最新二次函数的基础知识和经典练习题
二次函数知识点梳理及经典练习(超详细)
⼆次函数知识点梳理及经典练习(超详细)⼆次函数知识点梳理及经典练习【知识点梳理】⼀、基本概念:1.⼆次函数的概念:⼀般地,形如2y ax bx c=++(a b ca≠)的函数,叫做,,是常数,0⼆次函数。
这⾥需要强调:和⼀元⼆次⽅程类似,⼆次项系数0a≠,⽽b c,可以为零.⼆次函数的定义域是全体实数.2. ⼆次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于⾃变量x的⼆次式,x的最⾼次数是2.⑵a b c,,是常数,a是⼆次项系数,b是⼀次项系数,c是常数项.⼆、⼆次函数基本形式1. ⼆次函数基本形式:2=的性质:y axa 的绝对值越⼤,抛物线的开⼝越⼩y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4.()2y a x h k =-+的性质:三、⼆次函数图象的平移 1. 平移步骤:⽅法1:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移⽅法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位⽅法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位, c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)2. 平移规律: “h 值正右移,负左移;k 值正上移,负下移”.即“左加右减,上加下减”.四、⼆次函数()2y a x h k =-+与2y ax bx c =++的⽐较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配⽅可以得到前者,即22424b ac b y a x a a -?=++,其中2424b ac b h k a a -=-=,.五、⼆次函数2y ax bx c =++图象的画法五点绘图法:利⽤配⽅法将⼆次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开⼝⽅向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.⼀般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,、()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下⼏点:开⼝⽅向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、⼆次函数2y ax bx c =++的性质1. 当0a >时,抛物线开⼝向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2bx a<-时,y 随x 的增⼤⽽减⼩;当2bx a>-时,y 随x 的增⼤⽽增⼤;当2bx a=-时,y 有最⼩值244ac b a -.2. 当0a <时,抛物线开⼝向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2bx a<-时,y 随x 的增⼤⽽增⼤;当2bx a>-时,y 随x 的增⼤⽽减⼩;当2bx a=-时,y 有最⼤值244ac b a -.七、⼆次函数解析式的表⽰⽅法 1.⼆次函数解析式表⽰⽅法:(1)⼀般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何⼆次函数的解析式都可以化成⼀般式或顶点式,但并⾮所有的⼆次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以⽤交点式表⽰.⼆次函数解析式的这三种形式可以互化. 2.⼆次函数解析式的确定:根据已知条件确定⼆次函数解析式,通常利⽤待定系数法.⽤待定系数法求⼆次函数的解析式必须根据题⽬的特点,选择适当的形式,才能使解题简便.⼀般有如下⼏种情况:(1)已知抛物线上三点的坐标,⼀般选⽤⼀般式;(2)已知抛物线顶点或对称轴或最⼤(⼩)值,⼀般选⽤顶点式;(3)已知抛物线与x 轴的两个交点的横坐标,⼀般选⽤两根式;(4)已知抛物线上纵坐标相同的两点,常选⽤顶点式.⼋、⼆次函数的图象与各项系数之间的关系 1. ⼆次项系数a : 0a ≠.⑴当0a >时,抛物线开⼝向上,a 的值越⼤,开⼝越⼩,反之a 的值越⼩,开⼝越⼤;⑵当0a <时,抛物线开⼝向下,a 的值越⼩,开⼝越⼩,反之a 的值越⼤,开⼝越⼤.总结:a 决定了抛物线开⼝的⼤⼩和⽅向,a 的正负决定开⼝⽅向,a 的⼤⼩决定开⼝⼤⼩. 2. ⼀次项系数b : 在⼆次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结:在a 确定的前提下,b 决定了抛物线对称轴的位置.▲ab 符号判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则03. 常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上⽅,即抛物线与y 轴交点的纵坐标为正;⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c <时,抛物线与y 轴的交点在x 轴下⽅,即抛物线与y 轴交点的纵坐标为负.总结:c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯⼀确定的.九、⼆次函数图象的对称⼆次函数图象的对称⼀般有五种情况,可以⽤⼀般式或顶点式表达 1. 关于x 轴对称:2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称:2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称:(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称: ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然⽆论作何种对称变换,抛物线的形状⼀定不会发⽣变化,因此永远不变.求抛物线的对称抛物线的表达式时,习惯上先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开⼝⽅向,再确定其对称抛物线的顶点坐标及开⼝⽅向,然后再写出其对称抛物线的表达式.⼗、⼆次函数与⼀元⼆次⽅程:1.⼆次函数与⼀元⼆次⽅程的关系(⼆次函数与x 轴交点情况):⼀元⼆次⽅程20ax bx c ++=是⼆次函数2y ax bx c =++当函数值0y =时的特殊情况. 图像与x 轴的交点个数:(1)当240b ac ?=->时,图像与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是⼀元⼆次⽅程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.(2)当0?=时,图像与x 轴只有⼀个交点;(3)当0?<时,图像与x 轴没有交点.①当0a >时,图像落在x 轴的上⽅,⽆论x 为任何实数,都有0y >;②当0a <时,图像落在x 轴的下⽅,⽆论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图像与y 轴⼀定相交,交点坐标为(0,)c ;3. ⼆次函数常⽤解题⽅法总结:⑴求⼆次函数的图像与x 轴的交点坐标,需转化为⼀元⼆次⽅程;⑵求⼆次函数的最⼤(⼩)值需要利⽤配⽅法将⼆次函数由⼀般式转化为顶点式;⑶根据图像的位置判断⼆次函数2y ax bxc =++中a ,b ,c 的符号,或由⼆次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷⼆次函数的图像关于对称轴对称,可利⽤这⼀性质,求和已知⼀点对称的点坐标,或已知与x 轴的⼀个交点坐标,可由对称性求出另⼀个交点坐标.⑸与⼆次函数有关的还有⼆次三项式,⼆次三项式2(0)ax bx c a ++≠本⾝就是所含字母x 的⼆次函数;下⾯以0a >时为例,揭⽰⼆次函数、⼆次三项式和⼀元⼆次⽅程之间的内在联系:【基础题型概览】⼀、⼆次函数的基本概念 1、y=mx m2+3m+2是⼆次函数,则m 的值为()A 、0,-3B 、0,3C 、0D 、-32、关于⼆次函数y=ax 2+b ,命题正确的是() A 、若a>0,则y 随x 增⼤⽽增⼤ B 、x>0时y 随x 增⼤⽽增⼤。
二次函数各知识点、考点、典型例题及对应练习(超全)
二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2ba,244ac b a -).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2图1专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.图2ABCD图1菜园墙例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )x6.17 6.18 6.19 6.202y ax bx c =++0.03- 0.01- 0.02 0.04A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<图2考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.图1。
二次函数各知识点、考点、典型例题及练习
二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年武汉市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。
○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。
○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。
○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。
○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。
○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。
○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。
○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。
○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。
点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。
二次函数知识点归纳及相关习题(含答案)
a 的符号
开口方向 向上
顶点坐标
对称轴
性质
a0
0 ,0 0 ,0
y轴
x 0 时, y 随 x 的增大而增大; x 0 时, y 随 x 的增大而减小;x 0 时,y 有最小值 0 . x 0 时, y 随 x 的增大增大而减小; x 0 时, y 随 x 的增大而增大; x 0 时, y 有最 大值 0 .
2
二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
关于 x 轴对称 y ax 2 bx c 关于 x 轴对称后,得到的解析式是 y ax 2 bx c ;
y a x h k 关于 x 轴对称后,得到的解析式是 y a x h k ;
2
二次函数由特殊到一般, 可分为以下几种形式: ① y ax ; ② y ax k ; ③ y ax h ;
2 2
2
b 4ac b 2 . ,k 2a 4a
2
顶点式: y a( x h) 2 k ( a , h , k 为常数, a 0 ) ; 两根式: y a( x x1 )( x x2 ) ( a 0 , x1 , x2 是抛物线与 x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交 2 点式,只有抛物线与 x 轴有交点,即 b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次 函数解析式的这三种形式可以互化. 二次函数 y ax 的性质
抛物线与 x 轴的交点:二次函数 y ax bx c 的图像与 x 轴的两个交点的横坐标 x1 、 x 2 ,
第1章二次函数全章复习与测试(原卷版)
第1章二次函数全章复习与测试【知识梳理】一.二次函数的定义(1)二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义.二.二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②描点:在平面直角坐标系中描出表中的各点.③连线:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.三.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.四.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.五.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).六.图象法求一元二次方程的近似根利用二次函数图象求一元二次方程的近似根的步骤是:(1)作出函数的图象,并由图象确定方程的解的个数;(2)由图象与y=h的交点位置确定交点横坐标的范围;(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).七.二次函数与不等式(组)二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系①函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围.②利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.八.根据实际问题列二次函数关系式根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.九.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.十.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.十一.二次函数在给定区间上的最值二次函数在给定区间上的最值.对y=ax2+bx+c,(p≤x≤q),a>0时,当﹣≥q,则x=q时,y取得最小值;x=p时,y取得最大值当﹣≤p,则x=q时,y取得最大值;x=p时,y取得最小值当q≥﹣≥时,x=﹣时,y取得最小值,x=p时,y取最大值当≥﹣≥p时,x=﹣,y取得最小值,x=q时,y取得最大值a<0时,同样进行分类讨论.【考点剖析】一.二次函数的定义(共4小题)1.(2022秋•金华期末)若y=(m﹣2)x是二次函数,则m的值为()A.±2B.2C.﹣2D.±2.(2022秋•诸暨市期末)已知y关于x的二次函数解析式为y=(m﹣2)x|m|,则m=()A.±2B.1C.﹣2D.±13.(2022秋•东阳市期中)下列函数是二次函数的是()A.y=x2B.y=x+1C.y=D.y=2x4.(2023•天台县一模)如图,在正方形ABCD中,AB=3,点E,F分别为AB,BC上的点,DE,AF交于点G,AE=BF=x.若四边形CDGF与△AEG的面积分别为S1,S2,则S1﹣S2与x的函数关系为()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系二.二次函数的图象(共2小题)5.(2023•拱墅区模拟)二次函数y=ax2﹣2x+1和一次函数y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.6.(2023•宁波模拟)下列图象中,函数y=ax2﹣a(a≠0)与y=ax+a的图象大致是()A.B.C.D.三.二次函数的性质(共3小题)7.(2023•台州)抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x2<0,则直线y=ax+k一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限8.(2023•瓯海区四模)已知两点A(﹣2,y1),B(4,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y0≤y1<y2,则x0的取值范围是()A.x0≤﹣2B.x0<1C.﹣2<x0<1D.﹣2<x0<49.(2023•鹿城区校级模拟)二次函数y=ax2﹣2ax+c(a,c是常数,a≠0),下列选项正确的是()A.若图象经过(﹣1,1),(8,8),则a<0B.若图象经过(﹣1,1),(3,1),则a<0C.若图象经过(﹣1,1),(﹣5,5),则a>0D.若图象经过(﹣1,1),(8,﹣8),则a>0四.二次函数图象与系数的关系(共2小题)10.(2023•鄞州区校级一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b>a+c;③4a+2b+c>0;④2c>3b;⑤a+b>m(am+b)(m≠1的实数)其中正确结论有()个A.2B.3C.4D.511.(2022秋•滨江区期末)已知二次函数y=(m﹣2)x2(m为实数,且m≠2),当x≤0时,y随x增大而减小,则实数m的取值范围是()A.m<0B.m>2C.m>0D.m<2五.二次函数图象上点的坐标特征(共4小题)12.(2023•西湖区校级二模)已知二次函数y=x2+ax+b=(x•x1)(x﹣x2)(a,b,x1,x2为常数),若1<x1<x2<3,记t=a+b,则()A.﹣3<t<0B.﹣1<t<0C.﹣1<t<3D.0<t<313.(2023•温州模拟)已知二次函数上的两点P(x1,y1),Q(x2,y2)满足x1=3+x2,则下列结论中正确的是()A.若,则y1>y2>﹣1B.若,则y2>0>y1C.若x1<﹣,则y1>0>y2D.若﹣<x1<1,则y2>y1>014.(2023•衢州二模)已知二次函数y=a(x﹣h)2+k的图象经过(0,4),(8,5)两点,若a<0,0<h<8,则h的值可能为()A.1B.2C.4D.615.(2023•永嘉县二模)若二次函数y=﹣x2+bx+c的图象经过三个不同的点A(0,4),B(m,4),C(3,n),则下列选项正确的是()A.若m=4,则n<4B.若m=2,则n<4C.若m=﹣2,则n>4D.若m=﹣4,则n>4六.二次函数图象与几何变换(共4小题)16.(2023•瓯海区二模)将抛物线y=3x2先向左平移1个单位,再向下平移2个单位,所得抛物线的表达式为()A.y=3(x﹣1)2+2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2﹣217.(2023•绍兴模拟)将二次函数y=x2﹣2x﹣3的图象,先向右平移2个单位,再向上平移2个单位后的函数表达式为()A.y=(x﹣3)2﹣6B.y=(x+1)2﹣6C.y=(x﹣3)2﹣2D.y=(x+1)2﹣2 18.(2023•绍兴模拟)二次函数的图象经过平移后得到新的抛物线,此抛物线恰好经过点(﹣2,﹣2),下列平移方式中可行的是()A.先向左平移8个单位,再向下平移4个单位B.先向左平移6个单位,再向下平移7个单位C.先向左平移4个单位,再向下平移6个单位D.先向左平移7个单位,再向下平移5个单位19.(2023•舟山二模)抛物线y=﹣x2+2x+3与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m,y1),N(m+1,y2)为图形G上两点,若y1>y2,则m的取值范围是()A.B.C.D.七.二次函数的最值(共3小题)20.(2023•衢江区三模)在平面直角坐标系中,过点P(0,p)的直线AB交抛物线y=x2于A,B两点,已知A(a,b),B(c,d),且a<c,则下列说法正确的是()A.当ac>0且a+c=1时,p有最小值B.当ac>0且a+c=1时,p有最大值C.当ac<0且c﹣a=1时,p有最小值D.当ac<0且c﹣a=1时,p有最大值21.(2023春•乐清市月考)已知函数y=ax2+2ax+1在﹣3≤x≤2上有最大值9,则常数a的值是()A.1B.C.或﹣8D.1或﹣822.(2023•越城区三模)二次函数y=﹣x2+bx+c的图象经过点(1,0),(2,3),在a≤x≤6范围内有最大值为4,最小值为﹣5,则a的取值范围是()A.a≥6B.3≤a≤6C.0≤a≤3D.a≤0八.待定系数法求二次函数解析式(共10小题)23.(2022秋•温州期末)若抛物线y=x2﹣6x+c的顶点在x轴,则c=.24.(2022秋•滨江区期末)已知一个二次函数图象的形状与抛物线y=2x2相同,它的顶点坐标为(1,﹣3),则该二次函数的表达式为.25.(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.26.(2023•临平区校级二模)已知二次函数y=ax2+bx﹣3a(a,b是实数,a≠0).(1)若该函数图象经过点(1,﹣4),(0,﹣3).①求该二次函数表达式;②若A(x1,m),B(x2,m),C(s,t)是抛物线上的点,且s=x1+x2,求t的值;(2)若该二次函数满足当x≥0时,总有y随x的增大而减小,且过点(1,3),当a<b时,求4a+b的取值范围.27.(2023•西湖区校级三模)已知二次函数y1=ax(x+b)(a≠0)和一次函数y2=ax+m(a≠0).(1)若二次函数y1的图象过(1,0),(2,2)点,求二次函数的表达式;(2)若一次函数y2与二次函数y1的图象交于x轴上同一点A,且这个点不是原点.①求证:m=ab;②若y2y1的另一个交点B为二次函数y1的顶点,求b的值.28.(2023•绍兴)已知二次函数y=﹣x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标;②当﹣1≤x≤3时,求y的取值范围;(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.29.(2023•钱塘区三模)已知函数y=x2+bx+c(其中b、c为常数).(1)当c=﹣1,且函数图象经过点(1,2)时,求函数的表达式及顶点坐标.(2)若该函数图象的顶点坐标为(m,k),且经过另一点(k,m),求m﹣k的值.(3)若该函数图象经过A(x1,y1),B(x1﹣t,y2),C(x1﹣2t,y3)三个不同点,记M=y2﹣y1,N=y3﹣y2,求证:M<N.30.(2023•舟山三模)在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B(0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)若﹣1≤x≤d时,﹣1≤y≤8,则d的取值范围是.(3)点P和点A之间(包括端点)的函数图象称为图象G,当图象G的最大值和最小值差是5时,求m的值.31.(2023•西湖区校级三模)在平面直角坐标系中,二次函数图象的表达式为y=ax2+(a+1)x+b,其中a ﹣b=4.(1)若此函数图象过点(1,3),求这个二次函数的表达式.(2)若(x1,y1)(x2,y2)为此二次函数图象上两个不同点,当x1+x2=2时,y1=y2,求a的值.(3)若点(﹣1,t)在此二次函数图象上,且当x≥﹣1时y随x的增大而增大,求t的范围.32.(2023•龙湾区模拟)已知二次函数y=ax2﹣4x+3(a>0).(1)若图象经过点(﹣1,8),求该二次函数的表达式及顶点坐标.(2)当0≤x≤m时,1≤y≤9,求a和m的值.九.二次函数的三种形式(共1小题)33.(2023•定海区模拟)将二次函数y=x2﹣4x+5化为y=(x﹣h)2+k的形式为.一十.抛物线与x轴的交点(共2小题)34.(2023•余杭区校级模拟)已知,二次函数y=x2+2x+c的图象与x轴交于点A(x1,0),B(x2,0)(x1<x2).若图象上另有一点P(m,n),则()A.当n>0时,m<x1B.当n>0时,m>x2C.当n<0时,m<0D.当n<0时,x1<m<x235.(2023春•镇海区期末)如图,二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B(2,3).(1)求b,c的值;(2)结合图象,求当y>0时x的取值范围;(3)平移该二次函数图象,使其顶点为A点.请说出平移的方法,并求平移后图象所对应的二次函数的表达式.一十一.图象法求一元二次方程的近似根(共1小题)36.(2022秋•嘉兴期末)二次函数y=ax2+bx+c(a≠0)中,自变量x与函数y的对应值如下表:x…﹣2﹣101234…y…m﹣4.5m﹣2m﹣0.5m m﹣0.5m﹣2m﹣4.5…若1<m<1.5,则下面叙述正确的是()A.该函数图象开口向上B.该函数图象与y轴的交点在x轴的下方C.对称轴是直线x=mD.若x1是方程ax2+bx+c=0的正数解,则2<x1<3一十二.二次函数与不等式(组)(共2小题)37.(2023•余杭区模拟)已知二次函数y1=(ax+1)(bx+1),y2=(x+a)(x+b),(a,b为常数,且ab≠0),则下列判断正确的是()A.若ab<1,当x>1时,则y1>y2B.若ab>1,当x<﹣1时,则y1>y2C.若ab<﹣1,当x<﹣1时,则y1>y2D.若ab>﹣1,当x>1时,则y1>y238.(2022秋•嘉兴期末)我们规定:形如y=ax2+b|x|+c(a<0)的函数叫做“M型”函数.如图是“M型”函数y=﹣x2+4|x|﹣3的图象,根据图象,以下结论:①图象关于y轴对称;②不等式x2﹣4|x|+3<0的解是﹣3<x<﹣1或1<x<3;③方程﹣x2+4|x|﹣3=k有两个实数解时k<﹣3.正确的是()A.①②B.②③C.①③D.①②③一十三.根据实际问题列二次函数关系式(共3小题)39.(2022秋•西湖区期末)在一个边长为1的正方形中挖去一个边长为x (0<x <1)的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数表达式为( ) A .y =x 2B .y =1﹣x 2C .y =x 2﹣1D .y =1﹣2x40.(2022秋•南湖区校级期中)某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x 元/件时,获利润y 元,则y 与x 的函数关系为( ) A .y =(6﹣x )(500+x ) B .y =(13.5﹣x )(500+200x )C .y =(6﹣x )(500+200x )D .以上答案都不对41.(2023•洞头区二模)根据以下素材,探索完成任务.如何设计打印图纸方案?素材1如图1,正方形ABCD 是一张用于3D 打印产品的示意图,它由三个区块(Ⅰ,Ⅱ,Ⅲ)构成.已知AB =20cm ,点E ,F 分别在BC 和AB 上,且BE =BF ,设BE =xcm (0<x <20).素材2为了打印精准,拟在图2中的BC 边上设置一排间距为1cm 的定位坐标(B 为坐标原点),计算机可根据点E 的定位坐标精准打印出图案. 问题解决任务1确定关系用含x 的代数式表示:区块Ⅰ的面积=、区块Ⅱ的面积=、区块Ⅲ的面积=.任务2拟定方案为美观,拟将区块Ⅲ分割为甲、乙两个三角形区域,并要求区域乙是以DE为腰的等腰三角形,求所有方案中区域乙的面积或函数表达式.任务3优化设计经调查发现区域乙的面积为范围内的整数时,此时的E点为最佳定位点,请写出所有的最佳定位点E的坐标.一十四.二次函数的应用(共3小题)42.(2023•丽水)一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t﹣5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.243.(2023•定海区模拟)如图,C是线段AB上一动点,分别以AC、BC为边向上作正方形ACDE、BCFG,连结EG交DC于K.已知AB=10,设AC=x(5<x<10),记△EDK的面积为S1,记△EAC的面积为S2.则与x的函数关系为()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系44.(2023•路桥区一模)如图,不考虑空气阻力,以一定的速度将小球沿斜上方击出时,小球飞行的高度是飞行时间的二次函数.现以相同的初速度沿相同的方向每隔t秒依次击出三个质地一样的小球,小球在各自击出后1秒到达相同的最大飞行高度,若整个过程中同时出现在空中的小球个数最大值为2(不考虑小球落地后再弹起),则t的取值范围是()A.0<t<1B.1≤t<2C.D.一十五.二次函数综合题(共4小题)45.(2023•永嘉县校级模拟)对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n 的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥146.(2023•金东区二模)定义:若n为常数,当一个函数图象上存在横、纵坐标和为n的点,则称该点为这个函数图象关于n的“恒值点”,例如:点(1,2)是函数y=2x图象关于3的“恒值点”.(1)判断点(1,3),(2,8),(3,7)是否为函数y=5x﹣2图象关于10的“恒值点”.(2)如图1,抛物线y=2x2+bx+2与x轴交于A,B两点(A在B的左侧),现将抛物线在x轴下方的部分沿x轴翻折,抛物线的其余部分保持不变,所得的新图象如图2所示.①求翻折后A,B之间的抛物线解析式.(不必写出x的取值范围)②当新图象上恰好有3个关于c的“恒值点”时,请用含b的代数式表示c.47.(2023•浙江)在二次函数y=x2﹣2tx+3(t>0)中.(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为﹣2,求出t的值;(3)如果A(m﹣2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3.求m的取值范围.48.(2023•金华模拟)定义:若一个函数图象上存在横坐标是纵坐标两倍的点,则称该点为这个函数图象的“倍值点”,例如:点(2,1)是函数y=x﹣1的图象的“倍值点”.(1)分别判断函数y=x+1,y=x2﹣x的图象上是否存在“倍值点”?如果存在,求出“倍值点”的坐标;如果不存在,说明理由;(2)设函数y=(x>0),y=﹣x+b的图象的“倍值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为2时,求b的值;(3)若函数y=x2﹣3(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2,当W1,W2两部分组成的图象上恰有2个“倍值点”时,直接写出m的取值范围.【过关检测】一.选择题(共8小题)1.抛物线y=5(x﹣2)2+4的顶点坐标是()A.(2,4)B.(4,2)C.(﹣2,4)D.(﹣4,2)2.若A(a,b),B(a﹣2,c)两点均在函数y=(x﹣1)2﹣2021的图象上,且1≤a<2,则b与c的大小关系为()A.b<c B.b≤c C.b>c D.b≥c3.二次函数y=ax2+bx+c(a≠0)与x轴的两个交点横坐标x1,x2满足|x1|+|x2|=2.当时,该函数有最大值4,则a的值为()A.﹣4B.﹣2C.1D.24.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(﹣2,0)C.(﹣1,﹣3)D.(1,﹣3)5.已知二次函数的图象(0≤x≤3.4)如图.关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值2,无最小值B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2D.有最大值1.5,有最小值﹣26.下列函数中,其图形与x轴有两个交点的为()A.y=﹣20(x﹣11)2﹣2011B.y=20(x﹣11)2+2011C.y=20(x+11)2+2011D.y=﹣20(x+11)2+20117.由二次函数y=2x2﹣12x+20,可知正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为2D.当x≤3时,y随x的增大而增大8.已知抛物线y=ax2+bx+c开口向下,与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①2a+b=0;②﹣1≤a≤﹣;③对于任意实数m,a (m2﹣1)+b(m﹣1)≤0总成立;④关于x的方程ax2+bx+c﹣n+1=0有两个不相等的实数根,其中结论正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共7小题)9.如果将抛物线y=x2+2向左平移1个单位,那么所得新抛物线的表达式是.10.已知a,b,c满足a+c=b,4a+2b+c=0,则关于x的二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点间的距离为.11.如图,反比例函数y=(a≠0)的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则m=.12.已知x=a和x=a+b(b>0)时,代数式x2﹣2x﹣3的值相等,则当x=6a+3b﹣2时,代数式x2﹣2x﹣3的值等于.13.合肥市2013年平均房价为6500元/m2.若2014年和2015年房价平均增长率为x,则预计2015年的平均房价y(元/m2)与x之间的函数关系式为.14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0)、B(x2,0),且x1<x2,点P(m,n)是图象上一点,有如下结论:①当n<0时,m<0;②当m>x2时,n>0;③当n<0时,x1<m<x2;④当n>0时,x<x1;⑤当m时,n随着m的增大而减小,其中正确的有.15.直线y=x+b与抛物线交于A,B两点,O为坐标原点,若OA⊥OB,则b的值是.三.解答题(共7小题)16.若二次函数y=﹣x2+2(k﹣1)x+2k﹣k2的图象经过原点,求:(1)二次函数的解析式;(2)它的图象与x轴交点O、Q及顶点C组成的△OAC的面积.17.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式;(整数点的横、纵坐标都为整数)(3)若点P(x1,y1)与Q(x1+n,y2)在(2)中抛物线上(点P、Q不重合),且y1=y2,求代数式4x12+12x1n+5n2+16n+200的值.18.如图,已知二次函数y=x2+bx+c的图象分别经过点A(1,0),B(0,3).(1)求该函数的解析式;(2)在抛物线上是否存在一点P,使△APO的面积等于4?若存在,求出点P的坐标;若不存在,说明理由.19.一个圆形喷水池的中心竖立一根高为2.25m顶端装有喷头的水管,喷头喷出的水柱呈抛物线形.当水柱与池中心的水平距离为1m时,水柱达到最高处,高度为3m.(1)求水柱落地处与池中心的距离;(2)如果要将水柱的最大高度再增加1m,水柱的最高处与池中心的水平距离以及落地处与池中心的距离仍保持不变,那么水管的高度应是多少?20.某商店购进一批进价为40元/件的日用商品,第一个月,按进价提高50%的价格出售,售出600件;第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图所示.(1)请直接写出y与x之间的函数表达式:;自变量x的取值范围为;(2)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?21.三、求直线y =2x +8与抛物线y =x 2的交点坐标A 、B 及△AOB 的面积.22.已知二次函数2()20y ax x c a =++≠的图象与x 轴的负半轴和正半轴分别交于A ,B 两点,与y 轴的负半轴交于点C ,3OA OC ==.(1)求二次函数的表达式及B 点坐标;(2)点D 位于第三象限且在二次函数的图象上,求DAC △的面积最大时点D 的坐标.。
初三二次函数经典题型及解析
初三二次函数经典题型及解析一、二次函数基础概念题型初三二次函数的概念可是很重要的哦。
比如说,给你一个函数表达式,像y = ax²+bx + c(a≠0),然后问你这个函数是不是二次函数。
这时候你就得瞅准了,a不能等于0哦,要是a等于0了,那就变成一次函数了。
就像y = 3x + 2,这就是一次函数,和二次函数可不一样啦。
还有那种给你实际问题,让你列出二次函数表达式的题。
比如说,一个小球从高处落下,它下落的高度h和时间t 的关系,根据物理知识和二次函数的概念,你就能列出h = 1/2gt²(这里g是重力加速度,是个常数)这样的表达式。
这种题就需要你理解二次函数在实际中的意义,把实际问题转化成数学表达式。
二、二次函数图像题型二次函数的图像那可太有趣了。
它的图像是一条抛物线呢。
当a>0的时候,抛物线开口向上,就像一个笑脸一样;当a<0的时候,抛物线开口向下,就有点像哭脸啦。
对称轴是x = -b/2a这个公式可一定要记住哦。
比如说,给你一个二次函数y = 2x² - 4x + 1,先求对称轴,把a = 2,b = -4代入对称轴公式,得到x = -(-4)/(2×2)=1。
然后你还可以求顶点坐标,把x = 1代入函数表达式,就能算出y的值啦。
还有那种通过图像判断a、b、c的取值范围的题。
如果抛物线开口向上,那a>0;如果对称轴在y轴左侧,那么b和a同号,如果对称轴在y轴右侧,b和a异号;当x = 0时,y = c,所以看图像与y轴交点就知道c的取值啦。
三、二次函数最值题型二次函数的最值问题也是经常考的呢。
对于二次函数y = ax²+bx + c(a≠0),当a>0时,函数有最小值,这个最小值就在顶点处取得,也就是y = (4ac - b²)/4a;当a<0时,函数有最大值,同样是在顶点处取得这个值。
比如说,有个二次函数y = -x²+2x + 3,因为 a = -1<0,所以这个函数有最大值。
(完整版)二次函数知识点及经典例题详解最终
二次函数知识点总结及经典习题一、二次函数概念:1.二次函数的概念:一般地,形如y =ax2 +bx +c (a ,b,c是常数,a ≠ 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a ≠ 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数y =ax2 +bx +c 的结构特征:⑴等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二、二次函数的基本形式1.二次函数基本形式:y =ax2 的性质:a 的绝对值越大,抛物线的开口越小。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,0)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值0 .a < 0向下(0,0)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值0 .2.y =ax2 +c 的性质:上加下减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(0,c)y 轴x > 0 时,y 随x 的增大而增大;x < 0 时,y 随x 的增大而减小;x = 0 时,y 有最小值c .a < 0向下(0,c)y 轴x > 0 时,y 随x 的增大而减小;x < 0 时,y 随x 的增大而增大;x = 0 时,y 有最大值c .3.y = a (x - h )2的性质:左加右减。
a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,0)X=hx > h 时, y 随 x 的增大而增大; x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值0 .a < 0向下(h ,0)X=hx > h 时, y 随 x 的增大而减小; x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值0 .4.y = a (x - h )2+ k 的性质:a 的符号开口方向顶点坐标对称轴性质a > 0向上(h ,k )X=h x > h 时, y 随 x 的增大而增大;x < h 时, y 随x 的增大而减小; x = h 时, y 有最小值 k .a < 0向下(h ,k )X=hx > h 时, y 随 x 的增大而减小;x < h 时, y 随x 的增大而增大; x = h 时, y 有最大值 k .三、二次函数图象的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式 y = a (x - h )2+ k ,确定其顶点坐标(h ,k );⑵ 保持抛物线 y = ax 2 的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:2.平移规律在原有函数的基础上“ h 值正右移,负左移; k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.四、二次函数 y = a (x - h )2+ k 与 y = ax 2 + bx + c 的比较从解析式上看, y = a (x - h )2+ k 与 y = ax 2 + bx + c 是两种不同的表达形式,后者通过配方可以得到前者,即 y = a +,其中h= - ,k=(b2a )24ac - b 24ab2a 4ac - b 24a 五、二次函数 y = ax 2 + bx + c 的性质当 a > 0 时,抛物线开口向上,对称轴为,顶点坐标为.b2a (‒b 2a ,4ac ‒ b 24a)当x < - 时,y 随x 的增大而减小;b2a当x > - 时,y 随x 的增大而增大;b2a 当x =- 时,y 有最小值 .b 2a 4ac ‒ b 24a 2. 当α<0时,抛物线开口向下,对称轴为x =- , 顶点坐标为.当b2a(‒b 2a ,4ac ‒ b 24a)x < -时, y 随 x 的大而增大y;当随 x > - 时,y 随 x 的增大而减小;当x =- 时 , y 有最大值.b2ab 2a b 2a 4ac ‒ b 24a六、二次函数解析式的表示方法1.一般式: y = ax 2 + bx + c ( a , b , c 为常数, a ≠ 0 );2.顶点式: y = a (x - h )2 + k ( a , h , k 为常数, a ≠ 0 );3.两根式(交点式): y = a (x - x 1 )(x - x 2 ) ( a ≠ 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式, 只有抛物线与 x 轴有交点,即b 2 - 4ac ≥ 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数 a ⑴ 当 a > 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大;⑵ 当 a < 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大.2.一次项系数b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.(同左异右b 为 0 对称轴为 y 轴)3.常数项c⑴ 当c > 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正;⑵ 当c = 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为0 ;⑶ 当c < 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负. 总结起来, c 决定了抛物线与 y 轴交点的位置.八、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程 ax 2 + bx + c = 0 是二次函数 y = ax 2 + bx + c 当函数值 y = 0 时的特殊情况. 图象与 x 轴的交点个数:① 当 ∆ = b 2 - 4ac > 0 时,图象与 x 轴交于两点 A (x 1 ,0),B (x 2 ,0 ) (x 1 ≠ x 2 ) ,其中的 x 1 ,x 2是一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根.②当∆= 0 时,图象与x 轴只有一个交点;③当∆< 0 时,图象与x 轴没有交点.1' 当a > 0 时,图象落在x 轴的上方,无论x 为任何实数,都有y > 0 ;2 ' 当a < 0 时,图象落在x 轴的下方,无论x 为任何实数,都有y < 0 .2.抛物线y =ax2 +bx +c 的图象与y 轴一定相交,交点坐标为(0 ,c) ;中考题型例析1.二次函数解析式的确定例 1求满足下列条件的二次函数的解析式(1)图象经过 A(-1,3)、B(1,3)、C(2,6);(2)图象经过 A(-1,0)、B(3,0),函数有最小值-8;(3)图象顶点坐标是(-1,9),与 x 轴两交点间的距离是 6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为 y=ax 2+bx+c,把 A(-1,3)、B(1,3)、C(2,6)各点代入上式得解得 {3=a ‒b +c 3=a +b +c 6=4a +2b +c {a =1b =0c =2∴解析式为 y=x 2+2.(2)解法1:由 A(-1,0)、B(3,0)得抛物线对称轴为 x=1,所以顶点为(1,-8). 设解析式为 y=a(x-h)2+k,即 y=a(x-1)2-8.把 x=-1,y=0 代入上式得 0=a(-2)2-8,∴a=2. 即解析式为 y=2(x-1)2-8,即 y=2x 2-4x-6.解法2:设解析式为 y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把 x=1,y=-8 代入上式得-8=a(1+1)(1-3).解得 a=2,∴解析式为 y=2x 2-4x-6.解法 3:∵图象过 A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a.∵函数有最小值-8.∴ =-8.4a (‒3a )‒(2a)24a又∵a≠0,∴a=2.⎬∴解析式为 y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是 x=-1, 又∵图象与 x 轴两交点的距离为 6,即 AB=6.由抛物线的对称性可得 A 、B 两点坐标分别为 A(-4,0),B(2,0), 设出两根式 y=a(x-x 1)·(x-x 2),将 A(-4,0),B(2,0)代入上式求得函数解析式为 y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意 3 对 x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解; 如果三个已知条件中有顶点坐标或对称轴或最值,可选用 y=a(x-h)2+k 来求解;若三个条件中已知抛物线与 x 轴两交点坐标,则一般设解析式为 y=a(x-x 1)(x-x 2).2.二次函数的图象例 2y=ax 2+bx+c(a≠0)的图象如图所示,则点 M(a,bc)在().A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知:抛物线开口向上⇒ a>0.抛物线与y 轴负半轴相交 ⇒ c < 0b ⇒ bc>0.对称轴x = - 2a 在y 轴右侧 ⇒ b < 0∴点 M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定 a 、b 、c 的符号.例 3 已知一次函数 y=ax+c 二次函数 y=ax 2+bx+c(a≠0),它们在同一坐标o系中的大致图象是().分析:一次函数 y=ax+c,当 a>0 时,图象过一、三象限;当 a<0 时,图象过二、 四象限;c>0 时, 直线交 y 轴于正半轴; 当 c<0 时, 直线交 y 轴于负半轴; 对于二次函数y= ax 2+bx+c(a≠0)来讲:⎧开口上下决定a 的正负⎪左同右异(即对称轴在y 轴左侧,b 的符号⎪⎨与a 的符号相同;)来判别b 的符号⎪抛物线与y 轴的正半轴或负半轴相交确定⎪⎩c 的正负解:可用排除法,设当 a>0 时,二次函数 y=ax 2+bx+c 的开口向上,而一次函数 y= ax+c 应过一、三象限,故排除 C;当 a<0 时,用同样方法可排除 A;c 决定直线与 y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3.二次函数的性质例 4对于反比例函数 y=-与二次函数 y=-x 2+3, 请说出他们的两个相同点:2x ①, ②; 再说出它们的两个不同点:① ,②.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③ 最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函2数开放性题目是近几年命题的热点.4.二次函数的应用例 5 已知抛物线 y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与 x 轴总有两个不同的交点.(2)设 x 1、x 2 是此抛物线与 x 轴两个交点的横坐标,且满足 x 12+x 2=-2k 2+2k+1.①求抛物线的解析式.②设点 P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点, 且关于此抛物线的对称轴对称. 求 m+m 的值.分析:(1)欲证抛物线与 x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令 y=0,证△>0 即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出 k 的值,可确定抛物线解析式;②由 P 、Q 关于此抛物线的对称轴对称得 n 1=n 2, 由 n 1=m 12+m 1,n 2=m 22+m 2得 m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0 可求得 m 1+m 2= - 1.解:(1)证明:△=(2k+1)2-4(-k 2+k)=4k 2+4k+1+4k 2-4k=8k 2+1.∵8k 2+1>0,即△>0,∴抛物线与 x 轴总有两个不同的交点.(2) ①由题意得 x 1+x 2=-(2k+1), x 1· x 2=-k 2+k.∵x 1 2+x 2 2=-2k 2+2k+1,∴(x 1+x 2)2-2x 1x 2=- 2k 2+2k+1, 即(2k+1)2-2(-k 2+k)=-2k 2+k+1, 4k 2+4k+1+2k 2-2k= - 2k 2+2k+1.∴8k 2=0, ∴k=0,∴抛物线的解析式是 y=x 2+x.22②∵点 P 、Q 关于此抛物线的对称轴对称,∴n 1=n 2.又 n 1=m 12+m 1,n 2=m 2+m 2.∴m 12+m 1=m 2+m 2,即(m 1-m 2)(m 1+m 2+1)=0.∵P 、Q 是抛物上不同的点,∴m 1≠m 2,即 m 1-m 2≠0.∴m 1+m 2+1=0 即 m 1+m 2=-1.点评:本题考查二次函数的图象(即抛物线)与 x 轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.二次函数对应练习试题一、选择题1.二次函数 y = x 2- 4x - 7 的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把抛物线 y = -2x 2 向上平移 1 个单位,得到的抛物线是()A. y = -2(x +1)2B. y = -2(x -1)2C. y = -2x 2+1D. y = -2x 2-13.函数 y = kx 2- k 和 y = k(k ≠ 0) 在同一直角坐标系中图象可能是图中的()x4.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的图象如图所示,则下列结论: ①a,b同号;② 当 x = 1和 x = 3时,函数值相等;③ 4a + b = 0 ④当 y = -2时, x 的值只能取0.其中正确的个数是( )A.1 个B.2 个C. 3 个D.4 个5.已知二次函数 y = ax 2+ bx + c (a ≠ 0) 的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于 x 的一元二次方程ax 2+ bx + c = 0 的两个根分别是 x 1 = 1.3和x 2 =()A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数 y = ax 2 + bx + c 的图象如图所示,则点(ac , bc ) 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.方程 2x - x 2= 的正根的个数为()2xA.0 个B.1 个C.2 个.3个08.已知抛物线过点 A(2,0),B(-1,0),与 y 轴交于点 C,且 OC=2.则这条抛物线的解析式为A. y = x 2 - x - 2B. y = -x 2+ x + 2C. y = x 2- x - 2 或 y = -x 2+ x + 2 D. y = -x 2- x - 2 或 y = x 2+ x + 2二、填空题9.二次函数 y = x 2+ bx + 3 的对称轴是 x = 2 ,则b = 。
二次函数的练习题及答案
二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。
A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。
A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。
A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。
2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。
三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。
2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。
四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。
求出当生产多少件产品时,成本最低,并求出最低成本。
2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。
设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。
答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。
2. 函数与x轴的交点坐标为(1,0)和(2,0)。
四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。
2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。
二次函数知识点总结及典型例题和练习(极好)
二次函数知识点总结及典型例题和练习(极好)知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法--------五点作图法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。
由C 、M 、D 三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。
【例1】 已知函数y=x 2-2x-3,(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。
然后画出函数图象的草图;(2)求图象与坐标轴交点构成的三角形的面积:(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
(完整word版)二次函数基础知识和经典练习题.docx
-二次函数一、基础知识1. 定义:一般地,如果y ax 2bx c(a,b, c 是常数, a 0) ,那么y叫做 x 的二次函数.2. 二次函数的表示方法:数表法、图像法、表达式.3.二次函数由特殊到一般,可分为以下几种形式:① y ax2( a0);② y ax 2k ;( a0)③ y a x h2 ( a0) 顶点式);④ y a x h2k ;( a 0)⑤ y ax2bx c .它们的图像都是对称轴平行于(或重合)y 轴的抛物线 .4.各种形式的二次函数的图像性质如下表:函数解析式开口方向对称轴顶点坐标y ax2x0 ( y 轴)(0,0 )y ax 2k当 a 0 时x0 ( y 轴)(0, k )y a x2开口向上x h( h ,0) h当 a 0 时y a x h 2开口向下x h( h , k ) ky ax 2bx c x b(b4ac b22a2a ,)4a1. 抛物线y ax2bx c 中的系数 a, b, c(1)a决定开口方向:几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同 . 当 a 0 时,抛物线开口向上,顶点为其最低点;当 a 0 时,抛物线开口向下,顶点为其最高点 .( 2) b 和a共同决定抛物线对称轴的位置:当b0 时,对称轴为 y 轴;当a、 b 同号时,对称轴在y 轴左侧;当a、 b 异号时,对称轴在 y 轴右侧 .(3)c决定抛物线与 y 轴交点位置:当 c 0 时,抛物线经过原点;当 c 0时 , 相交于 y 轴的正半轴;当 c 0 时, 则相交于 y 轴的负半轴 .-2. 求抛物线的顶点、对称轴的方法b 22b 4ac b2( 1)公式法: y ax 24ac bbx c a x4a,顶点是(,),对称轴是直线2a2a4axb .2a(2)配方法:运用配方的方法,将抛物线 y ax 2bxc 的解析式化为 y a x h 2 k 的形式,得到顶点为 ( h , k ) ,对称轴是直线 x h . 其中 hb,k4ac b 2.2a4a(3)运用抛物线的对称性:抛物线是轴对称图形,所以对称点的连线的垂直平分线就是抛物线的对称轴,对称轴与抛物线的交点是顶点 ..3.用待定系数法求二次函数的解析式(1)一般式: yax 2 bx c . 已知图像上三点或三对 x 、 y 的值,通常选择一般式 .(2)顶点式: ya x h 2k . 已知图像的顶点或对称轴,通常选择顶点式.(3)两点式:已知图像与 x 轴的交点坐标 x 1 、 x 2 ,通常选用交点式: y a x x 1 x x 2 .4. 抛物线与 x 轴的交点设二次函数 y ax 2 bx c 的图像与 x 轴的两个交点的横坐标x 1 、 x 2 ,是对应一元二次方程ax 2 bx c0 的两个实数根 . 抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定:(1) b 2 4ac 0 抛物线与 x 轴有两个交点;(2) b 2 4ac 0 抛物线与 x 轴有一个交点(顶点在 x 轴上);(3) b 2 4ac抛物线与 x 轴没有交点 .5. 二次函数的应用一、 y ax 2bx c 的性质1.已知二次函数ykx 27x 7 与 x 轴有交点,则k 的取值范围是。
二次函数试题及答案
二次函数试题及答案一、选择题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且与x轴有两个交点,则a、b、c之间的关系是()。
A. b^2-4ac>0B. b^2-4ac=0C. b^2-4ac<0D. b^2-4ac≤0答案:A2. 若二次函数y=ax^2+bx+c的图象与y轴的交点为(0,3),则c的值为()。
A. 3B. -3C. 0D. 1答案:A二、填空题1. 若二次函数y=ax^2+bx+c的图象的顶点坐标为(2,-1),则b=______。
答案:-4a-42. 已知抛物线y=ax^2+bx+c与x轴的交点为(-1,0)和(3,0),则b=______。
答案:-2a三、解答题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象经过点(1,2)和(-1,0),求该二次函数的解析式。
答案:将点(1,2)和(-1,0)代入二次函数的解析式,得到方程组:\begin{cases}a+b+c=2 \\9a-3b+c=0\end{cases}解得a=1,b=-2,c=1,所以二次函数的解析式为y=x^2-2x+1。
2. 已知抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过点(0,3),求抛物线的解析式。
答案:由对称轴为直线x=1,可知-b/2a=1,即b=-2a。
又抛物线经过点(0,3),代入解析式得c=3。
设a=1,则b=-2,c=3,所以抛物线的解析式为y=x^2-2x+3。
四、综合题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴的交点为(2,0)和(-3,0),且抛物线的顶点坐标为(-1,-4),求该二次函数的解析式。
答案:由抛物线与x轴的交点可知,2和-3是方程ax^2+bx+c=0的两个根,所以有:\begin{cases}4a+2b+c=0 \\9a-3b+c=0\end{cases}又因为顶点坐标为(-1,-4),所以有:\begin{cases}-\frac{b}{2a}=-1 \\\frac{4ac-b^2}{4a}=-4\end{cases}解得a=1,b=4,c=-6,所以二次函数的解析式为y=x^2+4x-6。
二次函数基础练习题(打印版)
二次函数基础练习题(打印版)### 二次函数基础练习题一、选择题1. 函数\( y = ax^2 + bx + c \)(其中\( a \neq 0 \))是二次函数,当\( a > 0 \)时,其开口方向是()A. 向上B. 向下C. 向左D. 向右2. 若二次函数\( y = ax^2 + bx + c \)的对称轴是直线\( x = 1 \),则\( b \)和\( a \)的关系是()A. \( b = 2a \)B. \( b = -2a \)C. \( b = a \)D. \( b = -a \)二、填空题1. 二次函数\( y = ax^2 + bx + c \)的顶点坐标是(),其中\( a \neq 0 \)。
2. 若二次函数的图象与x轴有两个交点,则\( b^2 - 4ac \)的值大于()。
三、解答题1. 已知二次函数\( y = ax^2 + bx + c \)的图象经过点(1,2)和(-1,0),求\( a \)的值。
2. 求二次函数\( y = x^2 - 2x + 1 \)的顶点坐标,并判断其图象的开口方向。
四、应用题1. 某工厂生产一种产品,其成本函数为\( C(x) = 0.5x^2 - 100x + 3000 \),其中\( x \)为生产数量(单位:件)。
求该工厂生产多少件产品时,每件产品的平均成本最低。
2. 某公司计划在一块长为50米的长方形地块上建造一个仓库,仓库的一边靠墙,另外三边需要用围栏围起来。
若围栏的总长度为90米,求仓库的最大面积。
答案:一、选择题1. A2. A二、填空题1. \( \left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right) \)2. 0三、解答题1. 将点(1,2)代入\( y = ax^2 + bx + c \)得\( a + b + c = 2 \),将点(-1,0)代入得\( a - b + c = 0 \)。
二次函数知识点及重点题练习答案解析
答案
基础训练
1
3
1.函数 y= 的大致图象是( B ).
【解析】取值验证可知,函数
1
y= 3 的大致图象是选项
B 中的图象.
答案
解析
2
2.若二次函数 y=-2x -4x+t 的图象的顶点在 x 轴上,则 t 的值是( C ).
A.-4
B.4
C.-2
D.2
【解析】∵二次函数的图象的顶点在 x 轴上,∴Δ=16+8t=0,可
2.五种常见幂函数的图象
答案
3.幂函数的性质
(1)当 α>0 时,幂函数 y=xα 的图象过点 (0,0) 和 (1,1) ,在(0,+∞)上
是 增函数 .在第一象限内,当 α>1 时,图象下凹,当 0<α<1 时,图象上凸.
(2)当 α<0 时,幂函数 y=xα 的图象过点 (1,1) ,在(0,+∞)上是 减函数 .
4
2
∴h(m)=
-2m +
2
17 3
4
, < m ≤ 1,
4
3
-3 + 4m + 2,0 < m ≤ .
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
当 a≠0 时,f(x)图象的对称轴为直线
3-
x= ,
人教版初中数学九年级二次函数(经典例题含答案)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
二次函数各知识点、考点、典型例题及练习
二次函数各知识点、考点、典型例题及练习二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365=--+的图像的顶点坐标是y x x()A.(-1,8) B.(1,8)C(-1,2)D (1,-4)点拨:本题主要考察二次函数的顶点坐标公式例2.(拓展,2008年武汉市中考题,12)下列命题中正确的是○1若b2-4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3○2若b2-4ac=0,则二次函数y=ax2+bx+c的图象与x轴只有一个交点,且这个交点就是抛物线顶点。
○3当c=-5时,不论b为何值,抛物线y=ax2+bx+c一定过y轴上一定点。
○4若抛物线y=ax2+bx+c与x轴有唯一公共点,则方程ax2+bx+c=0有两个相等的实数根。
○5若抛物线y=ax2+bx+c与x轴有两个交点A、B,与y 轴交于c点,c=4,S=6,则抛物线解析式为y=x2△ABC-5x+4。
○6若抛物线y=ax2+bx+c(a≠0)的顶点在x轴下方,则一元二次方程ax2+bx+c=0有两个不相等的实数根。
○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。
○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。
○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。
○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。
○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。
点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。
复习时,抓住系数a 、b 、c 对图形的影响的基本特点,提升学生的数形结合能力,抓住抛物线的四点一轴与方程的关系,训练学生对函数、方程的数学思想的运用。
二次函数知识点、考点、典型试题集锦(带详细解析答案)
二次函数知识点、考点、典型试题集锦(带详细解析答案)考点1:二次函数的图象和性质一、考点讲解:1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数.2.二次函数的图象及性质:⑴ 二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。
⑵ 二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2b a;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x 的增大而增大,x <-2b a,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2b a,y 随x 的增大而增大. ⑶ 当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当 x=-2b a时,函数有最大值244ac b a-。
3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ),形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.注意:二次函数y=ax 2 与y =-ax 2 的图像关于x 轴对称。
二次函数知识点及练习
二次函数综合一、二次函数的定义定义:形如2y ax bx c =++〔0a ≠,a ,b ,c 为常数〕的函数称为二次函数。
注意点: 1、二次项系数不等于零;2、强调未知数最高次幂为2; 3、先化简成一般式,再判断是否为二次函数。
练习:1.以下各式中,y 是x 的二次函数的是 ( ) A .21y x =B .()()22+121y x x =--+C .()212y x x =-+-D .223y x x =+.3()()m y m n x m n x-=++-为二次函数,那么m 的值为 ,n 的取值范围为 .二、二次函数的图像及性质 【1】函数四要素1、开口:① 0a >,开口向上;0a <,开口向下;② ||a 越大开口越小;③ ||a 相等:开口大小、形状都一样。
2、对称轴:abx 2-=,是一条平行于y 轴的直线。
3、顶点坐标2424b ac b aa ⎛⎫-- ⎪⎝⎭, 。
4、24b ac ∆=-〔用于判断二次函数及x 轴交点的个数〕。
0∆>,抛物线及x 轴有两个交点;0∆=,抛物线及x 轴有一个交点,即顶点在x 轴上;0∆<,抛物线及x 轴没有交点。
练习:225y x x =-+的开口方向是 ,顶点坐标是 对称轴是 ;c bx ax y ++=2的顶点坐标为〔1,4〕,且及22x y =的开口大小一样,方向相反,那么该二次函数的解析式 。
假设抛物线234y x ax =++的顶点在x 轴的负半轴上,那么a = ; 3.〔2021•烟台〕二次函数()2231y x =-+,以下说法:①其图象的开口向下;②其图象顶点坐标为〔3,﹣1〕;③其图象的对称轴为直线﹣3;④当x <3时,y 随x 的增大而减小.那么其中说法正确的有〔 〕 A .1个 B .2个 C .3个 D .4个4.抛物线()2323y x m x =-+-的顶点在y 轴上,那么m = ;【2】函数平移方法一:顶点式平移: ()2y a x h k =-+ 方法二:一般式平移:〔1〕c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位:c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕;〔2〕c bx ax y ++=2沿x 轴平移:向左〔右〕平移m 个单位:c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕平移规律:在原有函数的根底上“值正右移,负左移;值正上移,负下移〞.概括成八个字“左加右减,上加下减〞. 练习:23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为〔 〕A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--22y x mx n =-+向上平移2个单位长度,再向左平移3个单位长度得到抛物线2241y x x =-+,那么m = ,n = ;【3】a ,b ,c 符号判断及相关代数式及0的大小比拟练习:2()y a x m n =++的图象如图,那么一次函数y mx n =+的图象经过〔〕A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限2(0)y ax bx c a =++≠的图象如下图,那么以下结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数〔 〕A .4个B .3个C .2个D .1个2的局部图象,由图象可知不等式2<0的解集是〔 〕A .﹣1<x <5B .x >5C .x <﹣1且x >5D .x <﹣1或x >5OyxxyO52xyO题1 题2题3 4.抛物线的图角如图,那么以下结论:①>0;②;③>;④<1.其中正确的结论是〔 〕.〔A 〕①② 〔B 〕②③ 〔C 〕②④ 〔D 〕③④5.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,那么1y ,2y ,3y 的大小关系为〔 〕A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>6.二次函数2y ax bx c =++的图像如下图,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图像大致是〔 〕Oyxy x O y x O yxx y OOA .B .C .D .7.设二次函数2,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是〔 〕A .3B .c ≥3C .1≤c ≤3D .c ≤3三、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;*3. 交点式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线及x 轴两交点的横坐标〕.练习:A 〔0,3〕、B 〔1,3〕、C 〔-1,1〕三点,求该二次函数的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数一、基础知识1. 定义:一般地,如果y=ax2 bx c(a,b,c是常数,a=0),那么y叫做x的二次函数.2. 二次函数的表示方法:数表法、图像法、表达式3. 二次函数由特殊到一般,可分为以下几种形式:①y 二ax2(a 0);②y =ax2 k ;(a = 0)③y = a(x — h 丫(a工0)顶点式);2④y=a(x—h) +k;( a 式0)⑤y二ax2• bx • c .它们的图像都是对称轴平行于(或重合)y轴的抛物线.4. 各种形式的二次函数的图像性质如下表:1. 抛物线y = ax2 bx c中的系数a, b, c(1)a决定开口方向:几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.当a 0时,抛物线开口向上,顶点为其最低点;当a:::0 时,抛物线开口向下,顶点为其最高点.(2)b和a共同决定抛物线对称轴的位置:当b=0时,对称轴为y轴;当a、b同号时,对称轴在y 轴左侧;当a、b异号时,对称轴在y轴右侧.(3)c决定抛物线与y轴交点位置:当c=0时,抛物线经过原点;当c 0时,相交于y轴的正半轴;当c : 0时,则相交于y轴的负半轴.2. 求抛物线的顶点、对称轴的方法 b 2a(2)配方法:运用配方的方法,将抛物线 y = ax 2+bx + c 的解析式化为y = a(x —h)2 + k 的形式,得 到顶点为(h, k),对称轴是直线x 二h.其中h —b ,k = 4a —b .2a4a(3) 运用抛物线的对称性:抛物线是轴对称图形,所以对称点的连线的垂直平分线就是抛物线的对 称轴,对称轴与抛物线的交点是顶点.. 3 •用待定系数法求二次函数的解析式(1) 一般式:y 二ax 2 ・bx ・c .已知图像上三点或三对x 、y 的值,通常选择一般式. (2) 顶点式:y = a x —h 2 k .已知图像的顶点或对称轴,通常选择顶点式 (3) 两点式:已知图像与x 轴的交点坐标X !、x 2,通常选用交点式:y^ax-X ! x-x 2 . 4. 抛物线与x 轴的交点设二次函数y =ax 2 bx c 的图像与x 轴的两个交点的横坐标 X !、x 2,是对应一元二次方程ax 2 bx 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式来 判定:(1) b 2 -4ac 0 =抛物线与x 轴有两个交点;(2) b 2 -4ac=0:=抛物线与x 轴有一个交点(顶点在x 轴上); (3) b 2 -4ac :::0二抛物线与x 轴没有交点. 5. 二次函数的应用一、y =ax 2 bx c 的性质1 •已知二次函数y =kx2 - 7x-7与x 轴有交点,贝U k 的取值范围是 ______________解:2•二次函数y =ax 2 bx c 的图象如图,则直线 ax bc 的图象不经过第 __________________ 象限。
理由:(1 )公式法:y = ax 2+bx+c = a x + _舅◎,顶点是4a(一;气兀),对称轴是直线A . x v 1B . x > 1C . x >- 2D . — 2v x v 4&二次函数y = a (x + k )2+ k ,当k 取不同的实数值时,图象顶点所在的直线是 ( )9.已知二次函数 y = ax 2 + bx + c 的图象如右图所示,则 ( )2A . a > 0, c >0, b — 4ac v 0 2C . a v 0, c >0, b — 4ac v 010 .已知二次函数 y = ax 2 + bx + c 的图象如下图所示,则 (2 .. .3.二次函数y =ax bx c 的图象如图,试判断 a 、b 、c 和厶的符号。
解:4.二次函数y 二ax 2 • bx • c 的图象如图,下列结论( 2 (4) (a+c ) v 0,其中正确的是:() A . 1个B . 2个C . 3个 D . 4个 1) c v 0; (2) b > 0; ( 3) 理由: 5.二次函数y = ax 2bx c 的图象如图,那么 abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中, 值为正数的有( ) A . 4个 B . 3个 C . 2个 D . 1个 理由: 6.已知直线y = ax • b 的图象经过第一、二、三象限,那么 y = ax 2 bx 1的图象为(1 27.已知函数y X-X-4,当函数值y 随x 的增大而减小时,x 的取值范围是() A . y = x C . y = — x D . y 轴a v 0, c v 0,b 2— 4ac >0)C . k = nD . h >0, k >02 115.已知二次函数 y = ax 2 + bx + c(a ^ 0)的图象如图所示,有下列结论:①abc > 0;②a + b + c = 2 ;③a 』一:④b11. C . 二次函数 B . b v 0, D . b > 0, b > 0, c >0, . ■:= 0 b v 0, c v 0,二=0y = mx 2 + 2mx - (3 — m)的图象如下图所示,m > 0 12. C .在同一坐标系内,函数13. 14. c > 0, c > 0,那么> 0m 的取值范围是(B . m >3 D . 0v m v 3y = kx 2和y = kx - 2(k z 0)的图象大致如图()ab(ab v 0)的图象在下列四个示意图中,可能正确的是2函数 % =ax - b,y 2A . h = m 图中有相同对称轴的两条抛物线,2 v 1.其中正确的结论是()A .①② C .②④16.下列命题中,正确的是 ( )① 若 a + b + c = 0,贝U b 2 — 4acv 0;② 若b = 2a + 3c ,则一元二次方程 ax 2 + bx + c = 0有两个不相等的实数根;③ 若b 2— 4ac > 0,则二次函数y = ax 2 + bx + c 的图象与坐标轴的公共点的个数是 2或3;④若b >a + c ,则一元二次方程 ax 2 + bx + c = 0,有两个不相等的实数根.A .②④B .①③C .②③D .③④二、y = ax 2 bx c 的最值1.心理学家发现,学生对概念的接受能力 y 和提出概念所用的时间 x (单位:分)之间大体满足函数关系式:2y = -0.1x +2.6x +43 (0< x < 30)。
y 的值越大,表示接受能力越强。
试根据关系式回答:(1) 若提出概念用10分钟,学生的接受能力是多少? (2) 概念提出多少时间时?学生的接受能力达到最强?2.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA O 恰在水面中心,安置在柱子顶端 A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下, 且在过OA 的任一平面上,抛物线形状如图(1)所示。
图(2)建立直角坐标系,水流喷出的高度y (米)与水平距离 x (米)之间的关系是25y = -x • 2x 亠一。
请回答下列问题:柱子OA 的高度是多少米?喷出的水流距水平面的最大高度是多少米?若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落 在池外?13.体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线y = -—X 2+X +2的一部分,根据12关系式回答:(1) 该同学的出手最大高度是多少?B .②③D .③④(1) (2) (3)(2) 铅球在运行过程中离地面的最大高度是多少?(3) 该同学的成绩是多少?4. 如图,正方形EFGH的顶点在边长为a的正方形ABCD勺边上,若AE=x正方形面积为y。
(1)求出y与x之间的函数关系式;(2)正方形EFGH有没有最大面积?若有,试确定E点位置;若没有,说明理由。
三、函数解析式的求法(11 .某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)根据如图直角坐标系求该抛物线的解析式;(2)若菜农身高为1.60米,则在他不弯腰的情况下,在棚内的横向活动范围有几米?2. 根据下列条件求抛物线的解析式:(1)图象过点(-1 , -6 )、( 1 , -2 )和(2, 3);(2)图象的顶点坐标为(-1 , -1 ),且与y轴交点的纵坐标为-3 ;(3)图象过点(1, -5 ),对称轴是直线x=1,且图象与x轴的两个交点之间的距离为4。
3. 在一场足球赛中,一球员从球门正前方10米处将球踢起射向球门,当球飞行的水平距离为6米时,球到达最(精确到0.01 米)HGF高点,此时球高3米,已知球门高为 2.44米,问能否射中球门?4. 已知二次函数的图象与x轴交于A (-2 , 0)、B ( 3, 0)两点,且函数有最大值是2。
(1)求二次函数的图象的解析式;(2)设次二次函数的顶点为卩,求厶ABP的面积。
5. 如图:(1)求该抛物线的解析式;(2)根据图象回答:当x为何范围时,该函数值大于0。
6. 已知抛物线经过A (-3 , 0)、B(0, 3)、C (2, 0)三点。
(1)求这条抛物线的解析式;(2)如果点D( 1,m)在这条抛物线上,求m值和点D关于这条抛物线对称轴的对称点E的坐标,并求出tan / ADE的值。
四、函数解析式的求法(2)1. 已知某绿色蔬菜生10千克的批发价y (元)是产基地收获的大蒜,从四月一日起开始上市的30天内,大蒜每上市时间x (天)的二次函数,有近几年的行情可知如下信息:x (天)51525y (元) 151015(1) 求y与x的函数关系式;(2) 大蒜每10千克的批发价为10.8元时,问此时是在上市的多少天?2. 如图,某建筑物从10m高的窗口A用水管向外喷水,喷出的水呈抛物线状, 最高点M离墙1m离地面40 m求水流落点B离墙的距离OB的长。
353. 一男生推铅球,成绩为10米,已知该男生的出手高度为5米,且当铅球运行的水平距离为4米时达到最大高3度,试求铅球运行的抛物线的解析式。
4. 某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为8米,两侧距地面3米高处各有一个壁灯,两壁灯之间的水平距离为6米,试求厂门的高度。
抛物线经过A、B C三点,顶点为D,且与x轴的另一个交点为E。
(1) (2)(3)(4)(5)求该抛物线的解析式;求四边形求证:△ABDE勺面积;AOB^A BDE。
6 .已知二次函数y= ax2+ bx+ c(a^ 0)的图象经过一次函数y = _3x+3的图象与x轴、y轴的交点,并也经过(1,21)点•求这个二次函数解析式,并求x为何值时,有最大(最小)值,这个值是什么?7 .已知抛物线 y =— x 2+ bx + c 与x 轴的两个交点分别为 A (m , 0), B ( n , 0),且m ,n = 4 , :n 3(1)求此抛物线的解析式;⑵设此抛物线与y 轴的交点为C ,过C 作一条平行x 轴的直线交抛物线于另一点 卩,求厶ACP 的面积.&已知抛物线 y = ax 2 + bx + c 经过点A ( — 1, 0),且经过直线 y = x — 3与x 轴的交点B 及与y 轴的交点 C .(1)求抛物线的解析式;⑵求抛物线的顶点坐标;⑶若点M 在第四象限内的抛物线上,且 OM 丄BC ,垂足为D ,求点M 的坐标.9 •某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如 下:一件商品的售价 M (元)与时间t (月)的关系可用一条线段上的点来表示 (如图甲),一件商品的成本 Q (元)与时 间t (月)的关系可用一条抛物线上的点来表示,其中根据图象提供的信息解答下面问题:⑴一件商品在3月份出售时的利润是多少元?俐润=售价一成本)⑵求出图(乙)中表示的一件商品的成本 Q (元)与时间t (月)之间的函数关系式;⑶你能求出3月份至7月份一件商品的利润 W (元)与时间t (月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元 ? 6月份成本最高(如图乙).。