2019届理科数学高考中的概率与统计问题
2019年高考数学“概率与统计”专题复习(真题+答案)
2019年高考数学“概率与统计”专题复习(名师精选重点试题+实战真题演练+答案,建议下载保存) (总计65页,涵盖所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)1 随机事件的概率基础自测1.下列说法正确的是( )A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的 答案 B2.在n 次重复进行的试验中,事件A 发生的频率为n m ,当n 很大时,P(A)与n m的关系是 ( )n mB. P(A)<nm>n mD. P(A)=nm答案3.给出下列三个命题,其中正确命题有 ( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. 个B.1个C.2个D.3个答案4.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为 , . 答案 0.97 0.035.甲、乙两人下棋,两人和棋的概率是21,乙获胜的概率是31,则乙不输的概率是 . 答案656.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=21,P (B ) =61,则出现奇数点或2点的概率之和为答案32例1 盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解 (1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是94. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这位射击运动员射击一次,击中10环的概率为多少?解 (1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9.例3 (12分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示:求该射击队员射击一次(1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k≤10),则事件A k 彼此互斥.2分(1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.32+0.28=0.60.5分(2)设“射击一次,至少命中8环”的事件为B ,那么当A 8,A 9,A 10之一发生时,事件B 发生.由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.9分(3)由于事件“射击一次,命中不足8环”是事件B :“射击一次,至少命中8环”的对立事件:即B 表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得 P ()=1-P (B )=1-0.78=0.22.12分1.在12件瓷器中,有10件一级品,2件二级品,从中任取3件. (1)“3件都是二级品”是什么事件? (2)“3件都是一级品”是什么事件? (3)“至少有一件是一级品”是什么事件?解 (1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件. (2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品. 2.某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式p=nm,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950. 3.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球. 求:(1)红或黑的概率; (2)红或黑或白的概率.解 方法一 记事件A 1:从12只球中任取1球得红球; A 2:从12只球中任取1球得黑球; A 3:从12只球中任取1球得白球; A 4:从12只球中任取1球得绿球,则 P (A 1)=125,P (A 2)=124,P (A 3)=122,P (A 4)=121. 根据题意,A 1、A 2、A 3、A 4彼此互斥, 由互斥事件概率加法公式得 (1)取出红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=125+124=43. (2)取出红或黑或白球的概率为P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =125+124+122=1211. 方法二 (1)取出红球或黑球的对立事件为取出白球或绿球,即A 1+A 2的对立事件为A 3+A 4, ∴取出红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4) =1-122-121=129=43.(2)A 1+A 2+A 3的对立事件为A 4. P (A 1+A 2+A 3)=1-P (A 4)=1-121=1211.一、选择题1.已知某厂的产品合格率为90%,抽出10件产品检查,则下列说法正确的是( )合格产品少于9件 合格产品多于9件 合格产品正好是9件D.合格产品可能是9件答案2.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )至多有1次中靶 B.2次都中靶 次都不中靶D.只有1次中靶答案3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ).甲是乙的充分条件但不是必要条件甲是乙的必要条件但不是充分条件甲是乙的充要条件甲既不是乙的充分条件,也不是乙的必要条件答案4.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A.2165 B.21625C.21631D.21691答案 D5.一个口袋内装有一些大小和形状都相同的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3,摸出白球的概率是0.5,则摸出黑球的概率是( )D.0.答案6.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )B.0.60答案 二、填空题7.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为73,乙夺得冠军的概率为41,那么中国队夺得女子乒乓球单打冠军的概率为 . 答案2819 8.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙二人下成和棋的概率为 . 答案 50% 三、解答题9.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或9环的概率; (2)不够7环的概率.解 (1)设“射中10环”为事件A ,“射中9环”为事件B ,由于A ,B 互斥,则 P (A+B )=P (A )+P (B )=0.21+0.23=0.44. (2)设“少于7环”为事件C ,则P (C )=1-P (C )=1-(0.21+0.23+0.25+0.28)=0.03.10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 解 记事件A :“不派出医生”, 事件B :“派出1名医生”, 事件C :“派出2名医生”, 事件D :“派出3名医生”, 事件E :“派出4名医生”, 事件F :“派出不少于5名医生”. ∵事件A ,B ,C ,D ,E ,F 彼此互斥, 且P (A )=0.1,P (B )=0.16,P (C )=0.3, P (D )=0.2,P (E )=0.2,P (F )=0.04. (1)“派出医生至多2人”的概率为P (A+B+C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)“派出医生至少2人”的概率为P (C+D+E+F )=P (C )+P (D )+P (E )+P (F ) =0.3+0.2+0.2+0.04=0.74. 或1-P (A+B )=1-0.1-0.16=0.74.11.抛掷一个均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过3”,求P (A+B ).解 方法一 因为A+B 的意义是事件A 发生或事件B 发生,所以一次试验中只要出现1、2、3、5四个可能结果之一时,A+B 就发生,而一次试验的所有可能结果为6个,所以P (A+B )=64=32. 方法二 记事件C 为“朝上一面的数为2”,则A+B=A+C ,且A 与C 互斥. 又因为P (C )=61,P (A )=21,所以P (A+B )=P (A+C )=P (A )+P (C )=21+61=32. 方法三 记事件D 为“朝上一面的数为4或6”,则事件D 发生时,事件A 和事件B 都不发生,即事件A+B 不发生.又事件A+B 发生即事件A 发生或事件B 发生时,事件D 不发生,所以事件A+B 与事件D 为对立事件.因为P (D )=62=31, 所以P (A+B )=1-P (D )=1-31=32. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为41,得到黑球或黄球的概率是125,得到黄球或绿球的概率是21,试求得到黑球、黄球、绿球的概率各是多少? 解 分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D.由于A 、B 、C 、D 为互斥事件,根据已知得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+++21)()(125)()(1)()()(41D P C P C P B P D P C P B P 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===31)(61)(41)(D P C P B P . ∴得到黑球、黄球、绿球的概率各是41,61,31. §2 古典概型1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )A.21 B.31 C.32答案 C2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为( )A.31 B.41 C.21D.32答案 C3.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( )A.43 B.65 C.61 D.31答案 B4.一袋中装有大小相同,编号为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为 ( )A.321 B.641 C.323D.643答案 D5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上” ;事件N :“至少一次正面朝上” .则下列结果正确的是( )A.P(M)=31,P(N)=21B.P(M)=21,P(N)=21C.P(M)=31,P(N)=43D.P(M)=21,P(N)=43答案例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:基础自测(1)试验的基本事件;(2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.解 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).例2 甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙 两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?解 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24. ∴P (A )=n m =9024=154. (2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 含基本事件数为4×3= ∴由古典概型概率公式,得P (B )=9012=152, 由对立事件的性质可得 P (C )=1-P (B )=1-152=1513. 例3 (12分)同时抛掷两枚骰子.(1)求“点数之和为6”的概率; (2)求“至少有一个5点或6点”的概率. 解 同时抛掷两枚骰子,可能的结果如下表:共有36个不同的结果.6分 (1)点数之和为6的共有5个结果,所以点数之和为6的概率p=365.9分(2)方法一 从表中可以得其中至少有一个5点或6点的结果有20个,所以至少有一个5点或6点的概率p=3620=95. 12分方法二 至少有一个5点或6点的对立事件是既没有5点又没有6点,如上表既没有5点又没有6点的结果共有16个,则既没有5点又没有6点的概率p=3616=94, 所以至少有一个5点或6点的概率为1-94=95. 12分1.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4), (3,5),(4,5).因此,共有10个基本事件.(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A ), 即(1,2),(1,3),(2,3),故P (A )=103.故共有10个基本事件,摸出2只球都是白球的概率为103. 2.(2008·山东文,18)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率; (2)求B 1和C 1不全被选中的概率.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2, B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等 可能的.用M 表示“A 1恰被选中”这一事件,则M={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而P (M )=186=31. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 有3个基本事件组成,所以P (N )=183=61,由对立事件的概率公式得 P (N )=1-P (N )=1-61=65. 3.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率: (1)A:取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=156=52. (2)从袋中的6个球中任取两个,其中1个为红球,而另1个为白球,其取法包括(1,5),(1,6), (2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个. ∴取出的两个球1个是白球,另1个是红球的概率 P (B )=158.一、选择题1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球.设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )10=101P 1B.P 10=91P 1 10=010=P 1答案2.采用简单随机抽样从含有n 个个体的总体中抽取一个容量为3的样本,若个体a 前2次未被抽到,第3次被抽到的概率等于个体a 未被抽到的概率的31倍,则个体a 被抽到的概率为 ( )A.21B.31C.41D.61 答案3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.101B.103 C.51 D.53 答案4.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为( )A.31B.61 C.81D.41 答案5.设集合A={1,2},B={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a,b )落在直线x+y=n 上”为事件C n (2≤n≤5,n ∈N ),若事件C n 的概率最大,则n 的所 有可能值为 ( )C.2和D.3和答案6.(2008·温州模拟)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x+y=5下方的概率是( )A.31B.41C.61D.121 答案二、填空题7.(2008·江苏,2)一个骰子连续投2次,点数和为4的概率为 . 答案121 8.(2008·上海文,8)在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、 E (2,2)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 答案54三、解答题9.5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求: (1)甲中奖的概率P (A ); (2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.解 (1)甲有5种抽法,即基本事件总数为5.中奖的抽法只有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的概率为P 1=52. (2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽法,故所有可能的抽法共5×4=20种,甲、乙都中奖的事件中包含的基本事件只有2种,故P 2=202=101. (3)由(2)知,甲、乙各抽一张奖券,共有20种抽法,只有乙中奖的事件包含“甲未中”和“乙中”两种情况,故共有3×2=6种基本事件,∴P 3=206=103. (4)由(1)可知,总的基本事件数为5,中奖的基本事件数为2,故P 4=52. 10.箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率解 (1)若不放回抽样3次看作有顺序,则从a+b 个产品中不放回抽样3次共有A 3b a +种方法,从a 个正品中不放回抽样3次共有A 3a种方法,可以抽出3个正品的概率p=33A A ba a +.若不放回抽样3次看作无顺序,则从a+b 个产品中不放回抽样3次共有C 3b a +种方法,从a 个正品中不放回抽样3次共有C 3a 种方法,可以取出3个正品的概率p=33C C ba a +.两种方法结果一致(2)从a+b 个产品中有放回的抽取3次,每次都有a+b 种方法,所以共有(a+b)3种不同的方法,而3个全是正品的抽法共有a 3种,所以3个全是正品的概率p=333)(⎪⎭⎫ ⎝⎛+=+b a a b a a . 11.袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为71.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有1人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次终止的概率; (3)求甲取到白球的概率.解 (1)设袋中有n 个白球,从袋中任取2个球是白球的结果数是2)1(-n n . 从袋中任取2个球的所有可能的结果数为276⨯=21. 由题意知71=212)1(-n n =42)1(-n n , ∴n (n-1)=6,解得n=3(舍去n=-2). 故袋中原有3个白球.(2)记“取球2次终止”为事件A ,则P (A )=6734⨯⨯=72. (3)记“甲取到白球”的事件为B , “第i 次取到白球”为A i ,i=1,2,3,4,5,因为甲先取,所以甲只有可能在第1次,第3次和第5次取球. 所以P (B )=P (A 1+A 3+A 5). 因此A 1,A 3,A 5两两互斥,∴P (B )=P (A 1)+P (A 3)+P (A 5)=73+567334⨯⨯⨯⨯+3456731234⨯⨯⨯⨯⨯⨯⨯⨯ =73+356+351=3522. (2008·海南、宁夏文,19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10.把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解 (1)总体平均数为61(5+6+7+8+9+10)=7.5. (2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A 包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P (A )=157. §3 几何概型基础自测1.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间 [0,1]上的概率为( )4131C.21D.以上都不对答案2.某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为 ( )A.π2 B.π1C.32D.31答案3.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是 ( )A.53B.54 C.52 D.51答案4.设D 是半径为R 的圆周上的一定点,在圆周上随机取一点C ,连接CD 得一弦,若A 表示“所得弦的长大于圆内接等边三角形的边长”,则P (A )= . 答案315.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA , 则射线OA 落在∠yOT 内的概率为 . 答案 61例1 有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?解 记“剪得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件, 所以P (A )=103310--=104=0.4. 例2 街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获1元钱.试问: (1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为22979-=8132. (2)考虑小圆板的圆心在以塑料板顶点为圆心的41圆内,因正方形有四个顶点,所以概率为819ππ=. 例3 (12分)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10毫升,含有麦锈病 种子的概率是多少?从中随机取出30毫升,含有麦锈病种子的概率是多少? 解 1升=1 000毫升,2分记事件A :“取出10毫升种子含有这粒带麦锈病的种子”. 4分 则P (A )=000110=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率为0.01. 7分记事件B :“取30毫升种子含有带麦锈病的种子”.9分 则P (B )=000130=0.03,即取30毫升种子含有带麦锈病的种子的概率为0.03.12分 例4 在Rt △ABC 中,∠A=30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM|>|AC|的概率. 解 设事件D“作射线CM ,使|AM|>|AC|”.在AB 上取点C′使|AC′|=|AC|,因为△ACC′是等腰三角形, 所以∠ACC′=230180-=75°, A μ=90-75=15,Ωμ=90,所以,P (D )=9015=61. 例5 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离 去.求两人能会面的概率.解 以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y )的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得:P (A )=S S A =222604560-=600302526003-=167.所以,两人能会面的概率是167.1.如图所示,A 、B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少?解 记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10(米),∴P (E )=3010=31. 2.(2008·江苏,6)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为 .答案16π 3.如图所示,有一杯2升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.解 记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵A μ=0.1升,Ωμ=2升, ∴由几何概型求概率的公式, 得P (A )=ΩA μμ=21.0=201=0.05. 4.在圆心角为90°的扇形AOB 中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.解 如图所示,把圆弧 三等分,则∠AOF=∠BOE=30°,记A 为“在扇形AOB 内作一射线OC ,使∠AOC 和∠BOC 都不小于30°”,要使∠AOC 和∠BOC 都不小于30°,则OC 就落在∠EOF 内, ∴P (A )=9030=31. 5.将长为l 的棒随机折成3段,求3段构成三角形的概率.解 设A=“3段构成三角形”,x,y 分别表示其中两段的长度,则第3段的长度为l-x-y. 则试验的全部结果可构成集合Ω={(x ,y )|0<x <l,0<y <l,0<x+y <l},要使3段构成三角形,当且仅当任意两段之和大于第3段,即x+y>l-x-y ⇒x+y >2l,x+l-x-y >y⇒y <2l ,y+l-x-y >x ⇒x <2l . 故所求结果构成集合A=⎭⎬⎫⎩⎨⎧<<>+2,2,2|),(l x l y l y x y x . 由图可知,所求概率为P (A )=的面积的面积ΩA =22212l l ⎪⎭⎫ ⎝⎛∙=41.一、选择题1.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a <20的概率是( )A.31 B.21 C.103 D.107答案2.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A.259 B.2516C.103D.51答案3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.121B.83C.161D.65答案4.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A.π2B.π1 C.21 D.1-π2答案5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 ( ) A.41 B.21 C.43 D.32答案6.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )A.4πB.8πC.6πD.12π答案二、填空题7.已知下图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为 .答案 338.在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 . 答案2517 三、解答题9.射箭比赛的箭靶涂有5个彩色的分环,从外向内白色、黑色、蓝色、红色,靶心为金色, 金色靶心叫“黄心”,奥运会的比赛靶面直径是122 cm ,靶心直径2 cm,运动员在70米 外射箭,假设都能中靶,且射中靶面内任一点是等可能的,求射中“黄心”的概率. 解 记“射中黄心”为事件A ,由于中靶点随机的落在面积为π41×1222 cm 2的大圆 内,而当中靶点在面积为π41×22 cm 2的黄心时,事件A 发生,于是事件A 发生 的概率P (A )=2212242.1241⨯⨯ππ=0.01,所以射中“黄心”的概率为0.01.10.假设你家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到你家,你父亲离开家去工作的时间在早上7∶00至8∶00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?解 设事件A“父亲离开家前能得到报纸”.在平面直角坐标系内,以x 和y 分别表示报纸送到和父亲离开家的时间,则父亲能得到报纸的充要条件是x≤y,而(x,y)的所有可能结果是边长为1的正方形,而能得到报纸的所有可能结果由图中阴影部分表示,这是一个几何概型问题,A μ=12-21×21×21=87,Ωμ =1, 所以P (A )=ΩμμA =87. 11.已知等腰Rt △ABC 中,∠C=90°.(1)在线段BC 上任取一点M ,求使∠CAM <30°的概率; (2)在∠CAB 内任作射线AM ,求使∠CAM <30°的概率. 解 (1)设CM=x ,则0<x <a.(不妨设BC=a ). 若∠CAM <30°,则0<x <33a , 故∠CAM <30°的概率为P (A )=的长度区间的长度区间),0(33,0a a ⎪⎪⎭⎫ ⎝⎛=33. (2)设∠CAM=θ,则0°<θ<45°. 若∠CAM <30°,则0°<θ<30°, 故∠CAM <30°的概率为 P (B )=的长度的长度)45,0()30,0( =32.设关于x 的一元二次方程x 2+2ax+b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax+b 2=0有实根”.当a≥0,b≥0时,方程x 2+2ax+b 2=0有实根的充要条件为a≥b. (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1), (3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.。
2019年高考真题理科数学分类汇编专题10 概率与统计和计数原理(解析版)
专题10 概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C 不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)a =0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率. 【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X ;(2)20243.【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==.答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-, 所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理.专题 计数原理1.【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【解析】由题意得x 3的系数为3144C 2C 4812+=+=,故选A .【名师点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.2.【2019年高考浙江卷理数】在二项式9)x 的展开式中,常数项是__________;系数为有理数的项的个数是__________.【答案】 5【解析】由题意,9)x 的通项为919C (0,1,29)rr r r T x r -+==,当0r =时,可得常数项为0919C T ==;若展开式的系数为有理数,则1,3,5,7,9r =,有246810T , T , T , T , T 共5个项.故答案为:5.【名师点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.3.【2019年高考江苏卷理数】设2*012(1),4,n n n x a a x a x a x n n +=++++≥∈N .已知23242a a a =.(1)求n 的值;(2)设(1na +=+*,ab ∈N ,求223a b -的值.【答案】(1)5n =;(2)32-.【解析】(1)因为0122(1)C C C C 4n n n n n n n x x x x n +=++++≥,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-.【名师点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.。
2019.12.29高考中的概率与统计
频数
8
20
42
22
8
B 配方的频数分布表
指标值分组 90,94 94,98 98,102 102,106 106,110
频数
4
12
42
32
10
(Ⅰ) 分别估计用 A 配方、 B 配方生产的产品的优质品率;
高考中的概率与统计
简单概括(3分钟)
例1(12分钟)
例2(12分钟)
例3(10分钟)
补充练习及作业
补充练习答案
作业:高考大题专项六:第 1、3、5 题
高考中的概率与统计
概率与统计是历年高考的必考点,以中档难度题为主.
解答题考查题型主要是三个方面: 一是统计与统计案例,如回归分析与独立性检验; 二是统计与概率分布,如频率分布直方图与分布列; 三是均值与方差的综合应用.
< 16) ≥ 16)
(n
N
).
(2)①X 可能的取值为 60,70,80,并且 P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.
X 的分布列为: E( X ) =60×0.1+70×0.2+80×0.7=76. X 60 70 80 D( X ) =(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=4P4. 0.1 0.2 0.7
自学P210例1、P211例2,P213对3,P217例8.
例 1( P217 例 8(2014 全国Ⅰ理 18))从某企业生产的某种产品中抽取
500 件,测量这些产品的一项质量指标值,由测量结果得如下频率
分布直方图: (1) 求这 500 件产品质量指 标值的样本平均数 x 和样本方差 s2 (同
2019年高考数学真题专题15 概率与统计(解答题)
专题15 概率与统计(解答题)1.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.8 50=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.6 50=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:748.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.02960.02740.17s ==⨯≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.3.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.4.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i )见解析,(ii )1115. 【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M=.5.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.【答案】(1)该校学生中上个月A,B两种支付方式都使用的人数约为400;(2)0.04;(3)见解析.【解析】(1)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100–30–25–5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为401000400 100⨯=.(2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则1()0.0425P C ==. (3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 假设样本仅使用B 的学生中,本月支付金额大于2 000元的人数没有变化, 则由(2)知,4(0)0.P E =.答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化, 所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的, 所以无法确定有没有变化.6.【2018年高考全国Ⅱ卷文数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.7.【2018年高考全国Ⅰ卷文数】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)47.45m.【答案】(1)见解析;(2)0.48;(3)3【解析】(1)频率分布直方图如下:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=.8.【2018年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()0.0500.0100.0013.8416.63510.828P K k k ≥.【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.【2018年高考北京卷文数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案】(1)0.025;(2)0.814;(3)增加第五类电影的好评率,减少第二类电影的好评率.【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为500.025 2000=.(2)方法1:由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=.方法2:设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(P B==.(3)增加第五类电影的好评率,减少第二类电影的好评率.10.【2018年高考天津卷文数】已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)分别抽取3人,2人,2人;(2)(i)见解析,(ii)521.【分析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii )由(1),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为 {A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 11.【2017年高考全国Ⅱ卷文数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg箱产量≥50 kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附: P () 0.050 0.010 0.001 k3.841 6.635 10.82822()()()()()n ad bc K a b c d a c b d -=++++.【答案】(1)0.62;(2)列联表见解析,有99%的把握认为箱产量与养殖方法有关;(3)新养殖法优于旧养殖法.【分析】(1)根据频率分布直方图中小长方形面积等于对应概率,计算A 的概率;(2)将数据填入对应表格,代入卡方公式,计算215.705K ≈,对照参考数据可作出判断;(3)先从均值(或中位数)比较大小,越大越好,再从数据分布情况看稳定性,越集中越好,综上可得新养殖法优于旧养殖法. 【解析】(1)旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1. (2)频率分布直方图中均值等于组中值与对应概率乘积的和. (3)均值大小代表水平高低,方差大小代表稳定性.12.【2017年高考全国Ⅰ卷文数】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.【答案】(1)18.0-≈r ,可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小;(2)(ⅰ)需对当天的生产过程进行检查;(ⅱ)均值与标准差的估计值分别为10.02,0.09. 【分析】(1)依公式求r ;(2)(i )由9.97,0.212x s =≈,得抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查;(ii )剔除第13个数据,则均值的估计值为10.02,方差为0.09.【解析】(1)由样本数据得(,)(1,2,,16)i x i i =的相关系数为16()(8.5)0.18ix x i r --==≈-∑.由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,0.09≈.【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.13.【2017年高考全国Ⅲ卷文数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.【答案】(1)0.6;(2)Y 的所有可能值为900,300,-100,Y 大于零的概率为0.8.【分析】(1)先确定需求量不超过300瓶的天数为2163654++=,再根据古典概型的概率计算公式求概率;(2)先分别求出最高气温不低于25(36天),最高气温位于区间[20,25)(36天),以及最高气温低于20(18天)对应的利润分别为900,300,100-,所以Y 大于零的概率估计为3625740.890+++=.【解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450-4450=900;若最高气温位于区间[20,25),则Y=6300+2(450-300)-4450=300;若最高气温低于20,则Y=6200+2(450-200)-4450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为,因此Y大于零的概率的估计值为0.8.【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.14.【2017年高考北京卷文数】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30],[30,40],,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(1)0.4;(2)20;(3):32.【分析】(1)根据频率分布直方图,表示分数大于等于70的概率,就求最后两个矩形的面积;(2)根据公式:频数=总数⨯频率进行求解;(3)首先计算分数大于等于70的总人数,根据样本中分数不小于70的男女生人数相等再计算所有的男生人数,100−男生人数就是女生人数.【解析】(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.020.04)100.6+⨯=, 所以样本中分数小于70的频率为10.60.4-=.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=, 分数在区间[40,50)内的人数为1001000.955-⨯-=. 所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (3)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=, 所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=, 男生和女生人数的比例为::604032=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为:32.【名师点睛】(1)用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,而直方图比较直观.(2)频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.。
专题11概率与统计 2019年高考数学(理科)考试大纲解读Word版含解析
2019年考试大纲解读11 概率与统计(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(二十一)概率与统计1.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性. (2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.2.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析了解回归分析的基本思想、方法及其简单应用.概率与统计作为高考的必考内容,在2019年的高考中预计仍会以“一小一大”的格局呈现.小题一般比较简单,出现在选择题或填空题中比较靠前的位置,命题角度主要有两个方面:一是统计数据的分析,多以统计图表(折线图或柱状图)的形式提供数据,进行数据的特征分析,如均值、方差、最值点及趋势分析等;二是概率的求解,以古典概型的求解为主,涉及简单的排列组合知识,几何概型可能会与其他知识模块内容结合起来考查,如与函数、不等式、解析几何或定积分的计算等相结合.解答题一般出现在第18题或第19题的位置,属于中档题目,题目涉及两个以上的知识模块,具有一定的综合性.命题角度主要有三个方面:一是统计图表与分布列的综合,涉及用频率估计概率、互斥事件、对立事件以及相互独立事件等的概率求解,以离散型随机变量的分布列、数学期望的求解为核心;二是统计数据的数字特征与回归分析、独立性检验等的综合,此类问题计算量较大,注重数据的分析与应用;三是统计图表与函数内容的结合,包括函数解析式的求解与应用等,这有可能重新成为命题的热点.考向一三种抽样方法样题1 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是A.系统抽样B.分层抽样C.简单随机抽样D.各种方法均可【答案】B【解析】从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,因为社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应用分层抽样法,故选B.考向二频率分布直方图的应用样题2 (2017新课标全国Ⅱ理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,(2)根据箱产量的频率分布直方图得列联表:2K的观测值,由于,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图面积为,。
《精品》2019年高考真题和模拟题分项汇编数学(理)专题10 概率与统计(解析版)
【17917<x),平均数7+(x-x')2],由②专题10概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 C.0.7B.0.6 D.0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、个最低分,得到7个有效评分.个有效评分与9个原始评分相比,不变的数字特征是A.中位数C.方差【答案】A B.平均数D.极差【解析】设9位评委评分按从小到大排列为x1<x2<x3<x4<x<x.89则①原始中位数为x5,去掉最低分x1,最高分x9后剩余x2<x3<x4<<x,中位数仍为x,A正确;85②原始平均数x=1(x<x<x<x2341<x<x),后来平均数x'=(x<x<x892348受极端值影响较大,∴x与x'不一定相同,B不正确;③S2=19[(x-x)2+(x-x)2+111+(x-x)2],s'2=[(x-x')2+(x-x')2+q238易知,C不正确;④原极差=x9-x1,后来极差=x8-x2,显然极差变小,D不正确.故选A.3.【2019年高考浙江卷】设0<a<1,则随机变量X的分布列是X P 013a13113则当a在(0,1)内增大时,A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大【答案】D【分析】研究方差随a变化的增大或减小规律,常用方法就是将方差用参数a表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查.【解析】方法1:由分布列得E(X)=1+a 3,则D(X)=(1+a11+a11+a1211 -0)2⨯+(-a)2⨯+(-1)2⨯=(a-)2+,333333926则当a在(0,1)内增大时,D(X)先减小后增大.故选D.a21(a+1)22a2-2a+2213方法2:则D(X)=E(X2)-E(X)=0++-==[(a-)2+],3399924则当a在(0,1)内增大时,D(X)先减小后增大.故选D.【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.【答案】5 3【解析】由题意,该组数据的平均数为6+7+8+8+9+106=8,所以该组数据的方差是1[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=653.5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.【答案】0.98.【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为10 ⨯ 0.97 + 20 ⨯ 0.98 + 10⨯ 0.99 = 39.2 ,其中高铁 个数为10 + 20 + 10 = 40,所以该站所有高铁平均正点率约为39.2 = 0.98 .40【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.【2019 年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束) 根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为 0.6,客场取胜的概率为 0.5,且各场比赛结果相互独立,则甲队以4∶1 获胜的概率是______________.【答案】 0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以 4:1 获胜的概率是 0.63 ⨯ 0.5 ⨯ 0.5 ⨯ 2 = 0.108, 前四场中有一场主场输,第五场赢时,甲队以 4:1 获胜的概率是 0.4 ⨯ 0.62 ⨯ 0.52 ⨯ 2 = 0.072, 综上所述,甲 队以 4:1 获胜的概率是 q = 0.108 + 0.072 = 0.18.【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以 4:1 获胜的两种情况;易错点之三是是否能够准确计算.7.【2019 年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将 200 只小鼠随机分成 A ,B 两组,每组 100 只,其中 A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:.记 C 为事件:“乙离子残留在体内的百分比不低于 5.5”,根据直方图得到 P (C )的估计值为 0.70.(1)求乙离子残留百分比直方图中 a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表)【答案】(1)a=0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为 4.05,6.00.【解析】(1)由已知得 0.70=a+0.20+0.15,故 a=0.35.b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019 年高考全国Ⅱ卷理数】11 分制乒乓球比赛,每赢一球得 1 分,当某局打成 10:10 平后,每球交换发球权,先多得 2 分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为 0.5,乙发球时甲得分的概率为 0.4,各球的结果相互独立.在某局双方 10:10 平后,甲先发球,两人又打了 X 个球该局比赛结束.(1)求 P (X =2);(2)求事件“X =4 且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.9.【2019 年高考天津卷理数】设甲、乙两位同学上学期间,每天 7:30 之前到校的概率均为2 3.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用 X 表示甲同学上学期间的三天中 7:30 之前到校的天数,求随机变量 X 的分布列和数学期望;(2)设 M 为事件“上学期间的三天中,甲同学在 7:30 之前到校的天数比乙同学在 7:30 之前到校的天数恰好多 2”,求事件 M 发生的概率.【答案】(1)分布列见解析, E ( X )2 ;(2)20 243.333则Y~B(3,),且M={X=3,Y=1}{X=2,Y=0}.=8241【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为221故X~B(3,),从而P(X=k)=C k()k()3-k,k=0,1,2,3.3所以,随机变量X的分布列为X01232 3,P 1272949827 2随机变量X的数学期望E(X)=3⨯=2.3(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,23由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}{X=2,Y=0})=P(X=3,Y=1)+P(X=2,Y=0)=P(X=3)P(Y=1)+P(X=2)P(Y=0)20⨯+⨯=.27992724310.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额(元)(0,1000](1000,2000]大于2000支付方式仅使用A 仅使用B 18人10人9人14人3人1人(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于(则由上个月的样本数据得P(E)=1=.1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E(X)=1;(3)见解析.【解析】1)由题意知,样本中仅使用A的学生有18+9+3=30人,仅使用B的学生有10+14+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为40100=0.4.(2)X的所有可能值为0,1,2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C,D相互独立,且P(C)=9+314+1=0.4,P(D)==0.6.3025所以P(X=2)=P(CD)=P(C)P(D)=0.24,P(X=1)=P(CD CD)=P(C)P(D)+P(C)P(D)=0.4⨯(1-0.6)+(1-0.4)⨯0.6=0.52,P(X=0)=P(CD)=P(C)P(D)=0.24.所以X的分布列为X P0.2410.5220.24故X的数学期望E(X)=0⨯0.24+1⨯0.52+2⨯0.24=1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,1C3406030答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.,7),其中(i)证明:{pi+1-p}(i=0,1,2,,7)为等比数列;i(ii)求p,并根据p的值解释这种试验方案的合理性.44【答案】(1)分布列见解析;(2)(i)证明见解析,(ii)p4=1257,解释见解析.【解析】X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β),所以X的分布列为(1- α )β3 48 3 257 257X-10 1Pαβ + (1- α )(1- β ) α (1- β )(2)(i )由(1)得 a = 0.4, b = 0.5, c = 0.1 .因此 p i = 0.4p i -1 + 0.5 p i + 0.1p i +1 ,故 0.1( p i +1 - p i ) = 0.4( p i - p i -1 ) ,即 p i +1 - p i = 4( p i - p i -1 ) .又因为 p 1 - p 0 = p 1 ≠ 0 ,所以{ p i +1 - p i }(i = 0,1,2,,7) 为公比为 4,首项为 p 1 的等比数列.(ii )由(i )可得 p 8 = p 8 - p 7 + p 7 - p 6 += ( p - p ) + ( p - p ) ++ ( p - p )8 776148 - 1 = p .1由于 p 8 =1 ,故 p 1 = 3- 1,+ p - p + p1 0所以 p = ( p - p ) + ( p - p ) + ( p - p ) + ( p - p ) = 4433221144 - 1 1p = 1.p 表示最终认为甲药更有效的概率,4由计算结果可以看出,在甲药治愈率为 0.5,乙药治愈率为 0.8 时,认为甲药更有效的概率为 p = 1≈ 0.0039 ,4此时得出错误结论的概率非常小,说明这种试验方案合理.12 .【广西桂林市、崇左市2019 届高三下学期二模联考】在某项测试中,测量结果 ξ 服从正态分布N (1,σ 2)(σ > 0) ,若 P(0 < ξ < 1) = 0.4 ,则 P(0 < ξ < 2) =A . 0.4C . 0.6B . 0.8D . 0.2【答案】B【解析】由正态分布的图象和性质得 P(0 < ξ < 2) = 2 P (0 < ξ < 1) = 2 ⨯ 0.4 = 0.8 .故选 B .【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A.100,10C.200,10B.100,20D.200,20【答案】D【解析】由题得样本容量为(3500+2000+4500)⨯2%=10000⨯2%=200,抽取的高中生人数为2000⨯2%=40人,则近视人数为40⨯0.5=20人,故选D.14.【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的次数为X,则X的数学期望是A.1B.2C.32D.52【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率,进而利用二项分布求数学期望即可.111【解析】∵一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为⨯=224,1∴X~B(4,),∴E(X)=4⨯414=1.故选A.【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布B~(n,p),也可以直接利用公式E(ξ)=np求数学期望.15.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为A.35,33,30B.36,32,30P(ξ = 2) = ⨯ = ;ξ = 3 表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故 P(ξ = 3) = ⨯ + ⨯ = ; ξ = 4 表示从甲口袋中取出一个白球,从乙口袋中取出一个红C . 36,33,29D . 35,32,31【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数.【解析】先将每个年级的人数凑整,得高一:1800 人,高二:1600 人,高三:1500 人,则三个年级的总人数所占比例分别为 18 16 15, , ,49 49 49因此,各年级抽取人数分别为 98 ⨯ 18 16 15= 36 , 98 ⨯ = 32 , 98 ⨯ = 30 ,故选 B .49 49 4916.【浙江省三校 2019 年 5 月第二次联考】已知甲口袋中有3 个红球和 2 个白球,乙口袋中有 2 个红球和 3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ ,则E (ξ ) =A .C .14 5 7 3B .D .13 5 8 3【答案】A【分析】先求出ξ 的可能取值及取各个可能取值时的概率,再利用 E (ξ ) = ξ1 p 1 + ξ2 p 2 ++ ξ p +i i可求得数学期望.【解析】 ξ 的可能取值为 2,3, 4 , ξ = 2 表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故3 3 95 5 253 2 2 3 125 5 5 5 25 2 2 4 9 12 4 14球,故 P(ξ = 4) = ⨯ = ,所以 E (ξ ) = 2 ⨯+ 3 ⨯ + 4 ⨯ = .故选 A . 5 5 25 25 25 25 517.【福建省泉州市 2019 届高三第二次(5 月)质检】已知某样本的容量为 50,平均数为 70,方差为 75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将 80 记录为 60,另一个错将 70 记录为 90.在对错误的数据进行更正后,重新求得样本的平均数为 x ,方差为 s 2,则A . x = 70, s 2 < 75 C . x > 70, s 2 < 75【答案】AB . x = 70, s 2 > 75D . x < 70, s 2 > 7550+(x-70)2+(60-70)2+(90-70)2]505050【分析】分别根据数据的平均数和方差的计算公式,求得x,s2的值,即可得到答案.【解析】由题意,可得x=70⨯50+80-60+70-90=70,50设收集的48个准确数据分别记为x1,x2,,x,48则75=1[(x-70)2+(x-70)2+1248=1[(x-70)2+(x-70)2++(x-70)2+500],12481s2=[(x-70)2+(x-70)2++(x-70)2+(80-70)2+(70-70)2]12481=[(x-70)2+(x-70)2++(x-70)2+100]<75,1248所以s2<75.故选A.【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18.【广东省汕头市2019届高三第二次模拟考试(B卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A.成绩在[70,80]分的考生人数最多C.考生竞赛成绩的平均分约70.5分B.不及格的考生人数为1000人D.考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4000⨯0.25=1000,故B 正确;由频率分布直方图可得:平均分等于45⨯0.1+55⨯0.15+65⨯0.2+75⨯0.3+85⨯0.15+ 95⨯0.1=70.5,故C正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位11【解析】(1)∵样本容量与总体个数的比是6(数为 70 + 10 ⨯0.05 ≈ 71.67 ,故 D 错误.故选 D .0.319.【天津市南开中学 2019 届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:分组(年龄)频数(人)[7,20) [20,40) [40,80)18 54 36(1)用分层抽样的方法从“百人团”中抽取6 人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;(2)在(1)中抽出的 6 人中,任选 2 人参加一对一的对抗比赛,求这 2 人来自同一年龄组的概率.【答案】(1)1, 3 , 2 ;(2)415.【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数; 2)从分层抽样的方法从“百人团”中抽取 6 人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为 1,3,2.从抽出的 6 人中,任选2 人参加一对一的对抗比赛,基本事件总数 n = C 2 = 15 ,这 2 人来自同一年龄组包含的基本事件个数6为 m = C 2 + C 2 = 4 ,由此能求出这 2 人来自同一年龄组的概率. 321=,108 18∴样本中包含 3 个年龄段落的个体数分别是:年龄在[7,20)的人数为6 108⨯ 18=1,年龄在[20,40)的人数为年龄在[40,80)的人数为6 108 6 108⨯ 54=3,⨯ 36=2,∴从这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为 1,3,2.(2)从分层抽样的方法从“百人团”中抽取 6 人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为 1,3,2.从抽出的 6 人中,任选 2 人参加一对一的对抗比赛,基本事件总数为 n = C 2 = 15 ,612∴这 2 人来自同一年龄组的概率 P =m【 销售一台第五类机器获利 x ,依据上表统计数据,随机销售一台机器获利的期望为E ( x ) ,设5,试判断E ( x ) 与 x 的大小. 结论不要求证明)【答案】(1) ;(2);(3) E ( x ) < x .( 10 即可结果;(3)先由题意确定, x 可能取的值,这 2 人来自同一年龄组包含的基本事件个数为 m = C 2 + C 2 = 4 ,324 =.n1520. 2019 北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:机器类型 第一类 第二类 第三类 第四类 第五类销售总额(万元)100 50 200 200 120销售量(台)利润率50.420.2100.1550.2580.2利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.(1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于 0.2 的概率;(2)从该公司本月卖出的销售单价为 20 万元的机器中随机选取 2 台,求这两台机器的利润率不同的概率;(3)假设每类机器利润率不变,销售一台第一类机器获利 x 1 万元,销售一台第二类机器获利 x 2 万元,…,5x = x+ x + x + x + x51 2 3 4 (1 10 321【分析】 1)先由题意确定,本月卖出机器的总数,再确定利润率高于 0.2 的机器总数,即可得出结果;(2)先由题意确定,销售单价为 20 万元的机器分别:是第一类有5 台,第三类有10 台,共有15 台,记两台机器的利润率不同为事件 B ,由 P(B) = C 1 C 15C 215求出对应概率,进而可得出E(x),再由x=x1+x2+x3+x4+x5求出均值,比较大小,即可得出结果.5【解析】(1)由题意知,本月共卖出30台机器,利润率高于0.2的是第一类和第四类,共有10台.1=.303(2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万,13设“这台机器利润率高于0.2”为事件A,则P(A)=1010=5又x=,所以E(x)<x.【答案】(1)96第一类有5台,第三类有10台,共有15台,随机选取2台有C2种不同方法,15两台机器的利润率不同则每类各取一台有C1C1种不同方法,510C1C110设两台机器的利润率不同为事件B,则P(B)=.C22115(3)由题意可得,x可能取的值为8,5,3,10P(x=8)=5121=,P(x=5)==,306301510+8351P(x=3)==,P(x=10)==,305306113177因此E(x)=⨯8+⨯5+⨯3+⨯10=;61556158+5+3+10+329=5521.【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:等级个数标准果10优质果30精品果40礼品果20(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考,方案1:不分类卖出,单价为20元/kg.方案2:分类卖出,分类后的水果售价如下:等级售价(元/k g)标准果16优质果18精品果22礼品果24从采购单的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X表示抽取的是精品果的数量,求X的分布列及数学期望E(X).6;(2)第一种方案;(3)分布列见解析,E(X)=.625514( E (ξ ) = 16 ⨯1C 3【分析】(1)计算出从 100 个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公式求得所求概率; 2)计算出方案 2 单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10 个水果中,精品果 4 个,非精品果 6 个;则 X 服从超几何分布,利用超几何分布的概率计算公式可得到每个 X 取值对应的概率,从而可得分布列;再利用数学期望的计算公式求得结果.【解析】(1)设从100 个水果中随机抽取一个,抽到礼品果的事件为 A ,则 P( A) =1 现有放回地随机抽取 4 个,设抽到礼品果的个数为 X ,则 X ~ B(4, ) ,520 1= ,100 54 1 所以恰好抽到 2 个礼品果的概率为 P( X = 2) = C 2 ( )2 ( )2 =4 5 596 625,(2)设方案 2 的单价为 ξ ,则单价的期望值为3 4 2 16 + 54 + 88 + 48+ 18 ⨯ + 22 ⨯ + 24 ⨯ = = 20.6 , 10 10 10 10 10因为 E (ξ ) > 20 ,所以从采购商的角度考虑,应该采用第一种方案.(3)用分层抽样的方法从100 个水果中抽取10 个,则其中精品果 4 个,非精品果 6 个,现从中抽取 3 个,则精品果的数量 X 服从超几何分布,所有可能的取值为0,1,2,3 ,则 P( X = 0) = C 3 1 C 2C 16 = ; P( X = 1) = 6 4 =C 3 6 C 310 101 2;P( X = 2) = C 1 C 2 3 16 4 = ; P( X = 3) = 4 = ,C 3 10 C 3 3010 10所以 X 的分布列如下:X0 1 2 3P1 6 1 23 101 30所以 E ( X ) = 0 ⨯ 1 1 3 1 6+ 1⨯ + 2 ⨯ + 3 ⨯ =6 2 10 30 5【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求解出概率.15。
2019年高考数学理真题分项解析:专题12 概率和统计
专题十二 概率和统计1.【2019高考新课标Ⅱ,理5】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤L .则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤L , 中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =+++++L ,后来平均数234817x x x x x '=+++L () 平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确 ③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦L ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦L 由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.2.【2019高考新课标Ⅲ,理3】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A. 0.5 B. 0.6C. 0.7D. 0.8【答案】C 【解析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.3.【2019高考海南卷,理6】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A【解析】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分, 7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变, 故选:A .根据题意,由数据的数字特征的定义,分析可得答案.本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题.4.【2019高考浙江卷,7】设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大【答案】D 【解析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.5.【2019高考新课标Ⅰ,理15】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________. 【答案】0.18 【解析】 【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【详解】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯= 前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯= 综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.6.【2019高考新课标Ⅱ,理13】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.7.【2019高考江苏卷,5】已知一组数据6,7,8,8,9,10,则该组数据的方差是____. 【答案】53. 【解析】 【分析】由题意首先求得平均数,然后求解方差即可. 【详解】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 【点睛】本题主要考查方差的计算公式,属于基础题.8.【2019高考江苏卷,6】从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】710. 【解析】 【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C=种情况,若选出的2名学生都是女生,有221C=种情况,所以所求的概率为617 1010 +=.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.9.【2019高考海南卷,理15】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为,有20个车次的正点率为,有10个车次的正点率为,则经停该站高铁列车所有车次的平均正点率的估计值为______.【答案】【解析】【分析】本题考查经停该站高铁列车所有车次的平均正点率的估计值的求法,考查加权平均数公式等基础知识,考查推理能力与计算能力,属于基础题.利用加权平均数公式直接求解.【解答】解:经统计,在经停某站的高铁列车中,有10个车次的正点率为,有20个车次的正点率为,有10个车次的正点率为,经停该站高铁列车所有车次的平均正点率的估计值为:.故答案为.10.【2019高考新课标Ⅰ,理21】为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)见解析;(2)(i )见解析;(ii )41257p =. 【解析】 【分析】(1)首先确定X 所有可能的取值,再来计算出每个取值对应的概率,从而可得分布列;(2)(i )求解出,,a b c 的取值,可得()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅,从而整理出符合等比数列定义的形式,问题得证;(ii )列出证得的等比数列的通项公式,采用累加的方式,结合8p 和0p 的值可求得1p ;再次利用累加法可求出4p .【详解】(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:X1-1P()1αβ- ()()11αβαβ+-- ()1αβ-(2)0.5α=Q ,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=(i )()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅Q即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7ii i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i i i i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=- ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+ 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理. 【点睛】本题考查离散型随机变量分布列的求解、利用递推关系式证明等比数列、累加法求解数列通项公式和数列中的项的问题.本题综合性较强,要求学生能够熟练掌握数列通项求解、概率求解的相关知识,对学生分析和解决问题能力要求较高.11.【2019高考新课标Ⅱ,理18】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率. 【答案】(1)0.5;(2)0.1 【解析】 【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果;(2)本题首先可以通过题意推导出()4P X =所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果。
2019年高考数学理科数学概率与统计分类汇编
2019年高考数学理科数学概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C 不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是Xa 1P131313则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)a =0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为X0 1 2 3P127 29 49 827随机变量X 的数学期望()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000](1000,2000]大于2000仅使用A 18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X 0 1 2 P0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,所以X 的分布列为X1- 0 1P(1)αβ-(1)(1)αβαβ+-- (1)αβ-(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101 (411()327 )(5())p p p p p p p p p p-=-+-+-+=-=.4p表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039 257p=≈,此时得出错误结论的概率非常小,说明这种试验方案合理.。
2019年高考数学理试题分类汇编:统计与概率(含答案)
2019 年高考数学理试题分类汇编统计与概率一、选择题1、( 2019 年北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A. 乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】 C2、( 2019 年山东高考)某高校调查了200 名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30] ,样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200 名学生中每周的自习时间不少于 22.5 小时的人数是( A )56(B)60(C)120(D)140【答案】 D3、( 2019 年全国 I 高考)某公司的班车在7:30, 8:00, 8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是1123(A )3( B)2(C)3(D)4【答案】 B4、( 2019年全国 II 高考)从区间0,1 随机抽取 2n 个数x1,x2,⋯,x n,y1,y2,⋯,y n,构成n 个数对x1, y1, x2 , y2,⋯,x n , y n,其中两数的平方和小于 1 的数对共有m个,则用随机模拟的方法得到的圆周率的近似值为( A)【答案】 C 4n2n4m2m m(B)( C)(D)m n n5、( 2019 年全国 III 高考)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中 A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。
2019年高考数学真题分类汇编:专题(12)概率和统计(理科)及答案
专题十二 概率和统计1.【2018高考重庆,理3】重庆市2019年各月的平均气温(o C )数据的茎叶图如下:0891258200338312则这组数据的中位数是( )A 、19B 、20C 、21.5D 、23 【答案】B.【解析】从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B..【考点定位】本题考查茎叶图的认识,考查中位数的概念.【名师点晴】本题通过考查茎叶图的知识,考查样本数据的数字特征,考查学生的数据处理能力.2.【2018高考广东,理4】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .1 B. 2111 C. 2110 D. 215【答案】B .【解析】从袋中任取2个球共有215105C =种,其中恰好1个白球1个红球共有1110550C C =种,所以从袋中任取的2个球恰好1个白球1个红球的概率为5010=10521,故选B . 【考点定位】排列组合,古典概率.【名师点睛】本题主要考查排列组合,古典概率的计算和转化与化归思想应用、运算求解能力,解答此题关键在于理解所取2球恰好1个白球1个红球即是分步在白球和红球各取1个球的组合,属于容易题.3.【2018高考新课标1,理4】投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A )0.648 (B )0.432 (C )0.36 (D )0.312【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.【考点定位】本题主要考查独立重复试验的概率公式与互斥事件和概率公式【名师点睛】解答本题时,先想到所求事件是恰好中3次与恰好中2次两个互斥事件的和,而这两个事件又是实验3次恰好分别发生3次和2次的独立重复试验,本题很好考查了学生对独立重复试验和互斥事件的理解和公式的记忆与灵活运用,是基础题,正确分析概率类型、灵活运用概率公式是解本题的关键. 4.【2018高考陕西,理11】设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率为( )A .3142π+ B .1142π- C .112π- D .112π+ 【答案】B【考点定位】1、复数的模;2、几何概型.【名师点晴】本题主要考查的是复数的模和几何概型,属于中档题.解几何概型的试题,一般先求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成的区域长度(面积或体积),最后代入几何概型的概率公式即可.解本题需要掌握的知识点是复数的模和几何概型的概率公式,即若z a bi =+(a 、R b ∈),则,几何概型的概率公式()P A =()()A 构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.5.【2018高考陕西,理2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为 ( )A .167B .137C .123D .93【答案】B【解析】该校女老师的人数是()11070%150160%137⨯+⨯-=,故选B . 【考点定位】扇形图.【名师点晴】本题主要考查的是扇形图,属于容易题.解题时一定要抓住重要字眼“女教师”,否则很容易出现错误.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形图可以很清晰地表示各部分数量同总数之间的关系.6.【2018高考湖北,理2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1365石 【答案】B【解析】依题意,这批米内夹谷约为169153425428=⨯石,选B. 【考点定位】用样本估计总体.【名师点睛】《九章算术》是中国古代第一部数学专著,是算经十书中最重要的一种.该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就.本题“米谷粒分”是我们统计中的用样本估计总体问题.7.【2018高考安徽,理6】若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准 差为( )(A )8 (B )15 (C )16 (D )32 【答案】C【解析】设样本数据1x ,2x ,⋅⋅⋅,10x 8=,即方差64DX =,而数据121x -,221x -,⋅⋅⋅,1021x -的方差22(21)2264D X DX -==⨯16=.故选C.【考点定位】1.样本的方差与标准差的应用.【名师点睛】已知随机变量X 的均值、方差,求X 的线性函数Y aX b =+的均值、方差和标准差,可直接用X的均值、方差的性质求解.若随机变量X 的均值EX 、方差DX ,则数Y aX b =+的均值aEX b +、方差2a DX 、标准差.8.【2018高考湖北,理4】设211(,)X N μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥【答案】C【考点定位】正态分布密度曲线. 【名师点睛】正态曲线的性质①曲线在x 轴的上方,与x 轴不相交. ②曲线是单峰的,它关于直线μ=x 对称. ③曲线在μ=x 处达到峰值πσ21.④曲线与x 轴之间的面积为1.⑤当σ一定时,曲线随着μ的变化而沿x 轴平移,如图甲所示⑥μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中.如图乙所示.9.【2018高考福建,理4】为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 【答案】B【解析】由已知得8.28.610.011.311.9105x ++++==(万元), 6.27.58.08.59.885y ++++==(万元),故80.76100.4a =-⨯=,所以回归直线方程为ˆ0.760.4yx =+,当社区一户收入为15万元家庭年支出为ˆ0.76150.411.8y=⨯+=(万元),故选B . 【考点定位】线性回归方程.【名师点睛】本题考查线性回归方程,要正确利用平均数公式计算和理解线性回归方程的意义,属于基础题,要注意计算的准确性.10.【2018高考湖北,理7】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( )A .123p p p <<B .231p p p <<C .312p p p <<D .321p p p <<【答案】B【解析】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分1S , 对事件“1||2x y -≤”,如图(2)阴影部分2S , 对为事件“12xy ≤”,如图(3)阴影部分3S , 由图知,阴影部分的面积从下到大依次是132S S S <<,正方形的面积为111=⨯, 根据几何概型公式可得231p p p <<.(1) (2) (3) 【考点定位】几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.11.【2018高考山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取 一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=。
2019年高考高三数学(理)总复习精品资料:专题11 概率与统计-含解析
2019年高考高三数学(理)总复习精品资料:
11 概率与统计
(六)统计
1.随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
2.用样本估计总体
(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.
(2)理解样本数据标准差的意义和作用,会计算数据标准差.
(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
3.变量的相关性
(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.
(七)概率
1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.
(2)了解两个互斥事件的概率加法公式.
2.古典概型
(1)理解古典概型及其概率计算公式.
(2)会计算一些随机事件所含的基本事件数及事件发生的概率.
3.随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.。
2019届高考理科数学专题--高考中的概率与统计问题
箱产量<50 kg
旧养殖法
新养殖法
箱产量≥50 kg
理科数学 微专题6:高考中的概率与统计问题
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精
确到0.01).
附:
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
(− ) 2
K2=
理科数学 微专题6:高考中的概率与统计问题
解析
(1)因为抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,
所以零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X~B(16,0.002 6).因
此P(X≥1)=1-P(X=0)=1-0.997 416≈0.040 8. (利用对立事件的概率公式求解)
机变量的分布列、期望和方差,其中概率的求解是基础,同时也常渗透考查
统计知识,背景新颖,体现了概率与统计的工具性和交汇性,综合考查考生的
应用意识、阅读理解能力、数据处理能力和转化与化归思想的应用.
统计是高考考查的一大热点,其核心是样本数据的获得和分析方法,重
点是频率分布直方图、茎叶图、样本的数字特征、线性回归方程、独立性
产过程进行检查.
^ ^^ ^
1
剔除( -3 , +3 )之外的数据9.22,剩下数据的平均数为 (16×9.9715
9.22)=10.02,
因此μ的估计值为10.02.
16
∑ 2 =16×0.2122+16×9.972≈1 591.134,
=1
理科数学 微专题6:高考中的概率与统计问题
2019高考数学(理)真题和模拟题分类汇编-概率与统计.docx
概率与统计专题1.[2019年高考全国III卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. 0.5B. 0.6C. 0.7D. 0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70^100=0.7.故选C.【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.[2019年高考全国II卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差【答案】A【解析】设9位评委评分按从小到大排列为不 <吃<兀3<兀4 <忑<冯.则①原始中位数为冯,去掉最低分X1,最高分兀后剩余兀2<兀3<兀4< <忑,中位数仍为无,A正确;-1 — 1②原始平均数% = <x2<x3<x4 <X8< x9),后来平均数x' ~—{x2 < x3 < x4 < x8),平均数受极端值影响较大,•••:与7不一定相同,B不正确;1 1 — _ —® S2 = -[(%! - X)2 + (%! - X)2 ++(%-元)2], s'2 =-[(X2-X,)2+(X3-x'f++(X8-y)2],由②易知,C不正确;④原极差=冯-召,后来极差=忑-兀2,显然极差变小,D不正确.故选A.3. [2019年高考浙江卷】设OVaVl,则随机变量X的分布列是则当a 在(0,1)内增大时,A. D(X)增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解. 本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合 性,注重重要知识、基础知识、运算求解能力的考查.【解析】方法1:由分布列得E(X)=匕色,则当a 在(0,1)内增大时,D(X)先减小后增大.故选D.方法 2:则 D(X) = E(X-)-E(X) = 0 + — + --^^ = ^-^-^ = -[(a--)-+~],3 3 9 9 9 2 4则当a 在(0,1)内增大时,D(X)先减小后增大.故选D.【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计 算能力差,不能正确得到二次函数表达式.4. [2019年高考江苏卷】已知一组数据6, 7, 8, 8, 9, 10,则该组数据的方差是 _______________________ .【答案】|所以该组数据的方差是丄[(6-8)2 + (7 -8)2 + (8-8)2 + (8 -8)2+ (9 -8)2 + (10-8)2]=-. 635. [2019年高考全国II 卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁 列车所有车次的平均正点率的估计值为 _______________ • 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为10x0.97 + 20x0.98 + 10x0.99 = 39.2,其中高铁39 2 个数为10 + 20 + 10 = 40 ,所以该站所有高铁平均正点率约为=0.98 .40【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度 不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车 总数的比值.B. £>(X)减小C. £>(X)先增大后减小D. £>(X)先减小后增大【解析】由题意,该组数据的平均数为 --------- -------- =8,6.[2019年高考全国I卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4: 1获胜的概率是【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解•题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是0.63x0.5x0.5x2 = 0.108,前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是0.4x0.62x0.52x2 = 0.072,综上所述,甲队以4 : 1获胜的概率是q = 0.108 + 0.072 = 0.1 &【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.7.[2019年高考全国III卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A, B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同•经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C)的估计值为0.70.(1)求乙离子残留百分比直方图中a, b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1) a=0.35, b=0.10; (2)甲、乙离子残留百分比的平均值的估计值分别为4.05 , 6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a-0.35.^=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2x0.15+3x0.20+4x0.30+5x0.20+6x0.10+7x0.05=4.05.乙离子残留百分比的平均值的估计值为3x0.05+4x0.10+5x0.15+6x0.35+7x0.20+8x0.15=6.00.8.[2019年高考全国II卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.⑴求P (X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1) 0.5; (2) 0.1.【解析】(1) X=2就是10 : 10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X=2) =0.5x0.44- (1-0.5) x (1-0.4) =0.5.(2) X=4且甲获胜,就是10: 10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5x (1-0.4) + (1-0.5) x0.4]x0.5x0.4=0.1.9.[2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7: 30之前到校的概率均为扌.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7: 30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7: 30之前到校的天数比乙同学在7: 30之前到校的天数恰好多2”,求事件M发生的概率.【答案】(1)分布列见解析,E(X) = 2; (2)—.243【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7: 30之前到校的概率均为扌,2 2 1故X ~ B(3,-),从而P(X=k) = C; (-/ (-)3-'山=0,1,2,3.所以,随机变量X的分布列为随机变量X的数学期望E(X)=3x| = 2.(2)设乙同学上学期间的三天中7: 30之前到校的天数为Y ,2则Y 〜3(3,§),且M={X=3,Y = 1}{X = 2,Y = 0}.由题意知事件{X=3,Y = 1}与{X=2,Y = 0}互斥,且事件{X = 3}与{丫 = 1},事件{X = 2}与{Y = 0}均相互独立,从而由(1)知P(M) = P({X=3,Y = 1}{X=2,Y=0})= P(X=3,Y = l) + P(X=2,Y = 0)=P(X = 3)P(y = 1) + P(X = 2)P(Y = 0)8 2 4 1 20—___ x _ | _ x ___—___27 9 9 27 243 '10.[2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A, B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A, B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A, B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人, 发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1) 0.4; (2)分布列见解析,E (X) =1; (3)见解析.【解析】(1)由题意知,样本中仅使用A的学生有18+9+3=30人,仅使用B的学生有10+14+1=25人,A, B两种支付方式都不使用的学生有5人.故样本中A, B两种支付方式都使用的学生有100-30-25-5=40人.40所以从全校学生中随机抽取1人,该学生上个月A, B两种支付方式都使用的概率估计为—-0.4.(2) X的所有可能值为0, 1, 2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.9 + 3 14 + 1由题设知,事件C, D相互独立,且P(C) = —= 0.4, P(D) = -^- = 0.6.所以P(X -2) = P(CD) = P(C)P(D) = 0.24 ,P(X = 1) = P(CD CD)= P(C)P(D) + P(C)P(D)=0.4 x (1 — 0.6) + (1 — 0.4) x0.6= 0.52,P(X =0) = P(CD) = P(C)P(D) = 0.24 .所以X的分布列为故x 的数学期望E(X) = 0x0.24 + 1x0.52 + 2x0.24 = 1.(3)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得P(E) = -^ =――.C: 4060答案示例1:可以认为有变化.理由如下:P (E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.11.[2019年高考全国I卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为a和0, —轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,A0 = 0,1, ,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则Po=O,卩8=1,Pi = ap-i + bp: + epi*、(i = \,2,,7),其中1), b = P(X=0), C=P(X = 1).假设« = 0.5, 0 = 0.8.(i)证明:{p i+l-Pi] G = 0,l,2, ,7)为等比数列;(ii)求A,并根据A的值解释这种试验方案的合理性.【答案】(1)分布列见解析;(2)⑴证明见解析,(ii) °4 =占,解释见解析.【解析】X的所有可能取值为-1,0,1.P(X=_l) = (l_a)0,P(X=Q) = a/3 + (l-a)(l-/3),p(X=l) = a(l_0),所以X的分布列为(2)(i)由(1)得a = 0.4,b = 0.5,c = 0.1.因此B =0.4p_i +0.5Pi +0.1p i+1,故0.1(p,+i —门)= 0.4(门一门_J, 即P M-P i=4(P i-P i-i)-又因为Pl _ Po = Pl * 0,所以{p^-p^i = 0,1,2,,7)为公比为4,首项为p的等比数列.(ii)由(i)可得ft = A-A+A-A+ +P l-Po + Po=(A-A)+(A-A)+ +(A-A)48-l=P\ •313由于A=h故0严歹二,44 _1 1所以A = (A - ft) + (ft - ^2)+(^2 - A)+(A - Po)==面•A表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为刃= 0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.12.【广西桂林市、崇左市2019届高三下学期二模联考】在某项测试中,测量结果f服从正态分布N(1Q2)Q>0),若P(0<£ <1) = 0.4,则P(0<^<2) =A. 0.4B. 0.8C. 0.6D. 0.2【答案】B【解析】由正态分布的图象和性质得P(0<^<2) = 2P(0<^<l) = 2x0.4 = 0.8.故选B.【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13. 【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙本容量和抽取的高中生近视人数分别为A. 100, 10 C. 200, 10【答案】D【解析】由题得样本容量为(3500 + 2000 + 4500) x 2% = 10000 x 2% = 200 , 抽取的高中生人数为2000x2% = 40人,则近视人数为40x0.5 = 20人,故选D.14. 【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的 次数为X,则X 的数学期望是A. 1B. 235 C. —D. 一22【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好岀现2枚正面向上的概率,进而利用二项分 布求数学期望即可.【解析】•••一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为丄x 丄=-,2 2 4X~B (4丄),E (X ) = 4x - = 1.故选A.4 4【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从 二项分布B ~(77, p ),也可以直接利用公式E (G = np 求数学期望.15. 【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三 三个年级中抽取的人数分别为 【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数.所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样 B. 100, 20 D. 200, 20甲【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为空,—,—,49 49 49因此,各年级抽取人数分别为98x —= 36, 98x —= 32, 98x —= 30,故选B.49 49 4916.【浙江省三校2019年5月第二次联考】已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为则E(§) =14 13A. —B.—5 57 8C. —D.—3 3【答案】A【分析】先求出歹的可能取值及取各个可能取值时的概率,再利用E^) = ^p1+^p2+ +&门+可求得数学期望.【解析】§的可能取值为2,3,4, § = 2表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故3 3 9P(^ = 2) = -x- = —; ^ = 3表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白3 2 2 3 12球,故P(^ = 3) = -x-+-x-=—; ^=4表示从甲口袋中取岀一个白球,从乙口袋中取出一个红5 5 5 5 252 2 4 9 12 4 14球,故P(g = 4) = —x—= ——,所以E(^) = 2x —+ 3x —+ 4x—.故选A.5 5 25 25 25 25 517.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为元,方差为s',则A.壬= 70,『<75B.壬= 70,/>75C.壬>70,¥ <75D.壬<70,2 >75【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得元,M 的值,即可得到答案.设收集的48个准确数据分别记为西,尢2,,屯8, 则 75 =命[(X] — 70)2 + (x 2 -70)2 ++ (心-70)2 + (60 -70)2 + (90 — 70)2 ]=#3 - 70『*(勺 _ 70)2 + + (x 48 - 70)2 + 500],$2 =令[(西 _ 70)2 + (花-70)2 ++(屯8 _70)2 + (80 -70)2 + (70 -70)2]=寺[(Xi — 70)2 + (x 2 — 70)2 + + (x 48- 70)2 + 100] <75 ,所以52 < 75 ■故选A.【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数 和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18. 【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的 是A.成绩在[70,80]分的考生人数最多B.不及格的考生人数为1000人C.考生竞赛成绩的平均分约70.5分D.考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率 分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4000x0.25 = 1000,故B 正确;由频率分布直方图可得:平均分等于45x0.1 + 55x0.15 + 65x0.2 + 75x0.3 + 85x0.15 +95x0.1 = 70.5,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为70 + 10X ^Q 71.67,故D 错误.故选D.0.319. 【天津市南开中学2019届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化 基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共 同参与诗【解析】由题意, 可得牙=70x50 + 80-60 + 70-9050= 70,成绩(分)词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髻小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;(2)在(1)中抽出的6人中,任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率.4【答案】(1)1, 3 , 2 ;(2)—.【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数;(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数= =15,这2人来自同一年龄组包含的基本事件个数为加=C; +C; = 4,由此能求出这2人来自同一年龄组的概率.【解析】(1)•••样本容量与总体个数的比是岛=岂,108 18•••样本中包含3个年龄段落的个体数分别是:年龄在[7, 20)的人数为一x 18=1,108年龄在[20, 40)的人数为—x54=3,108年龄在[40, 80)的人数为—x36=2,108•••从这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7, 20), [20, 40), [40, 80)中分别抽取的挑战者的人数分别为1, 3, 2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数为" = C;=15,这2人来自同一年龄组包含的基本事件个数为加=C; + C; = 4,m 4/.这2人来自同一年龄组的概率P = — = —.n 1520.[2019北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.(1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;(2)从该公司本月卖出的销售单价为20万元的机器中随机选取2台,求这两台机器的利润率不同的概率;(3)假设每类机器利润率不变,销售一台第一类机器获利%!万元,销售一台第二类机器获利吃万元,…,销售一台第五类机器获利忑,依据上表统计数据,随机销售一台机器获利的期望为£(%),设元=斗+勺+ ;3 +屯+抵,试判断E(x)与无的大小.(结论不要求证明)【答案】(1) -; (2) —; (3) E(x) < x .3 21【分析】(1)先由题意确定,本月卖出机器的总数,再确定利润率高于0.2的机器总数,即可得出结果;(2)先由题意确定,销售单价为20万元的机器分别:是第一类有5台,第三类有10台,共有15台,d记两台机器的利润率不同为事件B,由P(B) = —屮即可结果;(3)先由题意确定,X可能取的值, 求出对应概率,进而可得出E(x),再由亍=再+勺+;+"+兀求出均值,比较大小,即可得出结果.【解析】(1)由题意知,本月共卖出30台机器,利润率高于0.2的是第一类和第四类,共有10台.设“这台机器利润率高于0.2”为事件4,则P(A)=|^ = |.(2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万,第一类有5台,第三类有10台,共有15台,随机选取2台有C :种不同方法, 两台机器的利润率不同则每类各取一台有C ;C ;°种不同方法,c 1^10设两台机器的利润率不同为事件B ,则P(3) =•因 ith J E(x) = -x8 + —x5 + -x3 + -xl0 = —;6 15 5 6 1529,所以 E(x) < x . 21. 【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如 下:等级 标准果优质果精品果礼品果个数10 30 40 20(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考,方案1:不分类卖出,单价为20元/kg. 方案2:分类卖出,分类后的水果售价如下:等级 标准果优质果精品果礼品果售价(元/kg)16 18 22 24从采购单的角度考虑,应该采用哪种方案?(3) 用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望E(X). 【答案】(1) 笺;(2)第一种方案;(3)分布列见解析,£(X) = |.625 5P(x -3) =10 + 8 30*10)佥冷,(3)由题意可得,X 可能取的值为&5,3,10【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公 式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布, 利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的 计算公式求得结果.【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为4,则P(A) = ^ = |, 现有放回地随机抽取4个,设抽到礼品果的个数为X,则X~B(4,f), 所以恰好抽到2个礼品果的概率为P(X=2) = C^(j)2(|)2 =曇,(2)设方案2的单价为则单价的期望值为 13 42^) = 16x- + 18x- + 22x- + 24x- =因为E(g)>20,所以从采购商的角度考虑,应该采用第一种方案.(3) 用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个,现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为0,1,2,3,C 3 1c 2C* 1 则 P(X=0)=-^ = -; P(X=1)=-^A = -Jo ° Jo 乙P(X = 2) = ^ = A ; P (X =3)=4 = ±C ;o 10 30所以X 的分布列如下:【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的 求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求 解出概率.6 516 + 54 + 88 + 4810所以 E(X) = 0x- + lx- + 2x —+ 3x —=6 2 10 30。
2019年高考数学(理)考试大纲解读:专题11 概率与统计-含解析
2019年考试大纲解读11 概率与统计(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(二十一)概率与统计1.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性. (2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.2.统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析了解回归分析的基本思想、方法及其简单应用.概率与统计作为高考的必考内容,在2019年的高考中预计仍会以“一小一大”的格局呈现.小题一般比较简单,出现在选择题或填空题中比较靠前的位置,命题角度主要有两个方面:一是统计数据的分析,多以统计图表(折线图或柱状图)的形式提供数据,进行数据的特征分析,如均值、方差、最值点及趋势分析等;二是概率的求解,以古典概型的求解为主,涉及简单的排列组合知识,几何概型可能会与其他知识模块内容结合起来考查,如与函数、不等式、解析几何或定积分的计算等相结合.解答题一般出现在第18题或第19题的位置,属于中档题目,题目涉及两个以上的知识模块,具有一定的综合性.命题角度主要有三个方面:一是统计图表与分布列的综合,涉及用频率估计概率、互斥事件、对立事件以及相互独立事件等的概率求解,以离散型随机变量的分布列、数学期望的求解为核心;二是统计数据的数字特征与回归分析、独立性检验等的综合,此类问题计算量较大,注重数据的分析与应用;三是统计图表与函数内容的结合,包括函数解析式的求解与应用等,这有可能重新成为命题的热点.考向一三种抽样方法样题1 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是A.系统抽样B.分层抽样C.简单随机抽样D.各种方法均可【答案】B【解析】从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,因为社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应用分层抽样法,故选B.考向二频率分布直方图的应用样题2 (2017新课标全国Ⅱ理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3.附:,(2)根据箱产量的频率分布直方图得列联表:2K的观测值,由于,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图面积为,箱产量低于55kg的直方图面积为,故新养殖法箱产量的中位数的估计值为.【名师点睛】利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考向三线性回归方程及其应用样题3 (2018新课标全国Ⅱ理科)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)见解析;(2)利用模型②得到的预测值更可靠.理由见解析. 【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.考向四 概率的求解样题4 (2018新课标全国Ⅱ理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.118【答案】C【名师点睛】古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.样题5 如图,茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污染,则甲的平均成绩超过乙的平均成绩的概率为A.12B.35C.45D.710【答案】C考向五 离散型随机变量及其分布列、均值与方差样题6 (2018新课标全国Ⅰ理科)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】(1)00.1p =;(2)(i )490;(ii )应该对余下的产品作检验. 【解析】(1)20件产品中恰有2件不合格品的概率为.因此.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,故应该对余下的产品作检验.考向六 正态分布样题7 已知随机变量ξ服从正态分布()2,N μσ,若,则等于 A .0.3 B .0.35 C .0.5 D .0.7【答案】B【解析】根据正态分布密度曲线的对称性可知,,函数的对称轴是4ξ=,所以,故选B .样题8 (2017新课标全国Ⅰ理科)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得,,其中i x 为抽取的第i 个零件的尺寸,.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则,,.(2)(i )如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ii )由,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生产过程进行检查.剔除之外的数据9.22,剩下数据的平均数为,因此μ的估计值为10.02.,剔除之外的数据9.22,剩下数据的样本方差为,因此σ的估计值为.【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则.考向七 独立性检验样题9 (2018年高考新课标Ⅲ卷理)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2附:,【答案】(13)能.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学-科网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:(3)由于,所以有99%的把握认为两种生产方式的效率有差异.11。
2019高考数学真题14 概率与统计(选择题、填空题)
专题14 概率与统计(选择题、填空题)1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C . 【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生D .815号学生【答案】C【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23 B .35 C .25D .15【答案】B【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式即可求解.【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种, 所以恰有2只做过测试的概率为63105,故选B . 【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.【2018年高考全国Ⅰ卷文数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入为0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.5.【2018年高考全国Ⅱ卷文数】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.3【答案】D【解析】设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有,共10种可能,选中的2人都是女同学的情况共有,共3种可能,则选中的2人都是女同学的概率为,故选D.【名师点睛】应用古典概型求概率的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.6.【2017年高考全国Ⅰ卷文数】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为a,由图形的对称性可知,太极图中黑、白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为221π()π228a a ⨯⨯=,选B .【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.7.【2017年高考全国Ⅰ卷文数】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B .【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反映一组数据的多数水平; 中位数:一组数据中间的数(起到分水岭的作用),中位数反映一组数据的中间水平; 平均数:反映一组数据的平均水平;方差:反映一组数据偏离平均数的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一组数据的离散程度.8.【2017年高考山东卷文数】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A .3,5B .5,5C .3,7D .5,7【答案】A【解析】由题意,甲组数据为56,62,65,70x +,74,乙组数据为59,61,67,60y +,78.要使两组数据的中位数相等,则6560y =+,所以5y =, 又平均数相同,则566265(70)74596167657855x +++++++++=,解得3x =.故选A .【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失;第二点是茎叶图便于记录和表示.缺点是当样本容量较大时,作图较烦琐.利用茎叶图对样本进行估计时,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.9.【2017年高考全国Ⅲ卷文数】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由折线图,可知每年7月到8月折线图呈下降趋势,月接待游客量减少,A 错误; 折线图整体呈现出增长的趋势,年接待游客量逐年增加,B 正确;每年的接待游客量7,8月份达到最高点,即各年的月接待游客量高峰期大致在7,8月,C 正确; 每年1月至6月的月折线图平稳,月接待游客量波动性更小,7月至12月折线图不平稳,月接待游客量波动性大,D 正确. 所以选A .【名师点睛】用样本估计总体时统计图表主要有:(1)频率分布直方图,特点:频率分布直方图中各小长方形的面积等于对应区间的频率,所有小长方形的面积之和为1;(2)频率分布折线图,连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图;(3)茎叶图,对于统计图表类题目,最重要的是认真观察图表,从中提炼出有用的信息和数据.10.【2017年高考天津卷文数】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A.45B.35C.25D.15【答案】C【解析】选取两支彩笔的方法有:红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,含有红色彩笔的选法有:红黄、红蓝、红绿、红紫,共4种,由古典概型的概率计算公式,可得所求概率42105P==.故选C.【名师点睛】本题主要考查古典概型及其概率计算,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,然后找出随机事件A包含的基本事件的个数和试验中基本事件的总数,代入公式()()n APnΩ=即可得解.11.【2017年高考全国Ⅱ卷文数】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:总计有25种情况,满足条件的有10种.所以所求概率为102255=. 【名师点睛】古典概型中基本事件数的探求方法: (1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. 12.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=, 其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.13.【2018年高考全国Ⅲ卷文数】公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是______________. 【答案】分层抽样【解析】由于从不同年龄段客户中抽取,故采用分层抽样,故答案为:分层抽样.14.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 15.【2018年高考江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______________. 【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为 , , , , , 故平均数为8989909191905++++=.16.【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________. 【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种, 因此所求概率为310.17.【2017年高考江苏卷】记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是______________.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域;(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解. 18.【2017年高考江苏卷】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取______________件. 【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .。
2019届理科数学高考中的概率与统计问题
2019届理科数学高考中的概率与统计问题一、选择题(每小题5分,共15分)1.某市园林绿化局在名贵树木培埴基地种了一批红豆杉树苗,为了解这批红豆杉树苗的生长状况,随机抽取了15株进行检测,这15株红豆杉树苗的高度(单位:cm)的茎叶图如图6-1所示,利用样本估计总体的思想,求培埴基地种植的这批红豆杉树苗的高度在(140,145)内的概率为()图6—1A.0。
3 B。
0。
4 C.0。
2 D。
0。
12.如图6—2,正方形BCDE和正方形ABFG的边长分别为2a和a,连接CE和CG,现将一把芝麻随机地撒在该图形中,则芝麻落在阴影部分的概率是()图6-2A。
310B.35C。
320D.383。
日常生活中,常听到一些谚语、俗语,比如“三个臭皮匠,顶个诸葛亮",这句话有没有道理呢?我们假设三个臭皮匠中的老大、老二、老三能独立解出同一道问题的概率依次是0.6,0.5,0.4,而诸葛亮能独立解出同一道问题的概率是0.9,则三个臭皮匠与诸葛亮解出同一道问题的概率较大的是()A.三个臭皮匠B。
诸葛亮C。
一样大D。
无法确定二、填空题(每小题5分,共10分)4.已知函数f (x )=log 2x+2log 4x ,其中x ∈(0,4],若在[14,4]上随机取一个数x 0,则f (x 0)≤0的概率为 。
5. 第十三届全运会于2017年8月27日在天津举行,在自由体操比赛中,5位评委给甲、乙两位体操运动员打分(满分为30分)的茎叶图如图6-3所示,则甲、乙两位体操运动员中,得分的方差较大的是 。
(填甲或乙)图6—3三、解答题(共36分)6.(12分)已知鸡的产蛋量与鸡舍的温度有关。
为了确定某一个时段鸡舍的控制温度,某企业需要了解鸡舍的时段控制温度x (单位:℃)对某种鸡的时段产蛋量y (单位:t)和时段投入成本z (单位:万元)的影响.为此,该企业选取了7个鸡舍的时段控制温度x i 和产蛋量y i (i=1,2,…,7)的数据,对数据初步处理后得到了如图6—4所示的散点图及一些统计量的值. 其中k i =ln y i ,k =17∑i=17k i .图6-4xyk∑i=17(x i —x )2 ∑i=17(k i -2 ∑i=17(x i —x )(y i —y )∑i=17(x i —x )(k i -17。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届理科数学高考中的概率与统计问题2019届理科数学高考中的概率与统计问题一、选择题(每小题5分,共15分)1.某市园林绿化局在名贵树木培埴基地种了一批红豆杉树苗,为了解这批红豆杉树苗的生长状况,随机抽取了15株进行检测,这15株红豆杉树苗的高度(单位:cm)的茎叶图如图6-1所示,利用样本估计总体的思想,求培埴基地种植的这批红豆杉树苗的高度在(140,145)内的概率为()图6-1A.0.3B.0.4C.0.2D.0.12.如图6-2,正方形BCDE和正方形ABFG的边长分别为2a和a,连接CE和CG,现将一把芝麻随机地撒在该图形中,则芝麻落在阴影部分的概率是()图6-2A.310B.35C.320D.383.日常生活中,常听到一些谚语、俗语,比如“三个臭皮匠,顶个诸葛亮”,这句话有没有道理呢?我们假设三个臭皮匠中的老大、老二、老三能独立解出同一道问题的概率依次是0.6,0.5,0.4,而诸葛亮能独立解出同一道问题的概率是0.9,则三个臭皮匠与诸葛亮解出同一道问题的概率较大的是()A.三个臭皮匠B.诸葛亮C.一样大D.无法确定二、填空题(每小题5分,共10分)4.已知函数f(x)=log2x+2log4x,其中x∈(0,4],若在[14,4]上随机取一个数x0,则f(x0)≤0的概率为.5.第十三届全运会于2017年8月27日在天津举行,在自由体操比赛中,5位评委给甲、乙两位体操运动员打分(满分为30分)的茎叶图如图6-3所示,则甲、乙两位体操运动员中,得分的方差较大的是.(填甲或乙)图6-3三、解答题(共36分)6.(12分)已知鸡的产蛋量与鸡舍的温度有关.为了确定某一个时段鸡舍的控制温度,某企业需要了解鸡舍的时段控制温度x(单位:℃)对某种鸡的时段产蛋量y(单位:t)和时段投入成本z(单位:万元)的影响.为此,该企业选取了7个鸡舍的时段控制温度x i和产蛋量y i(i=1,2,…,7)的数据,对数据初步处理后得到了如图6-4所示的散点图及一些统计量的值.其中k i=ln y i,k=17∑i=17k i.图6-4 x y k∑i=17(x i -x )2 ∑i=17(k i -k )2 ∑i=17(x i -x )(y i -y ) ∑i=17(x i -x )(k i -k ) 17.40 82.30 3.60 140.00 9.702 935.10 35.00 (1)根据散点图判断,y=bx+a 与y=c 1e c 2x (e 为自然对数的底数)哪一个适宜作为该种鸡的时段产蛋量y 关于鸡舍的时段控制温度x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断及表中的数据,建立y 关于x 的回归方程;(3)已知时段投入成本z 与x ,y 的关系为z=e -2.5y-0.1x+10,当鸡舍的时段控制温度为28 ℃时,鸡的时段产蛋量及时段投入成本的预报值是多少?附:对于一组具有线性相关关系的数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=βu+α的斜率和截距的最小二乘估计分别为β^=∑i=1n (u i -u )(v i -v )∑i=1n (u i-u )2,α^=v -β^u . 参考数据:e -2.5 e -0.75 e e 3 e 7 0.08 0.47 2.72 20.09 1 096.637.(12分)继微信支付对提现收费后,支付宝也开始对提现收费,目前,随着这两大用户使用粘度最高的第三方支付开始收费,业内人士分析,部分对价格敏感的用户或将回流至传统银行体系.某调查机构对此进行调查,并从参与调查的数万名支付宝用户中随机选取200人,把这200人分为3类:认为使用支付宝方便,仍使用支付宝提现的用户称为“A类用户”;根据提现的多少确定是否使用支付宝的用户称为“B类用户”;提前将支付宝账户内的资金全部提现,以后转账全部通过银行的用户称为“C类用户”,各类用户的人数如图6-5所示,同时把这200人按年龄分为青年人组与中老年人组,制成如下所示的2×2列联表.图6-5A类用户非A类用户合计青年20中老年40合计200(1)完成2×2列联表,并判断是否有99.9%的把握认为“A 类用户与年龄有关”;(2)从这200人中按A 类用户、B 类用户、C 类用户进行分层抽样,从中抽取10人,再从这10人中随机抽取4人,求在这4人中A 类用户、B 类用户、C 类用户均存在的概率;(3)把频率作为概率,从支付宝所有用户(人数很多)中随机抽取3人,用X 表示所选3人中A 类用户的人数,求X 的分布列与数学期望.附:P (K 2≥k 0) 0.01 0.05 0.025 0.010 0.005 0.001k 0 2.706 3.841 5.024 6.635 7.87910.828 参考公式:K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ),其中n=a+b+c+d.8.(12分)某婴幼儿游泳馆为了吸引顾客,推出优惠活动,即对首次消费的顾客按60元收费,并注册成为会员,对会员消费的不同次数给予相应的优惠,标准如下:消费次第1次第2次第3次不少于4次数收费比1 0.95 0.90 0.85例该游泳馆从注册的会员中,随机抽取了100位会员统计他们的消费次数,得到数据如下:消费次1次2次3次不少于4次数频数60 25 10 5假设每位顾客游泳1次,游泳馆的成本为30元.根据所给数据,回答下列问题:(1)估计该游泳馆1位会员至少消费2次的概率;(2)某会员消费4次,求这4次消费中,游泳馆获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件发生的概率,从该游泳馆的会员中随机抽取2位,记游泳馆从这2位会员的消费中获得的平均利润之差的绝对值为X,求X的分布列和数学期望E(X).答案1.C 由茎叶图知,红豆杉树苗的高度在(140,145)内的有141,143,144,所以所求概率为315=0.2,故选C .2.A 设图中阴影部分的面积是S ,则S=S 正方形ABFG +S △BCE -S △AGC ,∵S 正方形ABFG=a 2,S △BCE = 12×2a×2a=2a2,S △AGC =12(a+2a )×a=32a 2,∴S=32a 2,又整体区域的面积为5a 2,∴芝麻落在阴影部分的概率是32a 25a 2=310,故选A .3.B 解法一 因为三个臭皮匠(至少有一个)解出这道问题,包含的情况有:恰好有一个能解出问题、恰好有两个能解出问题、三个都能解出问题,所以所求概率为0.6×(1-0.5)×(1-0.4)+(1-0.6)×0.5×(1-0.4)+(1-0.6)×(1-0.5)×0.4+0.6×0.5×(1-0.4)+0.6×(1-0.5)×0.4+(1-0.6)×0.5×0.4+0.6×0.5×0.4=0.88<0.9,故选B . 解法二 三个臭皮匠(至少有一个)解出这道问题的概率为1-(1-0.6)×(1-0.5)×(1-0.4)=0.88<0.9.故选B .4.15由对数的换底公式得f (x )=2log 2x ,在[14,4]上,由f (x 0)≤0,得x 0∈[14,1],故f (x 0)≤0的概率为1-144-14=15.5.乙 解法一 由题中茎叶图中的数据可知,甲体操运动员得分的平均值为x 1=15×(18+19+22+28+28)=23,方差s 12=15×[(18-23)2+(19-23)2+(22-23)2+(28-23)2+(28-23)2]=925.乙体操运动员得分的平均值为x 2=15×(16+18+23+26+27)=22,方差s 22=15×[(16-22)2+(18-22)2+(23-22)2+(26-22)2+(27-22)2]=945.所以甲、乙两位体操运动员中,得分的方差较大的是乙.解法二 由数据方差的性质可知,将原数据同时减去同一常数,所得新数据的方差与原数据的方差相同,所以将原数据同时减去20得, 甲的新数据为-2,-1,2,8,8,其平均数为15×[-2+(-1)+2+8+8]=3,方差为15×[(-2-3)2+(-1-3)2+(2-3)2+(8-3)2+(8-3)2]=925.乙的新数据为-4,-2,3,6,7,其平均数为15×[-4+(-2)+3+6+7]=2,方差为15×[(-4-2)2+(-2-2)2+(3-2)2+(6-2)2+(7-2)2]=945.所以甲、乙两位体操运动员中,得分的方差较大的是乙.6.(1)由题中散点图可以判断,y=c 1e c 2x 适宜作为该种鸡的时段产蛋量y 关于鸡舍的时段控制温度x 的回归方程类型.(2分)(2)令k=ln y ,建立k 关于x 的线性回归方程k=dx+c (d=c 2,c=ln c 1).由题意,得^d=∑i=17(x i -x )(k i -∑i=17(x i -x )2=35.00140.00=0.25,c ^=k -^d x =3.60-0.25×17.40=-0.75,(6分)所以k 关于x 的线性回归方程为^k=0.25x-0.75,c 2=0.25,c 1=e -0.75=0.47, 故y 关于x 的回归方程为y ^=0.47e 0.25x .(9分)(3)由(2)知,当x=28时,鸡的时段产蛋量y 的预报值y ^=0.47e 0.25×28=0.47e 7=0.47×1 096.63≈515.42(t), 时段投入成本z 的预报值z ^=e -2.5×515.42-0.1×28+10=0.08×515.42-2.8+10≈48.43(万元).(12分)7.(1)补全的2×2列联表如下:A 类用户 非A 类用户合计 青年 80 20 100 中老年 40 60 100 合计12080200 (2分)因为K 2的观测值k=200×(80×60-40×20)2100×100×120×80=1003≈33.333>10.828.所以有99.9%的把握认为“A 类用户与年龄有关”.(4分)(2)从这200人中按A 类用户、B 类用户、C 类用户进行分层抽样,从中抽取10人,则A 类用户6人、B 类用户3人、C 类用户1人.(5分)设A 类用户、B 类用户、C 类用户均存在的事件为事件D ,则P (D )=C 62C 31C 11+C 61C 32C 11C 104=45+18210=310,所以在这4人中A 类用户、B 类用户、C 类用户均存在的概率为310.(7分)(3)把频率作为概率,从支付宝所有用户(人数很多)中抽取3人,可近似看作3次独立重复试验,所以X 的所有可能取值为0,1,2,3,且X~B (3,35).P (X=0)=C 30×(1-35)3=8125,P (X=1)=C 31×35×(1-35)2=36125,P (X=2)=C 32×(35)2×(1-35)=54125,P (X=3)=C 33×(35)3=27125.(10分)所以X 的分布列为X 0 1 2 3P 8125 36125 5412527125 数学期望E (X )=0×8125+1×36125+2×54125+3×27125=95,即X 的数学期望为95.(12分)8.(1)25+10+5=40,即随机抽取的100位会员中,至少消费2次的会员有40位,(2分)所以估计该游泳馆1位会员至少消费2次的概率P=40100=25.(3分)(2)第1次消费时,60-30=30(元),所以游泳馆获得的利润为30元,第2次消费时,60×0.95-30=27(元),所以游泳馆获得的利润为27元,第3次消费时,60×0.90-30=24(元),所以游泳馆获得的利润为24元,第4次消费时,60×0.85-30=21(元),所以游泳馆获得的利润为21元, 因为30+27+24+214=25.5(元),所以这4次消费中,游泳馆获得的平均利润为25.5元.(6分)(3)若会员消费1次,P 1=60100=35,则平均利润为30元,其概率为35; 若会员消费2次,30+272=572(元),P 2=25100=14,则平均利润为572元,其概率为14;若会员消费3次,30+27+243=27(元),P 3=10100=110,则平均利润为27元,其概率为110; 若会员消费4次,30+27+24+214=512(元),P 4=5100=120, 则平均利润为512元,其概率为120.(8分)由题意知,X 的所有可能取值为0,32,3,92,且P (X=0)=35×35+14×14+110×110+120×120=87200,P (X=32)=2×(35×14+14×110+110×120)=925,P (X=3)=2×(35×110+14×120)=29200,P (X=92)=2×35×120=350,所以X 的分布列为X 0 3 3 9P 87 9 29 3 (10分)数学期望E (X )=0×87200+32×925+3×29200+92×350=249200,即X 的数学期望E (X )为249200元.。