全等三角形及轴对称测试题
人教版八年级数学上《全等三角形》《轴对称》期末复习提优题及答案解析
八年级[上]数学期末《全等三角形》《轴对称》复习一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC 和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A.①②③B.①②④C.②③④D.①②③④2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE =S△ABP,其中正确的是()A.①③B.①②④C.①②③D.②③4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M到AD的距离等于BC的一半;其中正确的有()1A.2个B.3个C.4个D.5个二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=_________;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=_________,∠CBE=_________度;(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=_________,∠CFE=_________度;(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数_________.7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG 的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.(1)试判断△PCE的形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF的长.9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD 的中点G,连接GF.(1)FG与DC的位置关系是_________,FG与DC的数量关系是_________;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE 和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论.(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?八年级[丄]数学期末《全等三角形》《轴对称》复习提优题【大海之音组卷】参考答案与试题解析一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC 和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A.①②③B.①②④C.②③④D.①②③④考点:直角三角形的性质;角平分线的定义;垂线;全等三角形的判定与性质.专题:推理填空题.分析:①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=∠ABC,然后利用三角形的内角和定理整理即可得解;②③先根据直角的关系求出∠AHP=∠FDP,然后利用角角边证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH,对应角相等可得∠PFD=∠HAP,然后利用平角的关系求出∠BAP=∠BFP,再利用角角边证明△ABP与△FBP全等,然后根据全等三角形对应边相等得到AB=BF,从而得解;④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.解答:解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=∠ABC,∠CAP=(90°+∠ABC)=45°+∠ABC,在△ABP中,∠APB=180°﹣∠BAP﹣∠ABP,=180°﹣(45°+∠ABC+90°﹣∠ABC)﹣∠ABC,=180°﹣45°﹣∠ABC﹣90°+∠ABC﹣∠ABC,=45°,故本小题正确;②③∵∠ACB=90°,PF⊥AD,∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,∴∠AHP=∠FDP,∵PF⊥AD,∴∠APH=∠FPD=90°,在△AHP与△FDP中,,∴△AHP≌△FDP(AAS),∴DF=AH,∵AD为∠BAC的外角平分线,∠PFD=∠HAP,∴∠PAE+∠BAP=180°,又∵∠PFD+∠BFP=180°,∴∠PAE=∠PFD,∵∠ABC的角平分线,∴∠ABP=∠FBP,在△ABP与△FBP中,,∴△ABP≌△FBP(AAS),∴AB=BF,AP=PF故②小题正确;∵BD=DF+BF,∴BD=AH+AB,∴BD﹣AH=AB,故③小题正确;④∵PF⊥AD,∠ACB=90°,∴AG⊥DH,∵AP=PF,PF⊥AD,∴∠PAF=45°,∴∠ADG=∠DAG=45°,∴DG=AG,∵∠PAF=45°,AG⊥DH,∴△ADG与△FGH都是等腰直角三角形,∴DG=AG,GH=GF,∴DG=GH+AF,∵AF>AP,∴DG=AP+GH不成立,故本小题错误,综上所述①②③正确.故选A.点评:本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④ED=2AB.其中正确的是()A.①②③B.①②④C.②③④D.①②③④考点:旋转的性质;含30度角的直角三角形.分析:根据直角三角形中30°的角所对的直角边等于斜边的一半,以及旋转的性质即可判断.解答:解:①根据旋转的性质可以得到:AB=AD,而∠ABD=60°,则△ABD是等边三角形,可得到∠DAC=30°,∴∠DAC=∠DCA,故正确;②根据①可得AD=CD,并且根据旋转的性质可得:AC=AE,∠EAC=60°,则△ACE是等边三角形,则EA=EC,即D、E都到AC两端的距离相等,则DE在AC的垂直平分线上,故正确;③根据条件AB∥DE,而AB≠AE,即可证得EB平分∠AED不正确,故错误;④根据旋转的性质,DE=BC,而BC=2AB,即可证得ED=2AB,故正确;故正确的是:①②④.故选B.点评:正确理解旋转的性质,图形旋转前后两个图形全等是解决本题的关键.3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确的是()A.①③B.①②④C.①②③D.②③考点:全等三角形的判定与性质;等腰三角形的性质.分析:根据三角形全等的判定和性质以及三角形内角和定理逐条分析判断.解答:解:在△ABC中,AD、BE分别平分∠BAC、∠ABC,∵∠ACB=90°,∴∠A+∠B=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠A+∠B)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴AH=FD,又∵AB=FB,∴AB=FD+BD=AH+BD.故③正确.∵△ABP≌△FBP,△APH≌△FPD,∴S四边形ABDE=S△ABP+S△BDP+S△APH﹣S△EOH+S△DOP=S△ABP+S△ABP﹣S△EOH+S△DOP=2S△ABP﹣S△EOH+S△DOP.故选C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M到AD的距离等于BC的一半;其中正确的有()A.2个B.3个C.4个D.5个考点:全等三角形的判定与性质;角平分线的性质.分析:过M作ME⊥AD于E,得出∠MDE=∠CDA,∠MAD=∠BAD,求出∠MDA+∠MAD=(∠CDA+∠BAD)=90°,根据三角形内角和定理求出∠AMD,即可判断①;根据角平分线性质求出MC=ME,ME=MB,即可判断②和⑤;由勾股定理求出DC=DE,AB=AE,即可判断③;根据SSS证△DEM≌△DCM,推出S=S三角形DCM,同理得出S三角形AEM=S三角形ABM,即可判断④.三角形DEM解答:解:过M作ME⊥AD于E,∵∠DAB与∠ADC的平分线相交于BC边上的M点,∴∠MDE=∠CDA,∠MAD=∠BAD,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠MDA+∠MAD=(∠CDA+∠BAD)=×180°=90°,∴∠AMD=180°﹣90°=90°,∴①正确;∵DM平分∠CDE,∠C=90°(MC⊥DC),ME⊥DA,∴MC=ME,同理ME=MB,∴MC=MB=ME=BC,∴②正确;∴M到AD的距离等于BC的一半,∴⑤正确;∵由勾股定理得:DC2=MD2﹣MC2,DE2=MD2﹣ME2,又∵ME=MC,MD=MD,∴DC=DE,同理AB=AE,∴AD=AE+DE=AB+DC,∴③正确;∵在△DEM和△DCM中,∴△DEM≌△DCM(SSS),∴S三角形DEM=S三角形DCM同理S三角形AEM=S三角形ABM,∴S三角形AMD=S梯形ABCD,∴④正确;故选D.点评:本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=2;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.考点:含30度角的直角三角形;全等三角形的判定与性质;等边三角形的性质.专题:动点型.分析:(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.解答:(1)解:∵△BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴FAC=180°﹣60°﹣60°=60°,∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(2)证明:∵△BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,在△BCD中,∠ADE+∠EDB=∠CBD+∠C,即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在△ADE与△HBE中,,∴△ADE≌△HBE(SAS),∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.点评:本题考查了30°角所对的直角边等于斜边的一半的性质,全等三角形的判定与性质,等边三角形的性质与判定,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,(2)中求出∠ADE=∠HBE是解题的关键.6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=1,∠CBE=45度;(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=1,∠CFE=45度;(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数135°.考点:圆周角定理;全等三角形的判定与性质;等腰直角三角形;确定圆的条件.分析:(1)先证明∠ACD=∠BCE,再根据边角边定理证明△ACD≌△BCE,然后根据全等三角形对应边相等和对应角相等解答;(2)根据(1)的思路证明△ACD和△BCE全等,再根据全等三角形对应边相等得BE=AD,对应角相等得∠DAC=∠DBF,又AC⊥CD,所以AF⊥BF,从而可以得到C、E、F、D四点共圆,根据同弧所对的圆周角相等即可求出∠CFE=∠CDE=45°;(3)同(2)的思路,证明C、F、D、E四点共圆,得出∠CFD=∠CED=45°,而∠DEF=90°,所以∠CFE 的度数即可求出.解答:解:(1)∵△ABC和△DCE是等腰三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD=45°,因此=1,∠CBE=45°;(2)同(1)可得BE=AD,∴=1,∠CBE=∠CAD;又∵∠ACD=90°,∠ADC=∠BDF,∴∠BFD=∠ACD=90°;又∵∠DCE=90°,∴C、E、F、D四点共圆,∴∠CFE=∠CDE=45°;(3)同(2)可得∠BFA=90°,∴∠DFE=90°;又∵∠DCE=90°,∴C、F、D、E四点共圆,∴∠CFD=∠CED=45°,∴∠CFE=∠CFD+∠DFE=45°+90°=135°.点评:本题综合考查了等边对等角的性质,三角形全等的判定和全等三角形的性质,四点共圆以及同弧所对的圆周角相等的性质,需要熟练掌握并灵活运用.7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG 的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.考点:等边三角形的性质;全等三角形的判定与性质.专题:探究型.分析:①∠AFE的大小不变,其度数为60°,理由如下:由三角形ABC为等边三角形,得到三条边相等,三个内角相等,都为60°,可得出AB=BC,∠ABD=∠C,再由BD=CE,利用SAS可得出三角形ABD与三角形BCE全等,根据全等三角形的对应角相等可得出∠BAD=∠CBE,在三角形ABD中,由∠ABD为60°,得到∠BAD+∠ADB的度数,等量代换可得出∠CBE+∠ADB的度数,利用三角形的内角和定理求出∠BFD 的度数,根据对应角相等可得出∠AFE=∠BFD,可得出∠AFE的度数不变;②连接AG,如图所示,由三角形ABC为等边三角形,得出三条边相等,三个内角都相等,都为60°,再由CG为外角平分线,得出∠ACG也为60°,由∠ADG为60°,可得出A,D,C,G四点共圆,根据圆内接四边形的对角互补可得出∠DAG与∠DCG互补,而∠DCG为120°,可得出∠DAG为60°,根据∠BAD+∠DAC=∠DAC+∠CAG=60°,利用等式的性质得到∠BAD=∠CAG,利用ASA可证明三角形ABD 与三角形ACG全等,利用全等三角形的对应边相等可得出BD=CG,由BC=BD+DC,等量代换可得出CG+CD=BC,而BC=10,即可得到DC+CG为定值10,得证.解答:解:①∠AFE的大小不变,其度数为60°,理由为:∵△ABC为等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,又∠BAD+∠ADB=120°,∴∠CBE+∠ADB=120°,∴∠BFD=60°,则∠AFE=∠BFD=60°;②正确的结论为:DC+CG的值为定值,理由如下:连接AG,如图2所示:∵△ABC为等边三角形,∴AB=BC=AC,∠ABD=∠ACB=∠BAC=60°,又CG为∠ACB的外角平分线,∴∠ACG=60°,又∵∠ADG=60°,∴∠ADG=∠ACG,即A,D,C,G四点共圆,∴∠DAG+∠DCG=180°,又∠DCG=120°,∴∠DAG=60°,即∠DAC+∠CAG=60°,又∵∠BAD+∠DAC=60°,∴∠BAD=∠GAC,在△ABD和△ACG中,∵,∴△ABD≌△ACG(ASA),∴DB=GC,又BC=10,则BC=BD+DC=DC+CG=10,即DC+CG的值为定值.点评:此题考查了等边三角形的判定与性质,全等三角形的判定与性质,四点共圆的条件,以及圆内接四边形的性质,利用了等量代换及转化的思想,熟练掌握等边三角形的判定与性质是解本题的关键.8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.(1)试判断△PCE的形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF的长.考点:全等三角形的判定与性质;等腰直角三角形.专题:计算题;证明题.分析:(1)根据∠PCE=∠DCE=×90°=45°,求证∠CPE=90°,然后即可判断三角形的形状.(2)根据∠HEB=∠H=45°得HB=BE,再根据BA=BC和∠HAE=120°,利用ASA求证△HAE≌△CEF,得AE=EF,又因为AE=2AB.然后即可求得EF.解答:解:(1)△PCE是等腰直角三角形,理由如下:∵∠PCE=∠DCE=×90°=45°∠PEC=45°∴∠PCE=∠PEC∠CPE=90°∴△PCE是等腰直角三角形(2)∵∠HEB=∠H=45°∴HB=BE∵BA=BC∴AH=CE而∠HAE=120°∴∠BAE=60°,∠AEB=30°又∵∠AEF=90°∴∠CEF=120°=∠HAE而∠H=∠FCE=45°∴△HAE≌△CEF(ASA)∴AE=EF又∵AE=2AB=2×3=6∴EF=6点评:此题主要考查学生对全等三角形的判定与性质和等腰直角三角形等知识点的理解和掌握,解答(2)的关键是利用ASA求证△HAE≌△CEF,此题有一定的拔高难度,属于中档题.9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.考点:全等三角形的判定与性质.专题:证明题.分析:(1)在AB上取一点M,使得AM=AH,连接DM,则利用SAS可得出△AHD≌△AMD,从而得出HD=MD=DB,即有∠DMB=∠B,通过这样的转化可证明∠B与∠AHD互补.(2)由(1)的结论中得出的∠AHD=∠AMD,结合三角形的外角可得出∠DGM=∠GDM,可将HD转化为MG,从而在线段AG上可解决问题.解答:证明:(1)在AB上取一点M,使得AM=AH,连接DM,∵,∴△AHD≌△AMD,∴HD=MD,∠AHD=∠AMD,∵HD=DB,∴DB=MD,∴∠DMB=∠B,∵∠AMD+∠DMB=180°,∴∠AHD+∠B=180°,即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA,∴∠AMD=2∠DGM,又∵∠AMD=∠DGM+∠GDM,∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,∴MD=MG,∴HD=MG,∵AG=AM+MG,∴AG=AH+HD.点评:本题考查了全等三角形的判定及性质,结合了等腰三角形的知识,解决这两问的关键都是通过全等图形的对应边相等、对应角相等,将题目涉及的角或边进行转化.10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连接GF.(1)FG与DC的位置关系是FG⊥CD,FG与DC的数量关系是FG=CD;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.考点:全等三角形的判定与性质;等腰直角三角形.专题:探究型.分析:(1)证FG和CD的大小和位置关系,我们已知了G是CD的中点,猜想应该是FG⊥CD,FG=CD.可通过构建三角形连接FD,FC,证三角形DFC是等腰直角三角形来得出上述结论,可通过全等三角形来证明;延长DE交AC于M,连接FM,证明三角形DEF和FMC全等即可.我们发现BDMC是个矩形,因此BD=CM=DE.由于三角形DEB和ABC都是等腰直角三角形,∠BED=∠A=45°,因此∠AEM=∠A=45°,这样我们得出三角形AEM是个等腰直角三角形,F是斜边AE的中点,因此MF=EF,∠AMF=∠BED=45°,那么这两个角的补角也应当相等,由此可得出∠DEF=∠FMC,这样就构成了三角形DEF和CMF的全等的所有条件,可得到DF=FC,即三角形DFC是等腰三角形,下面证直角.根据两三角形全等,我们还能得出∠MFC=∠DFE,我们知道∠MFC+∠CFE=90°,因此∠DFE+∠CFE=∠DFC=90°,这样就得出三角形DFC是等腰直角三角形了,也就能得出FG⊥CD,FG=CD的结论了.(2)和(1)的证法完全一样.解答:解:(1)FG⊥CD,FG=CD.(2)延长ED交AC的延长线于M,连接FC、FD、FM,∴四边形BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠AEM=∠A=45°,∴△AEM是等腰直角三角形.又F是AE的中点,∴MF⊥AE,EF=MF,∠EDF=∠MCF.∵在△EFD和△MFC中,∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90°,∴∠MFC+∠DFM=90°.即△CDF是等腰直角三角形,又G是CD的中点,∴FG=CD,FG⊥CD.点评:本题中通过构建全等三角形来证明线段和角相等是解题的关键.11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE 和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论.(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)根据全等三角形的判定得出△ABG≌△EAP,进而求出AG=EP.同理AG=FQ,即EP=FQ.(2)过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题.(3)由(1)、(2)中的全等三角形可以推知△ABC与△AEF的面积相等.解答:解:(1)EP=FQ,理由如下:如图1,∵Rt△ABE是等腰三角形,∴EA=BA.∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG在△EAP与△ABG中,,∴△EAP≌△ABG(AAS),∴EP=AG.同理AG=FQ.∴EP=FQ.(2)如图2,HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.由(1)知EP=FQ.在△EPH与△FQH中,∵,∴△EPH≌△FQH(AAS).∴HE=HF;(3)相等.理由如下:由(1)知,△ABG≌△EAP,△FQA≌△AGC,则S△ABG=S△EAP,S△FQA=S△AGC.由(2)知,△EPH≌△FQH,则S△EPH=S△FQH,所以S△ABC=S△ABG+S△AGC=S△EAP﹣S△EPH+S△FQA﹣S△FQH=S△EAP+S△FQA=S△AEF,即S△ABC=S△AEF.故图2中的△ABC与△AEF的面积相等.点评:本题考查了全等三角形的证明,考查了全等三角形对应边相等的性质,考查了三角形内角和为180°的性质,考查了等腰三角形腰长相等的性质,本题中求证△AFQ≌△CAG是解题的关键.12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?考点:等腰三角形的判定与性质;平行线的性质.专题:计算题;证明题.分析:(1)根据EF∥BC,∠B、∠C的平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出的AB=AC,共5个等腰三角形;根据等腰三角形的性质,即可得出EF 与BE、CF间有怎样的关系.(2)根据EF∥BC 和∠B、∠C的平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形的性质即可得出EF与BE,CF的关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL的角平分线,还可以证明出△BEO和△CFO是等腰三角形.解答:解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点)又∵OB,OC分别是∠ABC与∠ACG的角平分线∴∠EBO=∠OBC,∠ACO=∠OCG,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE﹣CF.点评:此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,此题难度并不大,但是步骤繁琐,属于中档题,还有第(1)中容易忽略△ABC也是等腰三角形,因此这又是一道易错题.要求学生在证明此题时一定要仔细,认真.。
三角形全等及轴对称之综合题(我的原创)
1.如图1,点C 为线段AB 上一点,△ACM , △CBN 是等边三角形,直线AN ,MC 交于点F , (1)求证:AN=BM ;(2)求证: △CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明);2.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF3.如图,△ABC 中,E 、F 分别是AB 、AC 上的点.①AD 平分∠BAC ;②DE ⊥AB ,DF ⊥AC ;③AD ⊥EF .以此三个中的两个为条件,另一个为结论,可构成三个命题,即①②⇒③,①③⇒②,②③⇒①.试判断上述三个命题是否正确,并证明你认为正确的命题.4.如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将BOC △绕点C 按顺时针方向旋转60得ADC △,连接OD .(1)求证:COD △是等边三角形; (2)当150α=时,试判断AOD △的形状,并说明理由;(3)探究:当α为多少度时,AOD △是等腰三角形?A BC D O 110 α5.△ABC 中,∠A=90°,AB=AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.6. 如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )7. 如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、CA 上的点, (1)若AD BE CF ==,问△DEF 是等边三角形吗?试证明你的结论; (2)若△DEF 是等边三角形,问AD BE CF ==成立吗?试证明你的结论.B8.将直角三角形(∠ACB 为直角)沿线段CD 折叠使B 落在B’处,若∠ACB’=60°,则∠ACD 度数为______.9.如图,已知线段AB 的端点B 在直线 l 上(AB 与 l 不垂直)请在直线 l 上另找一点C ,使△ABC 是等腰三角形,这样的点能找几个?请你找出所有符合条件的点.A Bl10.如图,在△ABC 中,AB =AC ,∠BAC =100°,MP 、NQ 分别垂直平分AB 、AC ,求∠1,∠2的度数.11.如图所示,AD 是△ABC 的角平分线,EF 是AD 的垂直平分线,交BC 的延长线于点F ,连结AF . 求证:∠BAF=∠ACF .12.如图所示,EFGH 是一矩形的弹子球台面,有黑、•白两球分别位于A 、B 两点的位置上,试问:怎样撞击白球,使白球先撞击边EF•反弹后再击中黑球?13.如图, ∠DEF =36°,AB=BC=CD=DE=EF ,求∠A14.如图所示,F 、C 是线段BE 上的两点, A 、D 分别在线段QC 、RF 上, AB=DE ,BF=CE ,∠B=∠E ,QR ∥BE .求证:△PQR 是等腰三角形.15.如图,已知点B,C,D 在同一条直线上,△ABC 和△CDE 都是等边三角形,BE 交AC 于F ,AD交CE 于H ,(1) 求证:△BCE ≌△ACD (2) 求证:BA E DCFED C B A PQ R F ED C B A D C21题⑵B EDCBA16.如图,在等边△ABC 中,延长AC 到D ,以BD 为一边作等边△BDE ,连接AE ,求证:AD=AE+AC.17.如图所示,∠B=90°,AD=AB=BC ,DE ⊥AC.求证BE=DC.18.求证:等腰三角形两腰上的中线相等。
北师大版七年级(下)全等三角形、对称轴综合测试卷
北师大版七年级(下)轴对称数学综合测试卷一、选择题1.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点; (4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 A.0 B.1 C.2 D.3 ) ( )2.如图,△ABC 和△A′B′C′关于直线 L 对称,下列结论中正确的有( (1)△ABC≌△A′B′C′ (2)∠BAC=∠B′A′C′ (3)直线 L 垂直平分 CC′ (4)直线 BC 和 B′C′的交点不一定在直线 L 上. A.4 个 B.3 个 C.2 个 D.1 个第2题 第5题 第7题 3.一个角的对称轴是( ) A.这个角的其中的一条边 B.这个角的其中的一条边的垂线 C.这个角的平分线 D.这个角的平分线所在的直线 4.下列四个判断:①成轴对称的两个三角形是全等三角形;②两个全等三角形一定成轴对 称;③轴对称的两个圆的半径相等;④半径相等的两个圆成轴对称,其中正确的有( ) A.4 个 B.3 个 C.2 个 D.1 个 5.如图,在平面内,把矩形 ABCD 沿 EF 对折,若∠1=50°,则∠AEF 等于( ) A.115° B.130° C.120° D.65° 6.下图是我国几家银行的标志,其中是中心对称图形的有( )A.1 个 B.2 个 C.3 个 D.4 个 7.如图,∠1=∠2,PD⊥AB,PE⊥BC,垂足分别为 D、E,则下列结论中错误的是( ) A.PD=PE B.BD=BE C.∠BPD=∠BPE D.BP=BE 8.如图,∠AOB 和一条定长线段 a,在∠AOB 内找一点 P,使 P 到 OA,OB 的距离都等于 a,作法如下:(1)作 OB 的垂线段 NH,使 NH=a,H 为垂足. (2)过 N 作 NM∥OB. (3)作∠AOB 的平分线 OP,与 NM 交于 P. (4)点 P 即为所求. 其中(3)的依据是( ) A.平行线之间的距离处处相等 B.到角的两边距离相等的点在角的平分线上 C.角的平分线上的点到角的两边的距离相等 D.到线段的两个端点距离相等的点在线段的垂直平分线上第8题 第 10 题 第 11 题 9.下列四个图形中,如果将左边的图形作轴对称变换,能变成右边的图形的是()A.B.C.D.10.如图,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜 中共可得到小凳的象( ) A.2 个 B.4 个 C.16 个 D.无数个 11.如图,直线 l1、l2、l3 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条 公路的距离相等,则供选择的地址有( ) A.1 处 B.2 处 C.3 处 D.4 处二、填空题 11.已知等腰三角形的腰长是底边长的 ________.4 ,一边长为 11cm,则它的周长为 3第 12 题第 13 题第 14 题第 17 题12. 如图, 在△ABC 中, AB=AC, E 分别是 AC, 上的点, BC=BD, D, AB 且 AD=DE=EB, 则∠A=( ) 度. 13.如图,如果直线 m 是多边形 ABCDE 的对称轴,其中∠A=130°,∠B=110°.那么∠ BCD 的度数等于______________ 度. 14.如图,等边△ABC 中,D、E 分别在 AB、AC 上,且 AD=CE,BE、CD 交于点 P,若∠ ABE:∠CBE=1:2,则∠BDP= ( )度.15. 等腰三角形的“三线合一”是指 ( )( ) , , ( ) 互相重合. 16. 在直线、角、线段、等边三角形四个图形中,对称轴最多的是( ) ,它有 ( )条 对称轴;最少的是() ,它有() 条对称轴. 17. 如图,DE 是 AB 的垂直平分线,交 AC 于点 D,若 AC=6 cm,BC=4 cm,则△BDC 的 周长是 ( ) . 18. 一天小刚照镜子时,在镜子中看见挂在身后墙上的时钟,如图,猜想实际的时间应是 ( ) .第 18 题 第 19 题 第 20 题 第 21 题 19.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,BC=30,BD:CD=3:2,则点 D 到 AB 的距离为( ) cm. 20.如图,D、E 为 AB、AC 的中点,将△ABC 沿线段 DE 折叠,使点 A 落在点 F 处,若∠ B=50°,则∠BDF=( ) 度. 21. 如图,直角△ABC 中,∠C=90°,∠BAC=2∠B,AD 平分∠BAC,CD:BD=1:2, BC=2.7 厘米,则点 D 到 AB 的距离 DE= 厘米,AD= ( )厘米.三、解答题1.已知:如图 7—110,△ABC 中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E 度数?2.如图 7—111,在 Rt△ABC 中,B 为直角,DE 是 AC 的垂直平分线,E 在 BC 上,∠BAE:∠ BAC=1:5,则∠C 的度数?3.如图 7—112,∠BAC=30°,AM 是∠BAC 的平分线,过 M 作 ME∥BA 交 AC 于 E,作 MD⊥ BA,垂足为 D,ME=10cm,则 MD 的长度?4.如图 7—119,点 G 在 CA 的延长线上,AF=AG,∠ADC=∠GEC.求证:AD 平分∠BAC.5.已知:如图 7—120,等腰直角三角形 ABC 中,∠A=90°,D 为 BC 中点,E、F 分别为 AB、 AC 上的点,且满足 EA=CF.求证:DE=DF.6.已知,如图Δ ABC 中,AB=AC,D 点在 BC 上,且 BD=AD,DC=AC.将图中的等腰三角 形全都写出来.并求∠B 的度数.ABDC7.如图,已知 P 点是∠AOB 平分线上一点,PC⊥OA,PD⊥OB,垂足为 C、D, (1)∠PCD=∠PDC 吗? 为什么? (2) 是 CD 的垂直平分线吗? 为什么? OPA CPODB8. 已知,△ABC 中,∠ABC 为锐角,且∠ABC=2∠ACB,AD 为 BC 边上的高,延长 AB 到 E,使 BE=BD,连接 ED 并延长交 AC 于 F.求证:AF=CF=DF.答案 三、1.∠ABC=∠BDE - ∠BAD=100° =30° -70° ∠ACB = ∠ABC =30 ∠DAC = 180-100 - 30 =50 因为 BE//AC ∠E = ∠DAC=50°2∵DE 是 AC 的垂直平分线∴AE=CE ∴∠C=∠CAE ∵∠BAE∶∠BAC=1∶5 ∴∠BAE=1/5∠BAC ∴∠CAE=4/5∠BAC ∴∠C=4/5∠BAC 即∠BAC=5/4∠C ∵∠B=90° ∴∠BAC+∠C=90° ∴5/4∠C+∠C=90° ∠C=40°3 解:过 E 点作 AB 的垂线交 AB 于 F因为 ME‖AB,且 AM 是∠BAC 的平分线 所以∠EMA=∠MAB=1/2 乘以 30°=15° 所以三角形 AEM 为等腰三角形 所以 AE=EM=10cm 又,在直角三角形 AEF 中 ∠BAC=30° 所以 EF=1/2AE=5cm 又 EFDM 为长方形,所以 MD=EF=5cm4 证明:∵AF=AG, ∴∠G=∠GFA. ∵∠ADC=∠GEC, ∴AD∥GE. ∴∠BAD=∠GFA,∠DAC=∠G. ∴∠BAD=∠DAC,即 AD 平分∠BAC.5.证明:连 AD,如图,∵△ABC 为等腰直角三角形,D 为 BC 中点, ∴AD=DC,AD 平分∠BAC,∠C=45°, ∴∠EAD=∠C=45°,在△ADE 和△CDF 中∴△ADE≌△CDF, ∴DE=DF.6. 解 析因为 AB=AC,BD=AD,DC=AC,由等腰三角形的概念得△ABC,△ADB,△ADC 是等腰三角形,再根据角之间的关系求得∠B 的度数.解 答图中等腰三角形有△ABC,△ADB,△ADC ∵AB=AC ∴△ABC 是等腰三角形; ∵BD=AD,DC=AC ∴△ADB 和△ADC 是等腰三角形; ∵AB=AC ∴∠B=∠C ∵BD=AD,DC=AC ∴∠B=∠BAD,∠ADC=∠DAC ∴5∠B=180° ∴∠B=36° .7.解: (1)∠PCD=∠PDC。
初中数学 全等三角形与轴对称练习测试单元试卷
第二讲全等三角形与轴对称第一部分知识梳理一、全等三角形的性质和判定1.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
2.判断两个三角形全等常用的方法如下表:3.直角三角形全等的条件:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
4.角平分线的性质:角的平分线上的点到角的两边的距离相等。
5.角平分线的判定:角的内部到角的两边的距离相等的点在角的角平分线上。
二、轴对称1.轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么称这两个图形成轴对称。
两个图形中的对应点(即两个图形重合时互相重合的点)叫对称点。
2.等腰三角形的性质:①两底角相等。
②顶角的角平分线、底边上的中线、底边上的高互相重合。
③等边三角形各角都相等,并且都等于60°。
3.等腰三角形的判定:①等角对等边。
②有一个角是60°的等腰三角形是等边三角形。
③三个角都相等的三角形是等边三角形。
如果一个三角形的两个内角分别是80°、50°,那么这个三角形是等腰三角形。
4.等边三角形的判定:①三条边都相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
第二部分例题与解题思路方法归纳类型一全等三角形的性质与判定【例题1】(2011•泰安)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.〖选题意图〗本题主要考查了全等三角形的判定方法以及全等三角形对应边相等的性质,难度适中.〖解题思路〗(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.〖参考答案〗解:(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又BF⊥CE,∴∠CBG+∠BCF=90°,又∠ACE+∠BCF=90°,∴∠ACE=∠CBG,∴△AEC≌△CGB,∴AE=CG,(2)BE=CM,证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC ,又∵AC=BC ,∠ACM=∠CBE=45°, ∴△BCE ≌△CAM , ∴BE=CM . 【课堂训练题】1.如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连接BE 、EC . 试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.〖参考答案〗数量关系为:BE=EC ,位置关系是:BE ⊥EC . 证明:∵△AED 是直角三角形,∠AED=90°,且有一个锐角是45°, ∴∠EAD=∠EDA=45°, ∴AE=DE , ∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=90°+45°=135°, ∠EDC=∠ADC ﹣∠EDA=180°﹣45°=135°, ∴∠EAB=∠EDC , ∵D 是AC 的中点, ∴AD=12AC , ∵AC=2AB , ∴AB=AD=DC , ∴△EAB ≌△EDC ,∴EB=EC ,且∠AEB=∠DEC ,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°, ∴BE ⊥EC .2.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.〖参考答案〗解:猜测AE=BD,AE⊥BD;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAE=∠CDB;∵∠AFC=∠DFH,又∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE⊥BD.故线段AE和BD的数量相等,位置是垂直关系.类型二直角三角形全等的性质与判定【例题2】课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)〖选题意图〗本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键.〖解题思路〗(1)如果:“∠B=∠D”,根据∠B 与∠D 互补,那么∠B=∠D=90°,又因为∠DAC=∠BAC=30°,因此我们可在直角三角形ADC 和ABC 中得出AD=AB=√32AC ,那么AD+AB=√3AC .(2)按(1)的思路,作好辅助线后,我们只要证明三角形CFD 和BCD 全等即可得到(1)的条件.根据AAS 可证两三角形全等,DF=BE .然后按照(1)的解法进行计算即可. 〖参考答案〗证明:(1)∠B=∠D=90°, ∠CAD=∠CAB=30°, ∴AB=√32AC ,AD=√32AC . ∴AB+AD=√3AC .(2)由(1)知,AE+AF=√3AC , ∵AC 为角平分线,CF ⊥CD ,CE ⊥AB , ∴CE=CF .而∠ABC 与∠D 互补, ∠ABC 与∠CBE 也互补, ∴∠D=∠CBE . ∴Rt △CDF ≌Rt △CBE . ∴DF=BE .∴AB+AD=AB+(AF+FD )=(AB+BE )+AF=AE+AF=√3AC .【课堂训练题】1.如图,△ABC中,AD⊥BC于D,点E在AD上,△ADC和△BDE是等腰三角形,EC=5cm,求AB的长.〖参考答案〗解:∵△ADC和△BDE是等腰三角形且AD⊥BC∴△ADC和△BDE均为等腰直角三角形∴AD=DC,BD=ED∴Rt△ADB≌Rt△CDE(HL)∴AB=CE=5cm2.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).〖参考答案〗解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)EF=BE+AF.类型三角平分线的性质【例题3】在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.〖选题意图〗此题考查了全等三角形的判定与性质以及等腰三角形的判定定理.此题难度适中,解题的关键是注意数形结合思想的应用.〖解题思路〗(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠ACB=2∠B,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.〖参考答案〗解:(1)猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为△ABC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.(2)猜想:AB+AC=CD.证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD.∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB.又∠ACB=2∠B,∠FED=∠B+∠EDB,∠EDB=∠B.∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.【课堂训练题】1.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE ⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.〖参考答案〗解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,,PE=PN=2,∴MN=2+2=4.故答案为:4.2.在△ABC中,∠C=90°,BC=16cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为cm.〖参考答案〗解:∵∠C=90°,BC=16cm,∠BAC的平分线交BC于D,∴CD就是D到AB的距离,∵BD:DC=5:3,BC=16cm,∴CD=6,即D到AB的距离为6cm.故填6.类型四轴对称的性质与应用【例题4】如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,﹣3),B(4,﹣1).(1)若P(p,0)是x轴上的一个动点,则当p=时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=时,四边形ABDC的周长最短;(3)设M ,N 分别为x 轴和y 轴上的动点,请问:是否存在这样的点M (m ,0)、N (0,n ),使四边形ABMN 的周长最短?若存在,请求出m= ,n= (不必写解答过程);若不存在,请说明理由.〖解题思路〗(1)根据题意,设出并找到B (4,﹣1)关于x 轴的对称点是B',其坐标为(4,1),进而可得直线AB'的解析式,进而可得答案;(2)过A 点做AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .做点F (1,﹣1),连接A'F .利用两点间的线段最短,可知四边形ABDC 的周长最短等于A'F+CD+AB ,从而确定C 点的坐标值.(3)根据对称轴的性质,可得存在使四边形ABMN 周长最短的点M 、N ,当且仅当m=52,n=﹣53;时成立.〖参考答案〗解:(1)设点B (4,﹣1)关于x 轴的对称点是B',其坐标为(4,1), 设直线AB'的解析式为y=kx+b ,把A (2,﹣3),B'(4,1)代入得:{2k +b =﹣34k +b =1,解得{k =2b =﹣7∴y=2x ﹣7, 令y=0得x=72, 即p=72.(2)过A 点做AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .做点F (1,﹣1),连接A'F .那么A'(2,3). 直线A'F 的解析式为y ﹣1=3﹣(﹣1)2﹣1•(x ﹣1),即y=4x ﹣5∵C 点的坐标为(a ,0),且在直线A'F 上,∴a=54.(3)存在使四边形ABMN 周长最短的点M 、N ,作A 关于y 轴的对称点A′,作B 关于x 轴的对称点B′,连接A′B′,与x 轴、y 轴的交点即为点M 、N ,∴A′(﹣2,﹣3),B′(4,1),∴直线A′B′的解析式为:y=23x ﹣53,∴M (52,0),N (0,﹣53).m=52,n=﹣53.【课堂训练题】1.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 .〖参考答案〗解:要使△PBG 的周长最小,而BG=1一定,只要使BP+PG 最短即可. 连接AG 交EF 于M .∵等边△ABC ,E 、F 、G 分别为AB 、AC 、BC 的中点,∴AG ⊥BC ,EF ∥BC ,∴AG ⊥EF ,AM=MG ,∴A 、G 关于EF 对称,∴P 点与E 重合时,BP+PG 最小,即△PBG 的周长最小,最小值是:PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.故答案为:3.2.如图,在锐角△ABC 中,AB=4√2,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 .〖参考答案〗解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,{AE=AN∠EAM=∠NAM AM=AM,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4√2,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.故答案为:4.类型五线段垂直平分线的性质【例题5】公园内有一块三角形空地(如图),现要将它分割成三块,种植三种不同的花卉,为了美观,要求每块都要是轴对称图形,请你在右图中画出分割线,保留必要的画图痕迹.〖选题意图〗本题考查了利用轴对称设计图案的知识,根据等腰三角形是轴对称图形的特点,分割后得到等腰三角形,是本题的突破口.〖解题思路〗根据等腰三角形是轴对称图形,作任意两边的垂直平分线,找出垂直平分线的交点P,然后连接PA、PB、PC,把三角形分成三块等腰三角形.〖参考答案〗解:如图,分别作AB、BC的垂直平分线,相交于点P,沿PA、PB、PC进行分割,得到的△PAB、△PBC、△PAC都是等腰三角形,都是轴对称图形.【课堂训练题】1.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.〖参考答案〗证明:(1)∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=√2.2.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.〖参考答案〗解:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,∠ADC=∠ECF,DE=EF,∠AED=∠CEF,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)证明:∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).类型六等腰三角形的性质与判定【例题6】(2011•山西)如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.〖选题意图〗本题主要考查了平分线的定义,平移的性质以及全等三角形的判定与性质,难度适中.〖解题思路〗(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.〖参考答案〗(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB于D,∴∠EAD+AED=90°,∴∠CFA=∠AED,∵∠AED=∠CEF,∴∠CFA=∠CEF,∴CE=CF;(2)BE′=CF.证明:如图,过点E作EG⊥AC于G,又∵AF平分∠CAB,ED⊥AB,∴ED=EG.由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在Rt△CEG与Rt△BE′D′中,{∠GCE=∠B∠CGE=∠BD′E′CE=D′E′,∴△CEG≌△BE′D′,∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.【课堂训练题】1.(2011•日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD 延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.〖参考答案〗证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∴BD=AD.在△BDC与△ADC中,{BD =AD ∠CBD =∠CAD BC =AC, ∴△BDC ≌△ADC ,∴∠DCB=∠DCA ,又∵∠DCB+∠DCA=90°,∴∠DCB=∠DCA=45°.由∠BDM=∠ABD+∠BAD=30°+30°=60°,∠EDC=∠DAC+∠DCA=15°+45°=60°,∴∠BDM=∠EDC ,∴DE 平分∠BDC ;(2)如图,连接MC .∵DC=DM ,且∠MDC=60°,∴△MDC 是等边三角形,即CM=CD .又∵∠EMC=180°﹣∠DMC=180°﹣60°=120°,∠ADC=180°﹣∠MDC=180°﹣60°=120°,∴∠EMC=∠ADC .又∵CE=CA ,∴∠DAC=∠CEM .在△ADC 与△EMC 中,{∠ADC =∠EMC∠DAC =∠MEC AC =EC,∴△ADC ≌△EMC ,∴ME=AD=DB .2.如图,在四边形ABCD 中,∠ABC=∠ADC=90°,M 、N 分别是AC 、BD 的中点.(1)猜一猜,MN 与BD 的位置关系,并证明你的结论;(2)如果∠BAD=45°,BD=2,求MN 的长.〖参考答案〗解:(1)连接BM,DM,∵∠ABC=90°,AM=MC,AC,∴BM=12AC,同理DM=12∴BM=DM,∵BN=ND,∴MN⊥BD(2)∵AM=BM,∴∠BMC=∠MAB+∠ABM=2∠BAM,同理∠CMD=2∠CAD,∴∠BMD=2∠BAD=90°,∵BM=MD,∴△BMD是等腰直角三角形,BD=1.∴MN=12类型七等边三角形的性质与判定【例题7】图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.〖选题意图〗本题考查了SAS——两边及其夹角分别对应相等的两个三角形全等,ASA——两角及其夹边分别对应相等的两个三角形全等,同时考查了等边三角形的性质和判定.〖解题思路〗(1)等边三角形的性质可以得出△ACN,△MCB两边及其夹角分别对应相等,两个三角形全等,得出线段AN与线段BM相等.(2)平角的定义得出∠MCN=60°,通过证明△ACE≌△MCF得出CE=CF,根据等边三角形的判定得出△CEF的形状.〖参考答案〗解:(1)∵△ACM与△CBN都是等边三角形,∴AC=MC,CN=CB,∠ACM=∠BCN=60°.∴∠MCN=60°,∠ACN=∠MCB.∴△ACN≌△MCB.∴AN=BM.(2)∵△ACN≌△MCB,∴∠CAE=∠CMB.∵∠MCN=60°=∠ACM,AC=MC,∴△ACE≌△MCF.∴CE=CF.∴△CEF的形状是等边三角形.【课堂训练题】1.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.〖参考答案〗解:根据题意:BC=6,D为BC的中点;故BD=DC=3.有轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=2,∠BDC′=60°,故△BDC′为等边三角形,故BC′=3.故答案为:3.第三部分课后自我检测试卷A类试题:1.在平面直角坐标系中,x轴一动点P到定点A(1,1)、B(5,7)的距离分别为AP和BP,那么当BP+AP最小时,P点坐标为.2.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为.3.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P 是BC边上一动点,则DP长的最小值为.4.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB 于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.5.如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF.B类试题:6.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA 边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为.7.(1)等腰直角△ABC和等腰直角△CDE的位置如图所示,连接BE,并延长交AD于F,试问AD与BE之间有什么关系?证明你的结论;(2)若保持其他条件不变,等腰直角△CDE绕C点旋转,位置如下图所示,试问AD与BE之间的关系还存在吗?若存在,给予证明,若不存在,则说明理由.8.已知:如图所示,AC⊥CD,BD⊥CD.线段AB的垂直平分线EF交AB于点E,交CD 于点F,且AC=FD,求证:△ABF是等腰直角三角形.C类试题:9.操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE 为等腰三角形时CE的长);若不能,请说明理由.10.(1)如图,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC 延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正n 边形ABCD…X ,请你作出猜想:当∠AMN= 时,结论AM=MN 仍然成立.(直接写出答案,不需要证明)课后自我检测试卷参考答案A 类试题:1.解:依题意得:B (5,7)关于x 轴的对称点是(5,﹣7)过(1,1)与(5,﹣7)的直线为y=kx+b∴{1=k +b ﹣7=5k +b ,∴{k =﹣2b =3∴y=﹣2x+3令y=0,得x=32 故P 点坐标为(32,0). 2.解:如图:C′B′与AB 交点G′,与AD 交于点H′,FC′与AD 交于点W′,则这三个点关于EF 对称的对应的点分别G 、H 、W ,由题意知,BE=EB′,BG=B′G′,G′H′=GH ,H′C′=HC ,C′W′=CW ,FW′=FW ,∴①②③④四个三角形的周长之和等于正方形的周长=4×8=32.故本题答案为:32.3.解:根据垂线段最短,当DP ⊥BC 的时候,DP 的长度最小,∵BD ⊥CD ,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC ,又∠ADB=∠C ,∴∠ABD=∠CBD,又DA⊥BA,DP⊥BC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.4.相等.证明如下:连EB、EC,∵AE是∠BAC的平分线,且EF⊥AB于F,EG⊥AC于G,∴EF=EG.∵ED⊥BC于D,D是BC的中点,∴EB=EC.∴Rt△EFB≌Rt△EGC,∴BF=CG.5.证明:连接AC,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS).∴∠DAC=∠BAC.又CE⊥AD,CF⊥AB,∴CE=CF(角平分线上的点到角两边的距离相等).B类试题:6.解:连DE,如图∵沿过A点的直线折叠,使得B点落在AD边上的点F处,∴四边形ABEF为正方形,∴∠EAD=45°,由第二次折叠知,M点正好在∠NDG的平分线上,∴DE平分∠GDC,∴RT△DGE≌Rt△DCE,∴DC=DG,又∵△AGD为等腰直角三角形,∴AD=√2DG=√2CD,∴矩形ABCD长与宽的比值为√2.故答案为:√2.7.解:(1)AD⊥BE,AD=BE,∵等腰直角△ABC和等腰直角△CDE,∴DC=EC,∠DCA=∠ECB,AC=BC,∴△BEC≌△ADC,∴AD=BE,∠DAC=∠EBC,又∠BEC=∠AEF,∠BEC+∠EBC=90°,∴∠AEF+∠DAC=90°,∴∠AFB=90°,∴AD⊥BE.(2)仍存在.如图,∵等腰直角△ABC和等腰直角△CDE,∴DC=EC,AC=BC,∠DCE=∠ACB,∴∠DCA=∠ECB,∴△BEC≌△ADC∴AD=BE,∠DAC=∠EBC,又∠BOC=∠AOE,∠BOC+∠EBC=90°,∴∠AOE+∠DAC=90°,∴AD⊥BE.8.证明:∵EF是AB的垂直平分线,∴FA=FB.∵AC⊥CD,BD⊥CD,∴△ACF与△FDB是直角三角形.在Rt△ACF与Rt△FDB中,AC=FD,FA=BF,∴Rt △ACF ≌Rt △FDB (HL ).∴∠CAF=∠DFB .∵∠C=90°,∴∠CAF+∠CFA=90°,∴∠CFA+∠BFD=90°,∴∠AFB=90°.∴△ABF 是等腰直角三角形.C 类试题:9.解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE . 理由如下:连接PC ,因为△ABC 是等腰直角三角形,P 是AB 的中点,∴CP=PB ,CP ⊥AB ,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∠DPC+∠CPE=∠BPE+∠CPE ,∴∠DPC=∠BPE .∴△PCD ≌△PBE .∴PD=PE .(2)△PBE 是等腰三角形,①当PE=PB 时,此时点C 与点E 重合,CE=0;②当PB=BE 时,1)E 在线段BC 上,CE =2﹣√2,2)E 在CB 的延长线上,CE =2+√2;③当PE=BE 时,CE=1.10.解:(1)证明:在边AB 上截取AE=MC ,连接ME .正方形ABCD 中,∠B=∠BCD=90°,AB=BC .∴∠NMC=180°﹣∠AMN ﹣∠AMB=180°﹣∠B ﹣∠AMB=∠MAB=∠MAE , BE=AB ﹣AE=BC ﹣MC=BM ,∴∠BEM=45°,∴∠AEM=135°.∵N 是∠DCP 的平分线上一点,∴∠DCN=45°,∴∠MCN=135°.在△AEM 与△MCN 中,∠MAE=∠NMC ,AE=MC ,∠AEM=∠MCN , ∴△AEM ≌△MCN ,∴AM=MN .(2)结论AM=MN 还成立证明:在边AB 上截取AE=MC ,连接ME .△ABC 中,∠B=∠BCA=60°,AB=BC .∴∠NMC=180°﹣∠AMN ﹣∠AMB=180°﹣∠B ﹣∠AMB=∠MAB=∠MAE , BE=AB ﹣AE=BC ﹣MC=BM ,∴∠BEM=60°,∴∠AEM=120°.∵N 是∠ACP 的平分线上一点,∴∠ACN=60°,∴∠MCN=120.在△AEM 与△MCN 中,∠MAE=∠NMC ,AE=MC ,∠AEM=∠MCN , ∴△AEM ≌△MCN ,∴AM=MN .(3)若将(1)中的“正方形ABCD”改为“正n 边形ABCD…X ,则当∠AMN=(n ﹣2)•180°n时,结论AM=MN 仍然成立.。
全等三角形与轴对称习题
第十二章全等三角形1、如图,四边形ABCD中,AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E、F.求证:BE=BF.2、如图,锐角△ABC中,∠BAC=60°,O是BC边上的一点,连接AO,以AO为边向两侧作等边△AOD和等边△AOE,分别与边AB,AC交于点F,G.求证:AF=AG.3、如图,已知AD∥BC,P为CD上一点,且AP,BP分别平分∠BAD和∠ABC.(1)判断△APB是什么三角形,证明你的结论;(2)比较DP与PC的大小,并说明理由.4、已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.(有十来种做法)5、如图,梯形ABCD中,AD∥BC,CE⊥AB于E,交梯形的对角线BD于F,连接AF.若△BDC为等腰直角三角形,且∠BDC=90°.求证:CF=AB+AF.连接法6、已知:如图,AD=BC,AC=BD.求证:∠C=∠DD COA B7、如图11-30,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点.求证:AF⊥CD.8、如图所示,BD=DC,DE⊥BC,交∠BAC的平分线于E,EM⊥AB,EN⊥AC,求证:BM=CN倍长中线9、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.10、如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC 边上的中线,连接DE.求证:DE=2AM.11、正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,∠EAF=45,求证:BE+DF=EF.FE DCB A 12、如图,AC∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB=AC+BDC13、如图,四边形ABCD 中,点E 在边CD 上,连结AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果×××,那么××),并给出证明:(2)用序号再写出三个真命题(不要求证明);(3)加分题:真命题不止以上四个,想一想,就能够多写出几个真命题,每多写出一个真命题就给你加1分,最多加2分.14、在等边ABC ∆的两边AB、AC 所在直线上分别有两点M、N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC.探究:当M、N 分别在直线AB、AC 上移动时,BM、NC、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L的关系.(I)如图1,当点M、N 边AB、AC 上,且DM=DN 时,BM、NC、MN 之间的数量关系是;此时=L Q ;(II)如图2,点M、N 边AB、AC 上,且当DM ≠DN 时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;(III)如图3,当M、N 分别在边AB、CA 的延长线上时,若AN=x ,则Q=(用x 、L 表示).利用角平分线15、如图,在四边形ABCD 中,BC>BA,AD=CD,BD 平分ABC ∠,求证:0180=∠+∠C A 。
全等三角形与轴对称习题
全等三角形习题一、填空1.如图所示,在Rt △ABC 中,∠C =90°,∠A =30°,BD 是角平分线,AC =6cm ,则AD 的长是___________。
2.在等腰△ABC 中,一腰上的高为3cm ,这条高与底边的夹角是30°,则△ABC 的面积是_____________。
3.已知三角形的三个内角的度数之比为1∶2∶3,它的最大边长为6cm ,那么它的最小边长为_____________,最大边上的中线长为____________。
4.直角三角形的两边长为3和4,则第三边长为_________。
5.如图,,把△ABC 绕着点C 顺时针旋转35°,得到△A ′B ′C ′,A ′B ′交AC 于点D ,若∠A ′DC =90°,则∠A 的度数是___________。
二、选择题1.如图,△ABC 中,AD ⊥BC 于D ,AB =3,BD =2,DC =1,则AC =( )。
A 、6 B 、6 C 、5 D 、42.若等腰三角形的腰长为2,顶角为120°,则底边长为( )A 、3B 、32C 、323D 、334 3.在△ABC 中,AB =12cm ,AC =9cm ,BC =15cm ,则ABC S 等于( ) A 、54cm 2 B 、90 cm 2 C 、108 cm 2 D 、180 cm 2 4.以下各组数字能组成直角三角形的三边是( )A. 5、11、12B. 6、11、12C. 5、12、13D. 6、12、13 5.下列说法中:①如果两个三錋形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等。
正确的是: A 、①和② B 、②和③ C 、①和③ D 、①②③三、解答题1 已知:如图AB=CD ,BC=DA ,E 、F 是AC 上两点,且AE=CF 。
2024-2025学年八年级上册期中押题重难点检测卷(范围:三角形、全等三角形、轴对称)(含解析)
期中押题重难点检测卷(培优卷)【考试范围:三角形、全等三角形、轴对称】注意事项:本试卷满分120分,考试时间120分钟,试题共26题。
答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题3分,共30分)1.(23-24八年级上·福建厦门·期中)窗花是中国古老的民间艺术之一,下列窗花作品中为轴对称图形的是( )A .B .C .D .2.(23-24七年级下·全国·单元测试)一块三角形玻璃板不慎被小强同学碰破,成了如图所示的四块,聪明的小强经过仔细地考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃板,你认为可行的方案是( )A .带其中的任意两块去都可以B .带 ①②或②③去就可以了C .带 ①④ 或③④去就可以了D .带①④或①③去就可以了3.(24-25八年级上·辽宁葫芦岛·阶段练习)若三角形的三边长分别是2,8,m ,则m 的取值可能是( ) A .5 B .6 C .7 D .104.(24-25八年级上·浙江金华·阶段练习)如图,已知ABC DCB ∠=∠,下列判断中,错误的是( )A .若添加条件AB DC =,则ABC DCB △≌△B .若添加条件AC DB =,则ABC DCB △≌△C .若添加条件AD ∠=∠,则ABC DCB △≌△D .若添加条件ACB DBC ∠=∠,则ABC DCB △≌△5.(24-25八年级上·辽宁葫芦岛·阶段练习)一副三角板按如图所示叠放在一起,其中30,45,90B E C ADE °°°∠=∠=∠=∠=,若20EDB ∠=°,则BAE ∠的度数为( )A .5°B .10°C .15°D .20°6.(23-24七年级下·江苏南京·期末)在ABC 中,90C ∠=°,若10BC =,AD 平分BAC ∠交BC 于点D ,且:3:2BD CD =,则点D 到线段AB 的距离DE 为( )A .2B .4C .5D .67.(24-25八年级上·黑龙江齐齐哈尔·阶段练习)如图,三角形纸片中,12cm AB =,9cm AC =,16BC cm =.沿过点C 的直线折叠这个三角形,使点A 落BC 边上的点E 处,折痕为CD ,则DBE 的周长是( )A .19cmB .20cmC .2lcmD .22cm8.(24-25八年级上·浙江金华·阶段练习)如图,在五边形ABCDE 中,146BAE =°∠,90B E ∠=∠=°,AB BC =,AE DE =.在BC ,DE 上分别找一点M ,N ,使得AMN 的周长最小时,则AMN ANM ∠+∠的度数为( )A .68°B .76°C .84°D .96°9.(24-25八年级上·浙江绍兴·阶段练习)如图,在ABC 中,已知AB AC =,90BAC ∠= ,10cm BC =,直线CM BC ⊥,动点D 从点C 开始沿射线CCBB 方向以每秒3cm 的速度运动,动点E 也同时从点C 开始在直线CM 上以每秒2cm 的速度运动,连接AAAA ,AE ,设运动时间为t 秒.当ABD ACE ≌△△时,t 的值应为( )A .2或5B .5或12C .2或10D .5或1010.(23-24八年级上·江苏宿迁·阶段练习)如图,在锐角三角形ABC 中,AH 是BC 边上的高,分别以AB AC ,为一边,向外作正方形ABDE 和ACFG (正方形四条边都相等,四个角都是直角),连接CE BG ,和EG EG ,与HA 的延长线交于点M ,下列结论:①BG CE =;②BG CE ⊥;③AM 是AEG △的中线;④EAM ABC ∠=∠.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题(8小题,每小题3分,共24分)11.(24-25八年级上·全国·单元测试)若从一个n 边形的一个顶点出发,最多可以引9条对角线,则n = . 12.(24-25八年级上·黑龙江哈尔滨·阶段练习)如图,在ABC 中,已知ABC ∠和ACB ∠的平分线相交于点F ,过F 作DE BC ∥,交AB 于点D ,交AC 于点E ,若3,2BD CE ==,则线段DE 的长为 .13.(24-25八年级上·江苏扬州·阶段练习)如图,90B C ∠=∠=°,DE ,AE 分别平分ADC ∠,BAD ∠,8BC =,10AD =,则ADE 的面积为 .14.(24-25八年级上·浙江金华·阶段练习)一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,21x −,1y +,若这两个三角形全等,则x y +的值是 .15.(24-25八年级上·河北廊坊·阶段练习)淇淇用正方形、正五边形和正六边形纸片组成如图所示的图形(正五边形和正六边形有1个顶点重合,正方形的两个顶点分别在正五边形和正六边形的边上),若12110∠+∠=°,则3∠的度数为 .16.(2024八年级上·浙江·专题练习)如图,AD 是ABC 的角平分线,CE AD ⊥,垂足为F ,若30CAB ∠=°,50B ∠=°,则BDE ∠的度数为 .17.(2024七年级下·全国·专题练习)如图,已知30MON ∠=°,点123A A A …,,,在射线ON 上,点123B B B …,,,在射线OM 上.112223334A B A A B A A B A … ,,,均为等边三角形,若14OA =,则667A B A 的边长为 .18.(23-24八年级下·福建福州·期中)如图,平面直角坐标系中,()0,2A ,点B 是x 轴上的动点,ABC 是等边三角形,连接OC ,则OC 的最小值是 .三、解答题(8小题,共66分)19.(24-25八年级上·江西南昌·阶段练习)已知一个三角形的两条边长分别为4cm ,8cm .设第三条边长为cm x .(1)求x 的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.20.(24-25八年级上·云南昭通·阶段练习)如图,已知AB CE =,A C ∠=∠,DA 和DE 分别是BDE ∠和ADC ∠的平分线,点B 、C 、D 在同一直线上.(1)求证:ABD CED ≌△△;(2)若6AB =,7AD =,5DE =,求BC 的长.21.(24-25八年级上·山东聊城·阶段练习)如图,ABC 中,90ACB ∠=°,延长AC 到点F ,过点F 作FE AB ⊥于点E ,FE 与BC 交于点D ,若DE DC =.(1)求证: BD DF =;(2)若35AC cm AB cm ==,, 求CCCC 的长度.22.(24-25八年级上·湖南长沙·阶段练习)小强为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .如图,CD DB AB DB ⊥⊥,,测得旗杆顶C 视线PC 与地面夹角36DPC ∠=°,测楼顶A 视线PA 与地面夹角54APB ∠=°,且CD PB =.(1)证明:CPD PAB △≌△;(2)1036CD DB ==,,求大楼AB 的高.23.(24-25八年级上·黑龙江佳木斯·阶段练习)如图,在ABC 中,BD ,CD 分别是ABC ∠,ACB ∠的内角平分线,交于点D ,BP ,CP 分别是ABC ∠,ACB ∠的外角平分线,交于点P .若50A ∠=°.(1)求BDC ∠;(2)如果A α∠=,直接用α表示出BPC ∠的度数.24.(23-24七年级下·重庆黔江·期中)综合与探究:爱思考的小明在学习过程中,发现课本有一道习题,他在思考过程中,对习题做了一定变式,让我们来一起看一下吧.在ABC 中,ABC ∠与ACB ∠的平分线相交于点P .(1)如图1,如果80A ∠=°,那么BPC ∠=______°;(2)如图1,请猜想A ∠与BPC ∠之间的数量关系,并说明理由;(3)如图2,作ABC 的外角MBC ∠,NCB ∠的平分线交于点Q ,试探究Q ∠与BPC ∠的数量关系.25.(23-24八年级上·湖南邵阳·期中)【初步探索】(1)如图1,在四边形ABCD 中,90AB AD B ADC ∠∠===°,,E ,F 分别是BC CD ,上的点,且EF BE FD =+,探究图中BAE FAD EAF ∠∠∠,,之间的数量关系.小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =.连接AG ,先证明ABE ADG △≌△,再证明AEF AGF ≌,可得出结论,则他的结论应是________.【灵活运用】(2)如图2,若在四边形ABCD 中,180AB AD B D E F =∠+∠=°,,,分别是BC CD ,上的点,且EF BE FD =+,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD 中,180ABC ADC AB AD ∠+∠=°=,,若点E 在CB 的延长线上,点F 在CD 的延长线上,且仍然满足EF BE FD =+,请直接写出EAF ∠与DAB ∠的数量关系.26.(24-25八年级上·江苏扬州·阶段练习)在ABC 中,5AB =,3AC =.若点D 在BAC ∠的平分线所在的直线上.(1)如图1,当点D 在ABC 的外部时,过点D 作DE AB ⊥于E ,作DF AC ⊥交AC 的延长线于F ,且BE CF =. ①求证:点D 在BC 的垂直平分线上;②BE =________;(2)如图2,当点D 在线段BC 上时,若90C ∠=°,BE 平分ABC ∠,交AC 于点E ,交AD 与点F ,过点F 作FG BE ⊥,交BC 于点G .①DFG ∠=________;②若4BC =,43EC =,求GC 的长度; (3)如图3,过点A 的直线l BC ∥,若90C ∠=°,4BC =,点D 到ABC 三边所在直线的距离相等,则点D 到直线l 的距离是________.期中押题重难点检测卷(培优卷)【考试范围:三角形、全等三角形、轴对称】注意事项:本试卷满分120分,考试时间120分钟,试题共26题。
精品 八年级数学上册 全等三角形与轴对称综合练习题
全等三角形练习例1.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.例2.如图,点M为正三角形ABD的边AB所在直线上的任意一点(点B除外),作60DMN∠=︒,射线MN与∠外角的平分线交于点N,DM与MN有怎样的数量关系?DBA例3.如图,在△ABC中,60BAC∠=︒,AD是BAC∠的度数.∠的平分线,且AC=AB+BD,求ABC例4.正方形ABCD中,AC、BD交于O,∠EOF=90°,已知AE=3,CF=4,则S△BEF为多少?例5.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=510,求∠DFE 的度数。
例6.如图,已知∠ABC=∠DBE=90°,DB=BE ,AB=BC .(1)求证:AD=CE ,AD ⊥CE(2)若△DBE 绕点B 旋转到△ABC 外部,其他条件不变,则(1)中结论是否仍成立?请证明例7.直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠. (1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:①如图1,若90,90BCA α∠=∠=,则EF BE AF -(填“>”,“<”或“=”号);②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则α∠与BCA ∠应满足的关系是 ; (2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.1.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )A.相等B.不相等C.互余或相等D.互补或相等2.如图等边△ABC 中,∠BFC=1200,那么 ( )A.AD >CEB.AD <CEC.AD=CED.不确定3.正三角形ABD和正三角形CBD的边长均为a,现把它们拼合起来如图,E是AD上异于A,D两点的一动点,F是CD上一动点,满足AE+CF=a,当E,F移动时,三角形BEF的形状为()A.不等边△B.等腰直角△C.等腰△非正△D.正△4.如图,AD∥BC,∠1=∠2,∠3=∠4,AD=4,BC=2,那么AB=5.在不等边△ABC中,AQ=PQ,PM⊥AB,PN⊥AC,PM=PN,①AN=AM;②QP∥AM;③△BMP≌△QNP,其中正确的代号是6.如图,AB∥CD,AB=CD,O为AC的中点,过点O作一条直线分别与AB、CD交于点M、N,E、F在直线MN上,且OE=OF。
2018-2019学年初中数学三角形、全等三角形、轴对称、整式的乘法与因式分解期中考试测试题
2018-2019学年初中数学三角形、全等三角形、轴对称、整式的乘法与因式分解期中考试测试题数学 2018.3本试卷共7页,120分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共10小题,每小题3分,共30分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.若,则等于()A.3B.-3C.D.3.如图所示,在△ABC中,AB=AC,BD,CE是角平分线,图中的等腰三角形共有( )A.6个B.5个C.4个D.3个4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或95.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.60°C.50°D.55°6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.47.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFC 的理由是()A.SSS B.AAS C.SAS D.HL8.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°9.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( ) A.2B.3C.4D.810.下列图形中,是轴对称图形的是( )A.B.C.D.二、填空题共10小题,每小题3分,共30分。
11.如图是正方形网格,其中已有个小方格涂成了黑色,现在要从其余个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有________个.12.如图,将沿着过中点的直线折叠,使点落在边上的处,称为第次操作,折痕到的距离记为,还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第次操作,折痕到的距离记为;按上述方法不断操作下去…,经过第次操作后得到的折痕,到的距离记为;若,则的值为________.13.将边长为的正方形纸片按图所示方法进行对折,记第次对折后得到的图形面积为,第次对折后得到的图形面积为,…,第次对折后得到的图形面积为,请根据图化简,________.14.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边长分别为6 m和8 m,斜边长为10 m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是_____.15.如图,在△ABC中,已知AD=DE,AB=BE,∠A=85°,∠C=45°,则∠CDE=_____度.16.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=°.17.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A =70°,则∠BOC=______.18.等腰三角形的一个外角是60°,则它的顶角的度数是__.19.若点P(a+2,3)与Q(-1,b+1)关于y轴对称,则a+b=_____.20.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边长分别为6 m和8 m,斜边长为10 m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是_____.三、解答题共10小题,每小题6分,共60分。
全等三角形与轴对称测试题
C 启秀中学七年级数学阶段性测试一、 选择题(每小题3分,共24分) 1.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 2. 下列各条件中,不能作出形状大小惟一的三角形的是( ) A .已知两边和夹角 B .已知两角和夹边 C .已知两边和其中一边的对角 D .已知三边3. 已知在△ABC 中,AB =AC ,∠A =56°,则AC 边上的高BD 与底边BC 的夹角为( )A .28°B .34°C .68°D .62° 4. 下列判断正确的是( ) A . 顶角相等的的两个等腰三角形全等 B . 腰相等的两个等腰三角形全等C . 有一边及一锐角相等的两个直角三角形全等D . 顶角和底边分别对应相等的两个等腰三角形全等5. △ABC 中, AC =5, 中线AD =7, 则AB 边的取值范围是( ) A. 1<AB <29 B. 4<AB <24 C. 5<AB <19 D. 9<AB <19(第6题) (第7题)6. 如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( ) A .8 cm B .10 cm C .12 cm D . 20 cm7.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( ) A .80° B .100° C.60° D .45°.B C D'A 'B'D'C8.如图,在△ABC 中,∠BAC =120°,AD ⊥BC 于D ,且AB +BD =DC ,则∠C 的大小是( )A .20° B.25° C.30° D.45°二、 填空题(每空4分,共36分)11. 若AO =OB ,∠1=∠2,则有ΔAOC ≌ΔBOC,理论依据是________12.如图,△ABC ≌ △DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 .13. 如图,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________.(填写一个你认为适当的条件即可)(第11题) (第12题) (第13题)14. 等腰直角三角形的斜边为4cm,则它的斜边上的高线是 cm. 15.在平面直角坐标系内,点P 、Q 关于直线x =-2对称,若点P 坐标(-1,3),则点Q 的坐标为__________.16.如图是由9个等边三角形拼成的六边形,若已知中间的最小的等边三角形边 长是a ,则六边形的周长是17.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ 、OC .以下七个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ; ④DE =DP ;⑤∠AOB =60°;⑥∠BAP =∠QEC ;⑦OC 平分∠AOE .恒成立的结论有_______________________(把你认为正确的序号都填上)。
全等三角形与轴对称综合练习题(4)
全等三角形与轴对称练习题一、填空题1、如图1所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC的周长为17m,则边BC的长为 .2、如图2,△ABC中,AB=AC,∠BAD=30°,且AD=AE,则∠EDC= .3、在直角坐标系内有两点A(-1,1)、B(3,3),若M为x轴上一点,且MA+MB最小,则M的坐标是________。
4、如图3,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF=_________度.图1 图2 图35、小宇同学在一次手工制作活动中,先把一张矩形纸片按图的方式进行折叠,使折叠的左侧部分比右侧部分短1;展开后按图的方式再折叠一次,使第二侧折痕的左侧部分比右测部分长1,再展开后,在纸上形成的两条折痕之间的距离是 .6、已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点构成的三角形是______.7、如图4,△ABC中AB=AC,EB=BD=DC=CF,∠A=40°,则∠EDF•的度数是_____.8、如图5,已知△ABC是等腰直角三角形,AB=AC,若AD=AB,∠CAD=36°,则∠DBC的度数是。
9、如图6,△ABD、△ACE都是正三角形,BE和CD交于O点,则∠BOC=__________.图4 图5 图6二、选择题1、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或15°B.75°C.15°D.75°和30°2、如图7,光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角,即∠1=∠6,∠5=∠3,∠2=∠4,若已知∠1=55°,∠3=75°,那么∠2等于().A.50° B.55° C.66° D65°3、如图8,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直;④四边形ABCD是轴对称图形.其中正确结论的个数为().A.1B.2C.3D.44、如图9,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于().A.50° B.55° C.60° D.65°5、如图10,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则( )A、AF=2BFB、AF=BFC、AF>BFD、AF<BF图7 图8 图9 图106、如下图,将矩形纸片ABCD(图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图③),那么∠AFE的度数为:()A.60°B.67.5°C.72°D.75°8.如下图1,AB⊥AC,AG⊥BG,CD、BE分别是△ABC的角平分线,AG∥BC,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°其中正确的结论是()A、①③ B、②④ C、①③④ D、①②③④9.如下图2所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2 等于() A 、270° B、180° C、135° D、90°10.如下图3,已知在△ABC中,∠CAB、∠ABC的外角平分线相交于点D。
三角形、全等三角形、轴对称测试题
单元检测之五兆芳芳创作一、选择题(请把选项写在下面的答题框内)△ABC ≌△EFD ,那么()A 、AB=DE ,AC=EF ,BC=DFB 、AB=DF ,AC=DE ,BC=EFC 、AB=EF ,AC=DE ,BC=DFD 、AB=EF ,AC=DF ,BC=DE2.下列每组数辨别是三根小木棒的长度,其中能摆成三角形的是( )A3cm ,4cm ,5cmB7cm ,8cm ,15cmC 3cm ,12cm ,20cm D5cm ,5cm ,10cm 3. 下列说法正确的是A .轴对称图形的对称轴只有一条B .角的对称轴是角的平分线C .成轴对称的两条线段必在对称轴同侧D .等边三角形是轴对 称图形4. 下列条件中不克不及证明两个三角形全等的有 () A 、有两条边及两边夹角对应相等的两个三角形 B 、有两个角和一条边对应相等的两个三角形 C 、有三条边对应相等的两个三角形D 、有一个角和两条边对应相等的两个三角形 5. 如图,△ABC 中,AB =AC ,D 、E 、F 辨别是AB 、AC 、BC 的中点,图中全等三角形共().A .5对B .6对C .7对D .8对6.等腰三角形的两边辨别长7cm 和15cm ,则它的周长是( )7.若三角形外角中有一个锐角,则这个三角形是( )三角形.A 锐角B 钝角C 直角D 等腰8. 如图,AB⊥AC,AG ⊥BG,CD 、BE 辨别是△ABC 的角平分线,AG∥BC ,下列结论:①∠BAG=2∠ABF ;②BA 平分∠CBG ;③∠ABG=∠ACB;④∠CFB=135° 其中正确的结论是( )A 、①③ B、②④C、①③④ D、①②③④9. 如图所示,已知△ABC 为直角三角形,∠FEDCBAF第12题图G EDCBAA第5题图第8题第9题虚线剪去∠B,则∠1+∠2 等于()A 270° B、180° C、135° D、90°10. 如图,已知在△ABC中,∠CAB、∠ABC的外角平分线相交于点D.∠C=88°,则∠D=()A 46°B 44°C 88°D 56°11. 如图(在背面),P点到AD、AB、BC的距离相等,则下列关于P的判断正确的是().①PC平分∠DCF;②AP平分∠BAC;③PB平分∠CBE.A①B①③C②③D①②③12.如图,Rt △ABC 中, ∠C =90°,BC=3,AC=4,AB=5,BE平分 ∠ABC,ED⊥AB,则△A DE的周长为( ). A 5 B 6 C 7 D 8二、填空题 13. 如图,∠1=. 14.从n 边形一个顶点出发可作5条对角线,则这个n 边形的内角和是. 15. 如图,△ABC ≌△AED ,∠C=400,∠EAC=300,∠B=300,则∠D=, ∠EAD=.16.如图,在Rt △ABC 中, ∠C =90°,BD是∠AB C的平分线,交AC于D,若CD=4,AB=8,则△ABD 的面积是________. ∠1=∠2,请你添加一个条件使△ABC ≌△BAD , 你的添加条件是(填一个便可). 三、解答题18.如图,已知△ABC ,求作:∠A ’,使∠A ’=∠A.(要求:用尺规作图,保存作图陈迹,不必写画法)19. 如图,D、E在BC上,且BD=CE,AD=AE,∠ADE=∠AED.求证:AB=AC.20. 在△A BC中,∠BAC =90°,AB=AC,BD⊥DE,CE⊥DE,且 DE过点A.求证:DE=BD+CE.F E D C B A P ABCDE图4 DEB CA 50°1150°DCBAE DABCE D BA第19题图第11题图 第12题图第13题图第15题图 第17题图第16题图第18题图B A。
全等三角形和轴对称专练题(50题)
全等三角形和轴对称专练题(50题)一.解答题(共60小题)1.如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠DEC的度数.2.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠F AG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.3.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.4.如图,AB平分∠CAD,AC=AD,求证:BC=BD.5.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠E=∠D.6.如图,CE=DE,AE=BE,∠1=∠2,点D在AC边上,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠3的度数.7.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,AC=BD.求证:∠C=∠D.8.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.9.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.10.在△ABC中,D为AC的中点,DM⊥AB于M,DN⊥BC于N,且DM=DN.(Ⅰ)求证:△ADM≌△CDN.(Ⅱ)若AM=2,AB=AC,求四边形DMBN的周长.11.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED,求证:DB=CD.12.如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.13.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=2,CF=1时,求AC的长.14.如图,点C、E、F、B在同一直线上,CE=BF,AB=CD,AB∥CD.(1)求证∠A=∠D;(2)若AB=BE,∠B=40°,求∠D的度数.15.如图,AC=AE,∠1=∠2,AB=AD.求证:△ABC≌△ADE.16.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.17.如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.18.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.19.如图所示,已知△ABC中AB=AC,E、D、F分别在AB,BC和AC边上,且BE=CD,BD=CF,过D作DG⊥EF于G.求证:EG=EF.20.如图,在△ABC中,∠B=∠C,点D、E、F分别在AB、BC、AC边上,且BE=CF,AD+EC=AB.(1)求证:DE=EF.(2)当∠A=36°时,求∠DEF的度数.21.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE.(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;22.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.23.如图,点A,B,C,D在一条直线上,且AB=CD,若∠1=∠2,EC=FB.求证:∠E=∠F.24.如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.25.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.26.已知:如图,点D在△ABC的BC边上,AC∥BE,BC=BE,∠ABC=∠E,求证:AB=DE.27.如图,AC⊥CB,DB⊥CB,垂足分别为C、B,AB=DC,求证:∠A=∠D.28.如图,已知AD是△ABC的高,E为AC上的一点,BE交AD于点F,且有BF=AC,FD=CD,求证:BE⊥AC.29.已知:如图,AB=DE,AB∥DE,BE=CF,且点B、E、C、F都在一条直线上,求证:AC∥DF.30.如图,点B,E,C,F在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:∠B=∠F.31.如图,△ABC和△EFD的边BC、DF在同一直线上(D点在C点的左边),已知∠A=∠E,AB∥EF,BD=CF.(1)求证:△ABC≌△EFD;(2)求证:AC∥DE.32.如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;33.如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.34.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.35.如图,∠1=∠2,∠C=∠D,求证:AC=AD.36.如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.37.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ 的形状,并加以证明.38.如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.39.如图,已知AB=AD,∠B=∠D=90°.求证:△ABC≌△ADC.40.如图,已知点A、E、F、C在同一直线上,∠1=∠2,AE=CF,AD=CB.判断BE和DF的位置关系,并说明理由.41.如图,△ABC中,AB=AC,点D,E在边BC上,且BD=CE.(1)求证:△ABD≌△ACE;(2)若∠B=40°,AB=BE,求∠DAE的度数.42.已知:如图,B,A,E在同一直线上,AC∥BD且AC=BE,∠ABC=∠D.求证:AB=BD.43.已知:如图,∠B=∠C=90°,AF=DE,BE=CF.求证:AB=DC.44.已知:点A、E、D、C在同一条直线上,AE=CD,EF∥BD,EF=BD.求证:AB∥CF.45.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.46.如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,AE=CF,求证:AB∥CD.47.已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.48.如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN ⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.49.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.50.如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:△ABF≌△CDE.51.已知:如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:BD=CE.52.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.53.已知:如图,AC与BD交于点O,AO=CO,BO=DO.求证:AB∥CD.54.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.55.如图,已知∠ABC=∠ADC=90°,E是AC上一点,AB=AD,求证:EB=ED.56.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.57.已知:如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.58.如图,D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.59.如图,BE=BC,∠A=∠D,求证:AC=DE.60.如图,AD,BC相交于点O,OA=OB,∠C=∠D=90°.(1)求证:△ACB≌△BDA.(2)当AC=3,AB=5时,求OD的长.2022年11月03日遵义三十二钟的初中数学组卷一.解答题(共60小题)1.如图所示:(1)A,B两点关于轴对称;(2)A,D两点横坐标相等,线段AD y轴,线段ADx轴;若点P是直线AD上任意一点,则点P的横坐标为;(3)线段AB与CD的位置关系是;若点Q是直线AB上任意一点,则点Q的纵坐标为.2.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1).(1)在图中作△A'B'C',使△A'B'C'和△ABC关于x轴对称;(2)写出点A',B',C'的坐标;(3)直接写出△ABC的面积.3.如图,在△ABC中,∠C=90°,∠A=30°,AB=6cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?4.已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,BF=AE,求证:(1)△ABC是等腰三角形;(2)AF=CE.5.如图,在△ABC中,AB=AC,D为CA延长线上一点,且DE⊥BC交AB于点F.(1)求证:△ADF是等腰三角形;(2)若AC=10,BE=3,F为AB中点,求DF的长.6.如图,在△ABC中,DE垂直平分BC,垂足为E,交AC于点D,连接BD.若∠A=100°,∠ABD =22°,求∠C的度数.7.△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)作出△ABC关于x对称的△A2B2C2,并写出点A2的坐标;(3)求△AA1A2的面积.8.如图,在△ABC中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠DAC=30°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系,并说明理由.9.如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是,此时C点关于这条直线的对称点C2的坐标为;(3)△A1B1C1的面积为;(4)在y轴上确定一点P,使△APB的周长最小.(注:不写作法,不求坐标,只保留作图痕迹)10.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=120°,∠BDC=2∠1,求∠DBC的度数.11.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)△ABC的面积;(2)在坐标系中作出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标.12.如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分线DE交AC于点D,连接BD,若AC=12.(1)求证:BD⊥BC.(2)求DB的长.13.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(2,0),C(4,4)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.14.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)作出△ABC关于y轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标.(3)在y轴上找一点P,使P A+PC的长最短.15.如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.16.如图,△ABC是等边三角形,P是△ABC的角平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.(1)若BQ=2,求PE的长(2)连接PF,EF,试判断△EFP的形状,并说明理由.17.如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.18.如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.19.如图,在△ABC中,AB=AC,∠B=30°,D为BC边上一点,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.20.如图:已知AB=AC=AD,且AD∥BC求证:∠C=2∠D.21.如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.22.在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.23.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.24.如图,在△ABC中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.25.如图,△ABC中,BC=10,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.26.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.27.在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,(1)当点E为AB的中点时,如图1,求证:EC=ED;(2)当点E不是AB的中点时,如图2,过点E作EF∥BC,求证:△AEF是等边三角形;(3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.28.如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.(2)当∠A=50°时,求∠DEF的度数.30.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:AE=BC.31.已知,如图,∠B=∠C,AB∥DE,EC=ED,求证:△DEC为等边三角形.32.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.34.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.35.如图:△ABC和△ADE是等边三角形.证明:BD=CE.36.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.37.如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.(1)若∠ABC=80°,求∠BDC,∠ABE的度数;(2)写出∠BEC与∠BDC之间的关系,并说明理由.38.如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.(1)求证:△ACD为等腰三角形.(2)若∠BAD=140°,求∠BDC的度数.39.已知:如图,在△ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E,连接BE.(1)求证:CE=CB;(2)若∠CAE=30°,CE=2,求BE的长度.40.如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40°,求∠AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.41.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.(1)若∠ABC=30°,∠ACB=40°,求∠DAE的度数;(2)已知△ADE的周长7cm,分别连接OA、OB、OC,若△OBC的周长为15cm,求OA的长.42.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE =∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.43.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.44.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.45.已知:如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E.(1)求证:CE=CB;(2)如果连接BE,请写出BE与AC的关系并证明.46.已知:如图,在△ABC中,点D是BC上一点,∠1=80°,AB=AD=DC.求:∠C的度数.47.如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm.(1)求△ABC中BC边的长度;(2)若∠BAC=116°,求∠DAE的度数.48.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE分别交AB、AC于D、E.(1)若AC=12,BC=10,求△EBC的周长;(2)若∠A=40°,求∠EBC的度数.49.已知在△ABC中,AB=AC,且线段BD为△ABC的中线,线段BD将△ABC的周长分成12和6两部分,求△ABC三边的长.50.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE =AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.51.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.52.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.53.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.54.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.55.如图,在△ABC中,AB=AC=6,BC=10,AB的垂直平分线分别交BC、AB于点D、E.(1)求△ACD的周长;(2)若∠C=25°,求∠CAD的度数.56.如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.57.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示).58.如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.①若△BCD的周长为8,求BC的长;②若BD平分∠ABC,求∠BDC的度数.59.如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.60.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.。
全等三角形、轴对称综合测精彩试题
ABCDE 全等三角形、轴对称期末复习1.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A 、两角和一边B 、 两边及夹角C 、 三个角D 、三条边2.如图,在△ABD 和△ACE 都是等边三角形,则ΔADC ≌ΔABE 的根据是( )A 、SSSB 、SASC 、ASAD 、AAS3.如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A 、2 B 、3 C 、5 D 、2.5 4.使两个直角三角形全等的条件是( )A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两边对应相等 5.如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。
其中正确的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 6.下列平面图形中,不是轴对称图形的是 ( )7.下列图形:①角,②两相交直线,③圆,④正方形,其中轴对称图形有( )A 、4个B 、3个C 、2个D 、1个8.已知∠AOB=30︒,点P 在∠AOB 的内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则△P 1OP 2是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形 9.已知A 、B 两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A 、B 关于x 轴对称;②A 、B 关于y 轴对称;③A 、B 关于原点对称;④A 、B 之间的距离为4,其中正确的有( )A .1个B .2个C .3个D .4个10.如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。
A 、2 B 、3 C 、4 D 、5第2题图 第3题图 第5题图 第10题图11.已知点A (a ,b )关于x 轴对称点的坐标是(a ,-12),关于y 轴对称点的坐标是(5,b ),则A 点的坐标是 。
全等三角形和轴对称综合练习
一、选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或 17D .10或 122. 下列美丽的图案中,是轴对称图形的是( )3. 如图,∠ACB=900,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm ,则BE=(1) A 、1cm B 、0.8cm C 、4.2cm D 、1.5cm4. 等腰三角形一边长等于4,一边长等于9,它的周长是 ( )A .17B .22C .17或22D .135. 等腰三角形一边长等于5,一边长等于9,则它的周长是( )A 、14B 、23C 、19或23D 、196. 如图,已知△ABC 中,∠ABC=45°,AC=4,H 是高AD 和BE 的交点,则线段BH 的长度为( )B. C.5D.4A .B .C .D .A题7图7. 已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为( )(1) A 、14 B 、18 C 、24 D 、18或24 8. 如图,∠B 、∠C 的平分线相交于F ,过点F 作DE ∥BC ,交AB 于D ,交AC 于E ,那么下列结论正确的是①△BDF 、△CEF 都是等腰三角形; ②DE =BD +CE ; ③△ADE 的周长为AB +AC ;④BD =CE ;A .③④B .①②C .①②③D .②③④9. 下列图形中,不是轴对称图形的是( )。
10.已知△ABC 的周长是24,且AB=AC ,又AD⊥BC ,D 为垂足,若△ABD 的周长是20,则AD 的长为( )。
A 、6B 、8C 、10D 、1211.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( )。
BCDADBCE F(第8题图)A、14B、16C、10D、14或1612.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等腰梯形 B.平行四边形C.正三角形 D.矩形13.在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是()A.25° B.40°或30° C.25°或40° D.50°14.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点 B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点15.一个三角形任意一边上的高都是这边上的中线,•则对这个三角形的形状最准确的判断是()A.等腰三角形 B.直角三角形C.正三角形 D.等腰直角三角形16.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm17.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与EF交于F,若BF=AC ,那么∠ABC 等于( )A .45°B .48°C .50°D .60° 18.下列各命题中,假命题的个数为( )1面积相等的两个三角形是全等三角形;②三个角对应相等的两个三角形是全等三角形;③全等三角形的周长相等④有两边及其中一边的对角对应相等的两个三角形是全等三角形.A .1B .2C .3D .419.等腰三角形有一个角是,它的一条腰上的高与底边的夹角是( )(1) A B C 或 D 大小无法确定 20.已知等腰三角形的两边的长分别为3和7,则其周长为( )(1) A)13 B 17 C 13或17 D 不确定 21.如图∠BOP=∠AOP=15°,PC ∥OB ,PD⊥PB 于D ,PC=2, 则PD 的长度为( )。
全等三角形与轴对称复习题
全等三角形与轴对称复习题一、知识回顾1、全等三角形的性质:判定方法:2、轴对称与轴对称图形的区别与联系:3、线段与角的轴对称性:4、等腰三角形的性质:判定:5、等边三角形的性质:判定:二、学习探究【典型例题】(一)全等的性质和判定例1、如图1,已知正方形ABCD(正方形四条边都相等,四个角都是直角),把一个直角与正方形叠合,使直角顶点与正方形的A点重合,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时。
(1)证明:BE=DF;(2)如图2,作∠EAF的平分线交CD于G点,连接EG。
证明:BE+DG=EG;(3)如图3,将图1中的“直角”改为“∠EAF=45°”,当∠EAF的一边与BC的延长线相交于E点,另一边与CD的延长线相交于F点,连接EF。
线段BE,DF和EF之间有怎样的数量关系?并加以证明。
(二)线段与角的对称性例1、已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画 A .6条 B .7条 C .8条 D .9条例2、如图,直线l 1、l 2相交于点A ,点B 是直线外一点,在直线l 1 、l 2上找一点C ,使△ABC 为一个等腰三角形.满足条件的点C 有…………………………………… ( )A .2个B .4个C .6个D .8个变式1、已知:如图,∠AOB 外有一点M ,作点M 关于直线OA 的对称点N ,再作点N 关于直线OB 的对称点P.(1)试探索∠MOP 与∠AOB 的大小关系;(2)若点M 在∠AOB 的内部,上述结论还成立吗?请补全图形并证明.(五)翻折题型例1、如图,△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为 _______OABMNPOABl 2l 1AB(六)旋转题型例2、如图1,两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O .(1)在图1中,你发现线段AC,BD 的数量关系是 ,直线AC,BD 相交成角的度数是 .(2)将图1中的△OAB 绕点O 顺时针旋转90°角,在图2中画出旋转后的△OAB 。
苏科版2024-2025学年度八年级(上)单元基础训练第1-2章全等三角形轴对称图形[含答案]
苏科版2024-2025学年度八年级(上)单元基础训练第1-2章全等三角形轴对称图形一、选择题(每题3分)1.(3分)下列说法正确的是( )A.三个角对应相等的两个三角形全等B.面积相等的两个三角形全等C.全等三角形的面积相等D.两边和其中一边的对角对应相等的两个三角形全等2.(3分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是( )A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB3.(3分)如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,这时,△ACB≌△ECD,ED=AB,测ED的长就得AB得长,判定△ACB≌△ECD的理由是( )A.SAS B.ASA C.SSS D.AAS4.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是( )A.3B.4C.5D.65.(3分)△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是( )A.1个B.2个C.3个D.4个6.(3分)如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有( )A.5对B.6对C.7对D.8对7.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短8.(3分)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是( )A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)9.(3分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有( )A.4个B.3个C.2个D.1个10.(3分)如图,∠DBC和∠ECB是△ABC的两个外角,点P是∠DBC、∠ECB两角的平分线的交点,PM、PN、PQ分别是P点到AB、AC、BC三边的垂线段,PM、PN、PQ的数量关系为( )A.PM>PN>PQ B.PM<PN<PQ C.PM=PN=PQ D.PM=PN>PQ11.(3分)如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是( )A.3个B.2个C.1个D.0个12.(3分)如图,在△ABC中,AB=AC,∠BAC=90°.直角∠EPF的顶点P是BC中点,PE、PF分别交AB、AC于点E、F.给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有( )A.1个B.2个C.3个D.4个二、填空(每题2分)13.(2分)△ABC≌△DEC,△ABC的周长为100cm,DE=30cm,EC=25cm,那么BC长为 .14.(2分)如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD= °.15.(2分)如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,AB=10cm,则BC= cm.16.(2分)如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE= 度.17.(2分)如图,将长方形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,∠DAM=15°,则AN= cm,∠NAB= .18.(2分)如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE:∠BCD= .19.(2分)如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是 度.20.(2分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是 .(将你认为正确的结论的序号都填上)21.(2分)在如图所示的4×4正方形网格中.∠1+∠2+∠3+∠4+∠5+∠6+∠7= 度.22.(2分)BG、EH分别为△ABC与△DEF的高,且AB=DE,BC=EF,BG=EH,若∠ACB=60°,则∠DFE= .三、解答题23.(8分)如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.24.(5分)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.25.(5分)如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.26.(8分)如图,在△ABC中,点E在BC上,点D在AE上,∠ABD=∠ACD,∠BDE=∠CDE.试说明BE=CE.27.(8分)如图1、图2,AC⊥BC,AD⊥DE,BE⊥DE,垂足分别为C、D、E,C、D、E三点共线,AC=BC.(1)在图1中,若AD=2,BE=5,则DE的长为多少?请说明理由.(2)在图2中,若AD=5,BE=2,则DE= .28.(10分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.参考答案与试题解析一、选择题(每题3分)1.(3分)下列说法正确的是( )A.三个角对应相等的两个三角形全等B.面积相等的两个三角形全等C.全等三角形的面积相等D.两边和其中一边的对角对应相等的两个三角形全等【分析】根据三角形全等条件可以得出全等从形状和大小两个方面同时满足就可以从备选答案中得出结论.【解答】解:A、说明两三角形的形状相同,不能确定大小,故错误;B、强调了两三角形的大小,没有确定形状,故错误;C、由全等三角形的性质可以得出结论;D、两边和其中一边的对角对应相等的两个三角形不一定全等,故错误.∴正确答案为为C.故选:C.【点评】本题考查了全等三角形的判定及性质的运用,解答本题时弄清全等三角形的了两个必备条件是关键.2.(3分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是( )A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB【分析】本题要判定△ABC≌△DBE,已知AB=DB,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.【解答】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据AAS判定△ABC≌△DBE,故正确.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(3分)如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,这时,△ACB≌△ECD,ED=AB,测ED的长就得AB得长,判定△ACB≌△ECD的理由是( )A.SAS B.ASA C.SSS D.AAS【分析】根据已知条件分析,题目中给出了三角形的边相等,两条垂线,可得一对角相等,加上图形中的对顶角相等,条件满足了ASA,答案可得.【解答】解:∵AB⊥BC,DE⊥BC,∴∠ABC=∠EDC=90°,又CD=BC,∠ACB=∠ECD,∴△ABC≌△EDC符合两角一边对应相等,所以利用的判定方法为ASA.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,要根据已知选择方法.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是( )A.3B.4C.5D.6【分析】已知条件给出了角平分线、PE⊥AC于点E等条件,利用角平分线上的点到角的两边的距离相等,即可求解.【解答】解:利用角的平分线上的点到角的两边的距离相等可知点P到AB的距离是也是3.故选:A.【点评】本题主要考查了角平分线上的一点到角的两边的距离相等的性质.做题时从已知开始思考,想到角平分线的性质可以顺利地解答本题.5.(3分)△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是( )A.1个B.2个C.3个D.4个【分析】和△ABC全等,那么必然有一边等于3,有一边等于,又一角等于45°.据此找点即可,注意还需要有一条公共边.【解答】解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选:D.【点评】本题利用了全等三角形的判定和性质,思考要全面,不重不漏.6.(3分)如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有( )A.5对B.6对C.7对D.8对【分析】根据平行四边形的性质,以及全等三角形的判定即可求出答案.【解答】解:由平行四边形的性质可知:△ABD≌△CDB,△ABO≌△CDO,△ADE≌△CBF,△AOE≌△COF,△AOD≌△COB,△ABC≌△CDA,△ABE和△CDF故选:C.【点评】本题考查全等三角形的判定,涉及全等三角形的性质,平行四边形的性质.7.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【分析】根据三角形的稳定性即可解决问题.【解答】解:根据三角形的稳定性可固定窗户.故选:A.【点评】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.8.(3分)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是( )A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案,而具备SSA的不能作为判定三角形全等的依据.【解答】解:A、正确,符合判定方法SAS;B、正确,符合判定方法SSS;C、正确,符合判定方法AAS;D、不正确,不符合全等三角形的判定方法.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(3分)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED成立的条件有( )A.4个B.3个C.2个D.1个【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.10.(3分)如图,∠DBC和∠ECB是△ABC的两个外角,点P是∠DBC、∠ECB两角的平分线的交点,PM、PN、PQ分别是P点到AB、AC、BC三边的垂线段,PM、PN、PQ的数量关系为( )A.PM>PN>PQ B.PM<PN<PQ C.PM=PN=PQ D.PM=PN>PQ【分析】由已知条件,根据角平分线上的点到角的两边的距离相等的性质得到线段相等,利用等量代换结论可得.【解答】解:∵PB平分∠DBC,PM⊥AD,PQ⊥BC,∴PM=PQ,∵PC平分∠BCE,PN⊥AE,PQ⊥BC,∴PQ=PN,∴PM=PN=PQ,故选:C.【点评】本题主要考查角平分线的性质;利用线段的等量代换是正确解答本题的关键.11.(3分)如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是( )A.3个B.2个C.1个D.0个【分析】根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△DCB,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.【解答】解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△DCB(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△DCB,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选:B.【点评】本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.12.(3分)如图,在△ABC中,AB=AC,∠BAC=90°.直角∠EPF的顶点P是BC中点,PE、PF分别交AB、AC于点E、F.给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有( )A.1个B.2个C.3个D.4个【分析】由等腰直角三角形的性质可得∠B=∠C=45°,AP=BP=CP,∠BAP=∠CAP=45°,AP⊥BC,由直角三角形的两个锐角互余,可得∠EPA=∠FPC,所以△EPA≌△FPC,所以①②③都得到证明.当EF是三角形ABC的中位线时,才有EF=AP.【解答】解:∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵P为边BC的中点,∴AP=BP=CP,∠BAP=∠CAP=45°,AP⊥BC,∴∠EAP=∠C,又∵∠EPA+∠APF=90°,∠FPC+∠APF=90°,∴∠EPA=∠FPC,在△EPA和△FPC中∴△EPA≌△FPC(ASA),∴AE=CF,EP=FP,所以①正确;∴△EPF是等腰直角三角形,所以②正确;∵四边形AEPF的面积等于△APC的面积,∴2S四边形AEPF=S△ABC,所以③正确;又∵EF=,而只有F点为AC的中点时,AP=即点F为AC的中点时有EF=AP,所以④不一定正确.所以当∠EPF在ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有①②③,共3个.故选:C.【点评】本题考查了三角形全等的证明、直角等腰三角形的性质、以及三角形的中位线定理.解决本题的关键是利用直角三角形的性质,说明△EPA≌△FPC.二、填空(每题2分)13.(2分)△ABC≌△DEC,△ABC的周长为100cm,DE=30cm,EC=25cm,那么BC长为 45cm .【分析】根据题意,△ABC≌△DEC,可知BC=CD,△ABC的周长为100cm,DE=30cm,EC=25cm,所以CD=45cm,即得BC=45cm.【解答】解:∵△ABC≌△DEF,∴BC=CD,又△ABC的周长为100cm,DE=30cm,DF=25cm,∴BC=CD=100﹣30﹣25=45cm.故填45【点评】此题主要考查了全等三角形对应边的对应问题,以及对三角形周长的考查.14.(2分)如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD= 35 °.【分析】由全等三角形的性质知:对应角∠CAB=∠EAD相等,再从上图中找出等量关系:∠BAD=∠CAB﹣∠EAB=∠EAC.【解答】解:∵△ABC≌△ADE,∴∠CAB=∠EAD,∵∠EAC=∠CAB﹣∠EAB,∠BAD=∠EAD﹣∠EAB,∴∠BAD=∠EAC,∴∠BAD=∠EAC=35°.故填35【点评】本题主要考查的是全等三角形的性质:对应角相等,仔细读图,利用图形上的关系做题时比较好的一种方法.15.(2分)如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,AB=10cm,则BC= 20 cm.【分析】根据全等三角形的性质得出AB=BE=CE=10cm,即可求出答案.【解答】解:∵△ADB≌△EDB≌△EDC,AB=10cm,∴AB=BE=CE=10cm,∴BC=BE+CE=20cm,故答案为:20.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等.16.(2分)如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE= 90 度.【分析】由已知条件可判断△ABC≌△CDE,所以∠ECD=∠A,再根据平角的定义可求得∠ACE的值.【解答】解:∵AB⊥BD、ED⊥BD,∴∠ABC=∠EDC=90°∵AB=CD,BC=DE∴△ABC≌△CDE(SAS)∴∠ECD=∠A∵在Rt△ABC中,∠A+∠ACB=90°∴∠ECD+∠ACB=90°∴∠ACE=180°﹣(∠ECD+∠ACB)=180°﹣90°=90°.故填90.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL 本题要借助平角来求90°.17.(2分)如图,将长方形ABCD沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,∠DAM=15°,则AN= 7 cm,∠NAB= 60° .【分析】利用折叠的性质得到∠DAM=∠NAM,AN=AD,求出所求即可.【解答】解:由折叠得:∠DAM=∠NAM=15°,AN=AD=7cm,∴∠DAN=30°,∵∠BAD=90°,∴∠NAB=60°.故答案为:7;60°【点评】此题考查了翻折变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(2分)如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE:∠BCD= 1:4 .【分析】先求出△ABC的各角的度数,再根据全等三角形对应角相等求出∠ECD的度数,利用邻补角的定义先求出∠ECA的度数,根据∠BCE=∠ACB﹣∠ECA求出∠BCE的度数,然后求出比值.【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠ACB=180°×=100°,∵△EDC≌△ABC,∴∠ECD=∠ACB=100°,∴∠ECA=180°﹣∠ECD=180°﹣100°=80°,∠BCE=∠ACB﹣∠ECA=100°﹣80°=20°,∴∠BCD=80°∴∠BCE:∠BCD=20°:80°=1:4.故答案为1:4.【点评】本题主要考查全等三角形对应角相等的性质和邻补角之和等于180°,根据比值和三角形内角和定理求出∠ACB的度数是解题的关键.19.(2分)如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=150°,则∠θ的度数是 60 度.【分析】解题关键是把所求的角转移成与已知角有关的角.【解答】解:根据对顶角相等,翻折得到的∠E=∠ACB可得到∠θ=∠EAC,∵△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,∠BAC=150°,∴∠DAC=∠BAE=∠BAC=150°.∴∠DAE=∠DAC+∠BAE+∠BAC﹣360°=150°+150°+150°﹣360°=90°.∴∠θ=∠EAC=∠DAC﹣∠DAE=60°.【点评】翻折前后对应角相等.20.(2分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是 ①②③ .(将你认为正确的结论的序号都填上)【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN(ASA),∴AM=AN,∴CM=BN,∵∠CDM=∠BDN,∠C=∠B,∴△CDM≌△BDN,∴CD=BD,无法判断CD=DN,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.21.(2分)在如图所示的4×4正方形网格中.∠1+∠2+∠3+∠4+∠5+∠6+∠7= 315 度.【分析】根据正方形的轴对称性得∠1+∠7=90°,∠2+∠6=90°,∠3+∠5=90°,∠4=45°.【解答】解:由图可知,∠1所在的三角形与∠7所在的三角形全等,所以∠1+∠7=90°.同理得∠2+∠6=90°,∠3+∠5=90°.又因为∠4=45°,所以∠1+∠2+∠3+∠4+∠5+∠6+∠7=315°.故答案为:315.【点评】本题考查了全等三角形的性质,全等三角形的对应角相等.发现并利用全等三角形是解决本题的关键.22.(2分)BG、EH分别为△ABC与△DEF的高,且AB=DE,BC=EF,BG=EH,若∠ACB=60°,则∠DFE= 60°或120° .【分析】分两种情况:①如图1所示:由HL Rt△BCG≌Rt△EFH,得出∠DFE=∠ACB=60°;②如图2所示:同①得:Rt△BCG≌Rt△EFH,得出∠EFH=∠ACB=60°,求出∠DFE=120°;即可得出结论.【解答】解:分两种情况:①如图1所示:∵BG、EH分别为△ABC与△DEF的高,∴∠BGC=∠EHF=90°,在Rt△BCG和Rt△EFH中,,∴Rt△BCG≌Rt△EFH(HL),∴∠DFE=∠ACB=60°;②如图2所示:同①得:Rt△BCG≌Rt△EFH,∴∠EFH=∠ACB=60°,∴∠DFE=180°﹣60°=120°;故答案为:60°或120°.【点评】本题考查了直角三角形全等的判定与性质;证明三角形全等是解决问题的关键,注意分类讨论.三、解答题23.(8分)如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.【分析】利用正方形的对称轴和中心结合正方形的面积即可解决问题.【解答】解:如图所示:【点评】本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.24.(5分)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.【分析】根据全等三角形对应边相等可得OB=OD,全等三角形对应角相等可得∠ABO=∠D,再根据等边对等角求出∠OBD=∠D,然后求出∠ABC,再根据两直线平行,内错角相等解答即可.【解答】解:∵△ABO≌△CDO,∴OB=OD,∠ABO=∠D,∴∠OBD=∠D=(180°﹣∠BOD)=×(180°﹣30)=75°,∴∠ABC=180°﹣75°×2=30°,∵AO∥BC,∴∠A=∠ABC=30°.【点评】本题考查了全等三角形的性质,等边对等角的性质,平行线的性质,熟记性质并准确识图是解题的关键.25.(5分)如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.【分析】首先根据平行线的性质证明∠BAC=∠EDF,在△ABC和△DEF中利用SAS即可证明△ABC≌△DEF,然后根据全等三角形的对应边相等即可证得.【解答】证明:∵AB∥ED,∴∠BAC=∠EDF,∵AF=DC,∴AC=DF,∴在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.【点评】本题考查了三角形的全等的判定与性质,证明线段相等常用的方法就是证明三角形全等.26.(8分)如图,在△ABC中,点E在BC上,点D在AE上,∠ABD=∠ACD,∠BDE=∠CDE.试说明BE=CE.【分析】要证BE=CE,要先证明△ABD和△ACD全等,得到BD=CD,再证明△BDE和△CDE全等即可.【解答】证明:∵∠ADB=180°﹣∠BDE,∠ADC=180°﹣∠CDE,∴∠ADB=∠ADC.在△ADB和△ADC中,,∴△ADB≌△ADC.∴BD=CD∵在△DBE和△DCE中,,∴△DBE≌△DCE.∴BE=CE.【点评】本题主要考查了全等三角形的判定与性质,证明简单的线段相等,可以通过全等三角形来证明.27.(8分)如图1、图2,AC⊥BC,AD⊥DE,BE⊥DE,垂足分别为C、D、E,C、D、E三点共线,AC=BC.(1)在图1中,若AD=2,BE=5,则DE的长为多少?请说明理由.(2)在图2中,若AD=5,BE=2,则DE= 3 .【分析】①根据ASA可证明△ADC≌△BEC得出AD=CE,BE=CD则能求出DE=CD+CE.②根据ASA可证明△ADC≌△BEC得出AD=CE,BE=CD则能求出DE=CE﹣CD.【解答】解:①在△ADC与△BEC中,AC=BC,∠D=∠E=90°,∠ACD=∠CBE=90°﹣∠BCE,∴△ADC≌△BEC,∴AD=CE=2,BE=CD=5,∴DE=CD+CE=7;②在△ACD与△BEC中AC=BC,∠ADC=∠BEC=90°,∠DAC=∠BCE∴△ADC≌△BEC∴AD=CE=5,CD=BE=2.∴DE=CE﹣CD=3.【点评】本题考查了全等三角形的判定和性质;做题的关键是找出全等的两个直角三角形,得出对应边相等,剩下的就是线段加减的问题了.28.(10分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.【分析】(1)根据相“HL”定理得出△BDE≌△CDF,故可得出DE=DF,所以AD平分∠BAC;(2)由(1)中△BDE≌△CDE可知BE=CF,AD平分∠BAC,故可得出△AED≌△AFD,所以AE=AF,故AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.【解答】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDF均为直角三角形,∵∴△BDE≌△CDF(HL).∴DE=DF,∵DE⊥AB于E,DF⊥AC于F,∴AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF.在△AED与△AFD中,∵,∴△AED≌△AFD(ASA).∴AE=AF.∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.【点评】本题考查的是角平分线的性质及全等三角形的判定与性质,熟知角平分线的性质及其逆定理是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形、轴对称测试题
一、选择题1、下列说法正确的是( ).
A .轴对称涉及两个图形,轴对称图形涉及一个图形
B .如果两条线段互相垂直平分,那么这两条线段互为对称轴
C .所有直角三角形都不是轴对称图形
D .有两个内角相等的三角形不是轴对称图形
2、点M (1,2)关于x 轴对称的点的坐标为( ).
A .(-1,-2)
B .(-1,2)
C .(1,-2)
D .(2,-1) 3、下列图形中对称轴最多的是( ) .
A .等腰三角形
B .正方形
C .圆
D .线段
4、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).
A .11cm
B .7.5cm
C .11cm 或7.5cm
D .以上都不对 5、如图:D
E 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,
则△EBC 的周长为( )厘米.
A .16
B .18
C .26
D .28
6、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:
①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个
7、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫
做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ). A .对应点连线与对称轴垂直
B .对应点连线被对称轴平分
C .对应点连线被对称轴垂直平分
D .对应点连线互相平行
8、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .
A
C
B
A ' '
C '
图2
图1 E D
C
B
A
l
O
D
C
B
A
B
A
A .横坐标
B .纵坐标
C .横坐标及纵坐标
D .横坐标或纵坐标 二、填空题
9、设A 、B 两点关于直线MN 对称,则______垂直平分________. 10、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 11、等腰三角形一个底角是30°,则它的顶角是__________度.
12、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 13、等腰三角形的一内角等于50°,则其它两个内角各为 .
14、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .
15、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122
cm ,则图中阴影部分的面积为 2
cm .
16、如图所示,两个三角形关于某条直线对称,则 = .
17.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称. 18.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm . 三、解答题
19、已知:如图,已知△ABC ,
(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.
F
E D
C
A
P 2
P 1N M
O P
B A
α
35°
115°
D
E
C
B A
O
A
D E
F
B
C
20、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.
21、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:
BE+CF=EF .
22、如图∠ACB=90°,AC=BC,BE ⊥CE,AD ⊥CE 于D ,AD=20cm ,DE=17cm,求BE 的长
23、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线 .
D C B
A
24.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,
求证:AH=2BD .
27、如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .求证∠CDA =∠EDB .
H
E D
C
B
A
1
2
A
B
C
D
E。