大学物理实验多普勒效应

合集下载

大学物理实验指导书--9个项目 -

大学物理实验指导书--9个项目 -

大学物理实验指导书--9个项目 -实验一多普勒效应综合实验【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应。

2、由f-V关系直线的斜率求声速。

【实验原理】根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:f = f0(u+V1cosα1)/(u�CV2cosα2)(1)式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:f = f0(1+V/u)(2)当接收器向着声源运动时,V取正,反之取负。

若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f ―V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为 k=f0/u ,由此可计算出声速 u=f0/k 。

由(2)式可解出:V = u(f/f0 �C 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

【仪器安装】图1 多普勒效应验证实验及测量小车水平运动安装示意如图1所示。

所有需固定的附件均安装在导轨上,并在两侧的安装槽上固定。

调节水平超声发射器的高度,使其与超声接收器(已固定在小车上)在同一个平面上,再调整红外接收器高度和方向,使其与红外发射器(已固定在小车上)在同一轴线上。

将组件电缆接入实验仪的对应接口上。

安装完毕后,让电磁铁吸住小车,给小车上的传感器充电,第一次充电时间约6~8秒,充满后(仪器面板充电灯变绿色)可以持续使用4~5分钟。

大连理工大学《大学物理实验报告》多普勒效应 实验报告

大连理工大学《大学物理实验报告》多普勒效应 实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 多普勒效应及声速的测试与应用教师评语实验目的与要求:1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度主要仪器设备:DH-DPL 多普勒效应及声速综合测试仪,示波器其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。

实验原理和内容: 1、 声波的多普勒效应实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。

设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式:⎪⎪⎭⎫⎝⎛-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。

然后分多种情况考虑多普勒效应的发生: 1.1 声源运动速度为S V ,介质和接收点不动假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为)(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M )为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。

则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式:⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--=0001cos c x t M p p S ω可见接收器接收到的频率变为原来的SM 11-, 即:1.2 根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量, 便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为1.3介质不动,声源运动速度为S V,接收器运动速度为r V ,可得接收器接收到的频率为1.4 介质运动。

大学物理实验多普勒效应

大学物理实验多普勒效应
通过测量仪器测量声波的频率 、波长等参数,并将数据记录 在记录仪上。
准备实验器材
确保声源和接收器能够正常工 作,测量仪器和记录仪已校准 。
放置接收器
将接收器放置在声源的一侧, 确保声波能够被接收器接收。
分析数据
根据记录的数据,分析多普勒 效应的现象和规律。
数据记录与处理
数据记录
在实验过程中,应实时记录声波 的频率、波长等参数,以及接收 器和声源的位置和角度等信息。
大学物理实验多普勒效应
汇报人: 2024-01-04
• 多普勒效应概述 • 实验目的与要求 • 实验器材与步骤 • 实验结果与分析 • 实验总结与思考
01
多普勒效应概述
多普勒效应的定义
总结词
多普勒效应是指波源和观察者之间相对运动时,观察者接收到的波长和频率发生 变化的现象。
详细描述
多普勒效应是物理学中一个重要的概念,它描述了波源和观察者之间相对运动时 ,观察者接收到的波长和频率的变化情况。当波源和观察者之间存在相对运动时 ,观察者感受到的波长和频率会发生变化,这种现象被称为多普勒效应。
VS
减小误差的方法
为了减小误差,我们采用了高精度的测量 工具,严格控制实验条件,并对数据进行 多次测量和取平均值处理,以提高结果的 可靠性。同时,我们还采用了合适的数学 模型和统计方法对数据进行处理和分析, 以减小误差对结果的影响。
05
实验总结与思考
实验总结
实验目的达成情况
通过本次实验,学生成功观察到了多普勒效 应的现象,并利用公式测量了声源与观察者 之间的相对速度。
实验操作流程
实验操作流程清晰,从设备安装到数据测量,再到 结果分析,每一步都有详细的指导。
数据记录与处理

多普勒效应实验

多普勒效应实验

实验报告 多普勒效应综合实验物理科学与技术学院 13级弘毅班 20 吴雨桥 【实验目的】1.利用超声接收器运动速度与接收频率的关系验证多普勒效应并求声速。

2.利用多普勒效应测量物体运动过程中多个时间点的速度,得出物体在运动过程中的速度变化情况,借此研究:(1) 简谐振动。

可测量其振动周期等参数,并与理论值比较。

(2) 自由落体运动。

可以由v-t 关系直线的斜率求重力加速度。

(3) 匀加速直线运动。

测量力、质量与加速度的关系,验证牛顿第二定律。

【实验原理】1. 超声的多普勒效应。

根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,如右图所示。

则接收器接收到的频率f 为 1122cos cos u V f f u V αα+=- (1)其中u 为声速,f 0为声源发射频率。

若声源保持不动,运动物体上的接收器向声源方向以速度V 运动,测接收器接收到的频率f 为01V f f u ⎛⎫=⋅+ ⎪⎝⎭(2)当接收器向声源运动时,V 取正;反之取负。

若保持f 0不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,由(2)式知,作f-V 图可以验证多普勒效应,并由实验点做直线,其斜率k=f 0/u ,由此可以计算声速u=f 0/k 。

也可以由(2)解出01f V u f ⎛⎫=- ⎪⎝⎭,若已知声速u 及声源频率f 0,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按照上式算出接收器运动速率,由显示屏显示v-t 图像,并调阅相关数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

2. 研究简谐振动当质量为m 的物体受到大小与位移成正比,而方向指向平衡位置的力的作用时,若以物体的运动方向为x 方向,则运动方程为22d xm kx dt=-,该式描述的即为简谐振动。

当初始条件为t=0时,x=-A 0,V=dx/dt=0,则运动方程的解为00cos x A t ω=- ,对时间求导,可得速度方程000sin V A t ωω= 其中0ω=为振动系统的固有角频率。

多普勒效应测声速实验报告

多普勒效应测声速实验报告

课程名称:大学物理实验(一)实验名称:多普勒效应测声速
图1 用李萨如图观察相位变化
位相比较法信号输出
CH2分别接换能器发射端和接收端,示波器的“扫描信号周期”选择“器之间的距离时,示波器在一个周期内将有如下显示:
φ1−φ2=0 π

2

4
π 5π
4

2

4

(两个同斜率直线所对应的换能器间距为一个波长)
图2 信号发生器
3.示波器:用来观察超声波的振幅、相位和频率
图3 示波器
4.实验仪器使用时的注意事项
a)使用超声声速测量仪进行测量时注意避免空程差以及发射头S1和接收头S2不能相碰,以免损坏。

图1 线路连接示意图
、把载接受换能器的小车移动到导轨最右端并把试验仪超声波发射强度和接受增益调到最大。

图2 主测试仪面板图
图3 智能运动控制平台。

大学物理实验-多普勒效应的应用与声速的测量

大学物理实验-多普勒效应的应用与声速的测量

实验17 多普勒效应的应用与声速的测量对于机械波、声波、光波和电磁波而言,当波源和观察者(或接收器)之间发生相对运动,观察者接收到的波的频率和发出的波的频率不相同的现象,称为多普勒效应.多普勒效应在核物理,天文学、工程技术,交通管理,医疗诊断等方面有十分广泛的应用.如用于卫星测速、光谱仪、多普勒雷达,多普勒彩色超声诊断仪等.电磁波与机械波(包括声波)的多普勒效应在定量计算上有所不同,本实验只研究超声波的多普勒效应.【实验目的】1. 加深对多普勒效应的了解2. 测量空气中声音的传播速度及物体的运动速度【实验仪器】DH-DPL 多普勒效应及声速综合测试仪,示波器.【实验原理】1.声波的多普勒效应设声源在原点,声源振动频率为f ,接收点在x ,运动和传播都在x 轴方向,声速为u 0.对于三维情况,处理稍复杂一点,其结果相似.声源、接收器和传播介质不动时,在x 方向传播的声波的数学表达式为:00cos 2x p p f t u π⎛⎫=- ⎪⎝⎭(17-1)⑴声源运动速度为s v ,介质和接收点不动.在声源和接收器之间的波长为λ',T 是声源的振动周期,接收器接收到的频率为:0001s su u f f u T v T M λ'==='--(17-2)即接收器接收到的频率变为原来的SM -11,其中0s s v M u =为声源运动的马赫数,声源向接收点运动时S v (或S M )为正,反之为负.⑵声源、介质不动.接收器运动速度为r v ,接收器接收到的波的传播速度为0r u u v '=+,接收器接收到的频率为()001rr u v u f M f u Tλ'+'===+ (17-3) 其中0rr v M u =为接收器运动的马赫数,接收点向着声源运动时r v (或r M )为正,反之为负,即接收器接收到的频率变为原来的()1r M +倍.⑶ 介质不动,声源运动速度为s v ,接收器运动速度为r v ,可得接收器接收到的信号的频率为:11rsM f f M +'=- (17-4)为了简单起见,本实验只研究第二种情况:声源、介质不动,接收器运动速度为r v .根据(17-3)式可知,改变r v 就可得到不同的f ',从而验证了多普勒效应.另外,若已知r v 、f ,并测出f ',则可算出声速0u ,可将用多普勒频移测得的声速值与用时差法测得的声速作比较.若将仪器的超声换能器用作速度传感器,就可用多普勒效应来研究物体的运动状态. 2.声速的几种测量原理⑴ 超声波与压电陶瓷换能器频率20Hz-20kHz 的机械振动在弹性介质中传播形成声波,高于20kHz 称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点.声速实验所采用的声波频率一般都在20~60kHz 之间,在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳.压电陶瓷换能器利用压电效应和磁致伸缩效应从而实现了在机械振动与交流电压之间双向换能.根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器.声速教学实验中所用的大多数采用纵向换能器.图17-1为纵向换能器的结构简图.其中辐射头用轻金属做成喇叭形,后盖反射板用重金属做成柱形,中部为压电陶瓷圆环,其极化方向与正负电极片一致,螺钉穿过圆环中心.这种结构增大了辐射面积.振子纵向长度的伸缩直接影响头部轻金属,发射的波有较好的方向性和平面性.在正负电极片输入交流电信号,电极片间的压电陶瓷将产生逆压电效应,在极化方向发生形变,随交流电信号震荡发出一近似平面超声波(发射换能器).将另一纵向换能器与该发出超声波的换能器正对,作为接收换能器.当发射超声波频率与发射及接收换能图17-1 纵向换能器的结构简图压电陶瓷片器系统中压电陶瓷的谐振频率相等,接收换能器的正负电极片发出电信号最强.⑵ 时差法测量原理连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t 时间后,到达L 距离处的接收换能器.波形变化如图17-2所示通过测量二换能器发射接收平面之间距离和时间,就可以计算出当前介质下的声波传播速度.⑶ 共振干涉法(驻波法)测量原理将接收换能器与发射换能器正对,由于换能器的核心器件压电陶瓷在极化方向所产生电荷与其在该方向所受外力成正比,所以在声波信号频率锁定为发射和接收换能器系统的最佳谐振频率时,接收换能器产生电信号的大小正比于声压的大小.而声压p ∗=−ρu 2ðξðx (17-5)其中ρ为无声波时介质密度, u 为声波波速, ξ为介质质点位移.由于存在:发射换能器发射声波造成介质质点位移 ξ1=A 1cos2π(tT−xλ)=A 1cosω(t −xu)接收换能器反射声波造成介质质点位移 ξ2=A 2cos *2π(t T+xλ)+π+接收换能器反射的声波再次从发射换能器反射回来后造成介质质点位移ξ3=A 3cos *2π(t T−x λ+2L λ)+2π+考虑声波的散射:a) 在换能器端面直径d ≪L (换能器间距)的区域, ξ3可近似忽略,即:ξ≈ξ1+ξ2=A 1cos2π(t T −x λ)+A 2cos *2π(t T +xλ)+π+p ∗≈−ρuωA 1sinω(t −xu )+ρuωA 2sin *ω(t +xu )+π+ (17-6)由于接收换能器可视为一近似垂直于波线的刚性平面,传播到接收换能器的声波几乎完全被反射(可视为A 1=A 2=A ), 为将公式简单化,将坐标轴原点平移至接收端,即令接收换能器端面处x =0,则发射端处x =−L ,则:ξx=0≈ξ1(x=0)+ξ2(x=0)=0p x=0∗≈2ρuωAsin (ωt +π) (17-7)由公式(17-7)可以看出,虽然在接收换能器端面处合成驻波的幅值为0(波节),但该处声压并不为0,当接收换能器远离发射换能器时,其端面处的声压接近一幅值为2ρuωA 的正弦波. b) 在发射和接收换能器相距较近,且与端面直径d 相差不大时,声波在二换能器端面间多次反射,不但需要考虑ξ3还需要考虑ξ4、 ξ5 、 ξ6…….接收换能器波形图17-2 发射波与接收波发射换能器波形比较ξ1和ξ3可以看出当L =(k ±14)λ时,ξ1和ξ3干涉相消,同理ξ2和ξ4也干涉相消,从而造成声压p x=0∗虽然相位没有变化,但幅值相应减少.当L =kλ2时, 不但 ξ1和ξ3干涉相长,而且多次反射,多次叠加 ξ2、ξ4、ξ5、ξ6…… 均干涉相长,使幅值A 急剧增大,也造成声压p x=0∗ 的幅值急剧增大.改变接收换能器的位置,可以从示波器上看到接收换能器感应到信号的幅值随着位置的变化而变化.当换能器间距为14⁄波长的奇数倍时, 感应到信号的幅值较小, 当间距为14⁄波长的偶数倍(即半波长的整数倍)时,感应到信号的幅值较大,且距离越近,幅值越大.若从感应到信号的第n 个幅值较大点变化到第n+1个幅值较大点时,接收换能器移动距离∆L ,则∆L =λ2,连续多次测量相隔半波长的接收换能器位置变化,可得超声波波长,再记录下此时超声波频率f 后,即可算出声速.⑷ 相位比较法(行波法)测量原理由于声波源点的振动和接收点的振动是同频率的振动, 二者相位差φ=2πL λ=2πfL u(17-8)将两个信号分别输入示波器的X 、Y 端, 在示波器显示屏显示出相互垂直的两个同频率振动合成的轨迹——1:1 李萨如图形.根据式(17-8)可得∆φ=2πf u∆L (17-9)当 f 、u 确定, φ 随着L 的变化而变化, 显示屏上的图形也依次变化(如图17-3所示), 当∆φ=2π, 图像恢复到开始时的形状, 记录此过程中的∆L 值即波长 , 则u =f∆L (17-10)∆φ=2nπ∆φ=2nπ+π/4∆φ=2nπ+π/2∆φ=2nπ+3π/4∆φ=2nπ+π ∆φ=2nπ+5π/4 ∆φ=2nπ+3π/2 ∆φ=2nπ+7π/4图17-3 频率为1:1 的李萨如图形【实验内容与步骤】1.实验内容(1)熟悉测量声速的多种方法,进一步加深对多普勒效应的了解. (2)利用已知的声速进一步观测空气中物体的移动速度. 2.实验步骤 (1)时差法测声速① 将多普勒综合测试仪的发射功率和接收灵敏度均调至最大(旋钮顺时针到头).② 调节测试台滚花帽(图17-4)将接收换能器调到12cm 处,记录接收换能器接收到的脉冲信号与原信号时间差.③将接收换能器分别调至12cm 、13cm ……19cm 处,分别记录各位置时间差.(如在调节过程中出现时间显示不稳定,则选择稳定区域进行测量) (2)多普勒法测声速 瞬时法测声速① 从主菜单进入多普勒效应实验② 将接收换能器调到约75cm 处,设置源频率使接收端的感应信号幅值最大(谐振状态).③ 返回多普勒效应菜单,点击瞬时测量.④ 按下智能运动控制系统的“Set”键,进入速度调节状态→按“Up”直至速度调节到0.450 m/s .⑤ 按“Set”键确认→再按“Run/Stop”键使接收换能器运动. ⑥ 记录“测量频率”的值,按“Dir”改变运动方向,再次测量. (3)共振干涉法(驻波法)测声速① 在示波器“Y-t”模式下调节“垂直偏转因数”,使示波器显示接收换能器输出电压的波形合适.② 将两换能器的间距L 从大约11~12cm 起, 连续记录下10组正弦波振幅极大值时标尺示数.(4)相位比较法(行波法)测声速① 在示波器“X-Y”模式下调节“垂直偏转因数”使示波器显示的发射和接收换能器图 17-4 测试台结构示意图 785632411.发射换能器 2.接收换能器 3.左限位保护光电门 4.测速光电门 5.右限位保护光电门 6.步进电机 7.滚花帽 8.复位开关输出电压所合成的李萨如图形大小合适.② 将两换能器的间距L 从大约11~12cm 起, 连续记录下10组李萨如图形出现相同直线时标尺示数.(5)反射法测声速(选做)反射法测量声速时候,反射屏要远离两换能器,调整两换能器之间的距离、两换能器和反射屏之间的夹角θ以及垂直距离L ,如图17-5所示,使数字示波器(双踪,由脉冲波触发)接收到稳定波形;利用数字示波器观察波形,通过调节示波器使接受波形的某一波头n b 的波峰处在一个容易辨识的时间轴位置上,然后向前或向后水平调节反射屏的位置,使移动L ∆,记下此时示波器中先前那个波头n b 在时间轴上移动的时间t ∆,如图17-6所示,从而得出声速值θsin 20⋅∆∆=∆∆=t Lt x u (17-11) 用数字示波器测量时间同样适用于直射式测量,而且可以使测量范围增大.反射屏发射换能器θθθL(6)利用已知声速测物体移动速度① 从主菜单进入变速运动实验,将采样步距改为50ms .② 长按智能运动控制系统的“Set”键,使其进入“ACC1”变速运动模式,再按“Run/Stop”键使接收换能器变速运动.③ 点击“开始测量”由系统记录接收到信号的频率(如半分钟后曲线仍未出现,则需重新调节谐振频率).再按“Run/Stop”键停止变速运动.④ 点击“数据”记录实验数据。

大学物理 10.5 多普勒效应

大学物理  10.5 多普勒效应

uຫໍສະໝຸດ v RνR u v S
S
当波源和接收器彼此离开
ν u vR ν R u v S
S
结论
不论是波源运动还是接收器 运动,或是两者同时运动, 只要观察者和波源是相互靠 近,接收器接受的频率就高 于波源频率;只要两者相互 远离,观察者接受到的频率 就低于波源频率。
10.5 多普勒效应
因波源或接收器相对与介质运动,而使接收器接收到的波的 频率发生变化的现象称为多普勒效应。
一、波源不动,接收器以速度v 相对介质运动 R
v
S
P
RP
v R
u
uv uv uv
v
R
R
Rv
R

u
u
v
v

u

v R
v
R
uS
v

u

v R
v
R
uS
二、接收器不动,波源以速度v 相对介质运动 S
uT
v T
u v

S

S
SS
ν
S
ν u u ν
u v S S
S
S 1 vT 2 SS

A
ν u ν R u v S
S
ν u ν R u v S
S
接收器接受的频率大于波源的频率 接收器接受的频率小于波源的频率
三、波源与接收器同时相对介质运动
波源和接收器相向运动
ν

实验43 多普勒效应综合实验

实验43 多普勒效应综合实验
大学物理实验预习报告
姓名
实验班号
实验号
实验四十三多普勒效应综合实验
实验目的:
实验原理及仪器介绍:
1.写出多普勒效应的一般公式?满足什么条件时可以简化为 ?
2.简述验证多普勒效应的实验方案。
3.简述利用多普勒效应公式测声速的实验方案。
4.简述利用多普勒效应研究简谐振动的实验方案。
5.多普勒效应综合实验仪的主要组成部分有哪些?
2.列出数据记录表格:
教师签字:
月日
实验内容:
1.多普勒效应综合实验仪开机后,为什么首先要求输入室温。
2.验证多普勒效应,并利用多普勒效应公式测量声速的实验中,小车的使用应该注意什么事项?
3.利用多普勒效应研究自由落体运动的实验中,仪器使用的注意事简谐运动的周期?
数据表格:
1.记录所用测量仪器的仪器误差:

大学物理多普勒效应

大学物理多普勒效应

波的传播介质
波的传播介质会影响多普勒效应的频率变化。在密度较大 的介质中,波的传播速度较慢,观察者接收到的频率变化 较小;在密度较小的介质中,波的传播速度较快,观察者 接收到的频率变化较大。
传播介质的性质对多普勒效应的影响较为复杂,需要具体 问题具体分析。
波的频率
波的频率也会影响多普勒效应的频率 变化。高频率的波更容易受到多普勒 效应的影响,而低频率的波则相对较 为稳定。
01
02
03
声波应用
在日常生活中,多普勒效 应在声波领域的应用非常 广泛,如超声波诊断、声 呐、雷达测速等。
光波应用
在光学领域,多普勒效应 可以用于测量天体的运动 速度和宇宙中的距离。
交通领域应用
多普勒效应也被广泛应用 于交通领域,如测速雷达 、移动通信中的信号传输 等。
02
多普勒效应的原理
波的传播与干涉
在实际应用中,需要根据波的特性和 需求来考虑多普勒效应的影响。
05
多普勒效应的意义与未来发展
在物理学中的重要性
揭示波的传播与接收之间的相对性
多普勒效应是物理学中一个重要的概念,它揭示了波的传播与接收之间的相对性。通过多普勒效应的研究,人们 可以深入理解波的传播机制和规律。
提供测量天体物理参数的方法
光波多普勒效应的实验
01
实验设备
光源、干涉仪、测量仪器、记录设备等。
02
实验过程
将光源和干涉仪分别固定在两个相对位置上,调整光源频率,使干涉仪
接收到不同频率的光波,记录并分析干涉仪输出的干涉条纹。
03
实验结果
当光源向干涉仪移动时,干涉仪接收到的光波频率会比光源的实际频率
高;反之,当光源远离干涉仪时,干涉仪接收到的光波频率会比光源的

【大学物理实验】 多普勒效应 实验报告

【大学物理实验】 多普勒效应 实验报告

, 其中 x 0 为距离差引起的相位角的滞后项, c 0 为声速。
c0
然后分多种情况考虑多普勒效应的发生:
1.1 声源运动速度为 V S ,介质和接收点不动 假设声源在移动时只发出一个脉冲波, 在 t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声
源发出该脉冲波时, 声源移动的距离为V S (t x c0 ) , 而该时刻声源和接收器的实际距离为
步骤与操作方法: 1. 时差法测声速 1.1 通过调节滚花帽, 将接收换能器调到距发射换能器 12cm 处,记录接收换能器接收到 的脉冲信号与原信号时间差。 1.2 将接收换能器分别调至 12cm、13cm……19cm 处,分别记录各位置时间差。(注意避 开时间不稳定的区域, 使用稳定的区域进行测量)
p
p 0 cos
1 M
S
t
x0 c0
可见接收器接收到的频率变为原来的 1 , 即:
1 MS
f fS
1 M S
(声源运动)
1.2 根据同样的计算法,通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量,便 可以得到声源、介质不动,接收器运动速度为 V r 时, 接收器接收到的频率为
f r (1 M r ) f (1 V r ) f c
0
(接收器运动)
1.3 介质不动,声源运动速度为 V S ,接收器运动速度为 V r ,可得接收器接收到的频率为
f rs 1 M r f 1 M s
(声源, 接收器都运动)
1.4 介质运动。 同样介质的运动会改变声波从源向接收点传播的实际表观速度(真实声速并没有发 生变化), 导致计算收发声时的实时位移量变为 x x 0 V m t , 通过同样的计算法, 可以得到此 状态下接收器收到的频率为(以介质向接收器运动时, 马赫数记为正) f m (1 M m ) f (介质运动) 另外, 当声源和介质以相同的速度和方向运动时, 接收器收到的频率不变(从定性的分析即可得 到这一点结论)。

多普勒效应实验报告

多普勒效应实验报告

多普勒效应实验报告一、实验目的1、观察并验证多普勒效应现象。

2、测量声速,并通过多普勒效应计算声源的运动速度。

3、深入理解多普勒效应的原理及其在实际生活中的应用。

二、实验原理多普勒效应是指当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化。

对于声波来说,如果声源向着观察者运动,观察者接收到的频率会升高;如果声源远离观察者运动,观察者接收到的频率会降低。

设声源的频率为 f₀,声速为 v,观察者相对于介质的速度为 v₀(靠近声源为正,远离声源为负),声源相对于介质的速度为 vs(靠近观察者为正,远离观察者为负),则观察者接收到的频率 f 为:当声源运动,观察者静止时:f = f₀×(v + v₀) /(v vs)当观察者运动,声源静止时:f = f₀×(v + v₀) / v当声源和观察者都运动时:f = f₀×(v + v₀) /(v vs)三、实验仪器1、信号发生器:用于产生稳定的音频信号。

2、扬声器:作为声源。

3、麦克风:用于接收声音信号。

4、数据采集卡:将麦克风接收到的模拟信号转换为数字信号,并传输给计算机。

5、计算机:用于控制实验、采集数据和进行数据分析。

四、实验步骤1、连接实验仪器将信号发生器的输出连接到扬声器,以提供声源信号。

将麦克风连接到数据采集卡的输入端口。

将数据采集卡插入计算机的 PCI 插槽,并安装驱动程序和相关软件。

2、软件设置打开计算机上的实验控制软件,设置采样频率、通道选择等参数。

选择合适的显示方式,以便观察和分析采集到的数据。

3、测量声速在实验环境中,让扬声器和麦克风保持固定距离。

信号发生器产生一个已知频率 f₀的正弦波信号,通过扬声器发出声音。

麦克风接收声音信号,并通过数据采集卡传输到计算机。

测量声音信号从扬声器发出到麦克风接收的时间差 t。

根据声速公式 v = d / t(其中 d 为扬声器和麦克风之间的距离),计算出声速 v。

大学物理学第十六章第八节(多普勒效应)

大学物理学第十六章第八节(多普勒效应)

实验步骤
将声源和接收器固定在相对位置,使 声源发出连续的声波,接收器接收声 波并转换为电信号,通过测量仪器记 录信号频率。
光波多普勒效应的实验
01
实验设备
光源、干涉仪、测量仪器(如光谱分析仪)
02 03
实验步骤
将光源发出的光波通过干涉仪分束,一束作为参考光,另一束作为信号 光,信号光照射到运动物体上反射回来后与参考光干涉,通过测量仪器 记录干涉条纹的变化。
实验结果
当运动物体靠近或远离光源时,干涉条纹会发生变化,表现为多普勒效 应。
实验结果分析
分析多普勒效应的规律
通过实验数据,分析多普勒效应的规律,包括频率变化与相对速 度之间的关系、波长与频率之间的关系等。
验证理论模型
将实验结果与理论模型进行比较,验证理论模型的正确性和适用范 围。
应用拓展
探讨多普勒效应在生产生活中的应用,如雷达测速、医学超声成像 等。
对未来学习的规划
深入研究多普勒效应
计划进一步深入学习多普勒效应的相关知识,了解其在不同领域 的应用。
探索物理学的其他领域
计划探索物理学其他领域的知识,如电磁学、光学等,以拓宽知识 面。
提高解决实际问题的能力
计划通过解决实际问题,提高运用物理知识解决实际问题的能力。
THANKS
感谢观看
05
结论
本节内容的总结
多普勒效应的定义
01
多普勒效应是指波源和观察者之间有相对运动时,观察者接收
到的波长会发生变化的现象。
多普勒效应的原理
02
当波源和观察者之间有相对运动时,观察者接收到的波的频率
会发生变化,这种现象称为多普勒效应。
多普勒效应的应用
03

大学物理实验多普勒效应

大学物理实验多普勒效应

实验原理
1. 波源静止观测者运动 在这种情况下, vs=0, v≠0 . 若观 测者向着波源运动, 相当于波以速率u+v 通过观测者. 因 此单位时间内通过观测者的完整波数, 即接受频率为
fu vu u /v f0(1 v u)f0 (1)
当观测者离开波源运动时, 实际观测频率将低于波源的
频率, 即
f
(1
v u
)
f0
(2)
其中,f0为声源频率,f为接收频率,u为波速,v为观 察者(接收器)的速度。
波源和观察者 没有相对运动
观察者靠近波源 接收频率增大
观察者远离波源 接收频率减小
实验原理
2. 观测者静止波源运动 在这种情况下 v=0, vs≠0. 当
波源静止时, 波长=uT; 然而当波源以速度vs 向着观
动过程中的速度变化情况
vs
u( f0 1) f

实验内容
也可自行设计!!!
1. 将已知频率的声源固定于自行车(或电动车)上,先 对phyphox软件声音频率测量校准;
2. 自行车以一个稳定速度远离声源,利用手机上 phyphox软件的多普勒效应传感器记录接收频率和相对 速度;
3. 以不同速度靠近声源,记录接收频率和相对速度。 4. 验证多普勒效应(必做)。 5. 测量声速(必做)。 6. 匀变速直线运动的测量(选做)。
实验原理
对于机械波和电磁波而言,当波源或观察者相对于 介质运动时,观察者接收到的波的频率和波源实际发出 的频率不相同的现象,称为多普勒效应(Doppler effect)。这种现象是奥地利物理学家多普勒(18031853)于1842年首先发现的。多普勒效应在科学研究, 工程技术,交通管理,医疗诊断等各方面都有十分广泛 的应用。基于多普勒效应原理的雷达系统已广泛应用于 导弹,卫星,车辆等运动目标速度的监测。

多普勒综合效应实验报告

多普勒综合效应实验报告

一、实验目的1. 理解多普勒效应的基本原理和现象。

2. 通过实验验证多普勒效应在声波和电磁波中的存在。

3. 探究多普勒效应与波源和接收器相对运动速度的关系。

4. 熟悉实验仪器的使用方法和数据处理方法。

二、实验原理多普勒效应是指当波源和接收器之间存在相对运动时,接收器接收到的波的频率会发生变化。

这种现象不仅适用于声波,也适用于电磁波(包括光波)。

其基本原理可以概括为:- 当波源和接收器相向运动时,接收器接收到的频率高于波源频率,称为“蓝移”。

- 当波源和接收器背向运动时,接收器接收到的频率低于波源频率,称为“红移”。

- 相对运动速度越大,频率变化越明显。

三、实验仪器与设备1. 多普勒效应实验装置(包括声波发射器、声波接收器、频谱分析仪等)2. 电磁波发射器(如激光器)3. 电磁波接收器(如光电探测器)4. 秒表5. 计算器四、实验步骤1. 声波实验:- 将声波发射器和接收器固定在实验装置上,确保两者之间有一定的距离。

- 调整声波发射器的频率,使接收器能够接收到稳定的声波信号。

- 逐步改变接收器的运动速度,记录不同速度下接收器接收到的频率值。

- 分析数据,验证多普勒效应在声波中的存在。

2. 电磁波实验:- 将电磁波发射器和接收器固定在实验装置上,确保两者之间有一定的距离。

- 调整电磁波发射器的频率,使接收器能够接收到稳定的电磁波信号。

- 逐步改变接收器的运动速度,记录不同速度下接收器接收到的频率值。

- 分析数据,验证多普勒效应在电磁波中的存在。

五、实验结果与分析1. 声波实验结果:- 实验结果显示,随着接收器运动速度的增加,接收到的声波频率逐渐升高,符合多普勒效应的蓝移现象。

- 通过计算不同速度下的频率变化量,可以得出多普勒效应与相对运动速度的关系。

2. 电磁波实验结果:- 实验结果显示,随着接收器运动速度的增加,接收到的电磁波频率逐渐降低,符合多普勒效应的红移现象。

- 通过计算不同速度下的频率变化量,可以得出多普勒效应与相对运动速度的关系。

大学物理实验多普勒效应

大学物理实验多普勒效应

多普勒效应实验报告学院化学与生物工程学院班级化学1701 学号姓名一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械能转化的规律。

实验仪器ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)1、声波的多普勒效应当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为f0=U0/λ0则观测频率f、观测波长λ和观测波速U的关系f=U/λ当接收器以一定的速率向声源移动时U=U0+V0,则f=(U0+V0)/λ0联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0当声源以一定的速率向接收器移动时V =U0-V0,则f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f当声源与接收器运动如图时f=(U0+V1COSθ1)/( U0-V2 COSθ2)2、马赫锥a=arcsin(U0/V0)=arcsin(1/M)U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数3、天文学中的多普勒效应观察两波面的时间t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2)=(1-V2c/C2c)1/2/((1+Vc/Cc)fc)三、实验步骤(要求与提示:限400字以内)1、超声波的多普勒效应(1)、组装仪器(2)、打开实验控制箱,调至室温,记录共振频率f0(3)、选择多普勒效应验证实验(4)、修改测试总数(5)、为仪器充电,确定失锁指示灯处于灯灭状态(6)、选定滑车速率,开始测试(7)、选择存入或者重测(8)、重新选择速度,重复(6)、(7)(9)、记录实验数据2、用多普勒效应研究恒力下物体的运动规律(1)、测量钩码质量和滑车质量(2)、连接仪器(3)、选中变速运动测量(4)、修改测量总次数(5)、选中开始测试,立即松开钩码(6)、记录测量数据(7)、改变砝码质量,重复(1)到(6)四、数据处理(要求与提示:对于必要的数据处理过程要贴手算照片)表4.12-1 多普勒效应的验证与声速的测量t c = 24 ℃f0 = 40001 Hz次数i 1 2 3 4 5v/(m/s) 0.41 0.59 0.75 0.87 0.98Fi/Hz 40049 40070 40089 40103 40116斜率k=f0/u0=117.6声速u0= 340.1m/s当t= 24℃时,u t = 345.7 m/s误差|σ|= 1.6 %表4.12-2 滑车在钩码驱动作用下的运动规律测量滑车质量m0= 595.2 g 采样步距t0= 0.05 s序号i 1 2 3 4 5 6 7 8 9 10 砝码质量m1/gt i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 56.4f i/Hz 40040 40042 40051 40048 40053 40057 40063 40065 40067 40075t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 92.6f i/Hz 40067 40075 40077 40083 40087 40095 40102 40112 40118 40124t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 104.5f i/Hz 40073 40077 40083 40087 40097 40100 40114 40118 40126 40132t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 116.4f i/Hz 40067 40069 40081 40087 40100 40100 40114 40120 40130 40136m1= 56.4 g v-t 关系表t i/(s) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.337 0.354 0.432 0.406 0.449 0.484 0.536 0.553 0.570 0.640理论值:a0= 0.848 m/s2实验值:a= 0.638 m/s2误差|σ|= 24.8%m1= 92.6 g v-t 关系表t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.570 0.640 0.657 0.709 0.743 0.812 0.873 0.960 1.011 1.063理论值:a0= 1.319 m/s2实验值:a= 1.104 m/s2误差|σ|= 16.3%t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.622 0.657 0.709 0.743 0.830 0.856 0.977 1.011 1.080 1.132理论值:a0= 1.464 m/s2实验值:a= 1.187 m/s2误差|σ|= 18.9 %t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.570 0.588 0.691 0.743 0.856 0.856 0.977 1.028 1.115 1.167理论值:a0= 1.603 m/s2实验值:a= 1.387 m/s2误差|σ|= 13.5%五、分析讨论(提示:分析讨论不少于400字)研究相对运动的速度与接收到的频率之间的关系的实验时1、应该先调好皮带松紧度(1)皮带过松,带动皮带的转轮与皮带之间打滑,使小车速度发生变化,且容易导致小车自动返回后与控制器存在碰撞。

《大学物理》10.5 多普勒效应

《大学物理》10.5 多普勒效应
10.5 多普勒效应
因波源或接收器相对与介质运动, 因波源或接收器相对与介质运动,而使接收器接收到的波的 频率发生变化的现象称为多普勒效应 多普勒效应。 频率发生变化的现象称为多普勒效应。
一、波源不动,接收器以速度vR 相对介质运动 波源不动,
λ
S
P′
v
R
v
R
P
u
v =
R
u+v
λ
R
u+v u+v = = v u u v
S
R R S S
R R
u+v v = v u
R R
S
u v v = v u
R R

S
vS 二、接收器不动,波源以速度 相对介质运动 接收器不动,
u v λ′ = uT v T = ν
S S S S S
λ
u u ν= = ν λ′ u v
S
S
1
S
vT
S
S
A
λ′
2
S
u ν = ν u v
R S
R
S
接收器接受的频率大于波源的频率 接收器接受的频率大于波源的频率 大于
u ν = ν u +v
S
S
接收器接受的频率小于波源的频率 接收器接受的频率小于波源的频率 小于
三、波源与接收器同时相对介质运动
结论 波源和接收器相向运动 波源和接收器相向运动
R R S
不论是波源运动还是接收器 u +v 运动,或是两者同时运动, 运动,或是两者同时运动, ν = ν u v 只要观察者和波源是相互靠 近,接收器接受的频率就高 当波源和接收器彼此离开 当波源和接收器彼此离开 于波源频率; 于波源频率;只要两者相互 u v 远离,观察者接受到的频率 远离, ν = ν u +v 就低于波源频率。 就低于波源频率。

大学物理之多普勒效应

大学物理之多普勒效应
实际应用
多普勒效应在天文观测、激光测距等领域有重要应用。
多普勒效应的数学描述
公式推导
多普勒效应的数学描述涉及波动方程和相对运动速度的计算。通过 建立波动方程并求解,可以得到多普勒效应的公式。
公式解释
多普勒效应的公式可以用来定量描述声波或光波的频率变化规律, 其中包含了声源或光源与观察者的相对速度、波速等因素。
电波传播等。
科学研究的基石
03
多普勒效应是科学家们研究物体运动和波传播规律的重要工具,
对于推动科学技术的发展具有重要意义。
对未来研究的展望
深入理解多普勒效应
尽管多普勒效应已经被研究了很长时间,但是还有很多未解之 谜和需要进一步研究的问题,例如量子力学中的多普勒效应等 。
探索新的应用领域
随着科技的不断发展,多普勒效应的应用领域也在不断扩大。 未来可以探索其在生物医学、环境监测、通讯等领域的应用。
据。
实验步骤
2. 调整声源和接收器的相 对位置,使接收器能够接
收到声波。
4. 分析实验数据,得出结 论。
光波多普勒效应的实验验证
实验设备:光源、干涉仪、 测量仪器、记录设备等。
1. 设置光源,使其发出一 定频率的光波。
3. 使用测量仪器测量干涉 条纹的移动距离,并记录 数据。
01
02
03
04
05
06
04 多普勒效应的应用
医学超声诊断
超声诊断
多普勒效应在医学领域中广泛应用于超声诊断,如心脏、血管、胎儿等方面的 检查。通过测量血流速度和方向,医生可以了解器官的功能和血流状态,为诊 断提供重要依据。
血流监测
多普勒效应还可以用于监测患者的血流情况,如监测动脉粥样硬化、血栓形成 等血管疾病的发展情况,以及评估治疗效果。

大学物理实验多普勒效应

大学物理实验多普勒效应

多普勒效应实验报告学院化学与生物工程学院班级化学1701 学号一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械能转化的规律。

实验仪器ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理(要求与提示:限400字以,实验原理图须用手绘后贴图的方式)1、声波的多普勒效应当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为f0=U0/λ0则观测频率f、观测波长λ和观测波速U的关系f=U/λ当接收器以一定的速率向声源移动时U=U0+V0,则f=(U0+V0)/λ0联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0当声源以一定的速率向接收器移动时V =U0-V0,则f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f当声源与接收器运动如图时f=(U0+V1COSθ1)/( U0-V2 COSθ2)2、马赫锥a=arcsin(U0/V0)=arcsin(1/M)U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数3、天文学中的多普勒效应观察两波面的时间t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2)=(1-V2c/C2c)1/2/((1+Vc/Cc)fc)三、实验步骤(要求与提示:限400字以)1、超声波的多普勒效应(1)、组装仪器(2)、打开实验控制箱,调至室温,记录共振频率f0(3)、选择多普勒效应验证实验(4)、修改测试总数(5)、为仪器充电,确定失锁指示灯处于灯灭状态(6)、选定滑车速率,开始测试(7)、选择存入或者重测(8)、重新选择速度,重复(6)、(7)(9)、记录实验数据2、用多普勒效应研究恒力下物体的运动规律(1)、测量钩码质量和滑车质量(2)、连接仪器(3)、选中变速运动测量(4)、修改测量总次数(5)、选中开始测试,立即松开钩码(6)、记录测量数据(7)、改变砝码质量,重复(1)到(6)四、数据处理(要求与提示:对于必要的数据处理过程要贴手算照片)表4.12-1 多普勒效应的验证与声速的测量t c = 24 ℃f0 = 40001 Hz次数i 1 2 3 4 5v/(m/s) 0.41 0.59 0.75 0.87 0.98Fi/Hz 40049 40070 40089 40103 40116斜率k=f0/u0=117.6声速u0= 340.1m/s当t= 24℃时,u t = 345.7 m/s误差|σ|= 1.6 %表4.12-2 滑车在钩码驱动作用下的运动规律测量滑车质量m0= 595.2 g 采样步距t0= 0.05 s序号i 1 2 3 4 5 6 7 8 9 10 砝码质量m1/gt i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 56.4f i/Hz 40040 40042 40051 40048 40053 40057 40063 40065 40067 40075t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 92.6f i/Hz 40067 40075 40077 40083 40087 40095 40102 40112 40118 40124t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 104.5f i/Hz 40073 40077 40083 40087 40097 40100 40114 40118 40126 40132t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 116.4f i/Hz 40067 40069 40081 40087 40100 40100 40114 40120 40130 40136m1= 56.4 g v-t 关系表t i/(s) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.337 0.354 0.432 0.406 0.449 0.484 0.536 0.553 0.570 0.640理论值:a0= 0.848 m/s2实验值:a= 0.638 m/s2误差|σ|= 24.8%m1= 92.6 g v-t 关系表t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.570 0.640 0.657 0.709 0.743 0.812 0.873 0.960 1.011 1.063理论值:a0= 1.319 m/s2实验值:a= 1.104 m/s2误差|σ|= 16.3%t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45v/(m/s)0.622 0.657 0.709 0.743 0.830 0.856 0.977 1.011 1.080 1.132理论值:a0= 1.464 m/s2实验值:a= 1.187 m/s2误差|σ|= 18.9 %t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)0.570 0.588 0.691 0.743 0.856 0.856 0.977 1.028 1.115 1.167理论值:a0= 1.603 m/s2实验值:a= 1.387 m/s2误差|σ|= 13.5%五、分析讨论(提示:分析讨论不少于400字)研究相对运动的速度与接收到的频率之间的关系的实验时1、应该先调好皮带松紧度(1)皮带过松,带动皮带的转轮与皮带之间打滑,使小车速度发生变化,且容易导致小车自动返回后与控制器存在碰撞。

大物实验报告-多普勒效应

大物实验报告-多普勒效应

大物实验报告多普勒效应实验4.12 多普勒效应实验报告一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及其机械能转化的规律。

实验仪器ZKY-DPL-3 多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)声波的多普勒效应假设一个点声源的振动在各向同性且均匀的介质中传播,当声源相对于介质静止不动时,各个波面可以组成个同心圆,声波的频率f0、波长λ0以及波速u0表示为f0=u0/λ0现将接收器测得的声波频率、波长和波速分别称为观测频率、观测波长和观测波速,并分别记为f、λ、u,可表示为f=u/λ当接收器以一定的速度向声源运动时,接收器所测得的各个球面波的观测波长λ仍等于λ0,测得的观测波速u 变为u0+v0,因此有f=(u0+v0)/λ0f=(1+v/u0)*f0式中,v0表示声源相对介质静止时,接收器与声源的相对运动速率,接收器朝向声源运动为正值,反之为负值。

同样地,如果接收器相对于介质静止,而声源以速率v’朝向接收器运动,此时接收器所测得的观测波长为λ'可表示为(u0-v')*T,其中,T为声源的振动周期。

同时,由于接收器相对于介质处于静止状态,其测得的观测波速u'仍等于u0,则接收器测得的观测频率为f'=u’/λ’=u0*f0/(u0-v’)对于更为普遍的情况,当声源与接收器之间的相对运动如图所示时,可以得到接收器的观测频率f为f=f0*(u0+v1*cosθ1)/(u0-v2*cosθ2)此式是具有普适性的多普勒效应公式。

三、实验步骤(要求与提示:限400字以内)1、超声的多普勒效应1.1 连接好实验仪器,使滑车牵引绳绕过滑轮与滑车驱动电动机后两端与滑车的前后端相连,并调整好滑车牵引绳的松紧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多普勒效应实验报告
学院化学与生物工程学院班级化学1701 学号姓名
一、实验目的与实验仪器
实验目的
1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械
能转化的规律。

实验仪器
ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理
(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)
1、声波的多普勒效应
当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为
f0=U0/λ0
则观测频率f、观测波长λ和观测波速U的关系
f=U/λ
当接收器以一定的速率向声源移动时U=U0+V0,则
f=(U0+V0)/λ0
联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0
当声源以一定的速率向接收器移动时V =U0-V0,则
f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f
当声源与接收器运动如图时
f=(U0+V1COSθ1)/( U0-V2 COSθ2)
2、马赫锥
a=arcsin(U0/V0)=arcsin(1/M)
U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数
3、天文学中的多普勒效应
观察两波面的时间
t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2)
=(1-V2c/C2c)1/2/((1+Vc/Cc)fc)
三、实验步骤
(要求与提示:限400字以内)
1、超声波的多普勒效应
(1)、组装仪器
(2)、打开实验控制箱,调至室温,记录共振频率f0
(3)、选择多普勒效应验证实验
(4)、修改测试总数
(5)、为仪器充电,确定失锁指示灯处于灯灭状态
(6)、选定滑车速率,开始测试
(7)、选择存入或者重测
(8)、重新选择速度,重复(6)、(7)
(9)、记录实验数据
2、用多普勒效应研究恒力下物体的运动规律
(1)、测量钩码质量和滑车质量
(2)、连接仪器
(3)、选中变速运动测量
(4)、修改测量总次数
(5)、选中开始测试,立即松开钩码
(6)、记录测量数据
(7)、改变砝码质量,重复(1)到(6)
四、数据处理
(要求与提示:对于必要的数据处理过程要贴手算照片)
表4.12-1 多普勒效应的验证与声速的测量
t c = 24 ℃f0 = 40001 Hz
次数i 1 2 3 4 5
v/(m/s) 0.41 0.59 0.75 0.87 0.98
Fi/Hz 40049 40070 40089 40103 40116
斜率k=f0/u0=117.6
声速u0= 340.1m/s
当t= 24℃时,u t = 345.7 m/s
误差|σ|= 1.6 %
表4.12-2 滑车在钩码驱动作用下的运动规律测量
滑车质量m0= 595.2 g 采样步距t0= 0.05 s
序号i 1 2 3 4 5 6 7 8 9 10 砝码质量
m1/g
t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 56.4
f i/Hz 40040 40042 40051 40048 40053 40057 40063 40065 40067 40075
t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 92.6
f i/Hz 40067 40075 40077 40083 40087 40095 40102 40112 40118 40124
t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 104.5
f i/Hz 40073 40077 40083 40087 40097 40100 40114 40118 40126 40132
t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 116.4
f i/Hz 40067 40069 40081 40087 40100 40100 40114 40120 40130 40136
m1= 56.4 g v-t 关系表
t i/(s) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)
0.337 0.354 0.432 0.406 0.449 0.484 0.536 0.553 0.570 0.640
理论值:a0= 0.848 m/s2
实验值:a= 0.638 m/s2
误差|σ|= 24.8%
m1= 92.6 g v-t 关系表
t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
v/(m/s)
0.570 0.640 0.657 0.709 0.743 0.812 0.873 0.960 1.011 1.063
理论值:a0= 1.319 m/s2
实验值:a= 1.104 m/s2
误差|σ|= 16.3%
t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
v/(m/s)
0.622 0.657 0.709 0.743 0.830 0.856 0.977 1.011 1.080 1.132
理论值:a0= 1.464 m/s2
实验值:a= 1.187 m/s2
误差|σ|= 18.9 %
t i/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 v/(m/s)
0.570 0.588 0.691 0.743 0.856 0.856 0.977 1.028 1.115 1.167
理论值:a0= 1.603 m/s2
实验值:a= 1.387 m/s2
误差|σ|= 13.5%
五、分析讨论
(提示:分析讨论不少于400字)
研究相对运动的速度与接收到的频率之间的关系的实验时
1、应该先调好皮带松紧度
(1)皮带过松,带动皮带的转轮与皮带之间打滑,使小车速度发生变化,且容易导致小车自动返回后与控制器存在碰撞。

(2)当皮带过紧时,转轮与皮带摩擦力较大,小车前进速度较慢,小车后退时,运动较慢,容易使控制器进入保护状态,电机可能会因此停止转动。

2、安装时要尽量保证红外接收器、小车上的红外发射器和超声接收器、超声发射器三者
之间在同一轴线上,以保证信号传输良好,避免出现系统误差。

3、小车不使用时应立放,避免小车车轮沾上污物,增大了小车与滑轨之间摩擦力影响实
验结果。

研究做变速运动的物体其运动速度随时间的变化关系,以及机械能转化的规律的实验时1 、理论加速度与实验加速度的相差较大,可能是因为小车与滑轨之间、牵引绳与滑轮之
间存在摩擦力,一部分砝码的重力势能转化为系统的内能。

2、系统所受的摩擦力主要与小车质量有关,故当砝码质量增大时,理论加速度与实验加
速度数值相差越来越小。

3、当砝码组件质量较大时,加速度较大,短时间内环境影响较大,导致前期采样数据的
可靠性偏低,故应该中间的适当值开始记录,并且要连续记录10个数据点。

六、实验结论
1、在本实验条件下,超声接收器运动速度与接收频率成线性关系,验证多普勒效应
成立,由f-V关系直线的斜率求的24℃时实验声速与理论计算声速相差不大。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,由V-t关系曲线的斜率,
可以求得物体加速度,证明小车做匀加速直线运动。

3、砝码下降时,其重力势能转化为小车和砝码的动能以及系统的摩擦产生的内能。

七、原始数据
(要求与提示:此处将原始数据拍成照片贴图即可).。

相关文档
最新文档