专题7.6 利用空间向量证明平行与垂直-2020届高考数学一轮复习学霸提分秘籍(解析版)

合集下载

空间向量的平行与垂直定理

空间向量的平行与垂直定理

空间向量的平行与垂直定理空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。

在研究物理、几何和力学等领域时,我们经常需要判断两个向量之间的关系,这个定理就为我们提供了一个有力的工具。

我们来研究两个向量的平行性。

如果两个向量的方向相同或相反,那么它们是平行的。

也就是说,如果向量A和向量B的方向相同或相反,我们可以写成A∥B。

这种平行关系可以用向量的数量积来判断。

具体来说,如果两个向量A和B的数量积等于它们的模长的乘积,即A·B=|A||B|,那么向量A和向量B是平行的。

接下来,我们来研究两个向量的垂直性。

如果两个向量的数量积等于0,那么它们是垂直的。

也就是说,如果向量A和向量B的数量积为0,我们可以写成A⊥B。

这种垂直关系可以用向量的数量积来判断。

具体来说,如果两个向量A和B的数量积等于0,即A·B=0,那么向量A和向量B是垂直的。

空间向量的平行与垂直定理在几何和物理问题中有广泛的应用。

例如,在平面几何中,我们经常需要判断两条线段的平行性或垂直性。

根据空间向量的平行与垂直定理,我们可以通过计算两个向量的数量积来判断它们之间的关系。

这样,我们就可以得到准确的结论,避免了繁琐的几何证明过程。

在物理学中,空间向量的平行与垂直定理也具有重要的应用价值。

例如,在力学中,我们经常需要计算物体受力的情况。

如果两个力的方向相同或相反,那么它们是平行的;如果两个力的数量积为0,那么它们是垂直的。

根据空间向量的平行与垂直定理,我们可以通过计算向量的数量积来判断力的方向和性质,从而进行精确的力学分析。

除了在几何和物理中的应用,空间向量的平行与垂直定理还可以应用于其他领域。

例如,在计算机图形学中,我们经常需要计算向量的平行和垂直关系,以确定图形的方向和位置。

在工程学中,空间向量的平行与垂直定理可以应用于结构分析和力学设计等方面。

空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。

利用空间向量证明平行、垂直问题PPT精品课件

利用空间向量证明平行、垂直问题PPT精品课件

②∵u=(0,3,0),v=(0,-5,0),∴u=-
3 5
v,
∴u∥v,∴α∥β.
③∵u=(2,-3,4),v=(4,-2,1),
∴u与v不共线,也不垂直,
∴α与β相交但不垂直.
(3)①∵u=(2,2,-1),a=(-3,4,2),
∴u·a=-6+8-2=0,
∴u⊥a,∴l⊂α或l∥α.
②∵u=(0,2,-3),a=(0,-8,12),∴u=-
贝 多 芬
你知道托尔斯泰哪些 文学代表作?
它们在俄国历史上起 过什么作用?
托尔斯泰晚年为什么 选择“平民化”的道
“我要扼住命运的咽喉,它决不能使我 完全屈服”
——贝多芬
1.当时贝多芬遇到了怎样的厄 运?
2.他是怎样“扼住命运的咽 喉”?
《吃土豆的人》
哪一首乐曲标志着贝多芬在艺术 上和思想上的成熟?
b,∴a∥b,∴l1∥l2.
②∵a=(5,0,2),b=(0,4,0),
∴a·b=0,∴a⊥b,
∴l1⊥l2.
③∵a=(-2,1,4),b=(6,3,3),
∴a与b不共线,也不垂直,∴l1与l2相交或异面.
(2)①u=(1,-1,2),v=3,2,-12 ,
∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.
A.(2,3,1)
B.(1,-1,2)
C.(1,2,1)
D.(1,0,3)
解析:A→D=xA→B+yA→C=(x+y,x+2y,x-y), 对四个选项逐个检验,只有当(x+y,x+2y,x-y)=
(1,0,3)时有解xy= =2-1 . 答案:D
1.注意用向量中的有关公式及变形,借助建立直角坐 标系将复杂的几何问题化为简单的代数问题.

2023年高考数学一轮复习(新高考1) 第7章 §7.6 空间向量的概念与运算

2023年高考数学一轮复习(新高考1) 第7章 §7.6 空间向量的概念与运算

§7.6空间向量的概念与运算考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量表示若干空间向量的有向线段所在的直线互相平行或重合的向量(或平行向量)共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b a1b1+a2b2+a3b3共线a=λb a1=λb1,a2=λb2,(b ≠0,λ∈R )a 3=λb 3 垂直 a ·b =0 (a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角余弦值 cos 〈a ,b 〉=a ·b |a ||b |(a ≠0,b ≠0)cos 〈a ,b 〉= a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 234.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 为平面α的法向量. (3)空间位置关系的向量表示位置关系向量表示 直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2 n 1∥n 2⇔n 1=λn 2(λ∈R ) l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m ,l ⊄αl ∥α n ⊥m ⇔n ·m =0 l ⊥α n ∥m ⇔n =λm (λ∈R ) 平面α,β的法向量分别为n ,m α∥β n ∥m ⇔n =λm (λ∈R ) α⊥βn ⊥m ⇔n ·m =0常用结论1.在平面中,A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.在空间中,P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( × )(3)在空间直角坐标系中,在Oyz 平面上的点的坐标一定是(0,b ,c ).( √ ) (4)若a ·b <0,则〈a ,b 〉是钝角.( × )教材改编题1.若{a ,b ,c }为空间向量的一个基底,则下列各项中,能构成空间向量的一个基底的是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 答案 C解析 ∵λa +μb (λ,μ∈R )与a ,b 共面. ∴A ,B ,D 不正确.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1—→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 由题意,根据向量运算的几何运算法则, BM →=BB 1—→+B 1M —→=AA 1—→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m =________. 答案 10解析 ∵l 1⊥l 2,∴a ⊥b , ∴a ·b =-6-4+m =0,∴m =10.题型一 空间向量的线性运算例1 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →+NC 1—→. 解 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1—→+A 1P —→=AA 1—→+A 1D 1—→+D 1P —→ =AA 1—→+AD →+12DC →=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点, ∴A 1N —→=A 1A —→+AB →+BN → =-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1—→=NC →+CC 1—→=12BC →+AA 1—→=12AD →+AA 1—→=12c +a . ∴MP →+NC 1—→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫12c +a=32a +12b +32c . 教师备选如图,在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示OG →,则下列表示正确的是( )A.14OA →+12OB →+13OC →B.12OA →+12OB →+12OC → C .-16OA →+13OB →+13OC →D.13OA →+13OB →+13OC → 答案 D解析 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →)=12OA →+23⎣⎡⎦⎤12(OB →+OC →)-OA →=-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →.思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)(2022·宁波模拟)如图,在三棱锥O -ABC 中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且PD →=2DQ →,若记OA →=a ,OB →=b ,OC →=c ,则OD →等于( )A.16a +13b +13cB.13a +13b +13cC.13a +16b +13cD.13a +13b +16c 答案 A解析 OD →=OP →+PD →=12OA →+23PQ →=12OA →+23(OQ →-OP →) =12OA →+23OQ →-23OP → =12OA →+23×12(OB →+OC →)-23×12OA → =16OA →+13OB →+13OC → =16a +13b +13c . (2)在正方体ABCD -A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若AF →=xAD →+yAB →+zAA 1—→,则x -y +z 等于( )A.12 B .1 C.32 D .2 答案 B解析 AF →=AD →+DF →=AD →+12(DD 1—→+D 1C 1—→)=AD →+12(AA 1—→+A 1B 1—→)=AD →+12(AA 1—→+AB →)=AD →+12AB →+12AA 1—→,则x =1,y =12,z =12,则x -y +z =1.题型二 空间向量基本定理及其应用例2 已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题知OA →+OB →+OC →=3OM →, 所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)方法一 由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内. 方法二 因为OM →=13(OA →+OB →+OC →)=13OA →+13OB →+13OC →, 又因为13+13+13=1,所以M ,A ,B ,C 四点共面,从而M 在平面ABC 内. 教师备选如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1—→,BN →=kBC →(0≤k ≤1).判断向量MN →是否与向量AB →,AA 1—→共面.解 因为AM →=kAC 1—→,BN →=kBC →, 所以MN →=MA →+AB →+BN →=kC 1A —→+AB →+kBC →=k (C 1A —→+BC →)+AB →=k (C 1A —→+B 1C 1—→)+AB → =kB 1A —→+AB →=AB →-kAB 1—→=AB →-k (AA 1—→+AB →) =(1-k )AB →-kAA 1—→,所以由共面向量定理知向量MN →与向量AB →,AA 1—→共面. 思维升华 证明空间四点P ,M ,A ,B 共面的方法 (1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →;(3)对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); (4)PM →∥AB →(或P A →∥MB →或PB →∥AM →).跟踪训练2 (1)(多选)(2022·武汉质检)下列说法中正确的是( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若AB →,CD →共线,则AB ∥CDC .A ,B ,C 三点不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C四点共面D .若P ,A ,B ,C 为空间四点,且有P A →=λPB →+μPC →(PB →,PC →不共线),则λ+μ=1是A ,B ,C 三点共线的充要条件 答案 CD解析 由|a |-|b |=|a +b |,可得向量a ,b 的方向相反,此时向量a ,b 共线,反之,当向量a ,b 同向时,不能得到|a |-|b |=|a +b |,所以A 不正确;若AB →,CD →共线,则AB ∥CD 或A ,B ,C ,D 四点共线,所以B 不正确; 由A ,B ,C 三点不共线,对空间任意一点O , 若OP →=34OA →+18OB →+18OC →,因为34+18+18=1,可得P ,A ,B ,C 四点共面,故C 正确; 若P ,A ,B ,C 为空间四点, 且有P A →=λPB →+μPC →(PB →,PC →不共线), 当λ+μ=1时,即μ=1-λ, 可得P A →-PC →=λ(PB →+CP →), 即CA →=λCB →,所以A ,B ,C 三点共线,反之也成立,即λ+μ=1是A ,B ,C 三点共线的充要条件,所以D 正确.(2)已知A ,B ,C 三点不共线,点O 为平面ABC 外任意一点,若点M 满足OM →=15OA →+45OB →+25BC →,则点M ________(填“属于”或“不属于”)平面ABC . 答案 属于解析 ∵OM →=15OA →+45OB →+25BC →=15OA →+45OB →+25(OC →-OB →)=15OA →+25OB →+25OC →,∵15+25+25=1, ∴M ,A ,B ,C 四点共面. 即点M ∈平面ABC .题型三 空间向量数量积及其应用例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →.(2)求异面直线AG 和CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c . 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a ) =12a 2-12a ·c =14. (2)AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=⎝⎛⎭⎫12b +12c ·⎝⎛⎭⎫-b +12a ⎝⎛⎭⎫12b +12c 2·⎝⎛⎭⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝⎛⎦⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.教师备选已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM →·PN →的取值范围为( )A.[]0,4B.[]0,2C.[]1,4D.[]1,2 答案 B解析 设正方体内切球的球心为O , 则OM =ON =1,PM →·PN →=()PO →+OM →·()PO →+ON →=PO →2+PO →·()OM →+ON →+OM →·ON →, ∵MN 为球O 的直径,∴OM →+ON →=0,OM →·ON →=-1,∴PM →·PN →=PO →2-1, 又P 在正方体表面上移动,∴当P 为正方体顶点时,||PO →最大,最大值为3;当P 为内切球与正方体的切点时,||PO →最小,最小值为1, ∴PO →2-1∈[]0,2,即PM →·PN →的取值范围为[]0,2.思维升华 由向量数量积的定义知,要求a 与b 的数量积,需已知|a |,|b |和〈a ,b 〉,a 与b 的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b 计算准确. 跟踪训练3 如图所示,在四棱柱ABCDA 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. (1)解 记AB →=a ,AD →=b ,AA 1—→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1—→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC 1—→|=6,即AC 1的长为 6. (2)证明 ∵AC 1—→=a +b +c ,BD →=b -a ,∴AC 1—→·BD →=(a +b +c )·(b -a ) =a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =0. ∴AC 1—→⊥BD →,∴AC 1⊥BD .(3)解 BD 1—→=b +c -a ,AC →=a +b , ∴|BD 1—→|=2,|AC →|=3, BD 1—→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1—→,AC →〉=BD 1—→·AC →|BD 1—→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.题型四 向量法证明平行、垂直例4 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面P AD ; (3)平面PCD ⊥平面P AD .证明 依题意,以点A 为坐标原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)BE →=(0,1,1), DC →=(2,0,0),故BE →·DC →=0, 所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD , AB ⊂平面ABCD ,所以AB ⊥P A ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以AB ⊥平面P AD ,所以AB →=(1,0,0)为平面P AD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0, 所以BE ⊥AB , 又BE ⊄平面P AD , 所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0), PD →=(0,2,-2), DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0,令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0, 所以n ⊥AB →.所以平面P AD ⊥平面PCD . 教师备选如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1.证明 因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为AA 1⊥平面ABC ,AA 1∥BB 1,所以以过E 作平行于BB 1的垂线为z 轴,EC ,EA 所在直线分别为x 轴、y 轴, 建立如图所示的空间直角坐标系.因为AB =3,BE =5, 所以AE =2,所以E (0,0,0),C (5,0,0), A (0,2,0),B (-5,0,0),B 1(-5,0,27). A 1(0,2,7),则F ⎝⎛⎭⎫52,1,72. (1)EF →=⎝⎛⎭⎫52,1,72,AB →=(-5,-2,0),AA 1→=(0,0,7).设平面AA 1B 1B 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·AA 1—→=0,所以⎩⎪⎨⎪⎧-5x -2y =0,7z =0,取⎩⎪⎨⎪⎧x =-2,y =5,z =0,所以n =(-2,5,0).因为EF →·n =52×(-2)+1×5+72×0=0,所以EF →⊥n .又EF ⊄平面A 1B 1BA , 所以EF ∥平面A 1B 1BA . (2)因为EC ⊥平面AEA 1,所以EC →=(5,0,0)为平面AEA 1的一个法向量. 又EA ⊥平面BCB 1,所以EA →=(0,2,0)为平面BCB 1的一个法向量. 因为EC →·EA →=0,所以EC →⊥EA →, 故平面AEA 1⊥平面BCB 1.思维升华 (1)利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).(2)向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理.跟踪训练4 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.求证:(1)EF ∥平面P AD ;(2)平面P AB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又四边形ABCD 是正方形, 所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.如图,以O 为坐标原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a2,0, D ⎝⎛⎭⎫-a 2,0,0,P ⎝⎛⎭⎫0,0,a 2, B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点, 所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为 OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0.且EF ⊄平面P AD ,所以EF ∥平面P AD . (2)因为P A →=⎝⎛⎭⎫a2,0,-a 2, CD →=(0,-a ,0),所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a ,0)=0, 所以P A →⊥CD →, 所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC ,所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .课时精练1.已知a =(2,1,-3),b =(0,-3,2),c =(-2,1,2),则a ·(b +c )等于( ) A .18 B .-18 C .3 2 D .-3 2 答案 B解析 因为b +c =(-2,-2,4), 所以a ·(b +c )=-4-2-12=-18.2.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由x +y +z =1,得P ,A ,B ,C 四点共面,当P ,A ,B ,C 四点共面时,x +y +z =1,显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件. 3.已知空间向量a =(1,0,1),b =(1,1,n ),且a·b =3,则向量a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6 答案 A解析 由题意,a ·b =1+0+n =3, 解得n =2, 又|a |=1+0+1=2,|b |=1+1+4=6,所以cos 〈a ,b 〉=a·b |a ||b |=32×6=32,又〈a ,b 〉∈[0,π], 所以a 与b 的夹角为π6.4.直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2),则( ) A .l ∥α B .l ⊥α C .l ∥α或l ⊂αD .l 与α的位置关系不能判断 答案 B解析 直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2), 显然它们共线,所以l ⊥α.5.(多选)已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3),若AP →∥BC →,且|AP →|=14,则点P 的坐标为( ) A .(4,-2,2) B .(-2,2,4) C .(-4,2,-2) D .(2,-2,4)答案 AB解析 因为B (-1,1,4),C (2,-1,3), 所以BC →=(3,-2,-1), 因为AP →∥BC →,所以可设AP →=λBC →=(3λ,-2λ,-λ), 因为|AP →|=(3λ)2+(-2λ)2+(-λ)2=14,解得λ=±1,所以AP →=(3,-2,-1)或AP →=(-3,2,1), 设点P (x ,y ,z ),则AP →=(x -1,y ,z -3), 所以⎩⎪⎨⎪⎧ x -1=3,y =-2,z -3=-1或⎩⎪⎨⎪⎧ x -1=-3,y =2,z -3=1,解得⎩⎪⎨⎪⎧ x =4,y =-2,z =2或⎩⎪⎨⎪⎧x =-2,y =2,z =4.所以点P 的坐标为(4,-2,2)或(-2,2,4).6.(多选)已知空间中三点A (0,1,0),B (2,2,0),C (-1,3,1),则下列结论正确的有( ) A.AB →与AC →是共线向量B .与AB →共线的单位向量是(1,1,0) C.AB →与BC →夹角的余弦值是-5511D .平面ABC 的一个法向量是(1,-2,5) 答案 CD解析 对于A ,AB →=(2,1,0),AC →=(-1,2,1),不存在实数λ,使得AB →=λAC →, 所以AB →与AC →不是共线向量,所以A 错误;对于B ,因为AB →=(2,1,0),所以与AB →共线的单位向量为⎝⎛⎭⎫255,55,0或⎝⎛⎭⎫-255,-55,0,所以B 错误;对于C ,向量AB →=(2,1,0),BC →=(-3,1,1), 所以cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=-5511,所以C 正确;对于D ,设平面ABC 的法向量是n =(x ,y ,z ), 因为AB →=(2,1,0),AC →=(-1,2,1),所以⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧2x +y =0,-x +2y +z =0.令x =1,则n =(1,-2,5),所以D 正确.7.已知a =(x ,1,1),b =(-2,2,y ),a ·b =0,则2x -y =________. 答案 2解析 因为a =(x ,1,1),b =(-2,2,y ),a ·b =0,所以-2x +2+y =0,2x -y =2.8.已知点A (-1,1,0),B (1,2,0),C (-2,-1,0),D (3,4,0),则AB →在CD →上的投影向量为________. 答案 ⎝⎛⎭⎫32,32,0解析 由已知得AB →=(2,1,0),CD →=(5,5,0), ∴AB →·CD →=2×5+1×5+0=15, 又|CD →|=52,∴AB →在CD →上的投影向量为AB →·CD →|CD →|·CD →|CD →|=1552×CD →52=310CD →=⎝⎛⎭⎫32,32,0. 9.如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的长;(2)求cos 〈BA 1—→,CB 1—→〉的值; (3)求证:A 1B ⊥C 1M .(1)解 以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图.B (0,1,0),N (1,0,1), ∴BN →=(1,-1,1),∴|BN →|=12+(-1)2+12= 3.(2)解 ∵A 1(1,0,2),B (0,1,0),C (0,0,0), B 1(0,1,2),∴BA 1—→=(1,-1,2),CB 1—→=(0,1,2), ∴BA 1—→·CB 1—→=3,|BA 1—→|=6,|CB 1—→|= 5. ∴cos 〈BA 1—→,CB 1—→〉=BA 1—→·CB 1—→|BA 1—→||CB 1—→|=3010.(3)证明 ∵C 1(0,0,2),M ⎝⎛⎭⎫12,12,2, ∴A 1B —→=(-1,1,-2),C 1M —→=⎝⎛⎭⎫12,12,0, ∴A 1B —→·C 1M —→=-12+12+0=0.∴A 1B —→⊥C 1M —→, ∴A 1B ⊥C 1M .10.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB .(1)证明 如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0), C (0,a ,0),E ⎝⎛⎭⎫a ,a2,0,P (0,0,a ), F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a ,0). 因为EF →·DC →=0,所以EF →⊥DC →,即EF ⊥CD . (2)解 设G (x ,0,z ), 则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, CB →=(a ,0,0),CP →=(0,-a ,a ), 若使GF ⊥平面PCB ,则需FG →·CB →=0, 且FG →·CP →=0,由FG →·CB →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(a ,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2, 由FG →·CP →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. 所以G 点坐标为⎝⎛⎭⎫a2,0,0, 即G 为AD 的中点时,GF ⊥平面PCB .11.(多选)(2022·山东百师联盟大联考)下面四个结论正确的是( ) A .向量a ,b (a ≠0,b ≠0),若a ⊥b ,则a·b =0B .若空间四个点P ,A ,B ,C ,PC →=14P A →+34PB →,则A ,B ,C 三点共线C .已知向量a =(1,1,x ),b =(-3,x ,9),若x <310,则〈a ,b 〉为钝角D .任意向量a ,b ,c 满足(a·b )·c =a·(b·c ) 答案 AB解析 由向量垂直的充要条件可得A 正确; ∵PC →=14P A →+34PB →,∴14PC →-14P A →=34PB →-34PC →, 即AC →=3CB →,∴A ,B ,C 三点共线,故B 正确;当x =-3时,两个向量共线,夹角为π,故C 错误; 由于向量的数量积运算不满足结合律,故D 错误.12.(多选)(2022·重庆市第七中学月考)给出下列命题,其中为假命题的是( ) A .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若n ⊥m ,则l ∥α B .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若〈n ,m 〉=2π3,则l 与α所成角为π6C .若两个不同的平面α,β的法向量分别为u ,v ,且u =(1,2,-2),v =(-2,-4,4),则α∥βD .已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c 答案 AD解析 对于A ,由题意可得l ∥α或l ⊂α,故A 错误; 对于B ,由图象可得,∠CAD =2π3,则∠DAB =π3,所以∠ADB =π6,根据线面角的定义可得,l 与α所成角为π6,故B 正确;对于C ,因为u =-12v =-12(-2,-4,4)=(1,2,-2),所以u ∥v ,故α∥β,故C 正确;对于D ,当空间的三个向量a ,b ,c 不共面时,对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c ,故D 错误.13.(2022·杭州模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为A 1D 1,BB 1的中点,则cos ∠EAF =________;EF =________.答案 25 62解析 如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方体棱长为1,则E ⎝⎛⎭⎫0,12,1,F ⎝⎛⎭⎫1,0,12, ∴AE →=⎝⎛⎭⎫0,12,1,AF →=⎝⎛⎭⎫1,0,12, EF →=⎝⎛⎭⎫1,-12,-12,cos 〈AE →,AF →〉=AE →·AF →|AE →||AF →|=1252×52=25,∴cos ∠EAF =25,EF =|EF →|=12+⎝⎛⎭⎫-122+⎝⎛⎭⎫-122=62. 14.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面A 1B 1C 1D 1为平行四边形,E 为棱AB 的中点,AF →=13AD →,AG →=2GA 1—→,AC 1与平面EFG 交于点M ,则AM AC 1=________.答案213解析 由题图知,设AM →=λAC 1—→(0<λ<1),由已知AC 1—→=AB →+AD →+AA 1—→=2AE →+3AF →+32AG →,所以AM →=2λAE →+3λAF →+3λ2AG →,因为M ,E ,F ,G 四点共面,所以2λ+3λ+3λ2=1,解得λ=213.15.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是______. 答案 ⎝⎛⎭⎫43,43,83解析 因为点Q 在直线OP 上,所以设点Q (λ,λ,2λ), 则QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23,此时OQ →=⎝⎛⎭⎫43,43,83.16.(2022·株州模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O , 则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, 所以AO 2+A 1O 2=AA 21,所以A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 且平面AA 1C 1C ∩平面ABCD =AC , A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1—→=(0,1,3), AA 1—→·BD →=0×(-23)+1×0+3×0=0, 所以BD →⊥AA 1—→,即BD ⊥AA 1. (2)解 假设在直线CC 1上存在点P , 使BP ∥平面DA 1C 1, 设CP →=λCC 1—→,P (x ,y ,z ), 则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1—→=0,n 1·DA 1—→=0,又A 1C 1—→=(0,2,0),DA 1—→=(3,0,3),则⎩⎪⎨⎪⎧2y 1=0,3x 1+3z 1=0,取n 1=(1,0,-1),因为BP ∥平面DA 1C 1,所以n 1⊥BP →, 即n 1·BP →=-3-3λ=0,解得λ=-1, 即点P 在C 1C 的延长线上,且|CP →|=|CC 1—→|.。

高考数学《利用空间向量证明平行与垂直关系》复习

高考数学《利用空间向量证明平行与垂直关系》复习

(4)线面垂直
l a a=kμ a1=ka3,b1=kb3,c=kc3 .
(5)面面平行
v =kv a3=ka4,b3=kb4,c3=kc4.
(6)面面垂直
v ·v=0 a3a4+b3b4+c3c4=0.
解题技巧
利用空间向量证明平行与垂直的方法与步骤 (1) 坐标运算法:一般步骤:①建立空间直角坐标系,建系时, 要尽可能地利用载体中的垂直关系; ②建立空间图形与空间向量之间的关系,用向量表示出问题中所涉及的点、 直线、平面的要素; ③通过空间向量的运算研究平行、垂直关系; ④根据运算结果解释相关问题.
解题技巧
4.利用空间向量求点到平面距离的方法 如图,设 A 为平面 内的一点,B 为平面 外的一点,n 为平面 的法向量,
AB n
则 B 到平面 的距离 d=

n
1.如图,某圆锥 SO 的轴截面 SAC 是等边三角形,点 B 是底面圆周上的一点,且 BOC 60 ,
点 M 是 SA 的中点,则异面直线 AB 与 CM 所成角的余弦值是( )
(4)点到平面的距离的向量求法
如图,设 AB 为平面 α 的一条斜线段,n 为平面 α 的法向量,
AB n
则点 B 到平面 α 的距离 d=

n
2.模、夹角和距离公式
(1) 设 a=(a1,a2,a3 ),b=(b1,b2,b3 ) ,则 a = a·a a12a22a32 , b = b·b b12b22b32 ,
B.3
ห้องสมุดไป่ตู้
√C.4
D.6
由直棱柱的性质,知直线 A1B1 到平面 ABO 的距离为棱柱的高,不妨设为 t t 0 .以 O 为坐标原
点, OA,OB,OO1 所在的直线分别为 x, y, z 轴,建立如图所示的空间直角坐标系, 则 O(0,0,0), B(0,6,0), A1(2,0,t) , B1(0,6,t) ,则 D(1,3,t) .所以 A1B (2, 6, t),OD (1,3,t) 所以 A1B OD 2 18 t2 0 ,所以 t 4 ,故选 C.

专题08 利用空间向量证明平行、垂直(解析版)

专题08 利用空间向量证明平行、垂直(解析版)

2020年高考数学立体几何突破性讲练08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD ,P ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP∵PD ⊂面PAD , ∴AB ⊥PD , 又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.【解析】(Ⅰ)(综合法)证明:设G 是线段DA 与EB 延长线的交点. 由于OAB ∆与ODE∆都是正三角形,所以OB ∥DE 21,OG=OD=2, 同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.在GED ∆和GFD 中,由OB ∥DE 21和OC ∥DF 21,可知B 和C 分别是GE 和GF 的中点,所以BC 是GEF ∆的中位线,故BC ∥EF .(向量法)过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系. 由条件知).23,23,0(),0,23,23(),3,0,0(),0,0,3(--C B F E则有33(,0,),(3,0,BC EF =-=- 所以,2=即得BC ∥EF .(Ⅱ)由OB=1,OE=2,23,60=︒=∠EOB S EOB 知,而O E D ∆是边长为2的正三角形,故.3=OED S 所以.233=+=OED EOB OBED S S S过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且FQ=3,所以.2331=⋅=-OBED OBED F S FQ V 例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .【证明】(Ⅰ)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF//平面PCD .(Ⅱ)连结DB ,因为AB=AD ,∠BAD=60°,所以ABD ∆为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.【证明】:(Ⅰ)连结CF ,因为¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,所以EB AC ⊥.在RT BCE ∆中,EC ===.在BDF ∆中,BF DF ==,BDF ∆为等腰三角形, 且点C 是底边BD 的中点,故CF BD ⊥.在CEF ∆中,222222)(2)6CE CF a a EF +=+==,所以CEF ∆为Rt ∆,且CF EC ⊥.因为CF BD ⊥,CF EC ⊥,且CE BD C =I ,所以CF ⊥平面BED , 而EB ⊂平面BED ,CF EB ∴⊥.因为EB AC ⊥,EB CF ⊥,且AC CF C =I ,所以EB ⊥平面BDF , 而FD ⊂平面BDF ,EB FD ∴⊥.(Ⅱ)设平面BED 与平面RQD 的交线为DG .由23FQ FE =,23FR FB =,知//QR EB . 而EB ⊂平面BDE ,∴//QR 平面BDE , 而平面BDE I 平面RQD = DG , ∴////QR DG EB .由(Ⅰ)知,BE ⊥平面BDF ,∴DG ⊥平面BDF , 而,DR DB ⊂平面BDF ,∴DG DR ⊥,DG DQ ⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角. 在Rt BCF ∆中,2CF a ===,sin FC RBD BF ∠===cos RBD ∠==. 在BDR ∆中,由23FR FB =知,133BR FB ==,由余弦定理得,RD== 由正弦定理得,sin sin BR RD RDB RBD=∠∠,即332sin RDB =∠,sin RDB ∠=故平面BED 与平面RQD 所成二面角的正弦值为29.为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形, ∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE , 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .2.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .【解析】证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱,所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 3.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,DE =2,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M -CDE 的体积; (2)求证:DM ⊥平面ACE .【解析】(1)设AC ∩BD =O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则C (0,3,0),D (-1,0,0),E (-1,0,2),M (1,0,1), DE →=(0,0,2),DC →=(1,3,0),DM →=(2,0,1), ∵DE →·DC →=0, ∴DE ⊥DC ,∴S △DEC =12×DE ×DC =12×2×2=2,设平面DEC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=2z =0,n ·DC →=x +3y =0,取x =3,得n =(3,-1,0),∴M 到平面DEC 的距离h =|DM →·n ||n |=233+1=3,∴三棱锥M -CDE 的体积V =13×S △CDE ×h =13×2×3=233.(2)证明:A (0,-3,0),AC →=(0,23,0),AE →=(-1,3,2), AC →·DM →=0,AE →·DM →=-2+2=0, ∴AC ⊥DM ,AE ⊥DM ,∵AC ∩AE =A ,∴DM ⊥平面ACE .4.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .【解析】证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD , 所以EF ∥平面P AD .(2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD . 又P A ⊥PD ,PD ∩CD =D , PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC . 又P A ⊂平面P AB , 所以平面P AB ⊥平面PDC .5.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【解析】证明 如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).(1)∵AP →=(0,3,4),BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0,AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125. 又AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则A P →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .6. 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .7.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.【解析】 如图所示,以DA ,DC ,DA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),D 1(-1,0,3),B 1(0,1,3),C 1(-1,1,3).(1)证明:AC →=(-1,1,0),A 1B →=(1,1,-3), ∴AC →·A 1B →=0,∴AC ⊥A 1B . (2)假设存在, ∵AP →=λP A 1→, ∴P ⎝⎛⎭⎪⎫11+λ,0,3λ1+λ. 设平面AB 1C 1的一个法向量为n 1=(x 1,y 1,z 1), ∵AB 1→=(-1,1,3),AC 1→=(-2,1,3), ∴⎩⎪⎨⎪⎧n 1·AB 1→=-x 1+y 1+3z 1=0,n 1·AC 1→=-2x 1+y 1+3z 1=0.令z 1=3,则y 1=-3,x 1=0.∴n 1=(0,-3,3).同理可求面PB 1C 1的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,3λ+1,-1, ∴n 1·n 2=0.∴-331+λ-3=0,即λ=-4.∵P 在棱A 1A 上,∴λ>0,矛盾. ∴这样的点P 不存在.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3), 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。

专题 7用向量法证明平行与垂直2021届高考数学核心素养大秘籍(解析版)

专题 7用向量法证明平行与垂直2021届高考数学核心素养大秘籍(解析版)

第七篇 立体几何与空间向量 专题7.05 用向量法证明平行与垂直【考纲要求】1.理解直线的方向向量与平面法向量的意义.2.能用向量语言表达直线与直线、直线与平面、平面与平面的垂直和平行关系.3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理). 【命题趋势】空间直角坐标系、空间向量及其运算在高考中主要作为解题工具,解决直线、平面的平行、垂直位置关系的判定等问题. 【核心素养】本讲内容主要考查直观想象、逻辑推理、数学运算的核心素养. 【素养清单•基础知识】1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔ v 1∥v 2 .(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔ 存在两个实数x ,y ,使v =x v 1+y v 2 .(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔ v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β ⇔ u 1∥u 2 . 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2, 则l 1⊥l 2⇔ v 1⊥v 2 ⇔ v 1·v 2=0 . (2)设直线l 的方向向量为v ,平面α的法向量为u , 则l ⊥α⇔ v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β ⇔ u 1⊥u 2 ⇔ u 1·u 2=0 .【基础检测题】一、选择题1.若直线l ∥平面α,直线l 的方向向量为s ,平面α的法向量为n ,则下列结论可能正确的是( ) A .s =(-1,0,2),n =(1,0,-1) B .s =(-1,0,1),n =(1,2,-1) C .s =(-1,1,1),n =(1,2,-1) D .s =(-1,1,1),n =(-2,2,2) 【答案】C【解析】由已知需s ·n =0,逐个验证知,只有C 项符合要求,故选C. 2.(2019·邢台期末)已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量为( ) A .(13,-23,23) B .(-13,23,-23) C .±(13,-23,23) D .(23,13,-23) 【答案】C【解析】设平面ABC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧AB →·n =0,AC →·n =0, 即⎩⎪⎨⎪⎧2x +2y +z =0,4x +5y +3z =0.令z =1,得⎩⎪⎨⎪⎧x =12,y =-1.所以n =(12,-1,1).所以平面ABC 的单位法向量为±n|n|=±(13,-23,23). 3.直线l 的方向向量s =(-1,1,1),平面α的法向量为n =(2,x 2+x ,-x ),若直线l ∥平面α,则x =( ) A .-2 B .- 2 C. 2 D .±2【答案】D【解析】 由已知得s ·n =0,故-1×2+1×(x 2+x )+1×(-x )=0,解得x =±2. 4.(2019·合肥八中月考)已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4) 【答案】A【解析】 因为n =(6,-3,6)是平面α的法向量,所以n ⊥MP →,在选项A 中,MP →=(1,4,1),所以n ·MP →=0. 5.(2019·南阳期末)若两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是( )A .平行B .相交C .垂直D .不确定 【答案】A【解析】v 2=-2v 1,所以l 1∥l 2.6.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .斜交B .平行C .垂直D .不确定 【答案】B【解析】建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3,则M ⎝⎛⎭⎫a ,2a 3,a 3,N ⎝⎛⎭⎫2a 3,2a 3,a ,MN →=⎝⎛⎭⎫-a 3,0,2a 3,又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量.因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,所以MN ∥平面BB 1C 1C ,故选B.二、填空题7.若直线l 的方向向量e =(2,1,m ),平面α的法向量n =⎝⎛⎭⎫1,12,2,且l ⊥α,则m =________.【答案】4【解析】因为l ⊥α,所以e ∥n ,即e =λn (λ≠0),亦即(2,1,m )=λ⎝⎛⎭⎫1,12,2,所以⎩⎪⎨⎪⎧λ=2,m =2λ.则m =4.8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为________. 【答案】407,-157,4【解析】由已知得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,x -+y -3z =0,解得⎩⎪⎨⎪⎧x =407,y=-157,z =4.9.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________. 【答案】平行【解析】由已知得,AB →=(0,1,-1),AC →=(1,0,-1),设平面α的一个法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ⊥AB →,m ⊥AC →,得⎩⎪⎨⎪⎧ y -z =0,x -z =0.得⎩⎪⎨⎪⎧x =z ,y =z ,令z =1,得m =(1,1,1). 又n =(-1,-1,-1),所以m =-n ,即m ∥n ,所以α∥β. 三、解答题10.如图,四棱锥P -ABCD 的底面为正方形,侧棱PA ⊥底面ABCD ,且PA =AD =2,E ,F ,H 分别是线段PA ,PD ,AB 的中点.求证: (1)PB ∥平面EFH ; (2)PD ⊥平面AHF.【答案】见解析;【解析】:证明 建立如图所示的空间直角坐标系Axyz.所以A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0). (1)因为PB →=(2,0,-2),EH →=(1,0,-1),所以PB →=2EH →, 所以PB ∥EH .因为PB ⊄平面EFH ,EH ⊂平面EFH , 所以PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),所以PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,所以PD ⊥AF ,PD ⊥AH ,又因为AF ∩AH =A ,所以PD ⊥平面AHF .11.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为A 1B 1,B 1C 1,C 1D 1的中点. (1)求证:AG ∥平面BEF ;(2)试在棱长BB 1上找一点M ,使DM ⊥平面BEF ,并证明你的结论.【答案】见解析;【解析】:(1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴和z 轴建立空间直角坐标系,则A (1,0,0),B (1,1,0),E ⎝⎛⎭⎫1,12,1,F ⎝⎛⎭⎫12,1,1,G ⎝⎛⎭⎫0,12,1,因为EF →=⎝⎛⎭⎫-12,12,0,BF →=⎝⎛⎭⎫-12,0,1,而AG →=⎝⎛⎭⎫-1,12,1,所以AG →=EF →+BF →,故AG →与平面BEF 共面,又因为AG 不在平面BEF 内,所以AG ∥平面BEF .(2)设M (1,1,m ),则DM →=(1,1,m ),由DM →·EF →=0,DM →·BF →=0,所以-12+m =0⇒m =12 ,所以M 为棱BB 1的中点时,DM ⊥平面BEF .12.已知正方体ABCD -A 1B 1C 1D 1的棱长为3,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1. (1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.【答案】见解析;【解析】:证明 (1)以B 为原点,以BA ,BC ,BB 1为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则B (0,0,0),E (3,0,1),F (0,3,2),D 1(3,3,3),则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3),所以BD 1→=BE →+BF →.由向量共面的充要条件知E ,B ,F ,D 1四点共面.(2)设M (0,0,z 0),G ⎝⎛⎭⎫0,23,0,则GM →=⎝⎛⎭⎫0,-23,z 0, 而BF →=(0,3,2),由题设得GM →·BF →=-23×3+z 0·2=0, 得z 0=1.故M (0,0,1),有ME →=(3,0,0).又BB 1→=(0,0,3),BC →=(0,3,0),所以ME →·BB 1→=0,ME →·BC →=0,从而ME ⊥BB 1,ME ⊥BC . 又BB 1∩BC =B ,故ME ⊥平面BCC 1B 1.13.如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,AB ⊥BC ,AB =2CD =2BC ,EA ⊥EB . (1)求证:AB ⊥DE ;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上是否存在点F ,使EC ∥平面FBD ?若存在,求出EFEA ;若不存在,请说明理由.【答案】见解析;【解析】:(1)证明:取AB 的中点O ,连接EO ,DO .因为EB =EA ,所以EO ⊥AB . 因为四边形ABCD 为直角梯形.AB =2CD =2BC ,AB ⊥BC ,所以四边形OBCD 为正方形,所以AB ⊥OD . 因为EO ∩DO =O ,所以AB ⊥平面EOD ,所以AB ⊥ED . (2)因为平面ABE ⊥平面ABCD ,且EO ⊥AB , 所以EO ⊥平面ABCD ,所以EO ⊥OD .由OB ,OD ,OE 两两垂直,建立如图所示的空间直角坐标系Oxyz . 因为三角形EAB 为等腰直角三角形, 所以OA =OB =OD =OE ,设OB =1,所以O (0,0,0),A (-1,0,0),B (1,0,0),C (1,1,0),D (0,1,0),E (0,0,1). 所以EC →=(1,1,-1),平面ABE 的一个法向量为OD →=(0,1,0). 设直线EC 与平面ABE 所成的角为θ,所以sin θ=|cos 〈EC →,OD →〉|=|EC →·O D →||EC →||OD →|=33,即直线EC 与平面ABE 所成角的正弦值为33. (3)存在点F ,且EF EA =13时,有EC ∥平面FBD . 证明如下:由EF →=13EA →=⎝⎛⎭⎫-13,0,-13,得F ⎝⎛⎭⎫-13,0,23,所以FB →=⎝⎛⎭⎫43,0,-23,BD →=(-1,1,0). 设平面FBD 的法向量为v =(a ,b ,c ),则有⎩⎪⎨⎪⎧v ·BD →=0,v ·FB →=0,所以⎩⎪⎨⎪⎧-a +b =0,43a -23c =0,取a =1,得v =(1,1,2).因为EC →·v =(1,1,-1)·(1,1,2)=0,且EC ⊄平面FBD ,所以EC ∥平面FBD ,即点F 满足EF EA =13时,有EC ∥平面FBD .【高考真题解密】1. 【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A −MA 1−N 的正弦值.【答案】(1)见解析;(2)5. 【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=DC ,可得B 1C =A 1D ,故ME =ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(12)A M =--,1(1,0,2)A N =--,(0,MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||5⋅〈〉===‖m n m n m n , 所以二面角1A MA N --【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.2.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2)2. 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则 0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩ 所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m . 所以,二面角1B EC C --【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.3.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0CG =(1,0AC =(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,).又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.4.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ;(2)求二面角F –AE –P 的余弦值;(3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD .又因为AD ⊥CD ,所以CD ⊥平面PAD .(2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=. 所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭. 设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.5.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35.【解析】方法一:(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E 平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.(2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E EG由于O 为A 1G的中点,故12A G EO OG === 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅. 因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B,1,0),1B,3,2F ,C (0,2,0).因此,33(,2EF =,(BC =. 由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.【考法拓展•题型解码】考法一 利用空间向量证明平行问题解题技巧(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【例1】 如图所示,平面PAD ⊥平面ABCD ,四边形ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .【答案】见解析;【解析】:证明 因为平面PAD ⊥平面ABCD ,且四边形ABCD 为正方形,所以AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).所以PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以⎩⎪⎨⎪⎧ t =2,t -s =0,-t =-2,解得s =t =2.所以PB →=2FE →+2FG →,又因为FE →与FG →不共线,所以PB →,FE →与FG →共面.因为PB ⊄平面EFG ,所以PB ∥平面EFG .考法二 利用空间向量证明垂直问题解题技巧证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明直线与直线垂直,只需要证明两条直线的方向向量垂直;证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.【例2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .【答案】见解析;【解析】:证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,连OO 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A (0,0,3),A 1(0,2,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧ n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量,而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n ,故AB 1⊥平面A 1BD .【例3】 (2019·四川绵阳中学模拟)在四棱锥P -ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,E ,F 分别为棱AD ,PB 的中点,且PD =AD .求证:平面CEF ⊥平面PBC .【答案】见解析;【解析】:证明 建立如图所示空间直角坐标系,令PD =1,则A (1,0,0),P (0,0,1),C (0,1,0),B (1,1,0),E ⎝⎛⎭⎫12,0,0,F ⎝⎛⎭⎫12,12,12,设平面CEF 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧ n 1·EF →=0,n 1·EC →=0,得⎩⎨⎧ 12y +12z =0,-12x +y =0,取x =1,则n 1=⎝⎛⎭⎫1,12,-12. 同理求得平面PBC 的一个法向量为n 2=⎝⎛⎭⎫0,12,12.因为n 1·n 2=1×0+12×12-12×12=0,所以n 1⊥n 2.所以平面CEF ⊥平面PBC .考法三 利用空间向量解决探索性问题归纳总结对于“是否存在”型问题的探索方式有两种:一种是先根据条件作出判断,再进一步论证;另一种是利用空间向量,先假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.【例4】 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1.若存在,求出点P 的位置,若不存在,请说明理由.【答案】见解析;【解析】:(1)证明:设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,由余弦定理得A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,所以AO 2+A 1O 2=AA 21, 所以A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,所以A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分別为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 则BD →=(-23,0,0),AA 1→=(0,1,3),AA 1→·BD →=0×(-23)+1×0+3×0=0,所以BD →⊥AA 1→,即BD ⊥AA 1.(2)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ).设n 3=(x 3,y 3,z 3)为平面DA 1C 1的一个法向量, 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →, 即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP . 【规范解答】关键点 坐标系建立要恰当、点的坐标要写准确【典例】 如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2). (1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.【规范解答】:以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系Dxyz .由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0), P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2), FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0), NP →=(-1,0,λ-2).(1)证明:当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1). 同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使平面EFPQ 与平面PQMN 所成二面角为直二面角,则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0, 即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使平面EFPQ 与平面PQMN 所成的二面角为直二面角. 答题模板1.建立适当的空间直角坐标系,让一些点、线段尽量与坐标轴重合. 2.写准点的坐标是关键,要利用中点、向量共线、相等来确定点的坐标.3.利用a =λb 证明直线平行需强调两直线不重合,证明直线与平面平行仍需强调直线在平面外. 【跟踪训练】 (2019·河北衡水中学检测)如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面PAC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,请说明理由.【答案】见解析;【解析】:连接BD ,设AC 交BD 于点O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立如图空间直角坐标系.设底面边长为a ,则高|SO |=62a . 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0.(1)证明:OC →=⎝⎛⎭⎫0,22a ,0,SD →=⎝⎛⎭⎫-22a ,0,-62a , 则OC →·SD →=0.故OC ⊥SD ,从而AC ⊥SD . (2)棱SC 上存在一点E 使BE ∥平面PAC .理由如下:由已知条件知DS →是平面PAC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=错误!, 而BE →·DS →=0, 所以错误!·错误!=0, 解得t =13,即当SE ∶EC =2∶1时,BE →⊥DS →. 又BE ⊄平面PAC ,故BE ∥平面PAC . 【递进题组】1.如图,在四面体ABCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .【答案】见解析;【解析】:证明 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知,A (0,2,2),.B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0).因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1).又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12,所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故=0PQ a ⋅,又PQ ⊄平面BCD ,所以PQ ∥平面BCD .2.如图所示,已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点,求证: (1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .【答案】见解析;【解析】:证明 (1)如图建立空间直角坐标系Axyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4) .取AB 中点为N ,连接CN ,则N (2,0,0),C (0,4,0),D (2,0,2),所以DE →=(-2,4,0),NC →=(-2,4,0), 所以DE →=NC →,所以DE ∥NC ,又因为NC ⊂平面ABC ,DE ⊄平面ABC .故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4) ×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.所以B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又因为AF ∩EF =F ,所以B 1F ⊥平面AEF .3.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角. (1)求证:CM ∥平面PAD ; (2)求证:平面PAB ⊥平面PAD .【答案】见解析;【解析】:证明 (1)以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz ,因为PC ⊥平面ABCD ,所以∠PBC 为PB 与平面ABCD 所成的角,所以∠PBC =30°.因为PC =2,所以BC =23,PB =4.所以D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝⎛⎭⎫32,0,32, 所以DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝⎛⎭⎫32,0,32, 令n =(x ,y ,z )为平面PAD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,所以⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).因为n ·CM →=-3×32+2×0+1×32=0, 所以n ⊥CM →,又CM ⊄平面PAD ,所以CM ∥平面PAD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1).因为PB =AB ,所以BE ⊥PA .又因为BE →·DA →=(-3,2,1)·(23,3,0)=0, 所以BE →⊥DA →,所以BE ⊥DA ,又PA ∩DA =A ,所以BE ⊥平面PAD ,又因为BE ⊂平面PAB ,所以平面PAB ⊥平面PAD .4.(2019·济南调研)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)在线段BC 1上是否存在点D ,使得AD ⊥A 1B ?若存在,试求出BDBC 1的值.【答案】见解析;【解析】:(1)证明:在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC ,AA 1⊂平面AA 1C 1C .所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB ,在△ABC 中,AC =4,AB =3,BC =5,所以BC 2=AC 2+AB 2,所以AB ⊥AC .所以以A 为坐标原点,建立如图所示空间直角坐标系Axyz .A (0,0,0),A 1(0,0,4),B (0,3,0),C 1(4,0,4),于是A 1B→=(0,3,-4),BC 1→=(4,-3,4).假设存在点D (x ,y ,z )是线段BC 1上一点,使AD ⊥A 1B ,且BD →=λBC 1→(λ∈[0,1]).所以(x ,y -3,z )=λ(4,-3,4),解得x =4λ,y =3-3λ,z =4λ,所以AD →=(4λ,3-3λ,4λ),又AD ⊥A 1B ,所以0+3(3-3λ)-16λ=0,解得λ=925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B ,此时BD BC 1=925.。

2025年高考数学一轮复习 第八章 -第1课时 利用空间向量证明平行与垂直【课件】

2025年高考数学一轮复习 第八章 -第1课时 利用空间向量证明平行与垂直【课件】
建立如图所示的空间直角坐标系 − .
设 = .
(1)//平面;
连接交于点,连接.

2 2
依题意得 , 0,0 , 0,0, , 0, , 0 , 0, ,
.
因为底面是正方形,所以为的中点,
故点的坐标为

, ,0
2 2
,所以 = , 0, − , =
∴ ⊥ ,即 ⊥ .
(2)若是线段上一点,且 = 3,试证明平面 ⊥ 平面.
∵ ⊥ 平面, ⊂ 平面,∴ ⊥ .
∵ = 4, = 3,∴ = 5. ∵ 为上一点,且 = 3,
6 12
5 5
∴ 0, − ,
解答题专项(四)立体几何中的综合问题
第1课时 利用空间向量证明平行与垂直
考向一 利用空间向量证明平行与垂直
典例1 如图所示,在四棱锥 − 中,底面是正方形,侧棱 ⊥
底面, = ,是的中点,过点作 ⊥ 于点.求证:
证明 以为坐标原点,直线,,分别为轴,轴,轴,


, 0, −
2
2
则 = 2,故//.又 ⊂ 平面, ⊄ 平面,
所以//平面.
,
(2) ⊥ 平面.

2 2
依题意得 , , 0 ,所以 = , , − .又 = 0, ,
则 ⋅ = 0
2
+
2
2

2
,
= 0,所以 ⊥ ,所以 ⊥ .
面?若存在,确定该点的位置;若不存在,请说明理由.
在线段1 上存在一点,使得1 //平面,此时是线段1 的中点,证明如下:
在直三棱柱 − 1 1 1 中,
∵ //1 ,∴ ⊥ , ⊥ .又∵ ⊥ ,∴ ,,两两垂直,

超实用高考数学重难点专题复习:专题六 立体几何 第三讲 利用空间向量证明平行与垂直关系

超实用高考数学重难点专题复习:专题六 立体几何  第三讲 利用空间向量证明平行与垂直关系
||
2.模、夹角和距离公式
(1) 设a=(a1,a2,a3),b=(b1,b2,b3),则|a|= ⋅ = 12 + 22 + 32 ,
cos〈a,b〉=


||||
1 1 + 2 2 + 3 3

12 + 22 + 2 12 + 22 + 32
(2) 距离公式
的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4).
(1)线线平行
l∥m⇔a∥b⇔a=kb⇔a1=ka2,b1=kb2,c1=kc2.
(2)线线垂直
l⊥m⇔a⊥b⇔a·b=0⇔a1a2+b1b2+c1c2=0
(3)线面平行
l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0.
(4)线面垂直
n AC 1 1 1 0 (1) (1) 0 ,∴ n AB, n AC
∴ n 也为 的一个法向量.又 与 不重合,∴ / /
[典型例题]
2.已知平面 的法向量是 (2,3, 1) ,平面 的法向量是
(4, , 2) ,若 / / ,则
面 上,平面 的法向量是 b 2,0, 4 ,那么(
A. l
B. l / /
C. l
[答案]:B
[解析] ∵直线l的方向向量是 a 2,0,1 ,平面 的法向量是
b 2,0, 4 ,∴ a b 4 0 4 0
∴直线l在平面 内或者与平面平行,又直线l上有一点P不在平
量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它
等于两个法向量的夹角或其补角.

空间向量与立体几何:第5讲利用空间向量证明平行与垂直问题

空间向量与立体几何:第5讲利用空间向量证明平行与垂直问题

()
A.相交
B.平行
C.在平面内
D.平行或在平面内
→ → → →→ → 解析 ∵AB=λCD+μCE,∴AB,CD,CE共面.则 AB 与平面 CDE 的位置关系是平行或在平面内.
答案 D
6.已知平面α内有一点 M(1,-1,2),平面α的一个法向量为 n=(6,-3,6),则下列点 P 中,在平面α
内的是
()
A.P(2,3,3)
B.P(-2,0,1)
C.P(-4,4,0)
D.P(3,-3,4)
→ 解析 逐一验证法,对于选项 A,MP=(1,4,1),


∴MP·n=6-12+6=0,∴MP⊥n,
∴点 P 在平面α内,同理可验证其他三个点不在平面α内.
答案 A
∵PB⊄面 EFG,∴PB∥平面 EFG.
【变式探究】 如图,平面 PAC⊥平面 ABC,△ABC 是以 AC 为斜边的等腰直角三角形,E,F,O 分别为
PA,PB,AC 的中点,AC=16,PA=PC=10.
【例 2】如图,四棱柱 ABCD-A1B1C1D1 的底面 ABCD 是正方形,O 为底面中心,A1O⊥平面 ABCD,AB =AA1= 2.
号是________.
答案 ①②③
4.若直线 l 的方向向量为 a,平面α的法向量为 n,能使 l∥α的是
()
A.a=(1,0,0),n=(-2,0,0)
B.a=(1,3,5),n=(1,0,1)
C.a=(0,2,1),n=(-1,0,-1)
D.a=(1,-1,3),n=(0,3,1)
→→ → 5.若AB=λCD+μCE,则直线 AB 与平面 CDE 的位置关系是
【规律技巧】 恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键. 利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量

用空间向量证明平行与垂直

用空间向量证明平行与垂直

方法 2:同方法 1可得M_N = ( 0, a , a ) ,而 22
_
MN
·B_C
= 0,且M_N ·P_B
= 0,所以 M N ⊥ B C
且 M N ⊥ PB ,即 M N ⊥平面 PB C,又 M N < 平
面 M N C,故平面 PB C ⊥平面 M N C.
四 、证明线与面平行
即证平面法向量与直线方向向量垂直 , 或
数理化学习 (高中版 )
- 1, 0)
=
0且
_
n
·M_A
= ( 2,
- 2, 1) · ( 0,
- 1,
- 2)
=
0,
所以
_
n
⊥M_N

_
n

_
MA
,

_
n
也是平
面 AM N 的 法 向 量 , 则 有 平 面 AM N ∥ 平 面
BD EF.
江苏省金湖县教师进修学校 ( 211600)
● 朱胜强
_
=c-
_
b
-
_
a,

_
A C1
⊥A_1 B

_
A C1
·A_1 B
=
0, 即
_
(a
_
+ c)
·
(
_
b
-
_
a
)
=
_
b
·_c
-
_a2
=
1
|
_
b
|2
-
|
_
a
|2
=
2
0,
|
_
a

2020年高考数学复习题:利用空间向量证明平行与垂直关系

2020年高考数学复习题:利用空间向量证明平行与垂直关系

利用空间向量证明平行与垂直关系[基础训练]1.设a =(x,4,3),b =(3,2,z ),且a ∥b ,则xz =( )A .-4B .9C .-9 D.649答案:B 解析:因为a ∥b ,所以x 3=42=3z ,所以x =6,z =32,所以xz =9.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A.⎝ ⎛⎭⎪⎫33,33,-33B.⎝ ⎛⎭⎪⎫33,-33,33 C.⎝ ⎛⎭⎪⎫-33,33,33 D.⎝⎛⎭⎪⎫-33,-33,-33 答案:D 解析:AB →=(-1,1,0),AC →=(-1,0,1),设平面ABC 的一个法向量n =(x ,y ,z ),∴⎩⎪⎨⎪⎧-x +y =0,-x +z =0. 令x =1,则y =1,z =1,∴n =(1,1,1). 单位法向量为:±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),下列结论正确的是( )A .a ∥b ,a ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对答案:C 解析:因为a ·b =0,c =2a ,所以a ∥c ,a ⊥b .4.若平面α,β的法向量分别为n 1=(2,4,5),n 2=(8,1,-4),则( )A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不正确答案:B5.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ).若a ,b ,c 三个向量共面,则实数λ=( )A.627B.637C.607D.657答案:D 解析:由题意,得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),所以⎩⎪⎨⎪⎧ 7=2t -μ,5=-t +4μ,λ=3t -2μ,解得⎩⎪⎨⎪⎧ t =337,μ=177,λ=657.故选D.6.[2019山东泰安模拟]已知长方体ABCD -A 1B 1C 1D 1,下列向量的数量积一定不为0的是()A.AD 1→·B 1C →B.BD 1→·AC →C.AB →·AD 1→D.BD 1→·BC → 答案:D 解析:当侧面BCC 1B 1是正方形时,可得AD 1→·B 1C →=0,所以排除A. 当底面ABCD 是正方形时,AC 垂直于对角面BD 1,所以排除B.显然排除C.由图可得BD 1与BC 所成的角小于90°.7.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4B.407,-157,4C.407,-2,4 D .4,407,-15答案:B 解析:∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,又∵BC →=(3,1,4),则⎩⎪⎨⎪⎧ (x -1)+5y +6=0,3(x -1)+y -12=0, 解得⎩⎪⎨⎪⎧ x =407,y =-157.8.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,M 分别是棱AD ,DD 1,D 1A 1,A 1A ,AB 的中点,点N 在四边形EFGH 的四边及其内部运动,则当N 只需满足条件________时,就有MN ⊥A 1C 1;当N 只需满足条件________时,就有MN ∥平面B 1D 1C .答案:点N 在EG 上 点N 在EH 上 解析:以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则M ⎝ ⎛⎭⎪⎫1,12,0,N (x,0,z ),A 1C 1→=(-1,1,0), 因此MN →·A 1C 1→=⎝ ⎛⎭⎪⎫x -1,-12,z ·(-1,1,0)=1-x -12=0,即x =12, 故点N 在EG 上,就有MN ⊥A 1C 1.设平面B 1D 1C 的一个法向量为n =(-1,1,1),若MN ∥平面B 1D 1C ,则MN →·n =⎝ ⎛⎭⎪⎫x -1,-12,z ·(-1,1,1) =1-x -12+z =0,即x -z -12=0,故点N 在EH 上,就有MN ∥平面B 1D 1C .9.点B (3,0,0)是点A (m,2,5)在x 轴上的射影,则点A 到原点的距离为________.答案:42 解析:点B (3,0,0)是点A (m,2,5)在x 轴上的射影, 所以m =3,所以点A 到原点的距离为d =(3)2+22+52=32=4 2.10.[2019河南南阳模拟]已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.答案:α∥β 解析:设平面α的法向量m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,所以m =(1,1,1),m =-n ,所以m ∥n ,所以α∥β.11.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ;(2)求证:平面P AB ⊥平面PDC .证明:如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD .因为P A =PD =22AD ,所以P A ⊥PD ,OP =OA =a 2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间建立直角坐标系,则A ⎝ ⎛⎭⎪⎫a 2,0,0,F ⎝ ⎛⎭⎪⎫0,a 2,0,D ⎝ ⎛⎭⎪⎫-a 2,0,0,P ⎝⎛⎭⎪⎫0,0,a 2,B ⎝ ⎛⎭⎪⎫a 2,a ,0,C ⎝ ⎛⎭⎪⎫-a 2,a ,0.因为E 为PC 的中点,所以E ⎝ ⎛⎭⎪⎫-a 4,a 2,a 4. (1)易知平面P AD 的一个法向量为OF →=⎝ ⎛⎭⎪⎫0,a 2,0, 因为EF →=⎝ ⎛⎭⎪⎫a 4,0,-a 4,且OF →·EF →=⎝ ⎛⎭⎪⎫0,a 2,0·⎝ ⎛⎭⎪⎫a 4,0,-a 4=0, 所以EF ∥平面P AD .(2)因为P A →=⎝ ⎛⎭⎪⎫a 2,0,-a 2,CD →=(0,-a ,0), 所以P A →·CD →=⎝ ⎛⎭⎪⎫a 2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .[强化训练]1.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于 ( )A .ACB .BDC .A 1D D .A 1A答案:B 解析:以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),A 1(0,0,1),E ⎝ ⎛⎭⎪⎫12,12,1, 所以CE →=⎝ ⎛⎭⎪⎫-12,-12,1,AC →=(1,1,0), BD →=(-1,1,0),A 1D →=(0,1,-1),A 1A →=(0,0,-1).显然CE →·BD →=12-12+0=0,所以CE →⊥BD →,即CE ⊥BD .2.[2019河北石家庄模拟] 如图所示,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=23A1D,AF=13AC,则()A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC EF与BD1相交D.EF与BD1异面答案:B解题指南:建立空间直角坐标系,用向量法求解.解析:以D点为坐标原点,以DA,DC,DD1所在直线分别为x 轴、y轴、z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E⎝⎛⎭⎪⎫13,0,13,F⎝⎛⎭⎪⎫23,13,0,B(1,1,0),D1(0,0,1),A1D→=(-1,0,-1),AC→=(-1,1,0),EF→=⎝⎛⎭⎪⎫13,13,-13,BD1→=(-1,-1,1),EF→=-13BD1→,A1D→·EF→=AC→·EF→=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.3.[2019广东清城区一模]已知向量a=(2m+1,3,m-1),b=(2,m,-m),且a∥b,则实数m的值等于()A.32B.-2 C.0 D.32或-2答案:B 解析:∵向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b .∴存在实数λ,使得(2m +1,3,m -1)=λ(2,m ,-m )=(2λ,λm ,-λm ),∴⎩⎪⎨⎪⎧ 2m +1=2λ,3=λm ,m -1=-λm ,解得m =-2.4.已知三点A (2,1,2),B (1,2,3),C (1,1,1),O 是坐标原点,点Q在直线OC 上的运动,则当QA →·QB →取得最小值时,点Q 的坐标是( )A.⎝ ⎛⎭⎪⎫23,23,23 B.⎝ ⎛⎭⎪⎫116,116,116 C.⎝ ⎛⎭⎪⎫113,113,113 D.⎝ ⎛⎭⎪⎫43,43,43 答案:B 解析:设OQ →=λOC →=(λ,λ,λ),则QA →·QB →=(2-λ,1-λ,2-λ)·(1-λ,2-λ,3-λ)=3λ2-11λ+10,当λ=116时取得最小值,点Q 的坐标为⎝ ⎛⎭⎪⎫116,116,116. 5.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1, -4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案:①②③ 解析:因为AB →·AP →=0,AD →·AP →=0,所以AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,所以AP →是平面ABCD 的法向量,则③正确.因为BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),所以BD →与AP →不平行,故④错.6.[2019山东济南质检] 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明: (1)如图,以O 为原点,以射线OD 为y 轴正半轴,以射线OP 为z 轴正半轴,建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4). AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)由(1),知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125, 又BA →=(-4,-5,0),∴BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125, ∴AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0. ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论,知AP ⊥BC ,∴AP ⊥平面BMC ,于是AM ⊥平面BMC .又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .7.[2019河南洛阳一模]如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出|BP ||PE |的值;若不存在,请说明理由.(1)证明:∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF ,∴AF ⊥平面ABCD .∵AC ⊂平面ABCD ,∴AF ⊥AC .∴过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3, ∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB ,∵AB ∩AF =A ,∴AC ⊥平面F AB ,∵BF ⊂平面F AB ,∴AC ⊥BF .(2)解:存在.由(1)知,AF ,AB ,AC 两两垂直.以A 为坐标原点,AB →,AC →,AF →的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合,设|BP ||PE |=λ,则λ>0,P ⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面P AC 的法向量为m =(x ,y ,z ).由AP →=⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎪⎨⎪⎧ m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎨⎧ y =0,z =λ-22λx ,令x =1,则z =λ-22λ,所以m =⎝ ⎛⎭⎪⎫1,0,λ-22λ为平面P AC 的一个法向量. 同理,可求得n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量. 当m ·n =0,即λ=23时,平面P AC ⊥平面BCEF ,故存在满足题意的点P ,此时|BP ||PE |=23.。

届高考数学一轮复习讲义立体几何中的向量方法证明平行与垂直

届高考数学一轮复习讲义立体几何中的向量方法证明平行与垂直
主页
变式训练 3
如图所示,在三棱锥 A—BCD 中,侧面 ABD、 ACD 是全等的直角三角形,AD 是公共的斜边, 且 AD= 3,BD=CD=1,另一个侧面 ABC 是 正三角形. (1)求证:AD⊥BC; (2)求二面角 B—AC—D 的余弦值; (3)在线段 AC 上是否存在一点 E,使 ED 与平面 BCD 成 30°角? 若存在,确定点 E 的位置;若不存在,说明理由.
主页
[难点正本 疑点清源] 1.直线的方向向量实质上是与直线平行的非零向量,它有无数
多个,平面的法向量也有无数个. 2.利用空间向量解决立体几何中的平行问题
(1)证明两条直线平行,只需证明这两条直线的方向向量是 共线向量,但要注意说明这两条直线不共线. (2)证明线面平行的方法 ①证明直线的方向向量与平面的法向量垂直,但要说明直线 不在平面内. ②证明能够在平面内找到一个向量与已知直线的方向向量共线, 也要说明直线不在平面内. ③利用共面向量定理,即证明直线的方向向量与平面内的 两个不共线向量是共面向量.同时要注意强调直线不在平面内.
主页
方法二 设平面 ABE 的一个法向量为 n=(x,y,z),
∵A→B=(1,0,0),A→E=14, 43,12,
∴nn··AA→→BE==00
x=0 ,即14x+ 43y+12z=0

令 y=2,则 z=- 3,∴n=(0,2,- 3).
∵P→D=0,23 3,-1,显然P→D=
直线的向量参数方程.
主页
要点梳理
忆一忆知识要点
2.用向量证明空间中的平行关系 (1)设直线 l1 和 l2 的方向向量分别为 v1 和 v2,则 l1∥l2(或 l1 与 l2 重合)⇔ v1∥v2 . (2)设直线 l 的方向向量为 v,与平面 α 共面的两个不共线向 量 v1 和 v2,则 l∥α 或 l⊂α⇔ 存在两个实数 x,y,使 v= xv1+yv2 . (3)设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l∥α 或 l⊂α⇔ v⊥u . (4)设平面 α 和 β 的法向量分别为 u1,u2,则 α∥β⇔ u1 ∥u2 .

专题44 立体几何中的向量方法(一)证明平行与垂直-2020年领军高考数学一轮复习(文理通用)(解析版)

专题44 立体几何中的向量方法(一)证明平行与垂直-2020年领军高考数学一轮复习(文理通用)(解析版)

1专题44立体几何中的向量方法(一)证明平行与垂直最新考纲1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系.3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.基础知识融会贯通1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.重点难点突破【题型一】利用空间向量证明平行问题【典型例题】如图,在四棱锥P ﹣ABCD 中,PB ⊥平面ABCD ,AB ⊥AD ,AB ∥CD ,且AB =1,AD =CD =2,E 在线段PD 上.(Ⅰ)若E 是PD 的中点,试证明:AE ∥平面PBC ;(Ⅱ)若异面直线BC与PD所成的角为60°,求四棱锥P﹣ABCD的侧视图的面积.【解答】(Ⅰ)证法一:在四棱锥P﹣ABCD中,取PC的中点F,连接EF、FB,因为E是PD的中点,所以EF CD AB,…所以四边形AEFB是平行四边形,…则AE∥FB,而AE⊄平面PBC,FB⊂平面PBC,…∴AE∥平面PBC.…证法二:如图,以B为坐标原点,AB所在直线为x轴,垂直于AB的直线为y轴,BP所在直线为z轴,建立空间直角坐标系,设PB=t,则P(0,0,t),D(﹣1,2,0),C(1,2,0),A(﹣1,0,0),所以E (,1,),,…设平面PBC 的法向量为(x,y,z),则,所以,即取y=﹣1,得到平面PBC 的法向量为(2,﹣1,0).所以0,而AE⊄平面PBC,则AE∥平面PBC.…(Ⅱ)解:同(Ⅰ)法二建立空间直角坐标系,设PB=t(t>0),则P(0,0,t),D(﹣1,2,0),C(1,2,0),所以(﹣1,2,﹣t),(1,2,0),则||,||,…由已知异面直线BC与PD成60°角,所以•,2又•1×1+2×2+(﹣t)×0=3,所以3,解得t,即PB,所以侧视图的面积为S 2.…【再练一题】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF=1,M是线段EF的中点.(1)求证AM∥平面BDE;(2)求二面角A﹣DF﹣B的大小;(3)试在线段AC上一点P,使得PF与CD所成的角是60°.【解答】证明:(Ⅰ)建立如图所示的空间直角坐标系设AC∩BD=N,连接NE,则点N、E 的坐标分别是(、(0,0,1),∴(,又点A、M的坐标分别是()、(3∴(∴且NE与AM不共线,∴NE∥AM又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDF解:(Ⅱ)∵AF⊥AB,AB⊥AD,AF∩AD=A,∴AB⊥平面ADF∴为平面DAF的法向量∵•0,∴•(,,1)=0得,∴NE为平面BDF的法向量∴cos∴的夹角是60°即所求二面角A﹣DF﹣B的大小是60°(3)设P(x,x,0),,,则cos ||,解得或(舍去)所以当点P为线段AC的中点时,直线PF与CD所成的角为60°.思维升华(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的4关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【题型二】利用空间向量证明垂直问题命题点1证线面垂直【典型例题】如图,在四棱锥O﹣ABCD中,OA⊥底面ABCD,底面ABCD是边长为2的正方形,OA=2,M、N、Q分别为OA、BC、CD的中点.(Ⅰ)证明:DN⊥平面OAQ;(Ⅱ)求点B到平面DMN的距离.【解答】解:(Ⅰ)由题意,可知AO,AB,AD两两垂直,于是可如图建立空间直角坐标系,从而可得以下各点的坐标:A(0,0,0),B(2,0,0),D(0,2,0),O(0,0,2),M(0,0,1),N(2,1,0),Q (1,2,0),∵.∴.即AQ⊥DN.又知OA⊥DN,∴DN⊥平面OAQ.(Ⅱ)设平面DMN 的法向量为,由.得即,令x=1,得平面DMN 的法向量,∴点B到平面DMN 的距离.5【再练一题】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,侧棱P A⊥底面ABCD ,,BC=1,P A=2,E 为PD的中点.(1)求的值;(2)在侧面P AB内找一点N,使NE⊥平面P AC,并求出N到AB和AP的距离.【解答】解:(1)在四棱锥P﹣ABCD中,底面ABCD为矩形,侧棱P A⊥底面ABCD ,,BC=1,P A=2,E为PD的中点.以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),C (,1,0),P(0,0,2),B (,0,0),(),(),∴.(2)设在侧面P AB内找一点N(a,0,c),使NE⊥平面P AC,D(0,1,0),E(0,,1),(﹣a ,,1﹣c),6(0,0,2),(),∴,解得a,c=1,∴N (,0,1),∴N到AB的距离为1,N到AP 的距离为.命题点2证面面垂直【典型例题】如图,在三棱锥V﹣ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=2,.(1)求证:平面VAB⊥平面VCD;(2)求二面角V﹣AB﹣C的大小;(3)求点C到平面VAB的距离.【解答】(1)证明:∵三棱锥V﹣ABC中,VC⊥底面ABC,AC⊥BC,∴以CA为x轴,以CB为y轴,以CV为z轴,建立空间直角坐标系,∵D是AB的中点,且AC=BC=2,,7∴V(0,0,),A(2,0,0),B(0,2,0),D(1,1,0),C(0,0,0)∴,,,∴2+2+0=0,,故AB⊥CD,AB⊥CV,∴AB⊥平面VCD,∵AB⊂平面VAB,∴平面VAB⊥平面VCD.(2)解:由(1)知AB⊥平面VCD,∴∠VDC是二面角V﹣AB﹣C的平面角,∵AC=BC=2,,VC⊥底面ABC,AC⊥BC,∴VC=CD,VC⊥CD,∴∠VDC,故二面角V﹣AB﹣C 的大小为.(3)解:∵V(0,0,),A(2,0,0),B(0,2,0),C(0,0,0),∴,,(0,0,),设平面VAB 的法向量为,则,∴,解得,∴点C到平面VAB的距离d1.8【再练一题】在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)线段ED上是否存在点Q,使平面EAC⊥平面QBC?证明你的结论.【解答】(Ⅰ)证明:∵AB=2BC,∠ABC=60°,在△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC cos60°=3BC2,∴AC2+BC2=4BC2=AB2,∴∠ACB=90°.∴AC⊥BC.又∵AC⊥FB,FB∩BC=B,∴AC⊥平面FBC.9(Ⅱ)线段ED上不存在点Q,使平面EAC⊥平面QBC.证明如下:因为AC⊥平面FBC,所以AC⊥FC.因为CD⊥FC,所以FC⊥平面ABCD.所以CA,CF,CB两两互相垂直,如图建立的空间直角坐标系C﹣xyz.在等腰梯形ABCD中,可得CB=CD.设BC=1,所以,.所以,.设平面EAC 的法向量为(x,y,z),则,所以取z=1,得(0,2,1).假设线段ED上存在点Q ,设,所以.设平面QBC 的法向量为(a,b,c),则所以取c=1,得.要使平面EAC⊥平面QBC ,只需,10即,此方程无解.所以线段ED上不存在点Q,使平面EAC⊥平面QBC.思维升华证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.【题型三】利用空间向量解决探索性问题【典型例题】如图,四棱锥S﹣ABCD中.ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD AD.E 为CD上一点,且CE=3DE.(1)求证:AE⊥平面SBD;(2)M、N分别在线段CD、SB上的点,是否存在M、N,使MN⊥CD且MN⊥SB,若存在,确定M、N的位置;若不存在,说明理由.【解答】解:(1)证明:因为四棱锥S﹣ABCD中.ABCD为矩形,SD⊥AD,且SD⊥AB,所以SD⊥平面ABCD.BD就是SB在底面ABCD上的射影.因为AB=2AD,E为CD上一点,且CE=3DE.如图:∵tan∠1,tan∠DBA,∴∠BAC=∠DBA,同理∠BDA=∠DEA∴∠1+∠BDA=90°.11所以AE⊥BD.所以AE⊥平面SBD;(2)假设存在MN满足MN⊥CD且MN⊥SB.建立如图所示的空间直角坐标系,由题意可知,D(0,0,0),A(a,0,0),C(0,2a,0),B(a,2a,0),S(0,0,),设(a,2a,0)+t(﹣a,﹣2a ,)=(a﹣ta,2a﹣ta ,),(t∈[0,1])即M(a﹣ta,2a﹣ta ,),N(0,y,0),y∈[0,2a ](a﹣ta,2a﹣ta﹣y ,).使MN⊥CD且MN⊥SB,则,可得,t∉[0,1].y=3a +3a∉[0,2a].故不存在MN使MN⊥CD且MN⊥SB.【再练一题】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,P A⊥底面ABCD,垂足为A,P A=AB,点M在棱PD12上,PB∥平面ACM.(1)试确定点M的位置;(2)计算直线PB与平面MAC的距离;(3)设点E在棱PC上,当点E在何处时,使得AE⊥平面PBD?【解答】解:(1)设AC∩BD=O,则O这BD的中点,设点M为PD中点,∵在△PBD中,PB∥OM,OM⊂平面ACM,∴PB∥平面ACM.故当点M为PD中点时,PB∥平面ACM.(2)设AB=1,则P A=AB=1,∵底面ABCD是正方形,P A⊥底面ABCD,∴CD⊥PD,∴AM,AC,MC,∴AM2+MC2=AC2,∴,取AD的中点F,连接AF,则MF∥P A,MF⊥平面ABCD,且MF,∵PB∥平面ACM,M为PC的中点,∴直线PB与平面MAC的距离为点D到平面MCA的距离,设为h,∵V M﹣ACD=V D﹣ACM,∴,1314解得h .(3)以A 为原点,AB 、AD 、AP 分别为x ,y ,z 轴,建立空间直角坐标系, 则B (1,0,0),D (0,1,0),P (0,0,1),C (1,1,0),∴,(0,1,﹣1),设平面PBD 的法向量(x ,y ,z ),则,,∴,∴,设,则E (λ,λ,1﹣λ), ∵AE ⊥平面PBD ,∴,∴,∴E 为PC 中点.故当点E 为PC 中点时,AE ⊥平面PBD .思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.基础知识训练1.【山西省长治市第二中学2018-2019学年高二上学期期中考试】如图,在各棱长均为2的三棱柱111ABC A B C -中,侧面11A ACC ⊥底面ABC ,160A AC ∠=︒.15(1)求侧棱1AA 与平面1AB C 所成角的正弦值;(2)已知点D 满足BD BA BC =+uu u r uu r uu u r,那么在直线1AA 上是否存在点P ,使//DP 平面1AB C ?若存在,请确定点P 的位置;若不存在,请说明理由. 【答案】(1)6(2)恰好为1A 点. 【解析】(1)∵侧面11A ACC ⊥底面ABC ,作A 1O ⊥AC 于点O , ∴1A O ⊥平面ABC .又160ABC A AC ∠=∠=︒,且各棱长都相等, ∴1AO =,13OA OB ==BO AC ⊥. 故以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz , 则()0,1,0A -,()3,0,0B,(13A ,()0,1,0C ,16∴()10,1,3AA =u u u v ,()13,0,3AB u u u v =-,()0,2,0AC =u u u v.设平面1AB C 的法向量为(),,n x y z =r则1•3230•20n AB x y z n AC y ⎧=+-=⎪⎨==⎪⎩u u u v r u u u v r,取1x =,得()1,0,1n =r . 设侧棱AA 1与平面AB 1C 所成角的为θ,则111•36sin |cos ,4|?|22AA n AA n AA n θ====u u u v r u u u v r u u u u v r ,∴侧棱1AA 与平面1AB C 所成角的正弦值为64. (2)∵BD BA BC =+u u u v u u u v u u u v,而()()3,1,03,1,0BA BC u u u v u u u v ,=--=-, ∴()23,0,0BD =-u u u v,又∵()3,0,0B,∴点()3,0,0D -.假设存在点P 符合题意,则点P 的坐标可设为()0,,P y z ,∴()3,,DP y z =u u u v∵DP ∥平面1AB C ,()1,0,1n =-r为平面1AB C 的法向量,∴0DP n =u u u rn v ,得z=3,又由1AP AA λ=u u u v u u u v ,得133y λλ+=⎧⎪⎨=⎪⎩,∴0y =. 又DP ⊄平面1AB C ,故存在点P ,使DP ∥平面1AB C ,其坐标为()0,0,3, 即恰好为1A 点.2.【北京市东城区2019届高三第二学期综合练习(一)】如图,在棱长均为2的三棱柱111ABC A B C -中,点C 在平面11A ABB 内的射影O 为1AB 与1A B 的交点,,E F 分别为11,BC A C 的中点.17(Ⅰ)求证:四边形11A ABB 为正方形;(Ⅱ)求直线EF 与平面11A ACC 所成角的正弦值;(Ⅲ)在线段1AB 上存在一点D ,使得直线EF 与平面1A CD 没有公共点,求1ADDB 的值. 【答案】(Ⅰ)详见解析;(Ⅱ)30;(Ⅲ)12.【解析】 (Ⅰ)连结CO .因为C 在平面11A ABB 内的射影O 为与1A B 的交点,所以CO ⊥平面11A ABB .由已知三棱柱111ABC A B C -各棱长均相等, 所以AC BC =,且11A ABB 为菱形. 由勾股定理得OA OB =,即11AB A B =. 所以四边形11A ABB 为正方形.(Ⅱ)由(Ⅰ)知CO ⊥平面11,A ABB 1,.CO OA CO OA ⊥⊥ 在正方形11A ABB 中,1OA OA ⊥. 如图建立空间直角坐标系O xyz -.由题意得11(0,0,0),(2,0,0),2,0),(2,0,0),2),(2,2,2)O A A B C C ,182222(,0,),(2,,)2222E F --.所以1(2,2,0),(0,2,2).A A AC ==-u u u r u u u r设平面11A ACC 的法向量为(,,),m x y z =u r则10,0.m AA m AC ⎧⋅=⎨⋅=⎩u u u v v u u u v v 即220,220.x z ⎧+=⎪⎨+=⎪⎩ 令1,x =则1, 1.y z ==于是(1,1,1)m =u r.又因为322(EF =u u u r ,设直线EF 与平面11A ACC 所成角为θ,则30sin |cos |m EF m ,EF m EFθ⋅=〈〉==u r u u u ru r u u u r u r u u u r .所以直线EF 与平面1A AC 所成角的正弦值为3015. (Ⅲ)直线EF 与平面1A CD 没有公共点,即EF ∥平面1A CD . 设D 点坐标为0(0,,0)y ,D 与O 重合时不合题意,所以00y ≠.因为10(2,,0)A D y =u u u u r ,1(2,0,2)AC =u u u r .19设111(,,)n x y z =r为平面1A CD 的法向量,则110,0.n A D n A C ⎧⋅=⎪⎨⋅=⎪⎩u u u u v v u u u v v 即1011120,220.x y y x z ⎧+=⎪⎨+=⎪⎩ 令11x =,则12y =,11z =. 于是02(1,,1)n y =r. 若EF ∥平面1A CD ,0n EF ⋅=r u u u r.又322EF =u u u r ,32220=,解得02y =. 此时EF 不属于平面1A CD ,所以22AD =142DB =. 所以112AD DB =. 3.【江西省上高县第二中学2018-2019学年高二下学期第一次月考】四棱锥P-ABCD 的底面是边长为2的正方形,PA ⊥平面ABCD ,E ,F 分别为线段AB ,BC 的中点.20(1)线段AP 上一点M ,满足14AM AP =u u u u r u u u r,求证:EM ∥平面PDF ;(2)若PB 与平面ABCD 所成的角为45°,求二面角A-PD-F 的余弦值. 【答案】(1)见解析(2)13【解析】(1)由题意,以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,设PA=a ,则A (0,0,0),M (0,0,4a ),P (0,0,a ),F (2,1,0),D (0,2,0), E (1,0,0),所以EM u u u u v =(-1,0,4a),PF u u u v =(2,1,-a ),PD u u u v =(0,2,-a ),设平面PDF 的法向量n v=(x ,y ,z ),则2020n PF x y az n PD y az ⎧⋅=+-=⎨⋅=-=⎩u u u v v u u u v v ,取z=2,得n v =(2a ,a ,2),∵n v ·EM u u u uv =-2a +2×4a=0,EM ⊄平面PDF ,∴EM ∥平面PDF . (2)因为PB 与平面ABCD 所成的角为45°,可得PA=AB=2, 所以P (0,0,2),D (0,2,0),F (2,1,0), 所以PD u u u v =(0,2,-2),PF u u u v=(2,1,0), 设平面PDF 的法向量为m v=(x ,y ,z ),则22020m PD y z m PF x y ⎧⋅=-=⎨⋅=+=⎩u u u v v u u u v v ,取y=1,得m v =(12-,1,1),又由平面PAD 的法向量p v=(1,0,0), 设二面角A-PD-F 的平面角为θ,则112cos 3914m pm pv vv v θ⋅===⋅⨯,∴二面角A-PD-F 的余弦值为1 3.4.【2019届高三第二次全国大联考(新课标Ⅰ卷)】已知在直四棱柱1111ABCD A B C D-中,AD∥BC,AB ⊥BC,AB BC>,AB=1,12AA AD==,Q为1A B的中点,平面11ABB A与平面QCD所成的锐二面角的余弦值为47777.(1)求证:1BD A C⊥;(2)若点P是棱AD上的点,且三棱锥P ABQ-5PQ和平面1A BC所成角的正弦值的大小.【答案】(1)见解析;(2)见解析.【解析】(1)∵在直四棱柱1111ABCD A B C D-中,AD∥BC,AB⊥BC,∴AB,AD,AA1两两垂直,2122∴以A 为原点,AB ,AD ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,又Q 1AB =,12AA AD ==,()1,0,0B ∴,()10,0,2A ,()0,2,0D ,Q Q 为1A B 的中点,1,0,12Q ⎛⎫∴ ⎪⎝⎭,设(01)BC a a =<<,则()1,,0C a ,1,2,12DQ u u u v ⎛⎫∴=- ⎪⎝⎭,()1,2,0CD a =--u u uv ,设平面QCD 的法向量为()1111,,n x y z =u r ,则()11111201202x a y x y z ⎧-+-=⎪⎨-+=⎪⎩,令12y =,得142x a =-,12z a =+,即平面QCD 的一个法向量为()142,2,2n a a =-+u r,又Q 平面11ABB A 的一个法向量为()00,1,0n u u r =,102n n ∴⋅=u r u u r ,2151224n a a =-+u r ,01n =u u r ,247751224a a ∴=-+,解得12a =或1910a =, 01a <<Q ,∴ 12a =,11,,02C ⎛⎫∴ ⎪⎝⎭,111,,22A C u u u v ⎛⎫∴=- ⎪⎝⎭,()1,2,0BD =-u u u v , ∴10AC BD ⋅=u u u v u u u v,∴ 1BD A C ⊥.(2)设()0,,0(02)P t t <<,Q Q 为1A B 的中点,11122AQB AA B S S ∴==V V , 又Q 三棱锥P ABQ -的体积为5121153212t ∴⨯=,52t ∴=,2350,,02P ⎛⎫∴ ⎪ ⎪⎝⎭,15,,122PQ ⎛⎫∴=- ⎪ ⎪⎝⎭u u u v , 设平面1A BC 的法向量为()2222,,n x y z =u u r ,1111,,2,0,,022AC BC u u u v Q u u uv ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭, ∴222201+202y x y z =⎧⎪⎨-=⎪⎩,令22x =,得21z =,即平面1A BC 的一个法向量为()22,0,1n =u u r , 设直线PQ 和平面1A BC 所成的角为θ,则222sin cos ,5552PQ n θ===⨯u ur u u u v ,即直线PQ 和平面1A BC 所成角的正弦值为22.5.【江苏省常州“教学研究合作联盟”2018-2019高二下学期期中考试】如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,122PA AB BC AD ====,点E ,F 分别是AB ,PD 的中点.(1)求证://EF 平面PBC ;(2)若点M 为棱PC 上一点,且平面EFM ⊥平面PBC , 求证:.EM PC ⊥ 【答案】(1)见解析; (2)见解析. 【解析】Q PA ⊥平面ABCD ,AD ⊂平面,ABCD .PA AD ∴⊥ Q PA ⊥平面ABCD ,AB ⊂平面,ABCD .PA AB ∴⊥又因为,2BAD π∠=所以AB AD ⊥,则,,AB AD AP 两两垂直,则以{},,AB AD AP u u u v u u u v u u u v为正交基底,建立如图所示的空间直角坐标系.A xyz -24则各点的坐标为()()()()()0,0,0,2,0,0,2,2,0,0,4,0,0,0,2.A B C D P 因为点,E F 分别是AB ,PD 的中点,所以()()1,0,0,0,2,1.E F(1)证明:设平面PBC 的一个法向量为()1,,.n x y z =u v因为()()2,0,2,0,2,0,BP BC =-=u u u v u u u v由11,,n BP n BC ⊥⊥u v u u u v u v u u u v 得22020x z y -+=⎧⎨=⎩,令1,x =所以0, 1.y z ==则()11,0,1.n =u v因为()1,2,1,EF =-u u u v 所以10.EF n ⋅=u u u v u v又EF ⊄平面,PBC 所以//EF 平面PBC .(2)证明:因为M 为棱PC 上一点,所以,PM PC λ=u u u u v u u u v0 1.λ≤≤设(),,,M x y z 则()(),,22,2,2,x y z λ-=-,所以2,2,22.x y z λλλ===-即()2,2,22,M λλλ-所以()21,2,22,EM λλλ=--u u u u v ()1,2,1.EF =-u u u v设平面EFM 的一个法向量为()2,,,n x y z =u u v 则22,.n EM n EF ⊥⊥u u v u u u u v u u v u u u v所以()()212220,20x y z x y z λλλ⎧-++-=⎨-++=⎩消去y 可得()()31230.x z λλ-+-=令32,x λ=-则131,.2z y λ=-=-所以2132,,31.2n λλ⎛⎫=--- ⎪⎝⎭u u vQ 平面EFM ⊥平面,PBC 12.n n u v u u v ∴⊥则32310,λλ-+-=所以1,2λ=25()1,1,1.M 从而()0,1,1,EM =u u u u v 因为()2,2,2,PC =-u u u v 所以0,EM PC ⋅=u u u u v u u u v则,EM PC ⊥u u u u v u u u v即.EM PC ⊥6.【江西省南昌市南昌外国语学校2019届高三高考适应性测试】如图,已知长方形ABCD 中,2,1AB AD ==,M 为DC 的中点. 将ADM ∆沿AM 折起,使得平面ADM ⊥平面ABCM.(1)求证:AD BM ⊥ .(2)点E 是线段DB 上的一动点,当二面角E AM D --大小为3π时,试确定点E 的位置. 【答案】(1)见解析;(2)当E 位于线段DB 之间,且 233DEEB=- 【解析】解:取AM 的中点O,AB 的中点N,则,,ON OA OD 两两垂直, 以O 为原点建立如图所示的空间直角坐标系,如图,根据已知条件,得2A ⎫⎪⎪⎝⎭,22,0B ⎛⎫ ⎪ ⎪⎝⎭,2M ⎛⎫ ⎪ ⎪⎝⎭,2D ⎛ ⎝⎭(1)由于()22,0,2,0,22AD BM ⎛⎫=-= ⎪ ⎪⎝⎭u u u v u u u uv则•0AD BM =u u u v u u u u v,故AD BM ⊥.26(2)设存在满足条件的点E,并设DE DB λ=u u u v u u u v, 则222,,,2,E E E x y z λ⎛⎫⎛⎫-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 则点E 的坐标为222,2,222λλλ⎛⎫-- ⎪ ⎪⎝⎭.(其中[]0,1λ∈) 易得平面ADM 的法向量可以取()10,1,0n =u v, 设平面AME 的法向量为()2,,n x y z u u v=,则()2,0,0AM =-u u u u v , 2222,2,2222AE λλλ⎛⎫=--- ⎪ ⎪⎝⎭u u u v则()22202222202222n AM x n AE x y z λλλ⎧⋅=-=⎪⎛⎫⎛⎫⎨⋅=--++-= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎩u u v u u u u vu u v u u u v 解得()0:1:2x y z λλ=⎧⎨=-⎩,取()20,1,2n u u v λλ=-由于二面角E AM D --大小为3π, 则()12122212•1cos cos ,32•14n n n n n n πλλ====-+u v u u vu v u u v u v u u v ,由于[]0,1λ∈,故解得233λ=-. 故当E 位于线段DB 之间,且233DE EB =-时,二面角E AM D --大小为3π. 7.【北京市朝阳区2019届高三第一次(3月)综合练习(一模)】如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,90BAD ∠=︒,1AB AD ==,3BC =.27(1)求证:AF CD ⊥;(2)求直线BF 与平面CDE 所成角的正弦值;(3)线段BD 上是否存在点M ,使得直线//CE 平面AFM 若存在,求BMBD的值;若不存在,请说明理由. 【答案】(Ⅰ)详见解析;(Ⅱ105;(Ⅲ)线段BD 上存在点M ,使得//CE 平面AFM ,且23BM BD =. 【解析】解:(Ⅰ)证明:因为ADEF 为正方形, 所以AF AD ⊥.又因为平面ADEF ⊥平面ABCD , 且平面ADEF ⋂平面ABCD AD =, 所以AF ⊥平面ABCD . 所以AF CD ⊥.(Ⅱ)由(Ⅰ)可知,AF ⊥平面ABCD ,所以AF AD ⊥,AF AB ⊥. 因为90BAD ∠=︒,所以,,AB AD AF 两两垂直.分别以,,AB AD AF 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为1AB AD ==,3BC =,所以()()()()()()0,0,0,1,0,0,1,3,0,0,1,0,0,1,1,0,0,1A B C D E F , 所以()()()1,0,1,1,2,0,0,0,1BF DC DE =-==u u u v u u u v u u u v. 设平面CDE 的一个法向量为(),,n x y z =,则0,0.n DC n DE ⎧⋅=⎨⋅=⎩u u u vu u uv 即20,0.x y z +=⎧⎨=⎩ 令2x =,则1y =-, 所以()2,1,0n =-.设直线BF 与平面CDE 所成角为θ,则()2110sin cos ,52n BF u u u v θ⨯-=〈〉==⨯.28(Ⅲ)设((01)BMBDλλ⎤=∈⎦,, 设()111,,M x y z ,则()()1111,,1,1,0x y z λ-=-, 所以1111,,0x y z λλ=-==,所以()1,,0M λλ-,所以()1,,0AM u u u u vλλ=-.设平面AFM 的一个法向量为()000,,m x y z =,则0,0.m AM m AF ⎧⋅=⎨⋅=⎩u u u u v u u u v 因为()0,0,1AF =u u u v ,所以()00010,0.x y z λλ⎧-+=⎨=⎩令0x λ=,则01y λ=-,所以(),1,0m λλ=-.在线段BD 上存在点M ,使得//CE 平面AFM 等价于存在[]0,1λ∈,使得0m CE ⋅=u u u v.因为()1,2,1CE =--u u u v ,由0m CE ⋅=u u u v,所以()210λλ---=, 解得[]20,13λ=∈, 所以线段BD 上存在点M ,使得//CE 平面AFM ,且23BM BD =.8.【2019年3月2019届高三第一次全国大联考(新课标Ⅰ卷)】如图,在直三棱柱111ABC A B C -中,1CA =,2CB =,90BCA ∠=︒,侧棱12AA =,M 为AB 的中点.29(1)求异面直线11,AB CA 所成角的余弦值;(2)若N 为1A A 上一动点,求N 在何位置时1CB ⊥BN ; (3)求二面角1B CM B --的余弦值.【答案】(1)5(2)点N 与点1A 重合(3)66【解析】(1)以C 为坐标原点,CB ,CA ,CC 1所在直线分别为,,x y z 轴建立空间直角坐标系,则()()()()()()11110,0,0,0,1,0,2,0,0,2,0,2,0,0,2,0,1,2,1,,02C A B B C A M ⎛⎫⎪⎝⎭所以()()112,1,2,0,1,2AB CA =-=u u u v u u u v, 所以112,1,20,1,25cos ,595AB CA u u u v u u u v -⋅==⨯,30即异面直线11,AB CA 所成角的余弦值为5. (2)设点N 的坐标为()0,1,,z 则()()12,0,2,2,1,CB BN z ==-u u u v u u u v, ∴()()12,0,22,1,420,CB BN z z u u u v u u u v⋅=⋅-=-+=即2z =,∴当2AN =,即点N 与点1A 重合时,1CB ⊥BN .(3)设平面1MCB 的一个法向量为(),,n x y z =v,11,,02CM ⎛⎫= ⎪⎝⎭u u u u v ,()12,0,2CB =u u u v ,则121001202201y x y CM n x CB n x z z =⎧⎧⎧+=⋅=⎪⎪⎪⇒⇒=-⎨⎨⎨⋅=⎪⎩⎪⎪+==⎩⎩u u u u v r u u u v r ,∴()1,2,1n =-, 易知平面MCB 的一个法向量为()10,0,2CC =u u u u v, ∵126cos ,62112n CC u u uu v v ==++⨯. ∴二面角1B CM B --的余弦值为6. 9.【安徽省芜湖市四校2018-2019学年高二上学期期末】如图所示,正三棱柱111ABC A B C -的底面边长是2,侧棱长是3,D 是AC 的中点.(Ⅰ)求证:1//B C 平面1A BD ;(Ⅱ)在线段1AA 上是否存在一点E ,使得平面11B C E ⊥平面1A BD ?若存在,求出AE 的长;若不存在,说明理由.31【答案】(I )见解析;(II )存在点E ,使得平面11B C E ⊥平面1A BD ,且3AE =【解析】(I )连接1AB 交1A B 于点M ,连接MD .∵三棱柱111ABC A B C -是正三棱柱,∴四边形11BAA B 是矩形, ∴M 为1AB 的中点.∵D 是AC 的中点,∴1//MD B C . 又MD ⊂平面1A BD ,1B C ⊄平面1A BD , ∴1//B C 平面1A BD .(II )作CO AB ⊥于点O ,则CO ⊥平面11ABB A ,以O 为坐标原点建立空间直角坐标系如图,假设存在点E ,设()1,,0E a . ∵12,3,AB AA D==是AC 的中点,∴()()(()()(1111,0,0,1,0,0,3,3,0,3,0,3,3A B C A B C --. ∴()11333,,3,022D BD BA u u u v u u uv ⎛⎛== ⎝⎭⎝⎭.设是平面1A BD 的法向量为()1,,n x y z =u v ,∴111,n BD n BA ⊥⊥u v u u u v u v u u u v, ∴33022230x z x ⎧+=⎪⎨⎪+=⎩,令3x =-()13,2,3n =-u v . ∵()1,,0E a ,则((1111,3,3,1,0,3C E a C B u u u u v u u u u v=-=--.设平面11B C E 的法向量为()2,,n x y z =u u v ,∴21211,n C E n C B ⊥⊥u u v u u u u v u u v u u u u v.∴(33030x a y z x z ⎧+=⎪⎨⎪--=⎩,令3z =233n a u u v ⎛=- -⎝.32∵平面11B C E ⊥平面1A BD ,∴12·0n n =u vu u v, 即333303a -+-=-,解得3a =. ∴存在点E ,使得平面11B C E ⊥平面1ABD ,且33AE =.10.【广东省云浮市2018-2019学年高二上期末】在如图所示的几何体中,四边形CDEF 为正方形,四边形ABCD 为梯形,//AB CD ,22AB BC CD ==,DC FB ⊥,CF ⊥平面ABCD .()1求BE 与平面EAC 所成角的正弦值;()2线段BE 上是否存在点M ,使平面EAC ⊥平面DFM ?若存在,求BMBE的值;若不存在,请说明理由.【答案】(1)23;(2)见解析 【解析】() 1Q 四边形CDEF 为正方形,四边形ABCD 为梯形,//AB CD ,DC FB ⊥,CF ⊥平面ABCD .33∴以C 为原点,CD 为x 轴,CB 为y 轴,CF 为z 轴,建立空间直角坐标系,设222AB BC CD ===,则(0,B 1,0),(1,E 0,1),(2,A 1,0), (0,C 0,0),(0,F 0,1),()1,1,1BE =-u u u r ,(2,CA u u u r=1,0),(1,CE =u u u r0,1),设平面EAC 的法向量(,n x =ry ,)z ,则200n CA x y n CE x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩u u u r r u u u r r ,取1x =,得()1,2,1n =--r ,设BE 与平面EAC 所成角为θ,则2sin 36BE n BE n u u u r ru u u r r θ⋅===⋅⋅. BE ∴与平面EAC 所成角的正弦值为23. ()2线段BE 上不存在点M ,使平面EAC ⊥平面DFM .理由如下:设线段BE 上存在点(,M a b ,)c ,BM BE λ=u u u u r u u u r,01λ≤≤,使平面EAC ⊥平面DFM ,则()(),1,,,a b c λλλ-=-,(),1,M λλλ∴-,(),1,DM λλλ=-u u u u r ,(0,DF =u u u r0,1),34设平面DMF 的法向量(,m x =ry ,)z ,则()100m DM x y z m DF z λλλ⎧⋅=+-+=⎪⎨⋅==⎪⎩u u u u r r u u u r r ,取1x =,得1,,01m r λλ⎛⎫= ⎪-⎝⎭, Q 平面EAC ⊥平面DFM ,平面EAC 的法向量()1,2,1n =--r,2101m n λλ∴⋅=-=-r r,解得[]10,1λ=-∉,∴线段BE 上不存在点M ,使平面EAC ⊥平面DFM .11.【陕西省西安市西安中学2018-2019学年高二上学期期末】如图,在三棱柱中,平面的中点.(1)求证:;(2)求异面直线所成的角的大小.【答案】(1)证明见解析;(2).【解析】(1)证明:由题意易知,设,建立如图所示的空间直角坐标系,则,,则,故.(2),,故异面直线所成的角为.12.【湖北省荆州中学、宜昌一中等“荆、荆、襄、宜四地七校考试联盟”2019届高三上学期期末】在四棱锥P-ABCD中,底面ABCD 是边长为的正方形,平面P AC⊥底面ABCD,P A=PC=(1)求证:PB=PD;(2)若点M,N分别是棱P A,PC的中点,平面DMN与棱PB的交点Q,则在线段BC上是否存在一点H,使得DQ⊥PH,若存在,求BH的长,若不存在,请说明理由.【答案】(1)见证明;(2)见解析【解析】(1)证明:记AC∩BD=O,连结PO,底面ABCD为正方形,OA=OC=OB=OD=2.P A=PC,PO⊥AC,平面P AC∩底面ABCD=AC,PO 平面P AC,35PO⊥底面ABCD.BD 底面ABCD,PO⊥BD.PB=PD.(2)以O为坐标原点,射线OB,OC,OP的方向分别为轴,轴,轴的正方向建立空间直角坐标系如图所示,由(1)可知OP=2.可得P(0,0,2),A(0,-2,0), B(2,0,0), C(0,2,0), D(-2,0,0),可得,M(0,-1,1), N (0,1, 1)..设平面的法向量n =,令,可得n =.记,可得,=0,可得,,解得.可得,.记,可得,,若DQ⊥PH ,则,,解得.故.3613.【北京市西城区2018-2019学年度第一学期高二数学期末】如图,四棱锥的底面是直角梯形,.的中点,(Ⅱ)求二面角的大小;(Ⅲ)线段上是否存在一点,使得直线平面. 若存在,确定点的位置;若不存在,说明理由. 【答案】(Ⅰ)见证明;(Ⅱ);(Ⅲ)见解析【解析】(Ⅰ)因为平面.所以,又.如图,以为原点建立空间直角坐标系.由题意得所以.所以,所以,所以平面.37(Ⅱ)设平面的法向量为,因为.所以,即,令,则.于是.因为⊥平面,所以为平面的法向量,又.所以.因为所求二面角为钝角,所以二面角大小为.(Ⅲ)解:设,,.设平面的法向量,则,即,令. 于是,如果直线平面,那么,解得.所以,存在点为线段靠近点的三等分点,使得直线平面.14.【北京市大兴区2018~2019学年度第一学期期末检测】如图,边长为的正方形和高为的等腰.梯形所在的平面互相垂直,交于点,点为线段上任意一点38(Ⅰ)求证:平面;(Ⅱ)求与平面所成角的正弦值;(Ⅲ)是否存在点使平面与平面垂直,若存在,求出的值,若不存在,说明理由.【答案】(Ⅰ)详见解析(Ⅱ)(Ⅲ)存在,且此时的值为【解析】证明:(Ⅰ)因为正方形中,交于点,所以.因为所以所以为平行四边形.所以.又因为平面平面,所以平面.解:(Ⅱ)取中点,连结,因为梯形为等腰梯形,所以.又因为平面平面,平面,平面平面,所以平面.又因为,所以两两垂直.如图,建立空间直角坐标系,则39,,设平面的法向量为,则,即,令,则,所以.设直线与平面所成角为,,所以直线与平面所成角的正弦值为.(Ⅲ)设,则设平面的法向量为,则,即,令,则.所以.若平面与平面垂直,则.由,得.所以线段OF 上存在点使平面与平面垂直,的值为.15.【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC 是边长为的正三角形,,D,E分别为AB,BC的中点.40(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.【答案】(Ⅰ)见证明;(Ⅱ) (Ⅲ)见解析【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为分别为的中点,所以.由(Ⅰ)知,如图建立空间直角坐标系.41由题意得,,.设平面法向量则令,则.即.平面BAE 法向量.因为,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M ,使平面.理由如下.假设线段上存在点M ,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以解得.这与矛盾.所以在线段上不存在点M ,使平面.42能力提升训练1.【江苏省泰州市田家炳中学2017-2018学年度第二学期高二第二次学情调研】如图,已知矩形ABCD所在平面外一点P ,平面ABCD,E、F分别是AB、PC的中点.求证:(1)共面;(2)求证:.【答案】(1)详见解析;(2)详见解析.【解析】证明:如图,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设,则0,0,2b ,,2b ,0,,为AB的中点,F为PC的中点,0,b ,,b ,2b ,,共面.43(2),.2.根据下列条件,判断相应的线、面位置关系:(1)直线的方向向量分别是;(2)直线的方向向量、平面的法向量分别是;(3)直线的方向向量、平面的法向量分别是;(4)平面的法向量分别是.【答案】(1);(2)相交,且不与垂直;(3)内;(4).【解析】(1)因为,所以,所以,即.(2)因为,所以,所以既不共线也不垂直,即相交,且不与垂直.(3)因为,所以,所以,即内.(4)因为,所以,所以,即.3.【内蒙古集宁一中2018-2019学年高二12月月考】如图所示,正方形与矩形所在平面互相垂直,,点的中点.44(1)求证:;(2)求证:平面.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)证明由题意可得平面,以为坐标原点,所在直线分别为轴,轴,轴,建立如图所示的空间直角坐标系.,,,,故.(2)证明由题意得,设平面的一个法向量为,则,得,取,则是平面的一个法向量,又,且,故,又不在平面内,故平面.454.如图所示,正方体的棱长为分别为上的点,.证明:直线平面.【答案】证明见试题解析.【解析】分别以所在直线为轴,建立空间直角坐标系,如图所示.∵,∴,∴.又,∴,∴,∴.∵是平面的法向量,且平面,∴直线平面.5.如图,在四棱锥中,已知底面是正方形,⊥底面,且的中点.(1)证明:直线平面;(2)证明:平面平面.46【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】如图,以为原点,,所在直线分别为轴、轴、轴建立空间直角坐标系,设,则.(1)易得,设平面的法向量为,则,即,取,可得平面的一个法向量为.又,所以,所以,所以直线平面.(2)方法1:如图,连接于点,连接,则点的坐标为.易得,显然,故,所以.47又⊥底面,所以⊥底面,又平面,所以平面平面.方法2:易得,设平面的法向量为,则,即,取,得,所以平面的一个法向量为.由⊥底面,可得是平面的一个法向量,因为,所以,所以平面平面.6.【北京101中学2018-2019学年上学期高二年级期中考试】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,O为AD中点,AB=1,AD=2,AC=CD=.(2)求二面角P-CD-A的余弦值;(3)在棱PB上是否存在点N,使AN⊥平面PCD,若存在,求线段BN的长度;若不存在,说明理由.【答案】(1)详见解析;(2);(3).【解析】48(1)因为AC=CD,O为AD中点,所以.又AB⊥AD,所以AB∥CO,又AB平面PCO,CO平面PCO,所以AB∥平面PCO.(2)因为PA=PD,所以PO⊥AD.又因为PO平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图建立空间直角坐标系O -.设平面PCD 的法向量为,则,得'令z=2,则.又平面ABCD 的法向量为=(0,0,1),所以.由图形得二面角为锐角,所以二面角的余弦值为.49(3)假设存在点N是棱PB上一点,使得AN⊥平面PCD,则存在∈[0,1]使得,因此.由(2)得平面PCD 的法向量为.因为AN⊥平面PCD,所以,即.解得∈[0,1],所以存在点N是棱PB上一点,使AN⊥平面PCD ,此时.7.【宁夏石嘴山三中2018-2019学年高二(上)第二次月考模拟】如图所示,已知四边形ABCD是平行四边形,P点是四边形ABCD所在平面外一点,连接P A、PB、PC、PD,设点E、F、G、H分别为△P AB、△PBC、△PCD、△PDA的重心.试用向量法证明E、F、G、H四点共面.【答案】见解析【解析】分别延长PE、PF、PG、PH,交对边于M、N、Q、R点,因为E、F、G、H分别是所在三角形的重心,所以M、N、Q、R为所在边的中点,顺次连接M、N、Q、R得到的四边形为平行四边形,且有;如图所示,50。

专题7.6 利用空间向量证明平行与垂直-2021届高考数学一轮复习学霸提分秘籍(解析版)

专题7.6 利用空间向量证明平行与垂直-2021届高考数学一轮复习学霸提分秘籍(解析版)
|a||b|
n1∥n2⇔n1=λn2 n1⊥n2⇔n1·n2=0 n⊥m⇔n·m=0
n∥m⇔n=λm n∥m⇔n=λm n⊥m⇔n·m=0
l1 与 l2 所成的角θ 0,π 2
cos θ=|cos β|=|a·b| |a||b|
1

4.求直线与平面所成的角 设直线 l 的方向向量为 a,平面α的法向量为 n,直线 l 与平面α所成的角为θ,则 sin θ=|cos〈a,n〉|=|a·n|.
法二 P→B=(2,0,-2),F→E=(0,-1,0), F→G=(1,1,-1).设P→B=sF→E+tF→G,
6

即(2,0,-2)=s(0,-1,0)+t(1,1,-1), t=2,
∴ t-s=0, 解得 s=t=2. -t=-2,
∴P→B=2F→E+2F→G, 又∵F→E与F→G不共线,∴P→B,F→E与F→G共面. ∵PB⊄平面 EFG,∴PB∥平面 EFG. 考点二 利用空间向量证明垂直问题 【例 2】 如图所示,已知四棱锥 P-ABCD 的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC =2CD,侧面 PBC⊥底面 ABCD.证明:
-2 -4 k 6.(2019·烟台月考)若直线 l 的方向向量为 a=(1,0,2),平面α的法向量为 n=(-2,0,-4),则直线 l 与平
面α的位置关系为______.
【答案】 l⊥α 【解析】 因为 a=-1n,所以 l⊥α.
2 【考点聚焦】
考点一 利用空间向量证明平行问题
【例 1】 如图,在四面体 ABCD 中,AD⊥平面 BCD,BC⊥CD,AD=2,BD=2 2,M 是 AD 的中点,P
2.(选修 2-1P104 练习 2 改编)已知平面α,β的法向量分别为 n1=(2,3,5),n2=(-3,1,-4),则( )

届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直

届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直

届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直向量方法是解决平行与垂直关系问题的一种常用方法。

在届高考数学一轮复习中,立体几何中的向量方法Ⅰ主要围绕平面中向量的运算和性质展开,通过向量的加减法、数量积、向量积等运算,来验证平行关系和垂直关系。

一、平行关系的向量验证如果两条直线平行,那么它们的方向向量也是平行的。

因此,我们可以通过直线上的两个向量的比较来判断直线是否平行。

具体的步骤如下:1.设有两条直线l1和l2,分别表示为:l1:A1+t1*B1l2:A2+t2*B2其中A1、B1、A2、B2为已知向量。

2.使用向量的坐标表示,将l1和l2中的向量分解为坐标向量,得到:l1:(x1,y1,z1)+t1*(a1,b1,c1)l2:(x2,y2,z2)+t2*(a2,b2,c2)其中x1、y1、z1、x2、y2、z2、a1、b1、c1、a2、b2、c2为已知数。

3.由于l1和l2平行,所以它们的方向向量a1、b1、c1和a2、b2、c2成比例。

即有:a1/a2=b1/b2=c1/c2=k其中k为非零实数。

4.通过比较系数等,求解k的值。

如果k的值存在且不为零,那么说明l1和l2平行;否则,l1和l2不平行。

示例:设有直线l1:r1=(1,2,3)+t(2,3,-1)和直线l2:r2=(4,5,6)+t(-1,-6,4)。

求证l1、l2平行。

解:将l1和l2化为坐标表示:l1:(x1,y1,z1)+t1*(a1,b1,c1)l2:(x2,y2,z2)+t2*(a2,b2,c2)得:l1:(1,2,3)+t1*(2,3,-1)l2:(4,5,6)+t2*(-1,-6,4)。

比较方向向量的系数:2/(-1)=3/(-6)=(-1)/4=k。

令2/(-1)=3/(-6)=(-1)/4=k,解得k=-2因此,由于k存在且不为零,故l1和l2平行。

二、垂直关系的向量验证两条直线垂直可以理解为它们的方向向量的数量积为零。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七篇立体几何与空间向量专题7.06利用空间向量证明平行与垂直【考试要求】1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理;4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;5.能用向量方法解决点到平面、相互平行的平面的距离问题;6.并能描述解决夹角和距离的程序,体会向量方法在研究几何问题中的作用.【知识梳理】1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l 的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示3.异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则4.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.5.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 6.点到平面的距离用向量方法求点B 到平面距离基本思路:确定平面法向量, 在平面内取一点A ,求向量AB →到法向量的投影向量,投影向量的长度即为所要求的距离.如图平面α的法向量为n ,点B 到平面α的距离d =|AB →·n ||n |.【微点提醒】1.平面的法向量是非零向量且不唯一.2.建立空间直角坐标系要建立右手直角坐标系.3.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.4.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)直线的方向向量是唯一确定的.( )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( )(3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π].( ) 【答案】 (1)× (2)× (3)× (4)√【解析】 (1)直线的方向向量不是唯一的,有无数多个;(2)a ⊥α;(3)两个平面的法向量所成的角是这两个平面所成的角或其补角.【教材衍化】2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( ) A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对【答案】 C【解析】 ∵n 1≠λn 2,且n 1·n 2=-23≠0,∴α,β相交但不垂直.3.(选修2-1P112A4改编)已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( ) A.30° B.60°C.120°D.150°【答案】 A【解析】 由于cos 〈m ,n 〉=-12,所以〈m ,n 〉=120°,所以直线l 与α所成的角为30°.【真题体验】4.(2019·天津和平区月考)正方体ABCD -A 1B 1C 1D 1的棱长为a ,则平面AB 1D 1与平面BDC 1的距离为( ) A.2a B.3aC.23a D.33a 【答案】 D【解析】 显然A 1C ⊥平面AB 1D 1,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面AB 1D 1的一个法向量为n =(a ,-a ,a ),A (a ,0,0),B (a ,a ,0),BA →=(0,-a ,0),则两平面间的距离d =|BA →·n ||n |=33a .5.(2018·北京朝阳区检测)已知平面α的一个法向量为(1,2,-2),平面β的一个法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2 B.-4C.4D.-2【答案】 C【解析】 因为α∥β,所以1-2=2-4=-2k ,所以k =4. 6.(2019·烟台月考)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为______. 【答案】 l ⊥α【解析】 因为a =-12n ,所以l ⊥α.【考点聚焦】考点一 利用空间向量证明平行问题【例1】 如图,在四面体ABCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD . 【答案】见解析【解析】证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0).∵CF →=14CD →,设点F 坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎨⎧x =34x 0,y =24+34y 0,∴OF →=⎝⎛⎭⎫34x 0,24+34y 0,0又由法一知PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0,∴OF →=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD . 【规律方法】(1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .【答案】见解析【解析】证明 ∵平面PAD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一 ∴EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, ∵PB →=(2,0,-2),∴PB →·n =0,∴n ⊥PB →, ∵PB ⊄平面EFG ,∴PB ∥平面EFG .法二 PB →=(2,0,-2),FE →=(0,-1,0), FG →=(1,1,-1).设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2. ∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)PA ⊥BD ;(2)平面PAD ⊥平面PAB . 【答案】见解析【解析】证明 (1)取BC 的中点O ,连接PO , ∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),PA →=(1,-2,-3).∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →,∴PA ⊥BD .(2)取PA 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·PA →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥PA →,即DM ⊥PA .又∵PA ∩PB =P ,∴DM ⊥平面PAB . ∵DM ⊂平面PAD ,∴平面PAD ⊥平面PAB . 【规律方法】(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. ③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.【训练2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .【答案】见解析【解析】证明 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 法二 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴、y 轴、z 轴建立空间直角坐标系, 则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3), B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ), BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n ,故AB 1⊥平面A 1BD .考点三 用空间向量解决有关位置关系的探索性问题 角度1 与平行有关的探索性问题【例3-1】 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由. 【答案】见解析【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ).设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),设n 3=(x 3,y 3,z 3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .角度2 与垂直有关的探索性问题【例3-2】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面PAC ⊥平面BCEF ?若存在,求出BP PE的值;若不存在,请说明理由.【答案】见解析【解析】(1)证明 ∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF , ∴AF ⊥平面ABCD .∵AC ⊂平面ABCD ,∴AF ⊥AC .过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3,∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB ,∵AB ∩AF =A ,∴AC ⊥平面FAB ,∵BF ⊂平面FAB ,∴AC ⊥BF .(2)解 存在.由(1)知,AF ,AB ,AC 两两垂直.以A 为坐标原点,AB →,AC →,AF →的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合,设BP PE=λ,则λ>0,P ⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面PAC 的法向量为m =(x ,y ,z ).由AP →=⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎨⎧m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎪⎨⎪⎧y =0,z =λ-22λx ,令x =1,则z =λ-22λ, 所以m =⎝⎛⎭⎫1,0,λ-22λ为平面PAC 的一个法向量. 同理,可求得n =⎝⎛⎭⎫1,33,1为平面BCEF 的一个法向量. 当m ·n =0,即λ=23时,平面PAC ⊥平面BCEF , 故存在满足题意的点P ,此时BP PE =23. 【规律方法】 解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y ,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.【训练3】 如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP的值;若不存在,说明理由. 【答案】见解析【解析】(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD ,所以AB ⊥平面PAD ,所以AB ⊥PD .又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB .(2)解 取AD 的中点O ,连接PO ,CO .因为PA =PD ,所以PO ⊥AD .因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD .如图,建立空间直角坐标系O -xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1).设M 是棱PA 上一点,则存在λ∈[0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱PA 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14. 【反思与感悟】1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直.【易错防范】1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.若直线l 的一个方向向量为a =(2,5,7),平面α的一个法向量为u =(1,1,-1),则( )A.l ∥α或l ⊂αB.l ⊥αC.l ⊂αD.l 与α斜交【答案】 A【解析】 由条件知a·u =2×1+5×1+7×(-1)=0,所以a ⊥u ,故l ∥α或l ⊂α.故选A.2.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( )A.a ∥c ,b ∥cB.a ∥b ,a ⊥cC.a ∥c ,a ⊥bD.以上都不对【答案】 C【解析】 ∵c =(-4,-6,2)=2(-2,-3,1)=2a ,∴a ∥c ,又a ·b =-2×2+(-3)×0+1×4=0,∴a ⊥b .3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A.相交B.平行C.在平面内D.平行或在平面内 【答案】 D【解析】 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内.4.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A.P (2,3,3)B.P (-2,0,1)C.P (-4,4,0)D.P (3,-3,4) 【答案】 A【解析】 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( )A.斜交B.平行C.垂直D.MN 在平面BB 1C 1C 内【答案】 B 【解析】 建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3,则M ⎝⎛⎭⎫a ,2a 3,a 3,N ⎝⎛⎭⎫2a 3,2a 3,a ,MN →=⎝⎛⎭⎫-a 3,0,2a 3. 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a ,0)为平面BB 1C 1C 的一个法向量.因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C ,所以MN ∥平面BB 1C 1C .二、填空题6.(2019·青岛调研)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.【答案】 257【解析】 由条件得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4, ∴x +y =407-157=257. 7.(2018·合肥月考)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.【答案】 垂直 【解析】 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A (0,0,0),M ⎝⎛⎭⎫0,1,12,O ⎝⎛⎭⎫12,12,0,N ⎝⎛⎭⎫12,0,1.AM →·ON →=⎝⎛⎭⎫0,1,12·⎝⎛⎭⎫0,-12,1=0,∴ON 与AM 垂直.8.设直线l 的方向向量为a ,平面α的法向量为n =(2,2,4),若a =(1,1,2),则直线l 与平面α的位置关系为________;若a =(-1,-1,1),则直线l 与平面α的位置关系为________.【答案】 l ⊥α l ∥α或l ⊂α【解析】 当a =(1,1,2)时,a =12n ,则l ⊥α; 当a =(-1,-1,1)时,a·n =(-1,-1,1)·(2,2,4)=0,则l ∥α或l ⊂α.三、解答题9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .【答案】见解析【解析】证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA ,DP ,DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .10.如图正方形ABCD 的边长为22,四边形BDEF 是平行四边形,BD 与AC 交于点G ,O 为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ;(2)求证:CF ⊥平面AEF .【答案】见解析【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形,∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3).(1)设平面BCF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1).又四边形BDEF 为平行四边形,∴DE →=BF →=(-1,-2,3),∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3),∴AE →·n =33-43+3=0,∴AE →⊥n ,又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0,∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE ,又AE ∩AF =A ,AE ,AF ⊂平面AEF ,∴CF ⊥平面AEF .【能力提升题组】(建议用时:20分钟)11.如图所示,在平行六面体ABCDA 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.以上说法正确的个数为( )A.1B.2C.3D.4【答案】 C【解析】 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.12.(2019·成都调研)如图,在长方体ABCDA 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( )A.平行B.异面C.垂直D.以上都不对【答案】 C 【解析】 以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系Dxyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0), A (22,0,0),M (2,2,0).∴PM →=(2,2,0)-(0,1,3)=(2,1,-3),AM →=(2,2,0)-(22,0,0)=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .13.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.【答案】 1【解析】 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系, 设CE =x ,DF =y ,则易知E (x ,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1), ∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ ⊥平面PQMN ?若存在,求出实数λ的值;若不存在,说明理由.【答案】见解析【解析】(1)证明 以D 为坐标原点,建立如图所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →=(-1,0,λ-2).当λ=1时,FP →=(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±2 2.故存在λ=1±22,使平面EFPQ⊥平面PQMN.。

相关文档
最新文档