .4 . 4 . 8 .5 . 8 .6 . 18 .7 . > , 乙 . 8.9 . (1)A 型 : 平均数 14 ; 方差4.3(约) ; B 型 : 中位数 15 .(2)略 .第二十章 数据的分析全章测试一 、 填空题 1 . 从一组数据中取出m 个x 1 , n 个x 2 , p 个x 3组成一个数据样本 , 则这个样本的平均数为______ . 2 . 数据1 , x , 2 , 5的中位数是3 , 则x =______ .3 . 甲 、 乙两人在相同情况下各射靶10次 , 环数的方差分别是2甲s =1.4 , 2乙s =1.2 , 则射击稳定性高的是______ . 4 . 某中学举行一次演讲比赛 , 分段统计参赛学生的成绩如下表(分数为整数 , 满分为100分) ,则这次比赛的平均成绩为______分 .5 . 若x 1 、 x 2 、 x 3的方差为4 , 则2x 1+3 , 2x 2+3 , 2x 3+3的方差为______ . 二 、 选择题6 . 若x , y , z 的平均数是6 , 则5x +3 , 5y -2 , 5z +5的平均数是( ) .(A)6 (B)30 (C)33 (D)32 7 . 从某市5000名初一学生中 , 随机地抽取100名学生 , 测得他们的身高数据 , 得到一个样本 ,则这个样本数据的平均数 、 中位数 、 众数 、 方差四个统计量中 , 服装厂最感兴趣的是( ) . (A)平均数 (B)中位数 (C)众数 (D)方差 8 . 小明对本班同学每天花多少零用钱进行了调查 , 计算出平均数为3 , 中位数为3 , 众数为2 ,极差为8 , 假如老师随机问一名同学每天花多少零用钱 , 最有可能得到的回答是( ) . (A)3 (B)2 (C)8 (D)不能确定9 . 已知x 1 , x 2 , … , x 10的平均数是a ; x 11 , x 12 , … , x 30的平均数是b , 则x 1 ,x 2 , … , x 30的平均数是( ) .(A))(21b a + (B))(301b a + (C))2010(301b a +(D))3010(401b a +10 . 甲乙两人在跳远练习中 , 6次成绩分别为(单位 : 米) :甲 : 3.8 3.8 3.9 3.9 4 4 ; 乙 : 3.8 3.9 3.9 3.9 3.9 4 .则这次跳远练习中 , 甲乙两人成绩方差的大小关系是( ) .(A)2甲s >2乙s(B)2甲s <2乙s(C)2甲s =2乙s(D)无法确定三 、 解答题11 . 某农户在山上种了脐橙果树44株 , 现进入第三年收获期 , 收获时 , 先随意采摘5株果树上的脐橙 , 称得每株树上的脐橙重量如下(单位 : 千克) : 35 , 35 , 34 , 39 , 37 . 若市场上的脐橙售价为每千克5元 , 估计这年该农户卖脐橙的收入为多少元 ?12 . 如图 , 是某单位职工年龄的频数分布直方图 , 根据图形提供的信息 , 回答下列问题 :(1)该单位职工的平均年龄为多少 ?(2)该单位职工在哪个年龄段的人数最多 ? (3)该单位职工年龄的中位数在哪个年龄段内 ?13 .学期末,:3∶3∶4 ,通过计算说明谁应当选为优秀学生干部.14 .如图是甲、乙二人在八年级下学期的9次数学考试成绩:(1)填写下表:(2)15 .为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取(1)计算甲、乙两种电子钟走时误差的平均数;(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优,若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?16 .为了迎接新中国成立六十周年,某中学九年级组织了《祖国在我心》征文比赛,共收到一班、二班、三班、四班参赛学生的文章共100篇(参赛学生每人只交一篇) ,下面扇形统计图描述了各班参赛学生占总人数的百分比情况(尚不完整) .比赛一、二等奖若干,结果全年级25人获奖,其中三班参赛学生的获奖率为20%,一、二、三、四班获奖人数的比为6∶7∶a∶5 .(1)填空:①四班有______人参赛, =______°.②a=______ ,各班获奖学生数的众数是______ .(2)获一等奖、二等奖的学生每人分别得到价值100元、60元的学习用品,购买这批奖品共用去1900元,问一等奖、二等奖的学生人数分别是多少?参考答案第二十章 数据的分析全章测试1 .⋅++++pn m px nx mx 321 2 . 4 . 3 . 乙 . 4 . 81 . 5 . 16 . 6 . D . 7 . C . 8 . B . 9 . C . 10 . A .11 . 7920元 . 12 . 41 , 40~42 , 40~42 .13 . 平均数分别为26.2 , 25.8 , 25.4 , 班长应当选 , 14 . (1)(2)略 .15 . (1)甲种电子钟走时误差的平均数是 :0)2112224431(101=+--+-++--乙种电子钟走时误差的平均数是 :0)1222122134(101=+-+-+-+--∴两种电子钟走时误差的平均数都是0秒 .(2)=⨯=-++--+-=60101])02()03()01[(1012222 甲s 6秒2 8.46101])01()03()04[(1012222=⨯=-++--+-= 乙s 秒2∴甲乙两种电子钟走时误差的方差分别是6秒2和4.8秒2 .(3)我会买乙种电子钟 , 因为平均数相同 , 且甲的方差比乙的大 , 说明乙的稳定性更好 , 故乙种电子钟的质量更优 .16 . (1)①25 , 90° ; ②7 , 7 ; (2)10 , 15 .。

人教版初中八年级数学下册第二十章《数据的分析》经典测试卷(含答案解析)

人教版初中八年级数学下册第二十章《数据的分析》经典测试卷(含答案解析)

一、选择题1.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ).A .1B .6C .1或6D .5或6C解析:C【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.2.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( ) A .甲B .乙C .丙D .丁B解析:B【分析】 直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁,∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙.故选B .【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.3.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年C解析:C【分析】 把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年, ∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C .【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.4.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x =( )A .2B .3C .5D .7C解析:C【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x 的值即可得到答案.【详解】解:∵一组数据:3,2,5,3,7,5,x ,它们的众数为5,∴5出现的次数最多,故5x =,故选C .【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.5.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 8. 99,1010,11,,这组数据的众数是9 C .如果123,,,,n x x x x ⋯的平均数是1,那么()()()121110n x x x -+-+⋯+-= D .一组数据的方差是这组数据的极差的平方C解析:C【分析】根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可.【详解】A、当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B、8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C、如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=x1+x2+x3+…+x n-n x=0,故此选项正确;D、一组数据的方差与极差没有关系,故此选项错误;故选C.【点睛】此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键.6.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.8.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.中位数B.平均数C.方差D.极差A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.9.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:A.10名学生是总体的一个样本B.中位数是40C.众数是90D.方差是400D解析:D【分析】根据样本、众数、中位数及方差的定义,结合表格分别进行解答,即可得出答案.【详解】A、10名学生的捐款数是总体的一个样本,故本选项错误;B、中位数是30,故本选项错误;C、众数是30,故本选项错误;D、平均数是:(20×2+30×4+50×3+90)÷10=40(元),则方差是:110×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确,故选D.【点睛】本题考查了中位数、方差、众数及样本的知识,掌握相关的定义以及求解方法是解题的关键.10.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题11.已知一组数据:x1,x2,x3,…,x n的平均数是2,方差是3,另一组数据:3x1﹣2,3x2﹣2,…3x n﹣2的方差是__________.27【分析】根据方差的定义得到把数据x1x2x3…xn都扩大3倍则方差扩大3的平方倍然后每个数据减2方差不变于是得到3x1﹣23x2﹣2…3xn﹣2的方差为27【详解】∵x1x2x3…xn的平均数是解析:27【分析】根据方差的定义得到把数据x1,x2,x3,…x n都扩大3倍,则方差扩大3的平方倍,然后每个数据减2,方差不变,于是得到3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.【详解】∵x1,x2,x3,…x n的平均数是2,方差是3,∴3x1,3x2,…3x n的方差=3×32=27,∴3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.故答案为27.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的平均分是____分.885【分析】首先求出10名选手的总成绩再求出平均分即可【详解】解:根据统计图可知这10名选手成绩的平均分为=885(分)故答案为885【点睛】本题主要考查了加权平均数的知识掌握加权平均数的计算公式解析:88.5【分析】首先求出10名选手的总成绩,再求出平均分即可.【详解】解:根据统计图可知,这10名选手成绩的平均分为28018559029510⨯+⨯+⨯+⨯=88.5(分),故答案为88.5.【点睛】本题主要考查了加权平均数的知识,掌握加权平均数的计算公式是解题的关键.13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:__.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷 解析:甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.15.若这8个数据-3, 2,-1,0,1,2,3,x的极差是11,则这组数据的平均数是______.15或-05【分析】根据极差的概念求出x的值然后根据平均数的概念求解【详解】一组数据-32-10123x的极差是11当x为最大值时x﹣(﹣3)=11x=8平均数是:;当x是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x的极差是11,当x为最大值时,x﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=();当x是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键16.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断不正确的是__________________①该班学生共有44人;②.该班一周锻炼时间为10小时的学生最多;③该班学生一周锻炼时间的中位数是11;④该班学生一周锻炼的平均时间为910111213115++++=小时.①②④【解析】【分析】根据统计图中的数据可以得到一共多少人然后根据平均数中位数和众数的定义即可求得这组数据的平均数中位数和众数【详解】由统计图可知锻炼9小时的有6人锻炼10小时的有9人锻炼11小时的解析:①②④【解析】根据统计图中的数据可以得到一共多少人,然后根据平均数、中位数和众数的定义即可求得这组数据的平均数、中位数和众数.【详解】由统计图可知锻炼9小时的有6人,锻炼10小时的有9人,锻炼11小时的有10人,锻炼12小时的有8人,锻炼13小时的有7人,故该班学生共有6+9+10+8+7=40人,因此①错误;从统计图可以看出,该班一周锻炼时间为11小时的学生最多,因此②错误;该班学生一周锻炼时间的中位数是11小时,故③正确;该班学生一周锻炼的平均时间为69+910+1110+128+137=11.02540⨯⨯⨯⨯⨯小时,故④错误.故错误的有①②④【点睛】题考查折线统计图、平均数、中位数和众数的定义,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.17.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5【解析】【分析】根据众数和平均数的定义求解.【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5.故答案为:5;5.【点睛】本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数.18.若5个正整数从小到大排序,其中中位数是4,如果这组数据的唯一众数是5,当这5个正整数的和为最大值时,这组数据的方差为______.136【解析】【分析】根据中位数和众数的意义先求出后三位数由和为最大值求出前两个数然后求方差即可【详解】解:因为五个正整数从小到大排列后其中中位数是4这组数据的唯一众数是5所以这5个数据分别是xy4【解析】【分析】根据中位数和众数的意义先求出后三位数,由和为最大值求出前两个数,然后求方差即可.【详解】解:因为五个正整数从小到大排列后,其中中位数是4,这组数据的唯一众数是5.所以这5个数据分别是x,y,4,5,5,且x y 4<<,当这5个整数的和最大时,整数x,y 取最大值,此时x 2y 3==,, 所以这组数据的平均数()1192345555x =++++=, 22222211919191919S 23455555555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=1.36 【点睛】此题考查了中位数、众数的概念,牢记方差公式是解题关键.19.一组数据2、3、5、6、x 的平均数正好也是这组数据的中位数,那么正整数x 为_____.-149【分析】根据平均数的计算公式先表示出这组数据的平均数再根据中位数的定义进行讨论即可得出答案【详解】∵数据2356x 的平均数是=∴当x=-1时这组数据的平均数是3中位数也是3;当x=4时这组数解析:-1、4、9【分析】根据平均数的计算公式先表示出这组数据的平均数,再根据中位数的定义进行讨论,即可得出答案.【详解】∵数据2、3、5、6、x 的平均数是23565x ++++=165x +, ∴当x=-1时,这组数据的平均数是3,中位数也是3;当x=4时,这组数据的平均数是4,中位数也是4;当x=9时,这组数据的平均数是5,中位数也是5;∴x=-1,4或9;故答案为-1,4或9.【点睛】 此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是______.甲【解析】【分析】根据方差小的身高稳定判断即可【详解】现有甲乙两个合唱队队员的平均身高均为170cm 方差分别是且则两个队的队员的身高较整齐的是甲故答案为:甲【点睛】此题考查了方差方差是用来衡量一组数解析:甲 【解析】 【分析】根据方差小的身高稳定判断即可. 【详解】现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S 甲乙,则两个队的队员的身高较整齐的是甲, 故答案为:甲 【点睛】此题考查了方差,方差是用来衡量一组数据波动大小的量.三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图; (2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?解析:(1)40;补图见详解;(2)36°;(3)13200元. 【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解; (3)计算出本次调查的平均数,再根据题意列式计算即可求解. 【详解】解:(1)10÷25%=40(人), 40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=3640⨯︒︒; (3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元),答:七年级学生捐款约为13200元. 【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下:(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?解析:(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人. 【分析】(1)根据条形图排序中位数在C 组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可; (2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可. 【详解】解:(1)A 与B 组共有6个,D 组有6个为此中位数落在C 组,而C 组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上, 第8个数据为85, 中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100,100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40%30+⨯, 此次测试成绩达到90分及以上的学生约:80040%320⨯=, 答:此次测试成绩达到90分及以上的学生约有320人. 【点睛】本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.23.濮阳市团委举办“我的中国梦”为主题的知识竞赛,甲乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)707809011008(1)请你将图②中条形统计图补充完整;(2)图①中,90分所在扇形的圆心角是 °;图③中80分有人.(3)分别求甲、乙两校成绩的平均分;(4)经计算知S2甲=135,S2乙=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.解析:(1)见解析;(2)108,4;(3)甲校85分,乙校85分;(4)见解析【分析】(1)甲校得“90分”的有6人,占调查人数的30%,可求出调查人数,再用总人数减其它分数段的人数,求出得100分的人数,从而补全统计图;(2)用360 乘以得90分的人数所占的百分比求出90分所在扇形的圆心角,用总人数减去乙校其它分数段的人数求出得80分的人数;(3)根据平均数的计算公式求出甲校和乙校的平均成绩;(4)从方差的大小,得出数据的离散程度.【详解】解:(1)甲校参赛的总人数是:630%20÷=(人),100分的人数有:206365---=(人),补全统计图如下:(2)图①中,90分所在扇形的圆心角是:36030%108︒⨯=︒,图③中80分有:207184---=(人),故答案为:108,4;(3)甲校的平均成绩是:1(7068039061005)8520⨯+⨯+⨯+⨯=(分),乙校的平均成绩是:1(7078049011008)8520⨯+⨯+⨯+⨯=(分).(4)甲、乙两校的平均分相同,22135175S S=<=乙甲,∴甲校的成绩离散程度较小,比较稳定.【点睛】此题考查中位数、平均数的意义,条形统计图、扇形统计图的意义,理解各个概念的内涵和外延是正确解答的前提.24.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解析:(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.【分析】(1)根据平均数、中位数、众数的概念以及求解方法分别进行求解即可;(2)分析不低于平均数、中位数、众数的人数,根据题意进行确定即可.【详解】(1)这15名销售人员该月销售量数据的平均数为177048022031803120390415++⨯+⨯+⨯+⨯=278,排序后位于中间位置的数为180,故中位数180, 数据90出现了4次,出现次数最多,故众数为90; (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 【点睛】本题考查了平均数、中位数、众数,熟练掌握平均数、中位数、众数的概念,意义以及求解方法是解题的关键.25.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E . (1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .解析:(1)证明见解析;(2)4. 【解析】【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答. 【详解】(1)∵四边形ABCD 是菱形, ∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC , ∴四边形OCED 是平行四边形, 又∠COD=90°,∴平行四边形OCED 是矩形;(2)由(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2. ∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为:12AC•BD=12×4×2=4, 故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.26.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题. 收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89 整理数据: 表一分析数据: 表二得出结论:(1)在表中:m =_______,n =_______,x =_______,y =_______; (2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人? 解析:(1)2,5,93,98;(2)初一;(3)225 【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x 、y ;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人。

人教版八年级数学下册第二十章数据的分析检测题(附答案)

人教版八年级数学下册第二十章数据的分析检测题(附答案)

第二十章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收货一批成熟的果子.他选取了5棵果树,采摘后分别称重.每棵果树果子总质量(单位:kg)分别为:90,100,120,110,80.这五个数据的中位数是CA.120 B.110 C.100 D.902.小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)121 3最高气温(℃)22262829则这周最高气温的平均值是A.26.25 ℃ B.27 ℃ C.28 ℃ D.29 ℃3.从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环,方差分别是s甲2=0.25,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适AA.甲 B.乙 C.丙 D.丁4.为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.70.9 1.1 1.3 1.5及以上人数29654 4 则本次调查中阅读时间的中位数和众数分别是A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.15.某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是CA.6 B.6.5 C.7 D.86.某企业1-6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是D A.1-6月份利润的众数是130万元 B.1-6月份利润的中位数是130万元C.1-6月份利润的平均数是130万元 D.1-6月份利润的极差是40万元第6题图第10题图7.在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8 ;乙:7,9,6,9,9,则下列说法中错误的是CA .甲、乙得分的平均数都是8B .甲得分的众数是8,乙得分的众数是9C .甲得分的中位数是9,乙得分的中位数是6D .甲得分的方差比乙得分的方差小 8.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为BA .0B .1C .2D .49.如表记录了两位射击运动员的八次训练成绩:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲 10 7 7 8 8 8 9 7 乙1055899810甲乙甲乙则下列结论正确的是AA .x 甲=x 乙,s 甲2<s 乙2B .x 甲=x 乙,s 甲2>s 乙2C .x 甲>x 乙,s 甲2<s 乙2D .x甲<x 乙,s 甲2<s 乙210.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是CA .2.25B .2.5C .2.95D .3 二、填空题(每小题3分,共15分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是88分.12.样本数据-2,0,3,4,-1的中位数是0.13.甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:班级 参赛人数 平均数 中位数 方差 甲 45 83 86 82 乙458384135②乙班优秀的人数少于甲班优秀的人数(竞赛得分≥85分为优秀);③甲班成绩的波动性比乙班小.上述结论中正确的是①②③.(填写所有正确结论的序号)14.一组数据4,5,6,x 的众数与中位数相等,则这组数据的方差是12.15.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0 的整数,则这组数据的平均数是5.三、解答题(共75分)16.(8分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是A .A .西瓜B .苹果C .香蕉 (2)估计一个月(按30天计算)该水果店可销售苹果多少千克? 解:1407×30=600(千克)17.(9分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数; (2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何? 解:(1)中位数为150分钟,平均数为151分钟 (2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好18.(9分)某校在招聘教师时以考评成绩确定人选,甲、乙两位高校毕业生的各项考评成绩如下表:考评项目 教学设计课堂教学答辩 成绩(分) 甲 90 85 90 乙809283(1)如果学校将教学设计,课堂教学和答辩按1∶3∶1的比例来计算各人的考评成绩,那么谁会被录用?(2)如果按教学设计占30%,课堂教学占50%,答辩占20%来计算各人的考评成绩,那么又是谁会被录用?解:(1)甲的成绩为87,乙的成绩为87.8,∵87<87.8,∴乙会被录取 (2)甲的成绩为87.5,乙的成绩为86.6,∵87.5>86.6,∴甲会被录取19.(9分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数11333 4(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解:(1)这15名营业员该月销售量数据的平均数=1770+480+220×3+180×3+120×3+90×4=278(件),中位数为180件,∵90出现了4 15次,出现的次数最多,∴众数是90件(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标20.(9分)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:甲1102132110乙022031013 1(1)(2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?解:(1)x甲=1.2(个),x乙=1.3(个);s甲2=0.76,s乙2=1.21 (2)由(1)知x甲<x乙,∴甲台机床出次品的平均数较小,由(1)知s甲2<s乙2,∴甲台机床出次品的波动较小21.(10分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表组别睡眠时间分组人数(频数)17≤t<8m28≤t<9113 9≤t <10 n410≤t <114请根据以上信息,解答下列问题: (1)m =7,n =18,a =17.5%,b =45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9 h ,请估计该校学生中睡眠时间符合要求的人数.解:(1)7≤t <8时,频数为m =7;9≤t <10时,频数为n =18;∴a =740×100%=17.5%;b =1840×100%=45%;故答案为:7,18,17.5%,45% (2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3 (3)该校学生中睡眠时间符合要求的人数为800×18+440=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人22.(10分)网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时):3 2.5 0.6 1.5 1 2 2 3.3 2.5 1.8 2.5 2.2 3.54 1.5 2.5 3.1 2.8 3.3 2.4整理上面的数据,得到表格如下:网上学习时间x (时)0<x ≤1 1<x ≤2 2<x ≤3 3<x ≤4 人数2585样本数据的平均数、中位数、众数如下表所示:统计量 平均数 中位数众数数值2.4m n根据以上信息,解答下列问题:(1)上表中的中位数m 的值为2.5,众数n 的值为2.5;(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间;(3)已知该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数. 解:(1)从小到大排列为:0.6,1,1.5,1.5,1.8,2,2,2.2,2.4,2.5,2.5,2.5,2.5,2.8,3,3.1,3.3,3.3,3.5,4,∴中位数m 的值为2.5+2.52 =2.5,众数n 为2.5;故答案为:2.5,2.5 (2)2.4×18=43.2(小时),答:估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间为43.2小时 (3)200×1320 =130(人),答:该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数为130人23.(11分)某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:周一至周五英语听力训练人数统计表年级参加英语听力训练人数周一 周二 周三 周四周五 七年级 15 20 a 30 30 八年级 20 24 26 30 30 合计3544516060(1)填空:a =25;(2)根据上述统计图表完成下表中的相关统计量:年级 平均训练时间的中位数参加英语听力训练人数的方差七年级 24 34 八年级2714.4(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价; (4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.解:(1)由题意得:a =51-26=25;故答案为:25 (2)按照从小到大的顺序排列为:18,25,27,30,30,∴八年级平均训练时间的中位数为:27;故答案为:27 (3)参加训练的学生人数超过一半;从平均训练时间的中位数角度看,八年级英语听力训练的平均训练时间比七年级多 (4)抽查的七、八年级共60名学生中,周一至周五训练人数的平均数为15(35+44+51+60+60)=50,∴该校七、八年级共480名学生中周一至周五平均每天进行英语听力训练的人数为480×5060 =400(人)。

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析

人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共8小题,满分24分,每小题3分)1.比赛中“去掉一个最高分,去掉一个最低分”后,一定不会发生变化的统计量是()A.平均数B.众数C.中位数D.极差2.一组数据5、2、8、2、4,这组数据的中位数和众数分别是()A.2,2B.3,2C.2,4D.4,23.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选()甲乙丙丁平均分90959590方差50425042A.甲B.乙C.丙D.丁4.某班同学抛携实心球的成绩统计表如下,则该成绩的众数是()成绩(分)678910频数16131416 A.10B.16C.9D.145.一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.726.甲、乙两人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲22=0.52,则成绩最稳定的是()=0.58,S乙A.甲B.乙C.甲和乙一样D.无法判定7.在方差计算公式s2=[(x1﹣15)2+(x2﹣15)2+…+(x20﹣15)2]中,可以看出15表示这组数据的()A.众数B.平均数C.中位数D.方差8.某公司计划招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392公司决定将面试与笔试成绩按6:4的比例计算个人总分,总分最高者将被录用,则公司将录用()A.甲B.乙C.丙D.丁二、填空题(共7小题,满分28分,每小题4分)9.在统计学中,样本的方差可以近似地反映总体的.(填写“集中趋势”、“波动大小”、“最大值”、“平均值”)10.已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分别为S甲2=79.6,S乙2=68.5.由此可知:在该地区种水稻更具有推广价值.11.已知一组数据2,2,8,x,7,4的中位数为5,则x的值是.12.一组数据3,5,3,x的众数只有一个,则x的值不能为.13.已知一组数据从小到大排列为:﹣1,0,4,x,6,15,且这组数据的中位数是5,那么这组数据的众数是.14.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.15.小华统计了自己过去五个学期期末考试数学成绩,分别为87,84,90,89,95,这组数据的方差分别为.三、解答题(共6小题,满分48分)16.(6分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲880.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).17.(6分)从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长得比较高?(2)哪种农作物的苗长得比较整齐?18.(6分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩计算了甲成绩的平均数和方差(见小宇的作业).第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7;(1)求a和乙的方差S乙(2)请你从平均数和方差的角度分析,谁将被选中.19.(10分)至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?20.(10分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,据统计,所有学生一分钟的跳绳数不少于100次,现随机抽取了部分学生一分钟跳绳的次数进行调查统计,并根据成绩分布情况,将抽取的全部成绩分成A、B、C、D四组,并绘制了如下统计图表:等级次数频数A100≤x<1204B120≤x<14012C140≤x<16014D x≥160m请结合上述信息完成下列问题:(1)m=,n=;(2)上述样本数据的中位数落在组;(3)若A组学生一分钟跳绳的平均次数为110次,B组学生一分钟跳绳的平均次数为130次,C组学生一分钟跳绳的平均次数为150次,D组学生一分钟跳绳的平均次数为190次,请你估计该校学生一分钟跳绳的平均次数是多少?21.(10分)表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是分;中位数是分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注意:①平时成绩用四次成绩的平均数;②每次考试满分都是100分).参考答案一、选择题(共8小题,满分24分,每小题3分)1.C2.D3.B4.A5.C6.B7.B8.B二、填空题(共7小题,满分28分,每小题4分)9.波动大小.10.乙11.5.5.12.5.13.6.14.4.15.13.2.三、解答题(共6小题,满分48分)16.解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=(5+9+7+10+9)=8,把这些数从小到大排列,则乙的中位数为9.故填表如下:平均数众数中位数方差甲8880.4乙899 3.2故答案为:8,8,9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小;故答案为:变小.17.解:(1)=(9+10+11+12+7+13+10+8+12+8)=10cm,=(8+13+12+11+10+12+7+7+9+11)=10cm.可见,两种农作物一样高均为10cm;2=[(9﹣10)2+(10﹣10)2+(11﹣10)2+(12﹣10)2+(7﹣10)2+(13(2)∵S甲﹣10)2+(10﹣10)2+(8﹣10)2+(12﹣10)2+(8﹣10)2]=3.6cm2;S乙2=[(8﹣10)2+(13﹣10)2+(12﹣10)2+(11﹣10)2+(10﹣10)2+(12﹣10)2+(7﹣10)2+(7﹣10)2+(9﹣10)2+(11﹣10)2]=4.2cm2.∴甲的方差为3.6cm2,乙的方差为4.2cm2.所以甲更整齐.18.解:(1)∵乙=,∴a=4,S乙==1.6;(2)因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.19.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.20.解:(1)调查总人数为:4÷10%=40(人),∴m=40﹣4﹣12﹣14=10(人),n=1﹣10%﹣25%﹣35%=30%,故答案为:10;30%;(2)由题意可知,样本数据的中位数落在C组,故答案为:C;(3)×(4×110+12×130+14×150+10×190)=×6000=150(次),答:估计该校学生一分钟跳绳的平均次数是150次.21.解:(1)∵90出现了2次,其余分数只有1次,∴6次成绩的众数为90分;排列如下:86,88,90,90,92,96,∵(90+90)÷2=90,∴6次成绩的中位数为90分;故答案为:90,90;(2)∵=(86+88+90+92)=89(分),∴S2=[(86﹣89)2+(88﹣89)2+(90﹣89)2+(92﹣89)2]=×(9+1+1+9)=5(分2);(3)根据题意得:89×10%+90×30%+96×60%=8.9+27+57.6=93.5(分),则小明本学期的综合成绩为93.5分.。

遵义四中八年级数学下册第二十章《数据的分析》测试题(含答案)

遵义四中八年级数学下册第二十章《数据的分析》测试题(含答案)

一、选择题1.某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,15B解析:B【分析】根据众数和中位数的定义求解即可.【详解】解:这组数据按从小到大顺序排列为:14,14,14,15,15,15,15,15,15,16,16,16,16,17,17,17,17,18,则众数为:15,中位数为:(15+16)÷2=15.5.故答案为B.【点睛】本题考查了众数和中位数的知识,属于基础题,解答本题的关键是掌握众数和中位数的定义.2.八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7 B.6 C.5 D.4C解析:C【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【详解】解:∵5,7,6,x,7的平均数是6,∴15(5+7+6+x+7)=6,解得:x=5;故选:C.【点睛】本题考查了算术平均数的知识,解题的关键是根据算术平均数求出数据总和.3.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为().A.1 B.6C.1或6 D.5或6C解析:C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.4.一组数据:1、2、3、4、1,这组数据的众数与中位数分别为()A.1、3 B.2、2.5 C.1、2 D.2、2C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】数据1出现了2次,次数最多,所以众数是1;数据按从小到大排列:1,1,2,3,4,所以中位数是2.故选C.【点睛】本题考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学的成绩的中位数和众数分别是()A.75,70 B.70,70 C.80,80 D.75,80A解析:A【分析】根据中位数和众数的定义解答即可.【详解】共40个数据中第20和第21个数分别是70、80,∴这组数据的中位数是75,这组数据中出现次数最多的是70,所以众数是70,故选:A.【点睛】此题考查了中位数和众数的定义,一组数据最中间的一个数或两个数的平均数是这组数据的中位数,出现次数最多的数是这组数据的众数,正确掌握定义是解题的关键.6.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m B解析:B【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.7.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:成绩(分) 24 25 26 27 28 29 30人数(人) 65 5 8 7 7 4根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27D.该班学生这次考试成绩的中位数是27分B解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.8.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A.平均数B.众数C.中位数D.方差D解析:D【分析】依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为3+4+4+5=44,原数据的3,4,4,5的中位数为4+4=24,原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为14×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;新数据3,4,4,4,5的平均数为3+4+4+4+5=45,新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为15×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;∴添加一个数据4,方差发生变化,故选D.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.9.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( )A.89,90 B.90,90 C.88,95 D.90,95B解析:B【解析】【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可.【详解】把这组数据从小到大排列:84,89,90,90,90,91,96,最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90;故选B.【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.10.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l2A解析:A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16.故选:A.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.二、填空题11.某中学篮球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数分别是_____岁、_____岁.1615【分析】根据中位数和众数的定义求解【详解】解:从小到大排列此数据数据15出现了四次最多为众数16和16处在第5位和第六位它两个数的平均数为16为中位数故答案为:1615【点睛】本题属于基础题解析:16 15【分析】根据中位数和众数的定义求解.【详解】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为:16,15.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S2(单位:千克2)如表所示:__.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定. 【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高, 又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲. 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.13.若一组数据4,a ,7,8,3的平均是5,则这组数据的方差是_______.【分析】根据平均数求出a 再根据方差的公式计算得到答案【详解】∵数据4783的平均是5∴∴这组数据的方差是=故答案为:【点睛】此题考查根据平均数求某一数据方差的计算公式熟记方差的计算公式是解题的关键 解析:225【分析】根据平均数求出a ,再根据方差的公式计算得到答案. 【详解】∵数据4,a ,7,8,3的平均是5, ∴5547833a =⨯----=, ∴这组数据的方差是22221(45)2(35)(75)(85)5⎡⎤-+⨯-+-+-⎣⎦=225, 故答案为:225. 【点睛】此题考查根据平均数求某一数据,方差的计算公式,熟记方差的计算公式是解题的关键. 14.一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.4【分析】首先根据其平均数为5求得a 的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s2=(4解析:4 【分析】首先根据其平均数为5求得a 的值,然后再根据方差的计算方法计算即可. 【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4.故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差2S甲=2.8,2S乙=1.5,则射击成绩较稳定的是______.(填“甲”或“乙”)乙【解析】【分析】直接利用方差的意义方差越小越稳定进而分析得出答案【详解】∵方差=1515<28∴射击成绩较稳定的是:乙故答案为:乙【点睛】此题主要考查了方差正确把握方差的意义是解题关键解析:乙【解析】【分析】直接利用方差的意义,方差越小越稳定,进而分析得出答案.【详解】∵方差222.8,S S甲乙=1.5,1.5<2.8,∴射击成绩较稳定的是:乙.故答案为:乙.【点睛】此题主要考查了方差,正确把握方差的意义是解题关键.16.一组数据:3、5、8、x、6,若这组数据的极差为6,则x的值为__________.2或9【解析】【分析】根据极差的定义先分两种情况进行讨论当x最大时或最小时分别进行求解即可【详解】∵数据358x6的极差是6∴当x最大时:x﹣3=6解得:x=9;当x最小时8﹣x=6解得:x=2∴x解析:2或 9【解析】【分析】根据极差的定义先分两种情况进行讨论,当x最大时或最小时分别进行求解即可.【详解】∵数据3、5、8、x、6的极差是6,∴当x最大时:x﹣3=6,解得:x=9;当x最小时,8﹣x=6,解得:x=2,∴x的值为2或9.故答案为:2或9.【点睛】本题考查了极差,掌握极差的定义是解题的关键;求极差的方法是用一组数据中的最大值减去最小值.17.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为________.3【分析】首先根据这组数据的总和等于各个数据之和或等于这组数据的平均数乘以这组数据的个数列出方程得出x的值再根据众数的概念这组数据中出现次数最多的是3从而得出答案【详解】解:1+3+2+7+x+2+解析:3【分析】首先根据这组数据的总和等于各个数据之和,或等于这组数据的平均数乘以这组数据的个数,列出方程,得出x的值,再根据众数的概念,这组数据中出现次数最多的是3,从而得出答案.【详解】解: 1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为3.点睛: 本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.18.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.234【解析】【分析】将折线统计图中的数据按从小到大进行排序然后根据中位数的定义即可确定【详解】从图中看出五天的游客数量从小到大依次为219224234249254则中位数应为234故答案为234【解析:23.4【解析】【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.【详解】从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.【点睛】本题考查了中位数的定义,熟知“中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)”是解题的关键.19.已知数据x1,x2,…,x n的方差是2,则3x1﹣2,3x2﹣2,…,3x n﹣2的方差为_____.18【解析】分析:根据数据都加上一个数(或减去一个数)时方差不变;数据都乘以同一个数时方差乘以这个数的平方即可得出答案详解:∵数据x1x2…xn的方差是2∴3x13x2…3xn的方差是32×2=18解析:18【解析】分析:根据数据都加上一个数(或减去一个数)时,方差不变;数据都乘以同一个数时,方差乘以这个数的平方即可得出答案.详解:∵数据x1,x2,…,x n的方差是2,∴3x1,3x2,…,3x n的方差是32×2=18,∴3x1-2,3x2-2,…,3x n-2的方差为18;故答案为:18.点睛:此题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当数据都乘以同一个数,方差乘以这个数的平方.20.小明五次数学测验的平均成绩是85,中位数为86,众数是89,则最低两次测验的成绩之和为________.161【解析】分析:知道平均数可以求出5次成绩之和又知道中位数和众数就能求出最低两次成绩详解:由五次数学测验的平均成绩是85分∴5次数学测验的总成绩是425分∵中位数是86分众数是89分∴最低两次测解析:161【解析】分析:知道平均数可以求出5次成绩之和,又知道中位数和众数,就能求出最低两次成绩.详解:由五次数学测验的平均成绩是85分,∴5次数学测验的总成绩是425分,∵中位数是86分,众数是89分,∴最低两次测试成绩为425-86-2×89=161,故答案为:161.点睛:本题主要考查平均数和众数等知识点.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.三、解答题21.英语老师对八年级某班级全班同学进行口语测试,并按10分制评分,将评分结果制成了如图两幅统计图(不完整).请根据图表信息,解答下列问题:(1)求该班级学生总人数,并将条形统计图补充完整.(2)求该班学生口语测试所得分数的平均数、中位数、众数.(3)若全年级共有260人,请估计得分在9分及以上的同学有多少人?解析:(1)40人,画图见解析;(2)平均数:8.9分,中位数:9分,众数:9分;(3)182人 【分析】(1)用10分的人数÷10分人数所占的百分比,即可得到总人数,根据题意将条形统计图补充完整;(2)根据平均分、中位数、众数的定义即可得到结论; (3)用样本估计总体即可. 【详解】(1)该班级学生总人数为:1230%40÷=(人),得分为9分的同学人数为:40481216---=(人),补全条形统计图如下图所示.(2)该班学生口语测试所得分数的平均分()1478816912108.940=⨯+⨯+⨯+⨯=(分),一共有40人,则中位数为9992+=(分), 9分人数最多,则众数为9(分);(3)9分以上的占161274010+=,则726018210⨯=(人), 故9分以上的共有182人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,以及用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 22.某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B8C5(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,___________,___________;(2)求这个公司平均每人所创年利润.解析:(1)①108°;②9,6;(2)7.6万元.【解析】试题分析:(1)①在扇形图中,由C部门所占比例乘以360°即可得出C部门所对应的圆心角的度数.②先计算出A部门所占比例,再计算出总人数,根据B、C部门所占比例即可求出b、c的值.(2)利用加权平均数的计算公式计算即可.试题(1)①360°×30%=108°;②∵a%=1-45%-30%=25%5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.23.8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分方差中位数众数合格率优秀率一班7.2 2.117692.5%20%二班 6.85 4.288885%10%根据图表信息,回答问题:(1)用方差推断,班的成绩波动较大;用优秀率和合格率推断,班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?解析:(1)二,一;(2)乙同学的推断比较科学合理,理由见解析.【分析】(1)根据方差的大小即可判断出波动的大小;结合合格率和优秀率则要先数值大的,由此即可得答案;(2)结合条形统计图,根据平均分、中位数、众数的优缺点进行解答即可.【详解】(1)一班的方差为2.11,二班的方差为4.28,用方差推断,二班的成绩波动较大;一班的合格率为92.5% ,优秀率为20%,二班的合格率为85%,优秀率为10%,一班的合格率与优秀率均比二班的大,因此用优秀率和合格率推断,一班的阅读水平更好些,故答案为二;一;(2)乙同学的推断比较科学合理.理由:虽然二班成绩的平均分比一班低,但从条形图中可以看出,二班有3名学生的成绩是1分,它在该组数据中是一个极端值,平均数受极端值影响较大,而中位数或众数不易受极端值的影响,所以,乙同学的推断更客观些.【点睛】本题考查了数据的收集整理与描述,涉及了平均数,方差,众数和中位数等知识,熟练掌握相关知识以及各自的优缺点是解题的关键.24.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998(1)这个班共有男生人,共有女生人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并说明理由.(至少从两个不同的角度说明推断的合理性)解析:(1)20,25;(2)7.9,8;(3)女生队表现更突出,理由见解析【分析】(1)由条形图可得男生总人数,总人数减去男生人数可得女生人数;(2)根据平均数和众数定义可得.(3)可从平均数、方差、众数和中位数的意义求解可得.【详解】解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人),故答案为:20、25;(2)男生的平均分为120×(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),女生的众数为8分,补全表格如下:平均分方差中位数众数男生7.9287女生7.92 1.9988(3)我认为女生队表现更突出.理由为:女生队的平均数较高,表示女生队测试成绩较好;女生队的方差小,表示女生队测试成绩比较集中,整体水平较好;女生队的众数较高,女生队的众数为8,中位数也为8,而男生队众数为7低于中位数8,表示女生队的测试成绩高分较多.【点睛】本题主要考查加权平均数、利用众数、方差、平均数、众数作出决策.注意方差越小,说明数据越稳定.25.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为310件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.解析:(1)310, 210, 210;(2)不合理,理由见解析.【分析】(1)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.(2)根据表中数据和平均数、中位数和众数的意义回答.【详解】解:(1)平均数是:1650510250321051503120231015++⨯+⨯+⨯+⨯=(件),表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到310件,310件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.【点睛】此题考查了中位数,众数,平均数,它们都是反映数据集中趋势的指标,掌握平均数、中位数和众数的意义是解题的关键.26.如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,C分别位于点A的正北和正东方向,40AC=米.八位环卫工人分别测得的BC长度如下表:甲 丁 丙 丁 戊 戌 申 辰 BC (单位:m )8476788270848680他们又调查了各点的垃圾量,并绘制了下列间不完整的统计图2.(1)表中的中位数是 、众数是 ; (2)求表中BC 长度的平均数x ; (3)求A 处的垃圾量,并将图2补充完整;(4)用(2)中的x 作为BC 的长度,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.解析:(1)81米,84米;(2)80米;(3)80千克,图详见解析;(4)运垃圾所需的费用为163 【分析】(1)根据中位数和众数的定义即可得; (2)根据平均数的计算公式121()n x x x x n=+++即可得;(3)先根据C 处垃圾量的扇形统计图和条形统计图信息求出三处垃圾总量,再减去B 、C 两处的垃圾量可得A 处的垃圾量,然后补全条形统计图即可;(4)先利用勾股定理求出AB 的长,再根据“运送1千克垃圾每米的费用为0.005元”列出式子求解即可得. 【详解】(1)由众数的定义得:众数是84米由中位数的定义,先将表中的数据从小到大进行顺序为70,76,78,80,82,84,84,86,则中位数是8082812+=(米) 故答案为:81米,84米; (2)由平均数的计算公式得:8476788270848680808x +++++++==(米)答:表中BC 长度的平均数x 为80米;(3)A 、B 、C 三处垃圾总量为32050%640÷=(千克) 则A 处的垃圾总量是:64032024080--=(千克) 补全条形统计图如下:(4)在直角ABC 中,22228040403AB BC AC -=-=∵运送1千克垃圾每米的费用为0.005元∴运垃圾所需的费用为403800.005163⨯= 答:运垃圾所需的费用为163 【点睛】本题考查了中位数、众数、平均数的定义,条形统计图和扇形统计图的信息关联等知识点,掌握并理解统计调查的相关概念是解题关键.27.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题. 收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89 整理数据: 表一 分数段 70x <7080x ≤< 8090x ≤< 90100x ≤≤初一人数 1 mn12 初二人数22412分析数据:。

成都市八年级数学下册第二十章《数据的分析》经典测试题

成都市八年级数学下册第二十章《数据的分析》经典测试题

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.数据2-,1-,0,1,2的方差是( )A .0BC .2D .43.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为( ) A .85B .90C .92D .894.八年级某班五个合作学习小组人数如下:5,7,6,x ,7.已知这组数据的平均数是6,则x 的值为( ) A .7B .6C .5D .45.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁6.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是( ) A .平均数是92B .中位数是90C .众数是92D .极差是77.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.A .甲B .乙C .丙D .丁8.某商场统计五个月来两种型号洗衣机的销售情况,制成了条形统计图,则在五个月中,下列说法正确的是( )A.甲销售量比乙销售量稳定B.乙销售量比甲销售量稳定C.甲销售量与乙销售量一样稳定D.无法比较两种洗衣机销售量稳定性9.某校10名学生参加某项比赛成绩统计如图所示。

对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90C.平均数是90 D.参赛学生最高成绩与最低成绩之差是15 10.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变11.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是912.八(1)班45名同学一天的生活费用统计如下表:生活费(元)1015202530学生人数(人)3 9 15 12 6则这45名同学一天的生活费用中,平均数是( ) A .15 B .20 C .21 D .25 13.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( )A .4-B .1-C .0D .114.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( ) A .89,90B .90,90C .88,95D .90,9515.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( ) A .中位数B .平均数C .方差D .极差二、填空题16.北京市 7月某日 10 个区县的最高气温如表(单位:C ):34343234323431333234区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温则这 10 个区县该日最高气温的众数是__________,中位数是__________.17.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.18.数据-1,2,0,1,-2的方差是____. 19.我市5月份某一周每天的最高气温统计如下: 最高气温(℃) 28 29 30 31 天 数1132则这组数据(最高气温)的众数与中位数分别是_____、_____.20.已知一组数据-1,x ,0, 1,-2的平均数是0,这组数据的极差和标准差分别是_____21.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是_____.22.若5个正整数从小到大排序,其中中位数是4,如果这组数据的唯一众数是5,当这5个正整数的和为最大值时,这组数据的方差为______.23.对一种环保电动汽车性能抽测,获得如下条形统计图.根据统计图可估计得被抽检电动汽车一次充电后平均里程数为______.24.如果一组数据-2,0,1,3,x的极差是7,那么x的值是___________.25.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.26.某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.三、解答题27.某政府部门进行公务员招聘考试,其中三人中录取一人,他们的成绩如下:人测试成绩题目甲乙丙文化课知识748769面试587470平时表现874365(1)按照平均成绩甲、乙、丙谁应被录取?(2)若按照文化课知识、面试、平时表现的成绩已4:3:1的比例录取,甲、乙、丙谁应被录取?28.学校为了让同学们走向操场、积极参加体育锻炼,启动了“学生阳光体育运动”,张明和李亮在体育运动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:平均数中位数方差张明13.30.004李亮13.30.02(1)张明第2次的成绩为:秒;(2)张明成绩的平均数为:;李亮成绩的中位数为:;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.29.2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的5名选手的复赛成绩如图所示.(1)根据图示补全下表;平均数(分)中位数(分)众数(分)A队8385B队95(2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好;(3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.30.某校举办了一次知识竞赛,满分10分,学生得分均为整数.这次竞赛中甲、乙两组学生统计如下:(1)计算甲、乙两组的平均分.(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名中游偏上!”观察上表可知,小明是那一组的学生?请说明理由.。

能力挑战卷:第20章 数据的分析(原卷版)

能力挑战卷:第20章 数据的分析(原卷版)

第20章数据的分析章末检测(能力挑战卷)(考试时间:90分钟试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分)1.下列说法中正确的是().A.想了解某河段的水质,宜采用全面调查B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小2.已知某运动队的甲、乙、丙、丁四名射击运动员平时训练的平均成绩x(单位:环)以及方差2S(单位:环2)如下表,现要选一名成绩优秀且稳定的队员参加某项比赛,则应选()A.甲B.乙D.丁3.如图是小明和小华射击成绩的统计图,两人都射击了10次,下列说法正确的是()A.小明成绩的方差比小华成绩的方差大B.小明和小华成绩的众数相同C.小明成绩的中位数比小华成绩的中位数大D.小明和小华的平均成绩相同4.一组数据的方差可以用式子()()()()22221231025050505010x x x xs-+-+-++-=表示,则式子中的数字50所表示的意义是()A.这组数据的个数B.这组数据的平均数C.这组数据的众数D.这组数据的中位数5.某次校园歌手比赛,进入最后决赛的三名选手的成绩统计如下表,若唱功、音乐常识、舞台表现按6∶3∶1的比例计入选手最后得分排出冠军、亚军、季军,则本场比赛的冠军、亚军、季军分别是()A.李真、王飞、林杨C.王飞、李真、林杨D.李真、林杨、王飞6.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增大7.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月8.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表,某同学分析表中数据得出如下结论:∶甲、乙两班学生成绩的平均水平相同;∶乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);∶甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是()A.∶∶∶9.从八年级100名同学中任取20名同学汇报各自家庭一个月的节水情况,将有关数据(均为整数)整理如上表,则估计这100名同学的家庭一个月节约用水总量是( )A .180tB D .250t10.已知5个正数1a 、2a 、3a 、4a 、5a 的平均数是a ,且12345a a a a a >>>>,则数据1a 、2a 、3a 、0、4a 、5a 的平均数和中位数是( ).A .a ,3aB .56a ,232a a+C .56a,32a D .56a,342a a + 二、填空题:(本大题共6小题,每小题3分,满分18分) 11.数据5,2,2,3,1,5,4的众数是__.12.光明中学全体学生参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,则这50人的社会实践活动成绩的中位数是____.13.要从小华、小明两名射击运动员中选择一名运动员参加射击比赛,在赛前对他们进行了一次选拔赛,下图为小华、小明两人在选拔赛中各射击10次成绩的折线图和表示平均数的水平线.你认为应该选择______(填“小华”或“小明”)参加射击比赛;理由是__________.14.学校把学生的纸笔测试、实践能力两项成绩分别按60%、40%的比例计入学期总成绩.小明实践能力这一项成绩是81分,若想学期总成绩不低于90分,则纸笔测试的成绩至少是______分.15.未测试两种电子表的走时误差,做了如下统计则这两种电子表走时稳定的是 .16.某公司销售一批新上市的产品,公司收集了这个产品15天的日销售额的数据,制作了如下的统计图.关于这个产品销售情况有以下说法:∶第1天到第5天的日销售额的平均值低于第6天到第10天的日销售额的平均值; ∶第6天到第10天日销售额的方差小于第11天到第15天日销售额的方差; ∶这15天日销售额的平均值一定超过2万元. 所有正确结论的序号是________. 三、解答题(本大题共6题,满分52分)17.(8分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人 捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大学生每人捐款 20 元.问平均 每人捐款是多少元?(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)——记录下来,则在这组数据中,众数是多少?18.(8分)为了方便居民低碳出行,某市公共自行车租赁系统试运行,越来越多的居民选择公共自行车作为出行的交通工具,某中学课外兴趣小组为了了解某小区居民出行方式的变化情况,随机抽取了该小区部分居民进行调查,并绘制了如图的条形统计图和扇形统计图)部分信息未给出公共自行车租赁系统运行后居民的出行方式统计图:公共自行车租赁系统运行前居民的出行方式统计图:根据上面的统计图,解答下列问题:(1)被调查的总人数是___________人;(2)公共自行车租赁系统运行后,被调查居民选择自行车作为出行方式的百分比提高了多少;(3)如果该小区共有居民2000人,公共自行车租赁系统运行后估计选择自行车作为出行方式的人数有多少.19.(8分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.20.(8分)我国淡水资源短缺问题十分突出,已成为我国经济和社会可持续发展的重要制约因素,节约用水是各地的一件大事.某校初三学生为了调查居民用水情况,随机抽查了某小区20户家庭的月用水量,结果如表所示:(1)求这20户家庭月用水量的平均数、众数及中位数.(2)政府为了鼓励节约用水,拟试行水价浮动政策.即设定每个家庭月基本用水量a(t),家庭月用水量不超过a(t)的部分按原价收费,超过a(t)的部分加倍收费.∶你认为以平均数作为该小区的家庭月基本用水量a(t)合理吗?为什么?(简述理由)∶你认为该小区的家庭月基本用水量a(t)为多少时较为合理?为什么?(简述理由) 21.(10分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三年级根据预选成绩选出了3名同学甲、乙、丙参加决赛,决赛要进行十次测试,三名选手的决赛成绩(满分为100分)如下表所示:∶从平均数和众数相结合看,分析哪个同学成绩好些;∶从平均数和中位数相结合看,分析哪个同学成绩好些.(3)如果在参加决赛的三名选手中选出1人参加市各中学总决赛,你认为哪个同学比较合适?并说明理由.22.(10分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:收集数据从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):30608150401101301469010060811201407081102010081整理数据按如下分段整理样本数据并补全表格:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?。

第20章数据的初步分析达标测试卷

第20章数据的初步分析达标测试卷

第20章数据的初步分析达标测试卷一、选择题(本大题共10小题,每小题4分,共40分)1.数据3,3,5,8,11的中位数是()A.3 B.4 C.5 D.82.已知一组数据:π,-23,9,0.101 001 000 1,33,其中无理数出现的频率是()A.20% B.40% C.60% D.80%3.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分内的学生共有()A.24人B.10人C.14人D.29人4.在方差的计算公式s2=110[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10和20分别表示的意义是()A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.方差和平均数5.某同学对数据16,20,20,36,5■,51进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则下列统计量与被涂污数字无关的是()A.中位数B.平均数C.方差D.众数6.一组数据:3,4,5,x,8的众数是5,则这组数据的平均数是() A.4 B.4.5C.5 D.5.57.下面是抽查的某班10名同学体育测试成绩统计表.若成绩的平均数为23分,中位数是a分,众数是b分,则a-b的值是()A.-5 B.-2.5 C.2.5 D.58.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>yC.y>x>z D.z>y>x9.某餐厅规定等位时间达到30分钟(包括30分钟)可享受优惠.现统计了某时段顾客的等位时间t(分钟),如图是根据数据绘制的统计图.下列说法正确的是()A.此时段有1桌顾客等位时间是40分钟B.此时段平均等位时间小于20分钟C.此时段等位时间的中位数可能是27分钟D.此时段有6桌顾客可享受优惠10.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:某学生根据上表分析得出如下结论:(1)甲、乙两班每分钟输入汉字的个数的平均数相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数≥150为优秀);(3)甲班每分钟输入汉字的个数的波动情况比乙班波动小.上述结论中正确的是()A.(1)(2)(3) B.(1)(2)C.(1)(3) D.(2)(3)二、填空题(本大题共4小题,每小题5分,共20分)11.某班按课外阅读时间将学生分为3组,第1,2组的频率分别为0.2,0.5,则第3组的频率为________.12.现有甲、乙两个合唱队,他们的平均身高都是1.70 m,方差分别是s甲2,s乙2,且s甲2>s乙2,则这两个队的身高较整齐的是______队.(填“甲”或“乙”)13.已知一组数据为x1,x2,x3,…,x n,它的平均数为5,则另一组数据3x1-5,3x2-5,…,3x n-5的平均数是________.14.对于三个互不相等的数a,b,c,我们规定用M{a,b,c}表示这三个数的平均数,用med{a,b,c}表示这三个数中从小到大排中间的数.例如:M{-1,2,3}=-1+2+33=43,med{-1,2,3}=2.(1)med{-5,3,0}=__________;(2)若M{3,2x+1,4x-1}=med{4,-x+3,6x},则x=__________.三、(本大题共2小题,每小题8分,共16分)15.甲在相同条件下射击4次,每次命中的环数如下:4,5,6,5.计算这组数据的平均数.16.某同学在练习本上随手写下了一长串数字:522 252 222 555 225 225 525 522 252 222 555.(1)请问2和5出现的频数分别是多少?(2)请问2和5出现的频率分别是多少(结果精确到0.001)?四、(本大题共2小题,每小题8分,共16分)17.计算数据3,2,5,4,3,1的方差.18.某公司招聘一名公关人员,应聘者小王参加了面试和笔试,成绩(100分制)如下表所示.(1)请计算小王面试的平均成绩;(2)如果将面试平均成绩与笔试成绩按3∶2的比例确定最终成绩,请计算出小王的最终成绩.五、(本大题共2小题,每小题10分,共20分)19.随机抽取某小吃店一周的营业额(单位:元)如下表:(1)这周的营业额的平均数是________元,中位数是________元,众数是________元;(2)估计该小吃店一个月的营业额(按30天计算).20.甲、乙两名工人生产直径为40 mm 的同一种零件.现各抽取两人加工的5个零件,量得直径(单位:mm)如下: 甲:42,41,40,39,38; 乙:40.5,40.1,40,39.9,39.5. 哪名工人生产的零件质量较好?六、(本题满分12分)21.为了传承优秀传统文化,某校团委组织了一次全校3 000名学生都参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩情况,随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)进行整理,得到如下不完整的统计图表.请根据以上信息,解答下列问题;(1)a=________,b=________;(2)请补全统计图;(3)本次大赛成绩的中位数落在________分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加本次大赛的3 000名学生中成绩为“优”等的大约有多少名?七、(本题满分12分)22.学校开展“书香校园”活动以来,受到学生们的广泛关注.学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如下不完整的统计图表.请你根据统计图表中的信息,解答下列问题:(1)a=________,b=________;(2)该调查统计数据的中位数是________,众数是________;(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2 000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.八、(本题满分14分)23.某中学组织七、八年级学生参加“第六届生态文明”知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩x 均为整数,共分成四组:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100).下面给出了部分信息:七年级10名学生的竞赛成绩是:69,78,96,77,68,95,86,100,85,86.八年级10名学生的竞赛成绩在C组中的数据分别是:86,87,87.根据以上信息,解答下列问题:(1)补全条形统计图;(2)求a,b,c的值;(3)请你结合平均数、中位数和众数进行判断,哪个年级的竞赛成绩较好?答案一、1.C 2.B 3.A 4.C 5.A 6.C7.C8.A9.D10.B二、11.0.312.乙13.1014.(1)0 (2)32三、15.解:4+5+6+54=5,故这组数据的平均数是5.16.解:(1)2出现的频数是19,5出现的频数是14.(2)根据题意可知一共有33个数字. 2出现的频率为19÷33≈0.576. 5出现的频率为14÷33≈0.424.四、17.解:根据题意得x =(3+2+5+4+3+1)÷6=3.所以s 2=16×[(3-3)2+(2-3)2+(5-3)2+(4-3)2+(3-3)2+(1-3)2]=53. 18.解:(1)88+90+863=88(分). 答:小王面试的平均成绩为88分. (2)88×3+92×23+2=89.6(分).答:小王的最终成绩为89.6分. 五、19.解:(1)780;680;640(2)30×780=23 400(元).答:估计该小吃店一个月的营业额为23 400元. 20.解:x 甲=15×(42+41+40+39+38)=40(mm),s 甲2=15×[(42-40)2+(41-40)2+(40-40)2+(39-40)2+(38-40)2]=2.x 乙=15×(40.5+40.1+40+39.9+39.5)=40(mm),s 乙2=15×[(40.5-40)2+(40.1-40)2+(40-40)2+(39.9-40)2+(39.5-40)2]=0.104.从上可知,在两名工人生产零件直径的平均数相同的情况下,工人乙的方差比工人甲的要小,所以工人乙生产的零件质量较好. 六、21.解:(1)60;0.15(2)略(3)80≤x<90(4)3 000×0.4=1 200(名).答:该校参加本次大赛的3 000名学生中成绩为“优”等的大约有1 200名.七、22.解:(1)17;20(2)2次;2次(3)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°.(4)2 000×350=120(人).答:估计该校学生在一周内借阅图书“4次及以上”的人数为120人.八、23.解:(1)八年级A组学生有10-2-3-4=1(人),补全条形统计图如图所示.(2)a=360×110=36,b=86,c=(87+87)÷2=87,即a的值是36,b的值是86,c的值是87.(3)从平均数看,两个年级竞赛成绩相同;从中位数看,八年级的竞赛成绩较好;从众数看,八年级的竞赛成绩较好.综上所述,八年级的成绩较好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第7题图)
39cm
38cm
41cm 40cm
21%37%27%
15%第20章《数据的分析》能力测试题
(考试时间:60分钟) 班级: 姓名: 成绩:
一、填空题(每小题5分,共20分)
1、在某次数学竞赛中,抽查了10名同学的成绩如下(单位:分)78,77,76,74,69,69,68,63,63,63。

在这一问题中,样本容量是 ,众数是 ,平均分是 。

2、一支仪仗队队员的身高(单位:㎝)如下:
178,177,179,179,178,177,178,177,179,这组数据的极差是 。

3、甲、乙两人比赛射击,两人所得的平均环数相同,其中甲所得环数的方差为5,乙所得环数如下:5,6,9,10,5,那么这两人中成绩较为稳定的 。

(填“甲”或“乙”) 4、某地区六月份某一周每
天最高气温如右表:则这一
周的最高气温的中位数是 。

二、选择题(每小题5分,共30分)
5、某班七个合作学习小组人数如下:5,5,6,x ,7,7,8。

已知这组数据的平均数是6,则这组数据的中位数是( ) (A )7 (B )6 (C )5.5 (D )5
6、将一组数据中每个数据的值都减去同一个常数,那么下列结论成立的是( )
(A )平均数不变 (B ) 方差和极差都不变 (C ) 方差改变 (D ) 方差不变但极差改变 7、某商店销售4种领口大小分别为38,39,40,41 (单位:cm )
的衬衫。

为了调查各种衬衫的销售情况,商店统计了某天的销售 情况,并绘制了下面的统计图,你认为商店应多进哪种领口大小 的衬衫( )
(A )38cm (B )39cm (C )40cm (D )41cm
8、一台机床在十天内生产的产品中,每天出现的次品个数依次为
(单位:个):0,2,0,2,3,0,2,3,1,2。

那么这十天中次
品个数的( )
(A )平均数是2 (B )众数是3 (C )中位数是1.5 (D )方差是1.25
9
学期总评成绩,90分以上为优秀。

甲、乙、丙三人 的各项成绩如下表(单位:分),则学期总评成绩 优秀的是( ) (A )甲 (B )乙、丙 (C )甲、乙 (D )甲、丙
10、小明和小兵两人参加体育项目训练,近期的五次测试成绩(都是整数)如图所示。

由图可以发现,下列叙述中错误的是( )
(A )小明与小兵的平均成绩相等 (B )小兵成绩的方差较小
(C )小明成绩的极差较大 (D )小兵与小明成绩的中位数不相等
三、解答题(本大题共同4题,计50分) 11、(10分)右下图反映了八年级(3)班40名学生在一次数学测验中的成绩分布情况(纵轴表示人数,横轴表示成绩)。

(1)从图中观察这个班这次数学测验成绩的中位数和众数。

(2)根据图形估计这个班这次数学测验的平均成绩。

12、(12分)甲、乙两台包装机同时分装质量为400g 的奶粉。

从它们各自分装的奶粉中随机抽取了哪台包装机包装的奶粉质量比较稳定?你是怎样判断的。

13、(12分)某政府部门招聘公务员1位,对前来应聘的A 、B 、C 三人进行了三项测试。

他们的各项测试成绩如下表所示::
(1)根据三项测试的平均成绩确定录用人选,那么谁将被录用?
(2)若将笔试、面试、群众评议三项
测试得分按1∶2 ∶4的比例确定各人的测试成绩,此时谁将被录用?
14、(16分)某校要从小王和小李两 名同学中挑选一人参加全国数学竞赛, 在最近的五次选拔测试中,他俩的成 绩分别如右表:
根据表格解答下列问题; (1)完成下表(8分):
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(5分)
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由(3
分)。

相关文档
最新文档