高中物理 §5.5.《圆周运动》学案

合集下载

高中物理圆周运动第二节第1课时实验:探究向心力大小与半径、角速度、质量的关系学案(2021年整理)

高中物理圆周运动第二节第1课时实验:探究向心力大小与半径、角速度、质量的关系学案(2021年整理)

高中物理圆周运动第二节第1课时实验:探究向心力大小与半径、角速度、质量的关系学案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理圆周运动第二节第1课时实验:探究向心力大小与半径、角速度、质量的关系学案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理圆周运动第二节第1课时实验:探究向心力大小与半径、角速度、质量的关系学案(word版可编辑修改)的全部内容。

教学课件第1课时实验:探究向心力大小与半径、角速度、质量的关系知识目标核心素养1.理解向心力和向心加速度的概念。

2。

知道向心力的大小与哪些因素有关,并能用来进行计算。

3.知道向心加速度和线速度、角速度的关系,能够用向心加速度公式求解有关问题。

1。

体验向心力的存在,会设计相关探究实验,体会控制变量法在研究多个物理量关系中的应用。

2.培养学生科学思维能力、科学探究和分析问题的能力。

3。

会用圆周运动的知识解决生活中的问题。

一、实验目的1.定性感知向心力的大小与什么因素有关.2.学会使用向心力演示器.3.探究向心力与质量、角速度、半径的定量关系.二、实验方法:控制变量法三、实验方案1.用细绳和物体定性感知向心力的大小.(1)实验原理:如图1所示,细线穿在圆珠笔的杆中,一端拴住小物体,另一端用一只手牵住,另一只手抓住圆珠笔杆并用力转动,使小物体做圆周运动,可近似地认为作用在小物体上的细线的拉力,提供了圆周运动所需的向心力,而细线的拉力可用牵住细线的手的感觉来判断.图1(2)器材:质量不同的小物体若干,空心圆珠笔杆,细线(长约60 cm).(3)实验过程:①在小物体的质量和角速度不变的条件下,改变小物体做圆周运动的半径进行实验.②在小物体的质量和做圆周运动的半径不变的条件下,改变物体的角速度进行实验.③换用不同质量的小物体,在角速度和半径不变的条件下,重复上述操作.(4)结论:半径越大,角速度越大,质量越大,向心力越大.2.用向心力演示器定量探究(1)实验原理如图2所示,匀速转动手柄,可以使塔轮、长槽和短槽匀速转动,槽内的小球也就随之做匀速圆周运动.这时,小球向外挤压挡板,挡板对小球的反作用力提供了小球做匀速圆周运动的向心力.同时,小球压挡板的力使挡板另一端压缩弹簧测力套筒里的弹簧,弹簧的压缩量可以从标尺上读出,该读数显示了向心力大小.图2(2)器材:向心力演示器.(3)实验过程①把两个质量相同的小球放在长槽和短槽上,使它们的转动半径相同.调整塔轮上的皮带,使两个小球的角速度不一样,探究向心力的大小与角速度的关系.②保持两个小球质量不变,增大长槽上小球的转动半径.调整塔轮上的皮带,使两个小球的角速度相同,探究向心力的大小与半径的关系.③换成质量不同的球,分别使两球的转动半径相同.调整塔轮上的皮带,使两个小球的角速度也相同,探究向心力的大小与质量的关系.④重复几次以上实验.(4)数据处理①m、r一定②m、ω一定③r、ω一定④分别作出F向-ω2、F向-r、F向-m的图象.⑤实验结论a.在质量和半径一定的情况下,向心力的大小与角速度的平方成正比.b.在质量和角速度一定的情况下,向心力的大小与半径成正比.c.在半径和角速度一定的情况下,向心力的大小与质量成正比.四、注意事项1.定性感知实验中,小物体受到的重力与拉力相比可忽略.2.使用向心力演示器时应注意:(1)将横臂紧固螺钉旋紧,以防小球和其他部件飞出而造成事故.(2)摇动手柄时应力求缓慢加速,注意观察其中一个测力计的格数.达到预定格数时,即保持转速均匀恒定.一、影响向心力大小因素的定性分析例1如图3所示,同学们分小组探究影响向心力大小的因素.同学们用细绳系一纸杯(杯中有30 mL的水)在空气中甩动,使杯在水平面内做圆周运动,来感受向心力.图3(1)下列说法中正确的是________.A.保持质量、绳长不变,增大转速,绳对手的拉力将不变B.保持质量、绳长不变,增大转速,绳对手的拉力将增大C.保持质量、角速度不变,增大绳长,绳对手的拉力将不变D.保持质量、角速度不变,增大绳长,绳对手的拉力将增大(2)如图甲,绳离杯心40 cm处打一结点A,80 cm处打一结点B,学习小组中一位同学用手表计时,另一位同学操作,其余同学记录实验数据:操作一:手握绳结A,使杯在水平方向每秒运动1周,体会向心力的大小.操作二:手握绳结B,使杯在水平方向每秒运动1周,体会向心力的大小.操作三:手握绳结A,使杯在水平方向每秒运动2周,体会向心力的大小.操作四:手握绳结A,再向杯中添加30 mL的水,使杯在水平方向每秒运动1周,体会向心力的大小.①操作二与一相比较:质量、角速度相同,向心力的大小与转动半径大小有关;操作三与一相比较:质量、半径相同,向心力的大小与角速度的大小有关;操作四与一相比较:____________________相同,向心力大小与________有关;②物理学中此种实验方法叫________________法.③小组总结阶段,在空中甩动,使杯在水平面内做圆周运动的同学谈感受时说:“感觉手腕发酸,感觉力的方向不是指向圆心的向心力而是背离圆心的离心力,跟书上说的不一样".你认为该同学的说法是否正确,为什么?答案(1)BD(2)①角速度、半径质量②控制变量③说法不对,该同学受力分析的对象是自己的手,我们实验受力分析的对象是纸杯,细线的拉力提供纸杯做圆周运动的向心力,指向圆心.细线对手的拉力与向心力大小相等,方向相反,背离圆心.解析(1)由题意,根据向心力公式,F向=mω2r,由牛顿第二定律,则有F T=mω2r;保持质量、绳长不变,增大转速,根据公式可知,绳对手的拉力将增大,故A错误,B正确;保持质量、角速度不变,增大绳长,据公式可知,绳对手的拉力将变大,故C错误,D正确;(2)根据向心力公式F向=mω2r,由牛顿第二定律,则有F T=mω2r;操作二与一相比较:质量、角速度相同,向心力的大小与转动半径大小有关;操作三与一相比较:质量、半径相同,向心力的大小与角速度的大小有关;操作四与一相比较:角速度、半径相同,向心力大小与质量有关;物理学中此种实验方法叫控制变量法.该同学受力分析的对象是自己的手,我们实验受力分析的对象是纸杯,细线的拉力提供纸杯做圆周运动的向心力,指向圆心.细线对手的拉力与“向心力"大小相等,方向相反,背离圆心.二、影响向心力大小因素的定量研究例2用如图4所示的装置可以探究做匀速圆周运动的物体需要的向心力的大小与哪些因素有关.图4(1)本实验采用的科学方法是________.A.控制变量法B.累积法C.微元法D.放大法(2)图示情景正在探究的是________.A.向心力的大小与半径的关系B.向心力的大小与线速度大小的关系C.向心力的大小与角速度大小的关系D.向心力的大小与物体质量的关系(3)通过本实验可以得到的结论是________.A.在质量和半径一定的情况下,向心力的大小与角速度成正比B.在质量和半径一定的情况下,向心力的大小与线速度的大小成正比C.在半径和角速度一定的情况下,向心力的大小与质量成正比D.在质量和角速度一定的情况下,向心力的大小与半径成反比答案(1)A (2)D (3)C解析(1)在这两个装置中,控制半径、角速度不变,只改变质量,来探究向心力与质量之间的关系,故采用控制变量法,A正确;(2)控制半径、角速度不变,只改变质量,来探究向心力与质量之间的关系,所以D选项正确;(3)通过控制变量法,得到的结论为在半径和角速度一定的情况下,向心力的大小与质量成正比,所以C选项正确.例3一物理兴趣小组利用学校实验室的数学实验系统探究物体做圆周运动时向心力与角速度、半径的关系。

2024届高考物理二轮专题学案:圆周运动的规律及应用

2024届高考物理二轮专题学案:圆周运动的规律及应用

考点03 圆周运动的规律及应用基础知识一、常见的传动方式及特点同轴转动同缘传动装置图基本特点、、相同轮缘处______相同转动方向相同______【例题1】如图所示,三个齿轮的半径之比为1:3:5,当齿轮转动时,小齿轮边缘的A点和大齿轮边缘的B 点,若A轮顺时针转动,则B轮会_____ 转动,AB两轮的转速之比为______。

【总结】同缘传动,线速度大小相同;同轴转动,角速度、周期、转速相同。

二、圆周运动的多解性问题【例题2】一位同学玩飞镖游戏,已知飞镖距圆盘为L,对准圆盘上边缘的A点水平抛出,初速度为v0,飞镖抛出的同时,圆盘以垂直圆盘且过盘心O点的水平轴匀速转动。

若飞镖恰好击中A点,空气阻力忽略不计,重力加速度为g,则飞镖打中A点所需的时间为______;圆盘的半径R为______;圆盘转动的线速度的可能值为______。

【总结】分析思路:1.两个物体运动的有关联性; 2.物体做圆周运动有周期性。

三、匀速圆周运动1.特点:速度与加速度的不变、不断变化。

2.性质:匀速圆周运动是一种___________________________运动。

3.离心运动和近心运动①当时,物体做匀速圆周运动;②当时,物体沿切线飞出;③当时,物体做离心运动; ④当时,物体做近心运动。

四、向心力的来源运动模型汽车转弯水平转台(光滑) 火车转弯图示向心力提供动力学问题【例题3】如图所示,一同学用轻绳拴住一个装有水(未满)的水杯,让水杯在水平面内做匀速圆周运动,不计空气阻力,下列说法中正确的是( )A.水杯匀速转动时,杯中水面呈水平B.水杯转动的角速度越大,轻绳与竖直方向的夹角越大C.水杯转动的周期越小,轻绳在水平方向上的分力越大D.水杯转动的线速度越大,轻绳在竖直方向上的分力越大【总结】思路:1.确定研究对象。

2.确定圆周运动的轨道平面,以及、。

3.对物体进行分析,确定向心力来源。

4.根据牛顿运动定律和圆周运动知识列方程求解。

教师高中物理圆周运动教案

教师高中物理圆周运动教案

教师高中物理圆周运动教案
教学目标:
1. 了解圆周运动的基本概念,掌握相关公式;
2. 掌握圆周运动的相关物理量计算方法;
3. 能够应用圆周运动的知识解决实际问题。

教学重点:
1. 圆周运动的基本概念;
2. 圆周运动的相关公式及计算方法。

教学难点:
1. 圆周运动的向心力及离心力的理解;
2. 圆周运动中速度、加速度等物理量的计算。

教学内容及安排:
一、引入(5分钟)
通过播放视频或展示图片等方式引入圆周运动的概念,激发学生对该知识点的兴趣。

二、讲解基本概念(15分钟)
1. 圆周运动的定义;
2. 圆周运动的相关物理量及其计算方法;
3. 向心力与离心力的概念及作用。

三、示例分析(20分钟)
通过实例分析圆周运动中速度、加速度、向心力等物理量的计算方法,并引导学生应用相
关知识解决实际问题。

四、练习与讨论(15分钟)
进行相关练习,帮助学生巩固所学知识,并引导学生讨论、分享解题思路。

五、作业布置(5分钟)
布置相关作业,要求学生巩固所学知识,并鼓励他们在作业中运用所学知识解决实际问题。

教学反思:
通过本节课的教学,学生能够掌握圆周运动的基本概念及相关物理量的计算方法,提高他们对物理知识的理解与运用能力。

同时,鼓励学生多与同学讨论、分享解题思路,加深对知识的理解。

2024秋季人教版高中物理必修第二册第六章圆周运动《圆周运动》

2024秋季人教版高中物理必修第二册第六章圆周运动《圆周运动》

教学设计:2024秋季人教版高中物理必修第二册第六章圆周运动《圆周运动》教学目标(核心素养)1.物理观念:学生能够理解圆周运动的基本概念,掌握描述圆周运动的基本物理量(如线速度、角速度、周期、半径等)及其相互关系。

2.科学思维:通过实例分析和逻辑推理,培养学生运用物理规律解决实际问题的能力,形成对圆周运动现象的科学解释和预测能力。

3.科学探究:经历从观察现象到提出假设、设计实验、收集数据、分析论证、得出结论的科学探究过程,培养学生的科学探究素养。

4.科学态度与责任:激发学生对自然现象的好奇心,培养严谨的科学态度和实事求是的科学精神,树立运用物理知识服务于社会的责任感。

教学重点•理解圆周运动的基本概念,掌握描述圆周运动的物理量及其关系。

•学会运用向心力和向心加速度的概念解释圆周运动现象。

教学难点•理解向心力的来源及其作用效果,掌握向心力公式的应用。

•分析解决复杂圆周运动问题,如变速圆周运动中的向心力变化。

教学资源•多媒体课件:包含圆周运动实例、物理量定义、公式推导等内容的PPT。

•实验器材:向心力演示器、小球、细线、滑轮、秒表等(可选,根据教学条件而定)。

•教材、教辅资料及网络资源。

教学方法•讲授法:讲解圆周运动的基本概念、物理量及其关系。

•演示法:利用向心力演示器或实物演示圆周运动现象,帮助学生直观理解向心力。

•讨论法:组织学生讨论圆周运动实例,分析向心力的来源和作用效果。

•练习法:通过例题和习题练习,巩固学生对圆周运动概念的理解和公式的应用。

教学过程导入新课•生活实例引入:展示过山车、摩天轮、地球绕太阳运动等圆周运动实例的图片或视频,引导学生观察并思考这些运动的共同特征。

•提出问题:这些物体为什么能够做圆周运动?是什么力使它们保持在圆周轨道上运动?引出圆周运动及其向心力的概念。

新课教学1.圆周运动的基本概念•讲解圆周运动的定义,强调物体运动轨迹是圆或圆弧。

•介绍描述圆周运动的基本物理量:线速度(定义、单位、计算公式)、角速度(定义、单位、与线速度的关系)、周期、转速等。

圆周运动教案 高中物理《圆周运动》教学设计(优秀5篇)

圆周运动教案 高中物理《圆周运动》教学设计(优秀5篇)

圆周运动教案高中物理《圆周运动》教学设计(优秀5篇)高中物理《圆周运动》教学设计【优秀5篇】由作者为您收集整理,希望可以在圆周运动教案方面对您有所帮助。

高一物理圆周运动教案篇一教学重点线速度、角速度的概念和它们之间的关系教学难点1、线速度、角速度的物理意义2、常见传动装置的应用。

高中物理圆周运动优秀教案及教学设计篇二做匀速圆周运动的物体依旧具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动版轨迹是圆,所以匀速圆周运动是变加速曲线运动。

匀速圆周运动加速度方向始终指向圆心。

做变速圆周运动的物体总能分权解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。

速度(矢量,有大小有方向)改变的。

(或是大小,或是方向)(即a≠0)称为变速运动。

速度不变(即a=0)、方向不变的运动称为匀速运动。

而变速运动又分为匀变速运动(加速度不变)和变加速运动(加速度改变)。

所以变加速运动并不是针对变减速运动来说的,是相对匀变速运动讲的。

匀变速运动加速度不变(须的大小和方向都不变)的运动。

匀变速运动既可能是直线运动(匀变速直线运动),也可能是曲线运动(比如平抛运动)。

圆周运动是变速运动吗篇三高中物理《圆周运动》课件一、教材分析本节内容选自人教版物理必修2第五章第4节。

本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。

本节课是从运动学的角度来研究匀速圆周运动,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。

(过渡句)知道了教材特点,我们再来了解一下学生特点。

也就是我说课的第二部分:学情分析。

竖直平面内的圆周运动学案

竖直平面内的圆周运动学案

竖直平面内圆周运动窦乐江【要点梳理】要注意竖直平面内圆周运动的两种临界状态的不同:分类 最高点无支撑最高点有支撑实例球与绳连接、水流星、翻滚过山车球与杆连接,车过拱桥、球过竖直管道、套在圆环上的物体等图示在最高点受力 重力、弹力F 弹向下或等于零mg +F 弹=m v 2r重力、弹力F 弹向下、向上或等于零mg±F 弹=m v 2r恰好过 最高点F 弹=0,mg =m v 2r,v =rg(在最高点速度不能为零)F 弹=mg ,F 向=0(在最高点速度可以为零)【典题例证】考向一、竖直平面内的圆周运动的考查【例1】如图所示,质量为m 的小球置于正方体的光滑硬质盒子中,盒子的边长略大于球的直径。

某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,问:(1)要使盒子在最高点时盒子与小球之间恰好无作用力,则该盒子做匀速圆周运动的周期为多少?(2)若盒子以(1)中周期的12做匀速圆周运动,则当盒子运动到图示球心与O 点位于同一水平面位置时,小球对盒子的哪些面有作用力,作用力为多大?规范解答审题指导解:(1)小球在最高点受什么力的作用?(2)周期变为原来的12后,小球的向心加速度多大?方向如何?是谁来提供向心力?【教你一招】:【对应训练】如图甲所示,在同一竖直平面内两正对着的半径为R 的相同半圆光滑轨迹,相隔一定的距离x ,虚线沿竖直方向,一质量为m 的小球能在其间运动。

今在最低点B 与最高点A 各放一个压力传感器,测试小球对轨道的压力,并通过计算机显示出来。

(不计空气阻力,g 取10 m/s 2)(1)要使小球不脱离轨道,求小球在A 点的速度大小;(2)求A 、B 两点的压力差ΔF N 与x 的函数关系;(用m 、R 、g 表示)(3)若测得两点压力差ΔFN 与距离x 的图象如图乙所示。

根据图象,求小球的质量。

考向二、平抛运动与圆周运动的综合考查【例2】(2014·福建·21)(19分)如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h.(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=rv m 2)规范解答 审题指导解:(1)游客经历了哪几个阶段,各阶段的受力和运动特点是什么?选择合适的依据解题。

《圆周运动》学案1

《圆周运动》学案1

《圆周运动》学案主备:刘桂荣 审核:陈晓明【学习目标】1.了解物体做圆周运动的特征2.理解线速度、角速度和周期的概念,知道它们是描述物体做匀速圆周运动快慢的物理量,会用它们的公式进行计算。

3. 理解线速度、角速度、周期之间的关系: 【课前预习】〖思维激活〗电风扇工作时叶片上的点、时钟的分针和时针上的点、行驶中的自行车车轮上的点都在做什么运动?它们的运动轨迹是什么样子?你能说出哪些点运动得快,哪些点运动得慢? 〖问题独学〗 1、温故而知新:曲线运动有哪些特点:<1>曲线运动的轨迹有什么特点? <2>曲线运动的速度有什么特点?思考:如果让你给圆周运动下一个定义,应该怎么描述? 2、课前感知: 圆周运动的特征1、质点的轨迹是 曲线或 曲线的一部分。

2、质点运动的 方向时刻在改变,是变速运动。

3、圆周运动区别于其他运动的显著特点是运动的重复性(周期性)。

匀速圆周运动4.物体沿着圆周运动,并且 的大小处处 ,这种运动叫做匀速圆周运动。

5.在匀速圆周运动的运动性质是描述圆周运动快慢的物理量【合作探究】〖理论探究〗1设质点做匀速圆周运动的半径为r ,则: 线速度、半径、周期的关系为:角速度、周期的关系为:线速度与角速度、半径关系为:特别地:r 一定时,v 与ω成 比;ω一定时,v 与r 成 比; v 一定时,ω与r 成 比〖实例探究〗2.请指出机械手表中秒针、分针、时针的运转周期分别是多大?3. 半径10cm 的砂轮,每0.2s 转一圈。

砂轮边缘上某一质点,它做圆周运动的线速度多大?角速度多大?砂轮上离转轴不同距离的质点,它们做匀速圆周运动的线速度是否相同?角速度是否相同?周期是否相同?4、关于匀速圆周运动的说法,正确的是( )A.匀速圆周运动是匀速运动B.匀速圆周运动的速率不变C.匀速圆周运动在任何相等时间里,质点的位移都相同D.匀速圆周运动在任何相等的时间里,质点通过的路程都相等 变式题:关于匀速圆周运动的说法,正确的是( )A 、是线速度不变的运动B 、相等的时间里通过的弧长相等C 、相等的时间里发生的位移相同D 、是线速度大小不变的运动【典例分析】例1. 图为一皮带传动装置,右轮半径为r ,a 是它边缘上的一点.左侧是一轮轴,大轮半径为4r ,小轮半径为2r.b 点在小轮上,到小轮中心的距离为r 。

高中物理圆周运动教学设计

高中物理圆周运动教学设计

《圆周运动》教学设计一、教学目标1.知识与技能①知道什么是圆周运动,什么是匀速圆周运动。

②知道线速度和角速度的物理意义、定义式、单位、矢量性,了解转速与周期的意义。

③掌握线速度、角速度、周期(转速)之间的关系,并能在具体情境中应用之。

2.过程与方法①联系日常生活中所观察到的各种圆周运动,总结出共同特点。

②通过分组实验,归纳总结描述圆周运动快慢的方法及各物理量间的关系。

③通过计算得出自行车前进的速度表达式并引出无级变速模型的原理。

3.情感态度与价值观①经历线速度、角速度概念由来的理论探究过程,让学生体验科学探究的艰辛和成功的喜悦。

②通过极限思想和数学知识的应用,体会学科间知识的联系,建立普遍联系的观点。

③通过从多级变速到无级变速的学习,使学生知道物理的意义及在生产生活中的巨大影响。

二、教学分析1.内容分析教学内容选自人教版必修2第五章《曲线运动》,圆周运动虽是一种运动的理想化模型,但具有普遍性——与日常生产生活的联系非常紧密;基础性——为以后学习天体等问题打下了知识基础;典型性——是高中阶段两种特殊曲线运动之一。

基于以上特点,本节课中的圆周运动限定在质点的运动模型而不是刚体转动模型,这样便于师生把着眼点放在概念的理解和联系上,从而使得教学有清晰的组织结构。

2.学生分析学生在知识上已经知道如何比较直线运动的快慢、曲线运动是一种变速运动及其瞬时速度方向为切线方向、数学上是如何表示角度的大小;在能力上已经具有一定的自主构建新知识框架的能力,可以从已知的物理现象与规律迁移至新的现象与规律;在科学探究方法上学生已经有了初步的极限思想。

但学生对曲线运动的认识比较肤浅,不善于从多方面多角度地研究一个问题。

3.重点难点①教学重点:多角度描述圆周运动的快慢。

②教学难点:理解描述圆周运动各物理量之间的关系、掌握分析和解决实际问题的方法。

三、教学方法教无定法,贵在得法,重在培养学生发现问题、分析问题、解决问题的能力以及逻辑推理能力,要学生“知其然”,更要“知其所以然”;法国生物学家贝尔纳指出,良好的学习方法能使我们更好地发挥天赋才能,而拙劣的学习方法则阻碍天赋才能的发挥。

高一物理必修二5.4 圆周运动 学案

高一物理必修二5.4  圆周运动 学案

5.4圆周运动学案(预习学案)班级姓名【学习目标】1.知道什么是圆周运动,什么是匀速圆周运动.2.理解什么是线速度、角速度和周期.3.理解线速度、角速度和周期之间的关系,会运用有关公式分析和解决有关问题.【学习重点】线速度、角速度、周期的概念及引入的过程,掌握它们之间的联系.【学习难点】理解线速度、角速度的物理意义及概念引入的必要性。

【学习过程】一、圆周运动、1、线速度定义:,公式,单位,方向。

2、匀速圆周运动_______________________________________________________。

特点:。

二、描述圆周运动的物理量:1、线速度(1)物理意义:描述质点(2)方向:(3)大小:2、角速度(1)物理意义:描述质点(2)大小:(3)单位:3、周期、频率和转速(1)定义:周期_______________________________________________________ 。

频率_________________________________________________________。

转速_________________________________________________________。

(2)线速度与角速度的关系是;线速度与周期的关系,角速度与周期的关系;线速度与转速的关系,角速度与转速的关系。

预习自测:1.关于匀速圆周运动,下列说法正确的是()A. 任意相等时间内物体通过的路程相等。

B. 任意相等时间内物体通过的位移相等C. 任意相等时间内物体半径扫过的弧度相等D. 匀速圆周运动是匀速运动2、分析下面两个图中ABC 三点的关系。

总结特点:(1)同轴传动:__轮上各点的角速度相等。

(2)皮带(齿轮)传动:________轮上边缘各点的线速度相等。

3、如图5—5—1所示的传动装置中,B 、C 两轮固定在一起绕同一转轴转动,A 、B 两轮用皮带传动,三轮半径关系为,若皮带不打滑,求A 、B 、C 轮边缘的三点的角速度之比和线速度之比.巩固与提高:1、下列物理量在匀速圆周运动中保持不变的是( )A 线速度B 速率C 角速度D 周期2.对于物体做匀速圆周运动,下列说法中正确的是( )A.其转速与角速度成正比,其周期与角速度成反比B.运动的快慢可用线速度描述,也可用角速度来描述C.匀速圆周运动不是匀速运动,因为其轨迹是曲线D.做匀速圆周运动的物体线速度方向时刻都在改变,角速度的方向也时刻都在改变3 .关于圆周运动中半径R 、角速度ω、线速度v 之间的关系.下列说法正确的是( )A.R 一定,v 与ω成正比B. R 一定,v 与ω成反比C.v 一定,ω与R 成反比D.v 一定,ω与R 成正比4. 由于地球的自转,则关于地球上的物体的角速度、线速度的大小,以下说法正确的是( )A.在赤道上的物体线速度最大B.在两极上的物体线速度最大C.赤道上物体的角速度最大D.处于北京和南京的物体的角速度大小相等5. A 、B 两质点分别做匀速圆周运动,在相等的时间内,它们通过的弧长之比s A :s B =2:3而转过的角度之比:,则它们的周期之比,角速度之比 ,线速度之比 .疑问之处: 。

新人教版必修2高中物理圆周运动学案

新人教版必修2高中物理圆周运动学案

高中物理圆周运动学案新人教版必修2
【使用说明】认真分析题目,灵活运用所学知识完成所给习题。

(无☆全体都做、☆
.....A.级可做
...)
........B.级.可做、☆☆
1、下列关于甲乙两个做圆周运动的物体的有关说法正确的是( )
A、它们线速度相等,角速度一定相等
B、它们角速度相等,线速度一定也相等
C、它们周期相等,角速度一定也相等
D、它们周期相等,线速度一定也相等
2、甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.它们随
地球一起转动时,则
A、甲的角速度最大、乙的线速度最小。

B、丙的角速度最小、甲的线速度最大。

C、三个物体的角速度、周期和线速度都相等。

D、三个物体的角速度、周期一样,丙的线速度最小。

3、电扇风叶长度为1.2m,转速为180r/min,则它的转动周期是 s,角速度是rad/s,叶片端点处的线速度是m/s。

4、如图所示的皮带传动装置,主动轮O1的半径分别为3r,从动轮O2的半径
为2r,A、B为轮缘上的两点,O1C=r,设皮带不打滑,求:
(1)A、B、C三点的角速度之比ωA∶ωB∶ωC
(2)A、B、C三点的周期之比T A∶T B∶T C
(3)A、B、C三点的线速度大小之比v A∶v B
☆☆5、机械手表中的分针与秒针可视为匀速转动,分针与秒针从重合至第二次重合,中间经历的时间为( )
A.1分钟 B.59/60分 C.60/59分 D.61/60分【课后小结】。

新教材高中物理第6章圆周运动1圆周运动学案新人教版必修第二册

新教材高中物理第6章圆周运动1圆周运动学案新人教版必修第二册

1.圆周运动学习目标:1.[物理观念]通过研究,认识匀速圆周运动,知道它是变速运动。

2.[科学思维]理解线速度、角速度、周期、转速的概念,会对它们进行定量计算。

3.[科学思维]掌握描述圆周运动的各物理量之间的关系,并会解决有关问题。

4.[科学思维]掌握处理传动问题的基本方法。

阅读本节教材,回答第23页“问题”并梳理必要知识点。

教材第23页“问题”提示:(1)大、小齿轮用链条连接,边缘上的点速度大小相等,故运动的一样快;(2)离转轴越远运动的越快。

(3)比两点运动快慢,可以从以下三个角度分析:①比较两点单位时间内通过的弧长;②比较两点与圆心的连线在单位时间内扫过的圆心角;③比较两点运动一周所需时间的长短。

一、圆周运动及线速度 1.圆周运动的概念运动轨迹为圆周或一段圆弧的机械运动,称为圆周运动。

圆周运动为曲线运动,故一定是变速运动。

2.线速度(1)定义:做圆周运动的物体,通过的弧长与所用时间的比值叫作线速度的大小。

用v 表示。

(2)表达式:v =ΔsΔt,单位为米/秒,符号是m/s 。

(3)方向:线速度是矢量,物体经过圆周上某点时的线速度方向就是圆周上该点的切线方向。

(4)物理意义:线速度是描述物体做圆周运动快慢的物理量,当Δt 很小时,其物理意义与瞬时速度相同。

(5)匀速圆周运动:如果物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动。

[注意] 匀速圆周运动是线速度大小不变的曲线运动,它的线速度方向时刻在变化,因而匀速圆周运动不是匀速运动,严格地说,应该将其称为匀速率圆周运动。

1.定义:如图所示,物体在Δt 时间内由A 运动到B 。

半径OA 在这段时间内转过的角Δθ与所用时间Δt 之比叫作角速度,用符号ω表示。

2.表达式:ω=ΔθΔt。

3.国际单位:弧度每秒,符号rad/s 。

在国际单位制中角的度量单位为“弧度”,在利用公式ω=ΔθΔt计算角速度时,Δθ的单位是“弧度”。

360°=2π弧度。

高中物理圆周运动教案

高中物理圆周运动教案

高中物理圆周运动教案
一、教学目标
1. 了解圆周运动的概念和特点。

2. 掌握圆周运动中的基本量及其相互之间的关系。

3. 能够运用圆周运动的知识解决相关问题。

二、教学重点
1. 圆周运动的基本概念。

2. 圆周运动中的基本量及其相互关系。

3. 圆周运动中的力学问题。

三、教学难点
1. 圆周运动中的角速度和线速度之间的关系。

2. 圆周运动中的向心力和离心力的理解。

四、教学过程
1. 圆周运动的概念及特点(10分钟)
教师简要介绍圆周运动的概念和特点,引导学生思考圆周运动与直线运动的区别和联系。

2. 圆周运动中的基本量(15分钟)
教师介绍圆周运动中的基本量:半径、角度、角速度、线速度等,并讲解它们之间的关系及计算方法。

3. 圆周运动的力学问题(20分钟)
教师结合实例讲解圆周运动中的向心力和离心力的概念及作用,引导学生掌握力学问题的解决方法。

4. 课堂练习(15分钟)
教师出示几道相关练习题,学生进行个人或小组讨论解答,巩固所学知识。

5. 总结与展望(10分钟)
教师对本节课所学内容进行总结,并展望下节课将要学习的内容,激发学生学习的热情。

五、教学反思
本节课通过讲解圆周运动的概念、基本量和力学问题,加深学生对圆周运动的了解,提高了他们的学习动力和解题能力。

同时,通过课堂练习和总结,巩固了学生的知识,促使他们对下节课的学习产生期待。

高中物理_圆周运动教学设计学情分析教材分析课后反思

高中物理_圆周运动教学设计学情分析教材分析课后反思

《圆周运动》--教学设计投影知识点并点评、总结1.线速度定义:质点做圆周运动通过的弧长Δl和所用时间Δt的比值叫做线速度。

(比值定义法)2.线速度大小:v =。

单位:m/s(s是弧长,不是位移)当选取的时间Δt很小很小时(趋近零),弧长Δl就等于物体在t时刻的位移,定义式中的v,就是直线运动中学过的瞬时速度了。

3.单位:m/s4.线速度方向:线速度的方向在圆周各点的切线方向上。

5.线速度物理意义:描述质点沿圆周运动的快慢,线速度是物体做匀速圆周运动的瞬时速度。

6.“匀速圆周运动”中的“匀速”指的速度的大小不变,即速率不变;而“匀速直线运动”的“匀速”指的速度不变是大小方向都不变,二者并不相同。

结论:①线速度是矢量,它既有大小,也有方向。

②匀速圆周运动是一种非匀速运动,因为线速度的方向在时刻改变。

7.通过例题1加强对线速度的理解。

投影知识点并点评、总结1.物理意义:描述质点转过的圆心角的快慢。

2.定义:在匀速圆周运动中,连接运动质点和圆心的半径转过Δθ的角度跟所用时间Δt的比值,就是质点运动的角速度。

3.定义式:ω=4.圆心角θ的大小可以用弧长和半径的比值来描述,这个比值是没有单位的,为了描述问题的方便,我们“给”这个比值一个单位,这就是弧度。

弧度不是通常意义上的单位,计算时,不能将弧度带到算式中。

5.国际单位制中,角速度的单位是弧度每秒(rad/s)6.第一句话是错误的,因为线速度是矢量,匀速圆周运动是线速度大小不变的运动,后一句话是正确的,因为角速度是标量,没有方向,因此角速度是不变的。

描述圆周运动各物理量的关系1.既然线速度、角速度、周期、频率和转速都是用来描述匀速圆周运动快慢的物理量,那么他们之间有什么样的关系呢?2.引导学生阅读教材,推导出线速度和角速度的关系。

3.出示课本“讨论与交流”,学生自己思考,然后教师组织交流总结。

4.一些学生的错误认识及时组织学生进行讨论交流,以增强学生对圆周运动的理解。

高中物理圆周问题教案

高中物理圆周问题教案

高中物理圆周问题教案
教学目标:
1.了解圆周运动常见问题类型;
2.掌握解决圆周运动问题的基本方法;
3.培养学生的物理解题能力。

教学准备:
1.教材《高中物理》相关内容;
2.课件、实验仪器;
3.习题集、解题技巧总结。

教学步骤:
一、引入
通过呈现一道经典的圆周运动问题,引导学生思考问题的解决方法。

二、讲授
1.圆周运动问题的基本类型:匀速圆周运动、变速圆周运动、离心力问题等;
2.解题方法探究:建立合适的坐标系、分析力的平衡条件、利用运动学公式等;
3.讲解经典案例,引导学生掌握解题技巧。

三、实践
组织学生进行一些简单的圆周运动实验,辅助学生理解解题方法。

四、练习
布置一些相关的习题,让学生在课后进行练习,并提供解题技巧指导。

五、总结
回顾本节课的内容,总结解题方法,强化学生对圆周运动问题的理解和掌握。

六、拓展
引导学生进行更复杂的圆周运动问题拓展,培养学生的解题能力和创新思维。

教学反思:
通过本节课的教学,学生应该对圆周运动问题有了更深入的理解,掌握了解题方法和技巧,提高了解题能力和物理思维。

在今后的学习中,学生应该能够更加熟练地解决各种类型的
圆周运动问题。

高中物理名师教案-《圆周运动》优秀教学设计优秀教案

高中物理名师教案-《圆周运动》优秀教学设计优秀教案

高中物理名师教案-《圆周运动》优秀教学设计优秀教案一、教学目标1.让学生理解圆周运动的基本概念,掌握圆周运动的描述方法。

2.通过实验和观察,让学生了解圆周运动的特点和规律。

3.培养学生的实验操作能力和分析问题的能力。

二、教学内容1.圆周运动的基本概念2.圆周运动的描述方法3.圆周运动的实验探究三、教学重点与难点1.教学重点:圆周运动的基本概念和描述方法,圆周运动的实验探究。

2.教学难点:圆周运动的向心力、角速度、线速度的关系。

四、教学过程第一课时一、导入新课1.利用多媒体展示生活中常见的圆周运动现象,如旋转木马、自行车轮等,引导学生关注圆周运动。

2.提问:同学们,你们知道圆周运动吗?它有什么特点?二、探究圆周运动的基本概念1.讲解圆周运动的概念,引导学生理解圆周运动是一种曲线运动。

2.分析圆周运动的运动轨迹,让学生明白圆周运动轨迹是圆。

3.讲解圆周运动中的几个基本物理量:半径、角速度、线速度、周期等。

三、圆周运动的描述方法1.介绍圆周运动的描述方法:极坐标、直角坐标、自然坐标。

2.通过实例,让学生学会使用极坐标描述圆周运动。

四、圆周运动的实验探究1.设计实验:利用圆规、直尺、三角板等工具,让学生在纸上画出圆周运动轨迹。

2.学生分组实验,观察圆周运动的特点,记录实验数据。

3.分析实验数据,得出圆周运动的规律。

第二课时一、复习导入1.回顾上节课的内容,提问:圆周运动的基本概念和描述方法是什么?二、圆周运动的向心力1.讲解向心力的概念,引导学生理解向心力是使物体沿圆周运动的力。

2.分析向心力的来源,让学生明白向心力是由物体受到的合外力提供的。

3.探讨向心力与半径、角速度、线速度的关系。

三、圆周运动的角速度1.讲解角速度的概念,让学生理解角速度是描述圆周运动快慢的物理量。

2.分析角速度与线速度的关系,让学生掌握角速度的计算方法。

四、圆周运动的线速度1.讲解线速度的概念,让学生理解线速度是描述圆周运动物体在圆周上某一点的速度。

2019人教版高中物理必修二圆周运动导与练学案

2019人教版高中物理必修二圆周运动导与练学案

圆周运动导与练【知识清单】1、匀速圆周运动的特点:(1)匀速圆周运动的定义:做圆周运动的物体在相等的时间内通过的弧长相等(2)匀速圆周运动的轨迹:是圆,且任意相等的时间内半径转过的角度相等(3)匀速圆周运动的性质:a 、“匀速”指的是“匀速率”,即速度的大小不变但速度的方向时刻改变b 、加速度大小不变,但加速度的方向时刻改变,所以是变加速曲线运动2、圆周运动的表征物理量:(1)线速度v :定义:圆周运动的瞬时速度;单位时间内通过的弧长大小:线速度=弧长/时间,即v=s/t ;方向:圆周的切线方向;匀速圆运动线速度的特点:线速度大小不变,但方向时刻改变(2)角速度ω:定义:半径在单位时间内转过的角度; 大小:角速度=角度(弧度)/时间即:ω=φ/t单位:弧度每秒,即:rad/s ;匀速圆周运动中角速度特点:角速度恒定不变(3)周期T :定义:匀速圆周运动物体运动一周所用的时间;大小:周期=周长/线速度,即:T=2πr/v单位:秒,即s ;匀速:圆周运动中周期的特点:周期不变(4)频率f :定义:每秒钟完成匀速圆周运动的转数大小:f=1/T单位:赫兹,即Hz ,1Hz=1转/秒(5)转速n :定义:单位时间内做匀速圆周运动的物体转过的圈数,符号n大小:转速的大小就等于频率的大小单位:国际单位制中用转/秒,日常生活中也用转/分3、匀速圆周运动各物理量之间的关系:(1)各物理量之间的关系:Tn T r T w rw v 1,2,2,====πυπ 说明: rw v =在非匀速圆周运动中同样适用,其中w v ,为任一相同时刻的线速度和角速度。

(2)同一转盘上半径不同的各点,角速度相等但线速度大小不同(3)皮带传动或齿轮传动的两轮边缘线速度大小相等,但角速度不一定相同(4)当半径一定时,线速度与角速度成正比;当角速度一定时,线速度与半径成正比【考点分析】命题点一圆周运动的运动学问题1.对公式v=ωr的理解当r一定时,v与ω成正比.当ω一定时,v与r成正比.当v一定时,ω与r成反比.2.常见的传动方式及特点(1)皮带传动:如图3甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A=v B.图3(2)摩擦传动和齿轮传动:如图4甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A=v B.图4(3)同轴转动:如图5甲、乙所示,绕同一转轴转动的物体,角速度相同,ωA=ωB,由v=ωr 知v与r成正比.【例1】匀速圆周运动是一种()A.匀速运动B.匀加速运动C.匀加速曲线运动D.变速曲线运动【答案】D【详解】匀速圆周运动物体的加速度的方向不断变化,所以是一种变速曲线运动,故D正确,ABC 错误。

高中物理教学课例《圆周运动》课程思政核心素养教学设计及总结反思

高中物理教学课例《圆周运动》课程思政核心素养教学设计及总结反思

对其并不陌生,但学生对如何描述圆周运动快慢却是第
一次接触,因此学生在对概念的表述不够准确,对问题
的猜想不够合理,对规律的认识存在疑惑等。教师在教
学中要善于利用教学资源,启发引导学生大胆猜想、合
理推导、细心总结、敢于表达,这就能对圆周运动的认
识有深度和广度。
总体设计思路如下:
1、列举生活中的圆周运动实例,总结圆周运动特
4、提出问题:大圆与小圆以相同的线速度运动,
它们转动快慢的程度一样吗?引导学生分析得出:用时
间△t 内物体与圆心的连线转过的角与时间△t 的比值
来描述,即角速度概念。
5、提出问题:除了用线速度、角速度描述圆周运
动快慢,能否用其它物理量描述圆周运动的快慢?学生
思考、讨论交流,教师引导分析,利用物体做圆周运动 转过一圈所需要时间多少来描述圆周运动的快慢,即周 期。
和归纳出物理学概念、规律、知识,引导学生学会分析
问题和解决问题,学以致用,培育学生的四维目标
6、提出问题:线速度、角速度、周期都可以从不 同角度描述圆周运动的快慢,它们之间存在什么样的关 系呢?引导学生利用线速度、角速度与周期的定义式, 推导出线速度、角速度、周期之间的关系式,即:。
7、课后小结:本节课的学习内容和研究方法 引导学生阅读教材“思考与讨论”中提出的问题情 境,用学过的知识加以分析,发表自己的见解,上面“思 考与讨论”中描述的情景其实已经实现,不过不是在汽 车上,而是在般天飞行中。 假设宇宙飞船质量 M,它在地球表面附近绕地球做 匀速圆周运动,其轨道半径近似等于地球半径 R,航天 员质量为 m,宇宙飞船和航天员受到的地球引力近似等 教学过程 于他们在地面的重力。试求座舱对宇航员的支持力,此 时飞船的速度多大? 通过求解,你可以得出什么结论? 其实在任何关闭了发动机,又不受阻力的飞行器 中,都是一个完全失重的环境。其中所有的物体都处于 完全失重状态。4、离心运动问题:做圆周运动的物体 一旦失去向心力的作用,它会怎样运动呢?如果物体受

人教版高中物理《生活中圆周运动》教学设计

人教版高中物理《生活中圆周运动》教学设计

人教版高中物理《生活中的圆周运动》教学设计一、教材分析教材中,圆周运动是作为曲线运动的一个特例拿出来的,在让学生认识了这种运动之后,进而给出了向心加速度、向心力的概念,阐明了物体做圆周运动的原因。

《生活中的圆周运动》是一节理论应用课,也是一节实例分析课,通过对生活中圆周运动的分析,引导学生从牛顿运动定律的角度,即力与运动关系的角度去分析圆周运动。

也为后面一章“万有引力与航天”的教学作好思想上的铺垫。

二、学情分析生活中的圆周运动是常见的,学生对此运动并不陌生,但是,初中学生不会从力与运动关系的角度去审视圆周运动。

进入高中之后,学生在物理这门学科中学习了有关运动学和动力学的基本理论知识,具备了从力与运动关系的角度去分析圆周运动的能力。

但是困难在于学生对于牛顿运动定律的认识不够深刻;从直线运动到曲线运动有一个较大的难度跨越;学生并不习惯于将理论知识运用到实际观察到的现象中。

这些都对本节课的教学带来了一定的负面影响。

三、教学目标1.知识与技能目标(1)能定性分析火车外轨比内轨高的原因。

(2)能定量分析火车过拱形桥最高点和凹形桥最低点的压力问题。

(3)知道航天器中失重现象的本质。

(4)知道离心运动及其产生的条件,了解离心运动的应用与防止。

2.过程与方法目标(1)能正确分析实际问题中向心力的来源,会用牛顿运动定律分析圆周运动(主题)。

(2)进一步领会力与物体的惯性对物体运动状态变化所起的作用。

(3)体验用力与运动关系的眼光来看待生活中的圆周运动。

3.情感、态度与价值观目标(1)培养学生将物理知识应用于生活和生产实践的意识,培养理论联系实际的能力。

(2)激发学生的爱国热情,提升民族自豪感。

(3)在生活中树立起安全意识。

四、教学媒体使用多媒体辅助教学:应用演示文稿以及图片、视频,增强学生的感性认识,提高教学效率。

五、教学过程设计1.引入播放视频:冬奥会女子短道速滑1500米录像。

请同学们观察运动员在直道上和弯道上身体姿势的区别。

高中物理圆周运动教案

高中物理圆周运动教案

高中物理圆周运动教案2020高中物理圆周运动教案大全一圆周运动一、考纲要求1.掌握描述圆周运动的物理量及它们之间的关系2.理解向心力公式并能应用;了解物体做离心运动的条件.二、知识梳理1.描述圆周运动的物理量(1)线速度:描述物体圆周运动快慢的物理量.v= = .(2)角速度:描述物体绕圆心转动快慢的物理量.ω= = .(3)周期和频率:描述物体绕圆心转动快慢的物理量.T= ,T= .(4)向心加速度:描述速度方向变化快慢的物理量.an=rω2= =ωv= r.2.向心力(1)作用效果:产生向心加速度,只改变速度的方向,不改变速度的大小.(2)大小:F=m =mω2r=m =mωv=4π2mf2r(3)方向:总是沿半径方向指向圆心,时刻在改变,即向心力是一个变力.(4)来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.3.匀速圆周运动与非匀速圆周运动(1)匀速圆周运动①定义:线速度大小不变的圆周运动 .②性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动.③质点做匀速圆周运动的条件合力大小不变,方向始终与速度方向垂直且指向圆心.(2)非匀速圆周运动①定义:线速度大小、方向均发生变化的圆周运动.②合力的作用a.合力沿速度方向的分量Ft产生切向加速度,Ft=mat,它只改变速度的方向.b.合力沿半径方向的分量Fn产生向心加速度,Fn=man,它只改变速度的大小.4.离心运动(1)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向.(2)受力特点(如图所示)①当F=mrω2时,物体做匀速圆周运动;②当F=0时,物体沿切线方向飞出;③当F为实际提供的向心力.④当F>mrω2时,物体逐渐向圆心靠近,做向心运动.三、要点精析1.圆周运动各物理量间的关系2.对公式v=ωr和a= =ω2r的理解(1)由v=ωr知,r一定时,v与ω成正比;ω一定时,v与r成正比;v一定时,ω与r成反比.(2)由a= =ω2r知,在v一定时,a与r成反比;在ω一定时,a与r成正比.3.常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即vA=vB.(2)摩擦传动:如图甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即vA=vB.(3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA=ωB.4.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.5.向心力的确定(1)先确定圆周运动的轨道所在的平面,确定圆心的位置.(2)再分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.6.圆周运动中的临界问题临界问题广泛地存在于中学物理中,解答临界问题的关键是准确判断临界状态,再选择相应的规律灵活求解,其解题步骤为:(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往是临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来.(3)选择物理规律:当确定了物体运动的临界状态和临界条件后,对于不同的运动过程或现象,要分别选择相对应的物理规律,然后再列方程求解.7.竖直平面内圆周运动的“轻绳、轻杆”[模型概述]在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类.一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接,小球在弯管内运动等),称为“轻杆模型”.[模型条件](1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑.[模型特点]该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两种模型分析比较如下:绳模型杆模型常见类型均是没有支撑的小球均是有支撑的小球过最高点的临界条件由mg=m 得v临= 由小球恰能做圆周运动得v临=0 讨论分析 (1)过最高点时,v≥ ,FN+mg=m ,绳、圆轨道对球产生弹力FN(2)不能过最高点时,v< ,在到达最高点前小球已经脱离了圆轨道 (1)当v=0时,FN=mg,FN为支持力,沿半径背离圆心(2)当0 时,FN+mg=m ,FN指向圆心并随v的增大而增大四、典型例题1.质量为m的小球由轻绳a、b分别系于一轻质木架上的A和C点,绳长分别为la、lb,如图所示,当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时轻杆停止转动,则(? )A.小球仍在水平面内做匀速圆周运动B.在绳b被烧断瞬间,绳a中张力突然增大C.若角速度ω较小,小球在垂直于平面ABC的竖直平面内摆动D.绳b未被烧断时,绳a的拉力大于mg,绳b的拉力为mω2lb 答案BC解析根据题意,在绳b被烧断之前,小球绕BC轴做匀速圆周运动,竖直方向上受力平衡,绳a的拉力等于mg,D错误;绳b被烧断的同时轻杆停止转动,此时小球具有垂直平面ABC向外的速度,小球将在垂直于平面ABC的平面内运动,若ω较大,则在该平面内做圆周运动,若ω较小,则在该平面内来回摆动,C 正确,A错误;绳b被烧断瞬间,绳a的拉力与重力的合力提供向心力,所以拉力大于小球的重力,绳a中的张力突然变大了,B正确.2.下列关于匀速圆周运动的说法,正确的是(? )A.匀速圆周运动的速度大小保持不变,所以做匀速圆周运动的物体没有加速度B.做匀速圆周运动的物体,虽然速度大小不变,但方向时刻都在改变,所以必有加速度C.做匀速圆周运动的物体,加速度的大小保持不变,所以是匀变速曲线运动 D.匀速圆周运动加速度的方向时刻都在改变,所以匀速圆周运动一定是变加速曲线运动答案BD解析速度和加速度都是矢量,做匀速圆周运动的物体,虽然速度大小不变,但方向时刻在改变,速度时刻发生变化,必然具有加速度.加速度大小虽然不变,但方向时刻在改变,所以匀速圆周运动是变加速曲线运动.故本题选B、D.3.雨天野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,使后轮离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来.如图所示,图中a、b、c、d为后轮轮胎边缘上的四个特殊位置,则(? )A.泥巴在图中a、c位置的向心加速度大于b、d位置的向心加速度B.泥巴在图中的b、d位置时最容易被甩下来C.泥巴在图中的c位置时最容易被甩下来D.泥巴在图中的a位置时最容易被甩下来答案C解析当后轮匀速转动时,由a=Rω2知a、b、c、d四个位置的向心加速度大小相等,A错误.在角速度ω相同的情况下,泥巴在a点有Fa+mg=mω2R,在b、d两点有Fb=Fd=mω2R,在c点有Fc-mg=mω2R.所以泥巴与轮胎在c位置的相互作用力最大,最容易被甩下来,故B、D错误,C正确.4.如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g,估算该女运动员(? )A.受到的拉力为 GB.受到的拉力为2GC.向心加速度为 gD.向心加速度为2g 答案B解析对女运动员受力分析,由牛顿第二定律得,水平方向FTcos 30°=ma,竖直方向FTsin 30°-G=0,解得FT=2G,a= g,A、C、D错误,B正确.5.如图所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动.若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法正确的是(? )A.若拉力突然消失,小球将沿轨道Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc运动答案A解析在水平面上,细绳的拉力提供m所需的向心力,当拉力消失,物体受力合为零,将沿切线方向做匀速直线运动,故A正确.当拉力减小时,将沿pb轨道做离心运动,故BD错误当拉力增大时,将沿pc轨道做近心运动,故C错误.故选:A.6.(多选)如图(a)所示,小球的初速度为v0,沿光滑斜面上滑,能上滑的最大高度为h.在图(b)中,四个小球的初速度均为v0,在A中,小球沿一光滑轨道内侧向上运动,轨道半径大于h;在B中,小球沿一光滑轨道内侧向上运动,轨道半径小于h;在C中,小球沿一光滑轨道内侧向上运动,轨道直径等于h;在D 中,小球固定在轻杆的下端,轻杆的长度为h的一半,小球随轻杆绕O点向上转动.则小球上升的高度能达到h的有 (? )答案AD解析A中,RA>h,小球在轨道内侧运动,当v=0时,上升高度h<ra,故不存在脱轨现象,a满足题意;d中轻杆连着小球在竖直平面内运动,在最高点时有v=0,此时小球恰好可到达最高点,d满足题意;而b、c都存在脱轨现象,脱轨后最高点速度不为零,因此上升高度h′<h,故应选a、d.< p="">7.如图所示,长为L的细绳一端固定,另一端系一质量为m的小球.给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ.下列说法中正确的是 (? )A.小球受重力、绳的拉力和向心力作用B.小球做圆周运动的半径为LC.θ越大,小球运动的速度越大D.θ越大,小球运动的周期越大答案C解析小球只受重力和绳的拉力作用,合力大小为F=mgtan θ,半径为R=Lsin θ,A、B错误;小球做圆周运动的向心力是由重力和绳的拉力的合力提供的,则mgtan θ=m ,得到v=sin θ ,θ越大,小球运动的速度越大,C正确;周期T= =2π ,θ越大,小球运动的周期越小,D错误.8.如图所示,足够长的斜面上有a、b、c、d、e五个点,ab=bc=cd=de,从a点水平抛出一个小球,初速度为v时,小球落在斜面上的b点,落在斜面上时的速度方向与斜面夹角为θ;不计空气阻力,初速度为2v时(? )A.小球可能落在斜面上的c点与d点之间B.小球一定落在斜面上的e点C.小球落在斜面时的速度方向与斜面夹角大于θD.小球落在斜面时的速度方向与斜面夹角也为θ 答案BD解析设ab=bc=cd=de=L0,斜面倾角为α,初速度为v时,小球落在斜面上的b 点,则有L0cos α=vt1,L0sin α= .初速度为2v时,则有Lcos α=2vt2,Lsin α= ,联立解得L=4L0,即小球一定落在斜面上的e点,选项B正确,A 错误;由平抛运动规律可知,小球落在斜面时的速度方向与斜面夹角也为θ,选项C错误,D正确.9.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F供由物体受力情况决定.若某时刻F需=F供,则物体能做圆周运动;若F 需>F供,物体将做离心运动;若F需(1)为保证小球能在竖直面内做完整的圆周运动,在A点至少应施加给小球多大的水平速度?(2)在小球以速度v1=4 m/s水平抛出的瞬间,绳中的张力为多少?(3)在小球以速度v2=1 m/s水平抛出的瞬间,绳中若有张力,求其大小;若无张力,试求绳子再次伸直时所经历的时间.答案(1) ?m/s (2)3 N (3)无张力,0.6 s解析(1)小球做圆周运动的临界条件为重力刚好提供最高点时小球做圆周运动的向心力,即mg=m= ,解得v0= = m/s.(2)因为v1>v0,故绳中有张力.根据牛顿第二定律有FT+mg=m ,代入数据得绳中张力FT=3 N.(3)因为v210.在高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.(1)如果汽车在这种高速公路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速公路上设计了圆弧拱形立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱形立交桥的半径至少是多少?(取g=10 m/s2)答案(1)150 m (2)90 m解析(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有Fmax=0.6mg=m ,由速度v=108 km/h=30 m/s得,弯道半径rmin=150 m.(2)汽车过圆弧拱桥,可看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有mg-FN=m .为了保证安全通过,车与路面间的弹力FN必须大于等于零,有mg≥m ,则R≥90 m.11.游乐园的小型“摩天轮”上对称地分布着8个吊篮,每个吊篮内站着一个质量为m的同学,如图所示,“摩天轮”在竖直平面内逆时针匀速转动,若某时刻转到顶点a上的甲同学让一小重物做自由落体运动,并立即通知下面的同学接住,结果重物开始下落时正处在c处的乙同学恰好在第一次到达最低点b处时接到重物,已知“摩天轮”半径为R,重力加速度为g,不计空气阻力.求:(1)接住重物前,重物自由下落的时间t.(2)人和吊篮随“摩天轮”运动的线速度大小v.(3)乙同学在最低点处对吊篮的压力FN.答案(1)2(2)(3)(1+ )mg;竖直向下解析(1)由运动学公式:2R= gt2,t=2 .2020高中物理圆周运动教案大全二教学目标知识与技能1、知道如果一个力或几个力的合力的效果是使物体产生向心加速,它就是圆周运动的物体所受的向心力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5.5.《圆周运动》学案【学习目标】(1)理解并记住描述圆周运动的物理量。

(2)学会解匀速圆周运动的运动学问题。

(3)掌握解圆周运动动力学问题的一般方法。

【自主学习】一、匀速圆周运动的特点:1、轨迹:2、速度:二、描述圆周运动的物理量:1、线速度(1)物理意义:描述质点(2)方向:(3)大小: 2、角速度(1)物理意义:描述质点(2)大小:(3)单位:3、周期和频率(1)定义:做圆周运动的物体叫周期。

做圆周运动的物体叫频率。

(2)周期与频率的关系:(3)频率与转速的关系:4、向心加速度(1)物理意义:描述(2)大小:(3)方向:(4)作用:5、向心力(1)作用:(2)来源:(3)大小:(4)方向:★特别思考(1)向心力、向心加速度公式对变速圆周运动使用吗?(2)向心力对物体做功吗?三、圆周运动及向心力来源:1、匀速圆周运动:(1)性质:(2)加速度: (3)向心力: (4)质点做匀速圆周运动的条件:(a )(b) 2、非匀速圆周运动:(1)性质: (2)加速度: (3)向心力: 3、向心力来源: 四、离心运动:1、定义:2、本质:3、特别注意:(1)离心运动并非沿半径方向飞出的运动,而是运动半径越来越大的运动或沿切线方向飞出的运动。

(2)离心运动并不是受到什么离心力作用的结果,根本就没什么离心力,因为没什么物体提供这种力。

【典型例题】一、匀速圆周运动的运动学问题:例1、如图—1所示,传动轮A 、B 、C 的半径之比为2:1:2,A 、B 两轮用皮带传动,皮带不打滑,B 、C 两轮同轴,a 、b 、c 三点分别处于A 、B 、C 三轮的边缘,d 点在A 轮半径的中点。

试求:a 、b 、c 、d 四点的角速度之比,即ωa :ωb :ωc :ωd = 线速度之比,即v a :v b :v c :v c = ;向心加速度之比,即:a a :a b :a c :a d = .(小结)本题考察得什么:例2、如图—2,A 、B 两质点绕同一圆心沿顺时针方向做匀速圆周运动,A 、B 的周期分别为T 1、T 2,且T 1<T 2,在某一时刻两质点相距最近时开始计时, 问何时两质点再次相距最近?(小结)解该题需要注意什么: 二、圆周运动的动力学问题:例3、如图5—6—5所示,线段OA =2AB ,A 、B 两球质量相等.当图—1它们绕()点在光滑的水平桌面上以相同的角速度转动时,两线段的拉力T AB与T OA之比为多少?图—2提示:通过本题总结解题步骤:(1)明确,确定它在那个平面内作圆周运动。

(2)对研究对象进行,确定是那些力提供了。

(3)建立以为正方向的坐标,根据向心力公式列方程。

(4)解方程,对结果进行必要的讨论。

例4、如图,长为L的细绳一端固定,另一端连接一质量为m的小球,现将球拉至与水平方向成30°角的位置释放小球(绳刚好拉直),求小球摆至最低点时的速度大小和摆球受到的绳的拉力大小。

(小结)该题的易错点表现在:【针对训练】1.—个物体以角速度ω做匀速圆周运动时.下列说法中正确的是:( )A.轨道半径越大线速度越大B.轨道半径越大线速度越小C.轨道半径越大周期越大D.轨道半径越大周期越小2.下列说法正确的是:( )A.匀速圆周运动是一种匀速运动B.匀速圆周运动是一种匀变速运动C.匀速圆周运动是一种变加速运动D.物体做圆周运动时,其合力垂直于速度方向,不改变线速度大小3.如图5-16所示,小物体A与圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A的受力情况是:( )A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.受重力、支持力、向心力、摩擦力D.以上均不正确图5-16 4.一重球用细绳悬挂在匀速前进中的车厢天花板上,当车厢突然制动时,则:( ) A.绳的拉力突然变小B.绳的拉力突然变大C.绳的拉力没有变化D.无法判断拉力有何变化5、如图—3所示的皮带传动装置中,轮A和B同轴,A、B 、C分别是三个轮边缘的质点,且R A=R C=2R B,则三质点的向心加速度之比a A:a B:a C等于( )A.4:2:1B.2:1:2C.1:2:4D.4:1:46.质量为m 的小球用一条绳子系着在竖直平面内做圆周运动,小球到达最低点和最高点时,绳子所受的张力之差是:[ ]A、6mgB、5mgC、2mgD、条件不充分,不能确定。

7.两个质量分别是m1和m2的光滑小球套在光滑水平杆上,用长为L的细线连接,水平杆随框架以角速度ω做匀速转动,两球在杆上相对静止,如图5-18所示,求两球离转动中心的距离R1和R2及细线的拉力.【能力训练】1.A、B两小球都在水平面上做匀速圆周运动,A球的轨道半径是B球轨道半径的2倍,A的转速为30r/min,B的转速为15r/min。

则两球的向心加速度之比为()A.1:1 B.2:1 C.4:1 D.8:12、如图所示,为一皮带传动装置,右轮半径为r,a为它边缘上一点;左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心的距离为r。

c点和d点分别位于小轮和大轮的边缘上。

若传动过程中皮带不打滑,则:()①a 点和b 点的线速度大小相等 ②a 点和b 点的角速度大小相等 ③a 点和c 点的线速度大小相等 ④a 点和d 点的向心加速度大小相等A.①③B. ②③C. ③④D.②④3、如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平布做匀速圆周运动,以下说法正确的是:( ) A. V A >V B B. ωA >ωB C. a A >a B D.压力N A >N B4、半径为R 的光滑半圆柱固定在水平地面上,顶部有一小物块,如图所示,今给小物块一个初速度gR v 0,则物体将:( ) A. 沿圆面A 、B 、C 运动B. 先沿圆面AB 运动,然后在空中作抛物体线运动C. 立即离开圆柱表面做平抛运动D. 立即离开圆柱表面作半径更大的圆周运动5、如图所示,轻绳一端系一小球,另一端固定于O 点,在O 点正下方的P 点钉一颗钉子,使悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时:( ) ①小球的瞬时速度突然变大②小球的加速度突然变大③小球的所受的向心力突然变大④悬线所受的拉力突然变大A. ①③④B. ②③④C. ①②④D.①②③6、如图所示,汽车以速度V 通过一半圆形拱桥的顶点时,A. 汽车受重力、支持力、向心力B. 汽车受重力、支持力、牵引力、摩擦力、向心力C. 汽车的向心力是重力D. 汽车的重力和支持力的合力是向心力7.在光滑的水平面上相距40 cm 的两个钉子A 和B ,如图5-21所示,长1 m 的细绳一端系着质量为0.4 k g 的小球,另一端固定在钉子A 上,开始时,小球和钉子A 、B 在同一直线上,小球始终以2 m/s 的速率在水平面上做匀速圆周运动.若细绳能承受的最大拉力是4 N ,那么,从开始到细绳断开所经历的时间是:( )图5-21A .0.9π sB .0.8π sC .1.2π sD .1.6π s8.如图所示,质量m=0.1kg 的小球在细绳的拉力作用下在竖直面内做半径为r=0.2m 的圆周运动,已知小球在最高点的速率为v 1=2m/s ,g 取10m/s 2,试求:(1)小球在最高点时的细绳的拉力T 1=? (2)小球在最低点时的细绳的拉力T 2=?9.(6分)如图5-14所示,半径为R 的圆板置于水平面内,在轴心O 点的正上方高h 处,水平抛出一个小球,圆板做匀速转动,当圆板半径OB 转到与抛球初速度方向平行时,小球开始抛出,要使小球和圆板只碰一次,且落点为B ,求:(1)小球初速度的大小. (2)圆板转动的角速度。

图5-1410、长为L=0.4m 的轻质细杆一端固定在O 点,在竖直平面内作匀速圆周运动,角速度为ω=6rad/s ,若杆的中心处和另一端各固定一个质量为m=0.2kg 的小物体,则端点小物体在转到竖直位置的最高点时,(g 取10m/s 2)求: (1)杆对端点小物体的作用力的大小和方向; (2)杆对轴O 的作用力的大小和方向。

【学后反思】___________________________________________________________________________________________________________________ 。

v例题、针对练习及能力训练题答案一 、例题例一(1)ωb =ωc ,ωa =ωb ,因为v=ωR,v a =v b 且r a =2r B ,所以ωb =2ωa ,由此得出: 因为ωa :ωb =1:2,ωb :ωc =1:1,ωa :ωd =1:1 ωa :ωb :ωc :ωd =1:2:2:1 (2)v a =v b ,而v a =2v d ,v c =2v b ,所以v a :v b :v c :v d =2:2:4:1 (3) a a :a b :a c :a d =2:4:8:1或者按a a :a b :a c :a d =ωa 2r a :ωb 2r b :ωc 2r c :ωd 2r d =2:4:8:1. 例2、t=nT 1T 2/(T 2-T 1) 例3、5/3 例4二、针对训练1、答案:A2、答案:C解析:匀速圆周运动中,速度和加速度方向时刻在变,故A 、B 错,C 对;物体只有做匀速圆周运动时,其合力才垂直于速度,不改变线速度大小,D 错.故C 选项正确.3.答案:B解析:物体A 在水平台上,受重力G 竖直向下,支持力F N 竖直向上,且两力是一对平衡力,至于物体A 是否受摩擦力,方向如何,由运动状态分析才知道,由于A 随圆盘做圆周运动,所以必须受到向心力作用,G 与F N 不能提供向心力,只有A 受摩擦力F ′且指向圆心充当向心力,才能使物体有向心力而做匀速圆周运动.故B 正确. 4.答案:B解析:车厢突然制动时,重球由于惯性,继续向前运动,而悬线欲使它改变运动方向则沿圆弧运动,所以拉力变大,即B 正确. 5、答案:A 6.答案:A7.解析:绳对m 1和m 2的拉力是它们做圆周运动的向心力,根据题意 R 1+R 2=L ,R 2=L -R 1 对m 1:F =m 1ω2R 1对m 2:F =m 2ω2R 2=m 2ω2(L -R 1) 所以m 1ω2R 1=m 2ω2(L -R 1)即得:R 1=212m m Lm +R 2=L -R 1=211m m Lm +F =m 1ω2·212m m Lm +=21221m m Lm m +ω答案:212m m L m +;211m m L m +;F =21221m m Lm m +ω三、能力训练1、D2、C3、A4、C5、B6、D7、答案:B解析:当小球绕A 以1 m 的半径转半圈的过程中,拉力是F 1=m 12r v =0.4×122=1.6 N ,绳不断当小球继续绕B 以(1-0.4)=0.6 m 的半径转半圈的过程中,拉力为F 2=m 22r v =0.4×6.022=2.67 N ,绳不断当小球再碰到钉子A ,将以半径(0.6-0.4)=0.2 m 做圆周运动,拉力F 3=m 32r v =0.4×2.022=8 N .绳断所以在绳断之间小球转过两个半圈,时间分别为t 1=22122211⨯⨯==ππv r v s =0.5π st 2=226.022222⨯⨯==ππv r v s =0.3π s所以断开前总时间是t =t 1+t 2=(0.5π+0.3π)s =0.8π s 8.(1)T ﹦3N (2)T ﹦7N9.解析:(1)小球做平抛运动在竖直方向h =21gt 2 t =gh 2在水平方向: s =v 1t =v 0gh2 =R所以v 0=Rhg 2 (2)因为t =nT =nωπ2即gh2 =n ωπ2所以ω=2πn hg2 (n =1,2,…) 答案:(1)Rh g 2 (2)2πn hg 2 (n =1,2,…) 10、简解:(1)mg+T A =m ω2LT A = m ω2L-mg=0.88N 方向向下 (2)mg+ T B -T A =m ω2L/2T B = T A +m ω2L/2-mg=0.32N 方向向下 轴O 受力方向向上,大小也为0.32N图D-1L。

相关文档
最新文档