工程光学_郁道银_光学习题解答

合集下载

郁道银 工程光学-物理光学答案整理

郁道银 工程光学-物理光学答案整理

第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。

(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。

解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。

3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。

工程光学习题答案第七章典型光学系统郁道银

工程光学习题答案第七章典型光学系统郁道银

第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。

解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-=m P l p 1.01011-=-== ③fD '=1∴m f 1-=' ④D D R R 1-=-='m l R1-=' ⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'='m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。

eye已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①fDP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtg Dytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm fe 250='mm l 2.22-= yy l l X '==='=92.22200β mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f l l '=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

工程光学_郁道银_光学习题解答

工程光学_郁道银_光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题答案第七章_典型光学系统___郁道银

工程光学习题答案第七章_典型光学系统___郁道银

第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。

解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-=∴D A R P 1082-=--=-=m P l p 1.01011-=-== ③fD '=1∴m f 1-=' ④D D R R 1-=-='m l R1-=' ⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'='m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。

eye已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'%50=K求:① Γ ② 2y ③l解:①fDP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtg Dytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm fe 250='mm l 2.22-= yy l l X '==='=92.22200β mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f l l '=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

第一章习题1 、已知真空中的光速c =3 m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、 火石玻璃(n=1.65)、加拿大树胶( n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333 时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99 m/s, 当光在火石玻璃中,n =1.65 时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97 m/s , 当光在金刚石中,n=2.417 时,v=1.24 m/s 。

2 、一物体经针孔相机在 屏上成一 60mm 大小的像,若将屏拉远 50mm ,则像的 大小变为 70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不 变,令屏到针孔的初始距离为 x ,则可以根据三角形相似得出:所以 x=300mm即屏到针孔的初始距离为 300mm 。

3 、一厚度为200mm 的平行平板玻璃(设 n=1.5),下面放一直径为 1mm 的金 属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为 x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反 射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到 金属片。

而全反射临界角求取方法为:(1)其中 n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界 角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径 x=179.385mm , 所以纸片最 小直径为 358.77mm 。

4 、光纤芯的折射率为n纤的数值孔径(即 n1、包层的折射率为n2,光纤所在介质的折射率为n 0,求光 I 0sinI1,其中1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学 郁道银版 习题解答(一题不落)第十章_光的电磁理论基础

工程光学 郁道银版 习题解答(一题不落)第十章_光的电磁理论基础

第十章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。

(2)波传播方向沿z 轴,电矢量振动方向为y 轴。

(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx CEy t c ππ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。

解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。

解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。

假设太阳光发出波长为600nm λ=的单色光。

解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。

工程光学郁道银第二版习题解答

工程光学郁道银第二版习题解答

工程光学习题解答 CH11、 生活中有很多光学现象,例如,两个手电筒的发出的光在空气中相遇后又独自的直线转播,平面镜成像,水底的鱼看起来比实际浅等都符合光学基本定律。

2、 根据公式v=c/n 可得:光在水中的传播速度为:v=2.25×108m/s 光在冕牌玻璃中的传播速度为:v=1.987×108m/s 光在火石玻璃中的传播速度为:v=1.82×108m/s 光在加拿大树胶中的传播速度为:v=1.96×108m/s 光在金刚石中的传播速度为:v=1.241×108m/s3、 根据题意可得,可以设x 为屏到孔的距离,根据几何关系有如下式子成立:=+50x x 7060,可以解得x=300mm 4、 见图,本题涉及到全反射现象。

金属片边缘点发出光线照射到玻璃另一面是光密介质传入光疏介质,符合全反射条件,=θ∠ACB,有公式:,15.1sin 90sin =θ32sin =θ, D=2L CD +1=358.77mm图1.1习题45、①光从光密介质射到它与光疏介质的界面上,②入射角等于或大于临界角.这两个条件都是必要条件,两个条件都满足就组成了发生全反射的充要条件。

6、只要证明入射角和出射角相等就可以。

7、见下图,可知,光线通过光学原件后偏角为:δ=αθ-,有1s i n s i n n=∂θ,由于∂,θ都很小,可知,∂=∂=sin ,sin θθ,得δ=αθ-=)1(-∂n图1.2 题78、见课本图1.6所示,数值孔径一般代表光纤传播光的能力。

记为NA 。

根据三角函数关系及其全反射临界条件有:=Im sin 90sin 21n n ,,01Im)90sin(1sin n n I =-解得NA=n 0sin I 1=2221n n -.9、光在冕牌玻璃中的折射率为n=1.51,由全反射临界条件:∂sin 90sin =n,由图可以知道,β=45o -∂,将n=1.51代人,可以解得θ=5o 40'。

光学工程(郁道银)第三版课后答案_物理光学

光学工程(郁道银)第三版课后答案_物理光学

n 1 2 0.52 2 ) ( ) 0.0426 n 1 2.52 n 1 2 1 1.52 2 经过第三面时,反射比为3 ( ) ( ) 0.0426 n 1 1 1.52 经过第二面时,1 =45,sin 2 1.52 sin 45 2 90
9. 电矢量方向与入射面成 45 度角的一束线偏振光入射到两介质的界面上, 两介质的折射率 分别为 n1 1, n2 1.5 ,问:入射角 1 50 度时,反射光电矢量的方位角(与入射面所成
的角)?若 1 60 度,反射光的方位角又为多少? 解:
() 1 1 50,由折射定律 2 sin 1 ( rs
得证。亦可由 rs , rp 求证.
n玻
11. 光束垂直入射到 45 度直角棱镜的一个侧面,并经斜面反射后由底二个侧面射出(见图 10-40) ,若入射光强为 I 0 ,求从棱镜透过的出射光强 I?设棱镜的折射率为 1.52,且不考 虑棱镜的吸收。
I0
45
I
图 10-40 习题 11 图
解:
经过第一面时,反射比为1 (
u r
r r
r r k r kx x k y y kz z
k x 2, k y 3, k z 4 r uu r uu r u u r uu r uu r u u r k k x x0 k y y0 k z z0 2 x0 3 y0 4 z0 u u r r r u r 2 uu 3 uu 4 u k0 x0 y0 z0 29 29 29
7. 太阳光(自然光)以 60 度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解:
sin 2 sin ocs 2 6

工学光学工程郁道银第三版课后答案 物理光学

工学光学工程郁道银第三版课后答案 物理光学

第十一章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。

(2)波传播方向沿z 轴,电矢量振动方向为y 轴。

(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx CEy t c ππ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。

解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。

解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。

假设太阳光发出波长为600nm λ=的单色光。

解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。

工程光学课后解答-第二版-郁道银

工程光学课后解答-第二版-郁道银

工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

光学工程(郁道银)第三版课后答案_物理光学

光学工程(郁道银)第三版课后答案_物理光学

1.5 1 2
6 3
1 1 4 3 4 0.823 3 6 1 3 2 ( ) 2 3 2 3
n2 cos 2 4sin 2 2 cos 2 1 p 0.998 n1 cos 1 sin 2 (1 2 ) cos 2 (1 2 ) n ( s p ) 2 0.91
1
n1 n2
n1 n2
1
2
2
a)
图 10-39 习题 8 图
b)
解:
(1)rs rs '
n1 cos 1 n2 cos 2 n1 cos 1 n2 cos 2
n1 'cos'1 n2 'cos' 2 n2 cos 2 n1 cos 1 rs n1 'cos'1 n2 'cos' 2 n2 cos 2 n1 cos 1
此系统有4个反射面,设光束正入射条件下,各面反射率为 n -1 1.5-1 2 R1 =( 1 ) 2 ( ) 0.04 n1 +1 1.5+1 1 -1 n 2 -1 2 R2 ( ) ( 1.5 ) 2 0.04 1 n 2 +1 +1 1.5 R3 R4 0.067 光能损失为(初始为I0)
1 2 1 A 0cA2 2 2
∴A(
2I 1 ) 2 B103 v / m c 0
8
5. 写出平面波 E 100exp{i[(2 x 3 y 4 z) 16 10 t ]} 的传播方向上的单位矢量 k0 。
° A exp[i(k gr t )] 解:∵ E
2 15
z t) , 0.65c

工程光学习题郁道银解答样本

工程光学习题郁道银解答样本

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n, 求光纤的数值孔径( 即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角) 。

解: 位于光纤入射端面, 满足由空气入射到光纤芯中, 应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射, 使得光束能够在光纤内传播, 则有:(2)由( 1) 式和( 2) 式联立得到nsinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上, 求其会聚点的位置。

如果在凸面镀反射膜, 其会聚点应在何处? 如果在凹面镀反射膜, 则反射光束在玻璃中的会聚点又在何处? 反射光束经前表面折射后, 会聚点又在何处? 说明各会聚点的虚实。

解: 该题能够应用单个折射面的高斯公式来解决,设凸面为第一面, 凹面为第二面。

( 1) 首先考虑光束射入玻璃球第一面时的状态, 使用高斯公式:会聚点位于第二面后15mm处。

( 2) 将第一面镀膜, 就相当于凸面镜像位于第一面的右侧, 只是延长线的交点, 因此是虚像。

还能够用β正负判断:( 3) 光线经过第一面折射: , 虚像第二面镀膜,则:得到:( 4) 再经过第一面折射物像相反为虚像。

6、一直径为400mm, 折射率为1.5的玻璃球中有两个小气泡, 一个位于球心, 另一个位于1/2半径处。

沿两气泡连线方向在球两边观察, 问看到的气泡在何处? 如果在水中观察, 看到的气泡又在何处?解: 设一个气泡在中心处, 另一个在第二面和中心之间。

( 1) 从第一面向第二面看( 2) 从第二面向第一面看( 3) 在水中7、有一平凸透镜r1=100mm,r2=,d=300mm,n=1.5,当物体在时, 求高斯像的位置l’。

在第二面上刻一十字丝, 问其经过球面的共轭像在何处? 当入射高度h=10mm, 实际光线的像方截距为多少? 与高斯像面的距离为多少?解:8、一球面镜半径r=-100mm,求=0 , -0.1 , -0.2 , -1 , 1 , 5, 10, ∝时的物距像距。

工程光学答案_课后答案_郁道银_第二版_完整

工程光学答案_课后答案_郁道银_第二版_完整

10.长 60 mm,折射率为 1.5 的玻璃棒,在其两端磨成曲率半径为 10 mm 的凸 球面,试求其焦距。 解:
11.一束平行光垂直入射到平凸透镜上,会聚于透镜后 480 mm 处,如在此透镜 凸面上镀银,则平行光会聚于透镜前 80 mm 处,求透镜折射率和凸面曲率半径。 解 :
8
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
7
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
8.已知一透镜 度。 解:
求其焦距、光焦
9.一薄透镜组焦距为 100 mm,和另一焦距为 50 mm 的薄透镜组合,其组合焦 距仍为 100 mm,问两薄透镜的相对位置。 解:
6.希望得到一个对无限远成像的长焦距物镜,焦距
=1200mm,由物镜顶点到
像 面 的 距 离 L=700 mm , 由 系 统 最 后 一 面 到 像 平 面 的 距 离 ( 工 作 距 ) 为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。 解:
7.一短焦距物镜,已知其焦距为 35 mm,筒长 L=65 mm,工作距,按最简单结构 的薄透镜系统考虑,求系统结构。 解:
此为平板平移后的像。
5.棱镜折射角 材料的折射率。 解:
,C 光的最小偏向角
,试求棱镜光学
10
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
6.白光经过顶角
(2) 由(1)式和(2)式联立得到 n0 sinI1 . 5、一束平行细光束入射到一半径 r=30mm、折射率 n=1.5 的玻璃球上,求其会聚 点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则 反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后, 会聚点又在何 处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决,

工程光学 郁道银版 习题解答(一题不落)第十一章_光的干涉和干涉系统

工程光学 郁道银版 习题解答(一题不落)第十一章_光的干涉和干涉系统

第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。

解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。

继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。

试求注入气室内气体的折射率。

解:设气体折射率为n ,则光程差改变()0n n h ∆=-图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。

玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。

解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。

【精品】郁道银工程光学应用光学答案整理

【精品】郁道银工程光学应用光学答案整理

第一章1、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

2、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片.若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?1mmI 1=90n n200mmLI 22211sin sin I n I n =66666.01sin 22==n I 745356.066666.01cos 22=-=I 88.178745356.066666.0*200*2002===tgI x3、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 。

4、一束平行细光束入射到一半径r=30mm 、折射率n=1。

5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

光学工程(郁道银)第三版课后答案_物理光学

光学工程(郁道银)第三版课后答案_物理光学
14
z c

2
, 3 106 m 。
(2)波传播方向沿 z 轴,电矢量振动方向为 y 轴。 (3) B 与 E 垂直,传播方向相同,∴ By Bz 0

z Bx Ey CEy 6 108 [2 1014 ( t ) ] c 2
2. 在玻璃中传播的一个线偏振光可以表示 E y 0, Ez 0, Ex 10 cos 10 (
u r
r r
r r k r kx x k y y kz z
k x 2, k y 3, k z 4 r uu r uu r u u r uu r uu r u u r k k x x0 k y y0 k z z0 2 x0 3 y0 4 z0 u u r r r u r 2 uu 3 uu 4 u k0 x0 y0 z0 29 29 29
7. 太阳光(自然光)以 60 度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解:
sin 2 sin ocs 2 6
n1 3
3
3
n cos 2 4sin 2 2 cos 2 1 s 2 n1 cos 1 sin 2 (1 2 )
在此面发生全反射,即 2 1 出射光强为I 1 2 3 I 0 ( 1 0.0426) 1 ( 1 0.0426)I 0 0.917 I 0
12. 一个光学系统由两片分离透镜组成,两透镜的折射率分别为 1.5 和 1.7,求此系统的反 射光能损失。如透镜表面镀上曾透膜,使表面反射比降为 0.01,问此系统的光能损失又为 多少?设光束以接近正入射通过各反射面。 解
tg 2

工程光学郁道银版习题解答(一题不落)第十二章-光的衍射

工程光学郁道银版习题解答(一题不落)第十二章-光的衍射

第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。

解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1))即可(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。

工程光学 郁道银版 习题解答(一题不落)第十一章_光的干涉和干涉系统

工程光学 郁道银版 习题解答(一题不落)第十一章_光的干涉和干涉系统

第十一章 光的干涉和干涉系统1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少?解:由题知两种波长光的条纹间距分别为961131589105891010D e m d λ---⨯⨯===⨯ 962231589.610589.61010D e m d λ---⨯⨯===⨯ ∴第十级亮纹间距()()65211010589.6589100.610e e m -∆=-=⨯-⨯=⨯2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。

解:设厚度为h ,则前后光程差为()1n h ∆=- ()1x dn h D∆⋅∴-=230.510100.580.5h --⨯⨯=21.7210h mm -=⨯3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。

继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。

试求注入气室内气体的折射率。

解:设气体折射率为n ,则光程差改变()0n n h ∆=-图11-47 习题2 图()02525x d dn n h e D Dλ∆⋅∴-==⋅= 9025656.2810 1.000276 1.0008230.03m n n h λ-⨯⨯=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。

玻璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。

解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 200'4cos 2xd I I I Dπλ== ()'104xd m m D λ⎛⎫∴∆==+≥ ⎪⎝⎭又()1n d ∆=-114d m n λ⎛⎫∴=+ ⎪-⎝⎭5. 若光波的波长为λ,波长宽度为λ∆,相应的频率和频率宽度记为ν和ν∆,证明λλνν∆=∆,对于nm 8.632=λ的氦氖激光,波长宽度nm 8102-⨯=∆λ,求频率宽度和相干长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
6.希望得到一个对无限远成像的长焦距物镜,焦距f′=1200mm,由物镜顶点到像面的距离(筒长)L=700 mm,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。
解:
7.一短焦距物镜,已知其焦距为35 mm,筒长L=65 mm,工作距 lk′,按最简单结构的薄透镜系统考虑,求系统结构。
4.用焦距=450mm的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm的玻璃平板,若拍摄倍率 ,试求物镜后主面到平板玻璃第一面的距离。
解:
此为平板平移后的像。
5.棱镜折射角 ,C光的最小偏向角 ,试求棱镜光学材料的折射率。
解:
6.白光经过顶角 的色散棱镜,n=1.51的色光处于最小偏向角,试求其最小偏向角值及n=1.52的色光相对于n=1.51的色光间的交角。
4。垂直入射的平面波通过折射率为n的玻璃板,透射光经透镜会聚到焦点上。玻璃板的厚度沿着C点且垂直于图面的直线发生光波波长量级的突变d,问d为多少时焦点光强是玻璃板无突变时光强的一半。
解:将通过玻璃板左右两部分的光强设为 ,当没有突变d时,
当有突变d时
6。若光波的波长为 ,波长宽度为 ,相应的频率和频率宽度记为 和 ,证明: ,对于 =632.8nm氦氖激光,波长宽度 ,求频率宽度和相干
解:
3.一光学系统由一透镜和平面镜组成,如图3-29所示,平面镜MM与透镜光轴垂直交于D点,透镜前方离平面镜600 mm有一物体AB,经透镜和平面镜后,所成虚像 至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
解:平面镜成β=1的像,且分别在镜子两侧,物像虚实相反。
解:
第四章习题
1.二个薄凸透镜构成的系统,其中 , , , 位于 后 ,若入射平行光,请判断一下孔径光阑,并求出入瞳的位置及大小。
解:判断孔径光阑:第一个透镜对其前面所成像为本身,
第二个透镜对其前面所成像为 ,其位置:
大小为:
故第一透镜为孔阑,其直径为4厘米.它同时为入瞳.
2.设照相物镜的焦距等于75mm,底片尺寸为55 55 ,求该照相物镜的最大视场角等于多少?
(1)
其中n2=1, n1=1.5,
同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:
(2)
联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:
第五章习题
1、一个100W的钨丝灯,发出总光通量为,求发光效率为多少?
解:
2、有一聚光镜, (数值孔径 ),求进入系统的能量占全部能量的百分比。
解:
而一点周围全部空间的立体角为
3、一个 的钨丝灯,已知: ,该灯与一聚光镜联用,灯丝中心对聚光镜所张的孔径角 ,若设灯丝是各向均匀发光,求1)灯泡总的光通量及进入聚光镜的能量;2)求平均发光强度
12.图示的装置产生的等厚干涉条纹称牛顿环.证明 ,N和r分别表示第N个暗纹和对应的暗纹半径. 为照明光波波长,R为球面曲率半径.
证明:由几何关系知,
14.长度为10厘米的柱面透镜一端与平面玻璃相接触,另一端与平面玻璃相隔0.1mm,透镜的曲率半径为1m.问:(1)在单色光垂直照射下看到的条纹形状怎样0?(2)在透镜长度方向及与之垂直的方向上,由接触点向外计算,第N个暗条纹到接触点的距离是多少?设照明光波波长为500nm.
解:
第三章习题
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2人身高,和前后距离无关。
2.设平行光管物镜L的焦距 =1000mm,顶杆与光轴的距离a=10 mm,如果推动顶杆使平面镜倾斜,物镜焦点F的自准直像相对于F产生了y=2 mm的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
第二面镀膜,则:
得到:
(4)再经过第一面折射
物像相反为虚像。
6、一直径为400mm,折射率为1.5的玻璃球中有两个小气泡,一个位于球心,另一个位于1/2半径处。沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处?
解:设一个气泡在中心处,另一个在第二面和中心之间。
(1)从第一面向第二面看
3.已知一个透镜把物体放大-3倍投影在屏幕上,当透镜向物体移近18mm时,物体将被放大-4x试求透镜的焦距,并用图解法校核之。
解:
4.一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm,放大率为原先的3/4倍,求两块透镜的焦距为多少?
解:
5.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向透镜移近100mm,则所得像与物同大小,求该正透镜组的焦距。
(2)M1移动后第5个暗环的角半径。
解:
本题分析:1。视场中看到的不是全部条纹,视场有限
2。两个变化过程中,不变量是视场大小,即角半径不变
3。条纹的级次问题:
亮条纹均为整数级次,暗条纹均与之相差0.5,公式中以亮条纹记之
11.用等厚条纹测量玻璃楔板的楔角时,在长达5cm的范围内共有15个亮纹,玻璃楔板的折射率n=1.52,所用光波波长为600nm,求楔角.
当光在火石玻璃中,n=1.65时,v=1.82 m/s,
当光在加拿大树胶中,n=1.526时,v=1.97 m/s,
当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:
所以x=300mm
即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?
解:令纸片最小半径为x,
则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为:
15.假设照明迈克耳逊干涉仪的光源发出波长为 和 的同理,
(4)同理,
(5)同理,
(6)同理,
(7)同理,
(8)同理,
9、一物体位于半径为r 的凹面镜前什么位置时,可分别得到:放大4倍的实像,当大4倍的虚像、缩小4倍的实像和缩小4倍的虚像?
解:(1)放大4倍的实像
(2)放大四倍虚像
(3)缩小四倍实像
(4)缩小四倍虚像
第二章习题
解:
8.已知一透镜 求其焦距、光焦度。
解:
9.一薄透镜组焦距为100 mm,和另一焦距为50 mm的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置。
解:
10.长60 mm,折射率为1.5的玻璃棒,在其两端磨成曲率半径为10 mm的凸球面,试求其焦距。
解:
11.一束平行光垂直入射到平凸透镜上,会聚于透镜后480 mm处,如在此透镜凸面上镀银,则平行光会聚于透镜前80 mm处,求透镜折射率和凸面曲率半径。
1、已知照相物镜的焦距f’=75mm,被摄景物位于(以F点为坐标原点)x=处,试求照相底片应分别放在离物镜的像方焦面多远的地方。
解:
(1)x=-∝ ,xx′=ff′ 得到:x′=0
(2)x′=0.5625
(3)x′=0.703
(4)x′=0.937
(5)x′=1.4
(6)x′=2.81
2、设一系统位于空气中,垂轴放大率,由物面到像面的距离 (共轭距离)为7200mm,物镜两焦点间距离为1140mm,求物镜的焦距,并绘制基点位置图。
解:
2.如果一个光学系统的初级球差等于焦深(),则 应为多少? 解:
3.设计一双胶合消色差望远物镜, ,采用冕牌玻璃K9( , )和火石玻璃F2( , ),若正透镜半径 ,求:正负透镜的焦距及三个球面的曲率半径。
解:
4.指出图6-17中
解:
第十一章 习题及答案
1。双缝间距为1mm,离观察屏1m,用钠灯做光源,它发出两种波长的单色光=589.0nm和 =589.6nm,问两种单色光的第10级这条纹之间的间距是多少?
解:
4、一个 的钨丝灯发出的总的光通量为 ,设各向发光强度相等,求以灯为中心,半径分别为: 时的球面的光照度是多少?
解:
5、一房间,长、宽、高分别为: ,一个发光强度为 的灯挂在天花板中心,离地面 ,1)求灯正下方地板上的光照度;2)在房间角落处地板上的光照度。
解:
第六章习题
1.如果一个光学系统的初级子午彗差等于焦宽( ),则 应等于多少?
第一章习题
1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:
则当光在水中,n=1.333时,v=2.25 m/s,
当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,
(2)从第二面向第一面看
(3)在水中
7、有一平凸透镜r1=100mm,r2=∞,d=300mm,n=1.5,当物体在-∞时,求高斯像的位置l’。在第二面上刻一十字丝,问其通过球面的共轭像在何处?当入射高度h=10mm,实际光线的像方截距为多少?与高斯像面的距离为多少?
相关文档
最新文档