哈工大理论力学第七版课后习题答案完整版
哈尔滨工业大学 第七版 理论力学 第5章 课后习题答案
第5章 摩 擦5-1 如图5-1a 所示,置于V 型槽中的棒料上作用1力偶,力偶矩m N 15⋅=M 时,刚好能转动此棒料。
已知棒料重力N 400=P ,直径m 25.0=D ,不计滚动摩阻。
求棒料与V 形槽间的静摩擦因数f s 。
(a)(b)图5-1解 圆柱体为研究对象,受力如图5-1b 所示,F s1,F s2为临界最大摩擦力。
0=∑x F ,045cos 2s 1N =°−+P F F (1) 0=∑y F ,045sin 1s 2N =°−−P F F (2) 0=∑O M ,0222s 1s =−+M DF D F(3)临界状态摩擦定律:1N s 1s F f F =(4) 2N s 2s F f F =(5)以上5式联立,化得 0145cos s2s =+°−MPDf f 代入所给数据得01714.4s 2s =+−f f 方程有2根:442.4s1=f (不合理), 223.0s2=f (是解)故棒料与V 形槽间的摩擦因数223.0s =f5-2 梯子AB 靠在墙上,其重力为N 200=P,如图5-2a 所示。
梯长为l ,并与水平面交角°=60θ。
已知接触面间的静摩擦因数均为0.25。
今有1重力为650 N 的人沿梯向上爬,问人所能达到的最高点C 到点A 的距离s 应为多少?AN F As F(a)(b)图5-2解 梯子为研究对象,受力如图5-2b 所示,刚刚要滑动时,A ,B 处都达最大静摩擦力。
人重力N 650=W ,平衡方程: 0=∑x F , 0s N =−A B F F (1) 0=∑y F , 0s N =−−+W P F F B A(2)0=∑A M ,060cos 60sin 60cos 60cos 2s N =°−°−°+°l F l F Ws lPB B (3) 临界补充方程:A s A F f F N s = (4)B s B F f F N s =(5)联立以上5式,解得 N 80012sN =++=f WP F A ,N 200s =A F N 200)(12s N =++=W P f f F sB ,N 50s =B F l PF f W l s B 456.02)3[(N s =−+=5-3 2根相同的匀质杆AB 和BC ,在端点B 用光滑铰链连接,A ,C 端放在不光滑的水平面上,如图5-3a 所示。
哈尔滨工业大学 第7版 理论力学 第4章 课后习题答案
解 (1)方法 1,如图 4-6b 所示,由已知得
Fxy = F cos 60° , Fz = F cos 30°
F = F cos 60°cos 30°i − F cos 60°sin 30° j − F sin 60°k = 3 i − 1 Fj − 3 Fk 44 2
41
理论力学(第七版)课后题答案 哈工大.高等教育出版社
A
F
β
MA
C
MB
F
10 N
β M θ − 90° C
MB
(a)
(b)
(c)
图 4-11
解 画出 3 个力偶的力偶矩矢如图 4-11b 所示,由力偶矩矢三角形图 4-11c 可见
MC =
M
2 A
+
M
2 B
=
3 0002 + 4 0002 = 5 000 N ⋅ mm
由图 4-11a、图 4-11b 可得
3 = 250 N 13
FRz = 100 − 200 ×
1 = 10.6 N 5
M x = −300 ×
3 × 0.1 − 200 × 1 × 0.3 = −51.8 N ⋅ m
13
5
M y = −100 × 0.20 + 200 ×
2 × 0.1 = −36.6 N ⋅ m 13
M z = 300 ×
z
F45° F3 F3′ B
F2A
E
F1
C
F5
F6
F F4 45°
D
y
K x
M
(a)
(b)
图 4-9
解 (1) 节点 A 为研究对象,受力及坐标如图 4-9b 所示
哈尔滨工业大学理论力学课后习题问题详解
实用标准文档----------------------------------------理论力学(第七版)课后题答案 哈工大.高等教育出版社-------------------------------- 第1章 静力学公理和物体的受力分析1-1 画出下列各图中物体 A ,ABC 或构件 AB ,AC 的受力图。
未画重力的各物体的自重不计,所有接触处均为光滑接触。
F N1A PF N 2(a) (a1)F TA PF N(b)(b1)AF N1P BF N 3F N 2(c) (c1)F TBF AyP 1P 2AF Ax(d) (d1)F AF BFAB(e)(e1)qFF Ay F BF AxA B(f) (f1)FBC F CAF A(g) (g1)F Ay FCCA F Ax BP1 P2(h) (h1)BFCF CF AxDAF Ay(i) (i1)(j) (j1)BF B FCPF AyF AxA(k) (k1)F CAF AB ′ F AC CA′ F ABBF ACF BAA P (l) (l1)(l2)(l3)图 1-11-2 画出下列每个标注字符的物体的受力图。
题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。
F N 2C′ F P 2(a1) F N1N(a)BF N1BC F N 2F NP 2P1P1F AyF Ay F AxF AxAA(a2) (a3)F N1AP1F N3B P 2F N 2(b) (b1)′ F NF N3F N1ABP 2P1F N F N 2(b2)(b3)F AyF AxACD F N2B P2P1F N1(c) (c1)F AyF TA F AxD′FF N2 TBP1F N1 P2(c2) (c3)F AyF BqBA FAxC DF C(d) (d1)F DyF Ay F BqqD′FDxBA F Ax C F Dx D′FDyF C(d2) (d3)F Ay′FBxq BF AyF AxqA B ′FByF AxF Cx CF Cy PF BxA BPF Cx(e1)C F By F Cy(e) (e2) (e3)F1 CF2F Ay FByA BF Ax F Bx(f) (f1)F Cx′ FCxCCF 1F CyF ′ F 2 F AyCyF ByAF BxF Ax B(f2)(f3)F BF AyCBAF AxP(g)(g1)′ F CyF T′FCxCF AyF BF TDCF AxBAF Cx P (g2)(g3)DF 1F CyF B ′ F 2F BBCF CxBF Ay AF Ax(h)(h1)(h2)A F AxF AyF CyF CxC′ A F EF CyF F OyCDF OxF Cx ′EO B(i)(i1)(i2)AA ′FAx′FE′FAyFEC DF ByF ByF OyF BxF Ox F BxOB B(i3) (i4)F AyD EF CxF TA F AxF ByCCH FBy F CyB PF Bx F BxB(j) (j1) (j2)F Ay F Dy′′FEy′F CF Cx′E F AxT 2D F T 2 ′FExF Ex A D F Dx′ EF DxF T3F T1 ′FCyF Dy F Ey(j3) (j4) (j5)EF F BC ED ′ BFCxθ′′FDEFCy(k) (k1)F BFFCB FCxθ E CF Cy90°−θFDED DF AyF AyA AF Ax F Ax(k2) (k3)F B′ FBF 1F DBBDCAF AF C(l)(l1)(l2)F 2′ D F DF 1F 2D BAC EE F EF AF C F E(l3)(l4)或′ ′ F DyF 2F 1F F Dy F 2F 1B ′ DF DxF DxBBD D F ExA C E C E F ExF CF EyF AF CF Ey(l2)’(l3)’ (l4)’′ F ADAF CyF CxCF 1B(m)(m1)F ADDF ADHEF 2A DF EF HF AD ′(m2)(m3)F N AAF kF N BF OyF OxBO(n) (n1)F N1B Dq′ F BF N 2F N3(n2)FB D FF C F E F AF G GCEA(o)(o1)FBBDFDF BF E F F F CF D′ FEA F AF B ′ CD(o2)(o3) (o4) 图 1-2第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心 A ,B 和 C 处受 3个力作用,如图 2-1a 所示。
理论力学(哈工第七版) 课后练习答案 第三部分
A
ϕ
O
r ϕ
M
W=
2π
∫ 4ϕ dϕ + (m
0
− mB ) g ⋅ 2π r
A B
A mAg
= 8π 2 + (mA − mB ) g ⋅ 2π r = 8π 2 + 1× 9.8 × 2π × 0.5 = 110 (J)
B
mBg
(a)
(b)
7
12-4 图示坦克的履带质量为 m,两个车轮的质量均为 m1。车轮被看成均质圆盘,半径为 R, 两车轮间的距离为 πR。设坦克前进速度为 v,计算此质点系的动能。 解:系统的动能为履带动能和车轮动能之和。将履带分为四部 分,如图b 所示。履带动能:
O
P2 P aB − 1 a A = FN − P 1−P 2 g g
其中, a A = a , aB = 解得
A
a 2 1 (2 P 1−P 2 )a 2g
B
(a)
FN = P 1+P 2 −
v FN
O
v P 1
A
v aA
v aB B
v P2
(b)
11-1 质量为 m 的点在平面 Oxy 内运动,其运动方程为
得
G1
320
B C
SB
S A = 170 mm S B = 90 mm
(b)
2
10-12 图示滑轮中,两重物 A 和 B 的重量分别为 P1 和 P2。如物体 A 以加速度 a 下降, 不计滑轮质量,求支座 O 的约束力。 解:对整体进行分析,两重物的加速度和支座 O 的约束力如图b 所示。由 动量定理知:
整体受力和运动分析如图b因为0xf所以x方向系统守恒有21cos0brbmvmvv??解得121cosbrmmvvm1所以该系统动能为设此时三棱柱a沿三棱柱b下滑的距离为s则其重力作的功为1sinwmgs??系统动能22b211221sin12cosmmtmmvm由系统动能定理tw即1sinwmgs??上式对时间求导并注意到rdsdtv整理后得22112121sinsincosbbrmmmmvamgvm?????得2b2a212b2b2r2122b21122
理论力学第七版答案、高等教育出版社出版
仅供个人学习参考哈工大理论力学(I )第7版部分习题答案1-2两个老师都有布置的题目2-3?2-6?2-14?2-?20?2-30?6-2?6-4?7-9??7-10?7-17?7-21?8-5?8-8?8-16?8-24?10-4?10-6?11-5?11-15?10-3以下题为老师布置必做题目1-1(i,j ),1-2(e,k)2-3,2-6,2-14,2-20,2-306-2,6-47-9,7-10,7-17,7-21,7-268-5,8-8(瞬心后留),8-16,8-2410-3,10-410-611-5,11-1512-10,12-15,综4,15,16,1813-11,13-15,13-166-2图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5m 在铅垂面内转动,杆AB=0.8m ,A 端为铰链,B 端有放置工件的框架。
在机构运动时,工件的速度恒为0.05m/s ,杆AB 始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B 的轨迹方程。
10-3如图所示水平面上放1均质三棱柱A ,在其斜面上又放1均质三棱柱B 。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA 三棱柱B 质量mB 的3倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4解取A 、B 两三棱柱组成1质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统 质心位置在水平方向守恒。
设A 、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c 所示。
两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4如图所示,均质杆AB ,长l ,直立在光滑的水平面上。
求它从铅直位无初速地倒下时,端点A 相对图b 所示坐标系的轨迹。
哈尔滨工业大学 第七版 理论力学.13
1 2 T履 = ∑ mi vi = TI + TII + TIII + TIV 2
D II A
(a) 图 13-3
IV
2v
C
ω
v
III
Iv=0
(b)
B
由于 v1 = 0, vIV = 2v ,且由于每部分履带长度均为π R ,因此
mI = mII = mIII = mIV = TI =
m 4
1 2 mI vI = 0 2 1 1 m m 2 TIV = mIV v IV = × (2v) 2 = v 2 2 2 4 2 m m 2 II、III 段可合并看作 1 滚环,其质量为 ,转动惯量为 J = R ,质心速度为 v,角速度 2 2 v 为 ω = ,则 R 1 m 1 mv 2 1 m 2 v 2 m 2 TII + TIII = ⋅ v 2 + Jω 2 = + ⋅ R ⋅ 2 = v 2 2 2 4 2 2 2 R m m T履 = 0 + v 2 + v 2 = mv 2 2 2
理论力学(第七版)课后题答案 哈工大.高等教育出版社
第 13 章 动能定理
13-1 如图 13-1a 所示,圆盘的半径 r = 0.5 m,可绕水平轴 O 转动。在绕过圆盘的绳上 吊有两物块 A、B,质量分别为 mA = 3 kg,mB = 2 kg。绳与盘之间无相对滑动。在圆盘上作 用 1 力偶, 力偶矩按 M = 4ϕ 的规律变化 (M 以 N ⋅ m 计, ϕ 以 rad 计) 。 求由 ϕ = 0到ϕ = 2π 时,力偶 M 与物块 A,B 重力所作的功之总和。
第 2 阶段 :系统通过搁板继续运动 x2 距离后静止。由动能定理
理论力学第七版课后习题答案
理论力学第七版课后习题答案第一章: 引言习题1-11.问题描述:给定物体的质量m=2kg,加速度a=3m/s^2,求引力F。
2.解答:根据牛顿第二定律F=ma,其中m表示物体的质量,a表示物体的加速度。
代入已知值,可求得F=6N。
习题1-21.问题描述:给定物体的质量m=5kg,引力F=20N,求加速度a。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=4m/s^2。
第二章: 运动的描述习题2-11.问题描述:一个物体以恒定速度v=10m/s匀速直线运动,经过t=5s,求物体的位移。
2.解答:位移等于速度乘以时间,即s=vt。
代入已知值,可得s=50m。
习题2-21.问题描述:一个物体以初始速度v0=5m/s匀加速直线运动,加速度a=2m/s^2,经过t=3s,求物体的位移。
2.解答:由于物体是匀加速直线运动,位移可以通过公式s=v0t+0.5at^2计算。
代入已知值,可得s=(53)+(0.52*3^2)=45m。
第三章: 动力学基础习题3-11.问题描述:一个物体质量为m=4kg,受到的力F=10N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2.5m/s^2。
习题3-21.问题描述:一个物体质量为m=3kg,受到的力F=6N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。
第四章: 动力学基本定理习题4-11.问题描述:一个物体质量为m=8kg,受到的力F=16N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。
习题4-21.问题描述:一个物体质量为m=6kg,受到的力F=12N,求物体的加速度。
2.解答:根据牛顿第二定律F=ma,将已知值代入,可求得a=2m/s^2。
以上是理论力学第七版课后习题的答案。
希望能对你的学习有所帮助!。
理论力学第七版课后习题答案(共9篇)
理论力学第七版课后习题答案(共9篇)理论力学第七版课后习题答案(一): 求理论力学第七版课后习题答案1、很高兴为您回答,但我没有题目内容啊!2、自己亲自做吧.网上(如:百度文库)可能查找到一些答案,一般不全.对搞不懂的题目,可以上传题目内容,以方便为你回答.理论力学第七版课后习题答案(二): 理论力学第六版(哈尔滨工业大学理论力学教研室)高等教育出版社课后习题答案 [email protected]【理论力学第七版课后习题答案】已发送注意查收理论力学第七版课后习题答案(三): 理论力学第七版高等教育出版社PDF 要《理论力学》(I)(第7版),《理论力学》(II)(第7版),《简明理论力学》(第2版)高等教育出版社,理论力学解题指导及习题集(第3版)高等教育出版社,理论力学思考题集高等教育出版社,这些书的PDF 非常谢谢必有重赏在下载了一会上传附件,望等待!!!理论力学第七版课后习题答案(四): 有几道力学题,.理论力学第一题选择题(基本概念和公理)1 理论力学包括()A、静力学、运动力学和动力学.B、运动学和材料力学.C、静动力学和流体力学.D、结构力学和断裂力学.2 静力学是研究()A、物体破坏的规律B、物体平衡的一般规律.C、物体运动的一般规律..D、物体振动的规律..3 关于刚体的说法是()A、很硬的物体.B、刚体内任意两点间的距离可以微小改变..C、刚体内任意两点间的距离保存不变.D、刚体内任意两点间的距离可以改变.4 关于平衡的概念是()A、物体相对于惯性参考系静止.B、物体做加速运动.C、物体相对于惯性参考系运动.D、物体做减速运动5 力是物体间的()A、相互化学作用..B、相互机械作用.C、相互遗传作用.D、相互联接作用.6 力对物体作用的效应取决于力的三要素,三要素是指()A、力的大小、方向和坐标B、力的大小、量纲和作用点.C、力的大小、方向和作用点.D、产生力的原因、方向和作用点.7 在国际单位制中,力的单位是()A、米(m).B、牛顿.米(N.m).C、牛顿.秒(m).D、牛顿(N).8 关于约束的说法是()A、限制物体运动的装置B、物体和物体的链接.C、物体运动的装置.D、使物体破坏的装置.ABCAD CDA理论力学第七版课后习题答案(五): 第七课答案【理论力学第七版课后习题答案】七年级上语文期末复习复习提要 1、语言积累和运用.2、现代文阅读.3、文言文、古诗词阅读.4、作文复习.5、专题训练及总测试.重点 1、注意辨别字形、正字音、释词义,理解语句在具体语境中的含义.2、整体感知课文,理解文章内容和写作特色,领悟作者的思想感情.3、学习文言文,生在朗读、背诵.掌握积累一些文言词语,理解文章大意,学会翻译文言文.4、学会审题,并结合学习生活实际,选取典型的材料进行作文,学会运用学过的词语及写作技巧.难点:1、关键词语的揣摩.2、理解一些重要语句的深刻含义.3、理解诗歌的意境.4、作文的选材立意.课时划分:1、积累与运用(4课时).A、拼音汉字、改正错别字.B、古诗、名句的默写.C、仿写句子、广告标语、综合性学习.D、对对子、名著导读.2、现代文阅读(4课时).A、课内阅读(2课时).B、课外阅读(2课时) 3、文言文阅读(2课时).4、作文(2课时).附:专题练习分工:积累与运用:张桂芬、钟国珍,现代文阅读(课内:王安华、黄卓苗,课外:郑小坚、范远填),文言文阅读:方焕章,作文:王文捷复习教案第一课时复习内容 1、复习本册学过的生字生词,掌握音、形、义.2、熟练运用学过的生字词.一、复习本册学过的生字生词,掌握音、形、义.1、教师指导学生掌握关键词语,让学生读、抄一遍,掌握正确的读音和拼写规则,特别注意平常容易读错的字音和多音多义字的读音.如:A、给下列加点的字注音或根据拼音写汉字.痴()想隐秘()诱惑()xuān( )腾一shùn( )间yùn( )含 B、请你找出并改正词语中的错别字.惊荒失措 _____改为_____ 昂首铤立_____改为_____ 二、进行逐单元进行听写训练.(一般分开在课前进行)三、完成试卷练习.(课后巩固为主)第二课时复习内容 1、复习古诗、名句的默写.2、学会初步赏析一些古诗或《论语》中的名句.一、学生复习要求背诵古诗和名篇.1、学生诵读本册要求背诵的古诗.2、教师指导学生熟记一些名句,会默写.3、掌握重点,理解诗歌的主题思想,体会含义深刻的句子.二、默写练习.(主要针对后进生,以激励为主)如:A、商女不知亡国恨,_______________________.《泊秦淮》 ,浅草才能没马蹄.《钱塘湖春行》B、《观沧海》中展现海岛生机勃勃的诗句是:,.,.《次北固山下》一诗中道出新旧更替的生活哲理的名句是:,.三、课后试卷练习巩固.第三课时复习内容1、仿写句子.2、复习比喻、拟人等修辞方法的辨别和运用.一、明白仿写的意义及方法.1、仿句是按照题目已经给出的语句的形式,再另外写出与之相仿的新句,仿句只是句式仿用,文字内容不能完全一样.只要被模仿的是句子的形式,不管是单句或复句,都列入仿句.2、仿句考查的知识点:(1)、考查同学们对语法、修辞等知识的综合运用,要求同学们根据不同的语境和要求,写出与例句内容和形式相同或相近、意义上有密切关联的句子.例如:生活就是一块五彩斑斓的调色板.希望就是________________________.[解析]这道题目从句式上看是陈述句.在修辞上运用了比喻,同学们要注意比喻运用的得体,比喻的艺术贵在创新,要寻找新鲜、活泼的喻体,保持上下文的协调性.如:希望就是一颗永不陨落的恒星.希望就是一盏永不熄灭的明灯.(2)、考查同学们的语言表达能力,联想、想象能力,创新思维能力.例如:什么样的年龄最理想什么样的心灵最明亮什么样的人生最美好什么样的青春最辉煌鲜花说,我开放的年龄多妩媚;月亮说,____________________________;海燕说,_______________________.太阳说,_________________________________.[解析]该题是问答式的仿写,在回答上运用拟人的修辞,要求天下们针对性进行回答,有一定的开放度,但是在解题时,要注意结合回答对象的特点.如:我纯洁的心灵多明亮;我奋斗的人生极美好;我燃烧的青春极辉煌.(3)、是对同学们思想认识水平的检测,包括道德素质,审美理论力学第七版课后习题答案(六): 理论力学的基本原理和基本假设是什么理论力学是机械运动及物体间相互机械作用的一般规律的学科,也称经典力学.是力学的一部分,也是大部分工程技术科学理论力学的基础.其理论基础是牛顿运动定律,故又称牛顿力学.原理的话就是牛顿三大定理咯.定理都是在基本假设的基础上推出来的,所以想想牛顿三定律是建立在什么假设基础上的我能总结出来的就三点:1.时间是绝对的,其含义是时间流逝的速率与空间位置和物体的速率无关; 2.空间是欧几里德的,也就是说欧几里德几何的假设和定律对空间是成立的;3.经典物理的第三个假设,就是质点的运动可以用位置作为时间的函数来描述.理论力学第七版课后习题答案(七): 大学理论力学的问题(哈工大第七版)有关力矩在平面力对点之炬,这一节中,关于力对点之矩的正负问题中,顺时针和逆时针怎么判断呢以及在力对轴的矩中右手螺旋定则怎么定义的啊利用右手螺旋定则,其实判断力矩正负和以前高中学的判定磁场方向差不多,就是伸出右手,大拇指与其余四个手指垂直,其余四指弯向力的方向,这时候可以有两种判定方法:第一种,如果其余四指弯曲的方向是顺时钟,则力矩为负,反之,则为正;第二种,如果这时大拇指指向为上,那么力矩为正,反之,则为负.总之大体的判断方法就是这样,至于哪种方法更容易,楼主自行体会吧.最后祝你学业进步~理论力学第七版课后习题答案(八): 现代物理学包括哪几部分目前我们学物理是包括了力学,光学,热学,电磁学,原子物理学,理论力学,热力学,统计物理学,电动力学,量子力学,数学物理方法,固体物理学这些学科的理论力学第七版课后习题答案(九): 科学不怕挑战的阅读答案5.本文的中心论点是什么7 (4分)6.第③④段运用了事例来论证,请分别概括这两个事例的内容.(4分)7.第⑤段申两个句子的顺序能否颠倒为什么(4分)8.第⑥段中"科学"一词为什么加上引号(2分)9.说说画线句子在文中的表达作用.(3分)参考答案:5、科学不怕挑战(或“科学不怕挑战,怕挑战的不是科学.”)(2分)6、第③段:量子力学曾受到爱因斯坦理想实验的挑战(1分);第④段:进化论曾受到创世说者的频频发难(1分).7、不能颠倒(1分).这句话有承上启下的作用,前半句总结上文,后半句引出下文(1分).8、为了表示讽刺和否定.(2分)9、运用了比喻论证的方法(1分),将科学不断受到挑战比作了大浪淘沙,证明了科学是不怕挑战的,从而把抽象深奥的道理阐述得生动形象、浅显易懂(1分).。
哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案
tan θ =
r sin ϕ h − r cos ϕ
sin ω 0 t h − cos ω 0 t r ]
图 7-5
注意到 ϕ = ω 0 t ,得
θ = tan −1 [
(2)
自 B 作直线 BD 垂直相交 CO 于 D,则
tan θ =
r sin ω 0 t BD = DO h − r cos ω 0 t
80
理论力学(第七版)课后题答案 哈工大.高等教育出版社
7-6 如图 7-6 所示,摩擦传动机构的主动轴 I 的转速为 n = 600 r/min 。轴 I 的轮盘与轴Ⅱ的轮 盘接触,接触点按箭头 A 所示的方向移动。距离 d 的变化规律为 d = 100 − 5t ,其中 d 以 mm 计, t 以 s 计。已知 r = 50 mm , R = 150 mm 。求: (1)以距离 d 表示轴 II 的角加速度; (2)当 d = r 时,轮 B 边缘上 1 点的全加速度。 解 (1)两轮接触点的速度以及切向加速度相同
∠CBO =
π , x B = 2 R cos ϕ 2 & B = 2 R + vt (↓) x B (0) = 2 R , x
(2 R) 2 − x B
2
vt vt 1 2 − 2 2 − ( )2 R R 2R 2 v v , vC = 2 Rω = − ω =− 2 R sin ϕ sin ϕ sin ϕ = =
两边对时间 t 求导:
vt l
& sec 2 ϕ = , ϕ & = cos 2 ϕ , ϕ && = − ϕ
当ϕ =
v l
v l
2v & cos ϕ sin ϕ ⋅ ϕ l
理论力学(百度文库)-第七版答案-哈工大
哈工大理论力学(I)第7版部分习题答案1-2两个老师都有布置的题目2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3以下题为老师布置必做题目1-1(i,j), 1-2(e,k)2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-47-9, 7-10, 7-17, 7-21, 7-268-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-611-5, 11-1512-10, 12-15, 综4,15,16,18 13-11,13-15,13-166-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。
在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B的轨迹方程。
10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统质心位置在水平方向守恒。
设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c所示。
两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。
求它从铅直位无初速地倒下时,端点A相对图b所示坐标系的轨迹。
哈尔滨工业大学 第七版 理论力学.12
Lz1 = mv0 (l + r )
(1 )
在任意时刻:
Lz 2 = Jω + M z (mv M ) = Jω + M z (mv 0 ) + M z (mv e )
由图 12-5b 中,可得
Lz 2 = Jω + mv0 [l cos ϕ + r ] + m(l 2 + r 2 + 2lr cos ϕ )ω
12-4 1 半径为 R,质量为 m1 的均质圆盘,可绕通过其中心 O 的铅垂轴无摩擦地旋转, 如图 12-4a 所示。1 质量为 m2 的人在盘上由点 B 按规律 s = 开始时,圆盘和人静止。求圆盘的角速度和角加速度 α 。
1 2 at 沿半径为 r 的圆周行走。 2
R r O
(a) 图 12-4
LO = m ⋅ v A ⋅ 2 R + J Aω a 1 = m ⋅ 2 Rω O ⋅ 2 R + mR 2 ⋅ (ω O + ω r ) = 5ω O mR 2 = 20 kgm 2 /s 2
156
理论力学(第七版)课后题答案 哈工大.高等教育出版社
(3)在图 12-2c1 中,轮 A 绕 O 作圆周曲线平移
接合后,依靠摩擦使轮 2 启动。已知轮 1 和 2 的转动惯量分别为 J1 和 J2。求: (1)当离合 器接合后,两轮共同转动的角速度; (2)若经过 t 秒两轮的转速相同,求离合器应有多大的 摩擦力矩。
Mf
ω
2
(a) 图 12-6
(b)
解 (1)以轮 1 和 2 为一个系统进行研究,因为系统所受外力(包括重力和约束反力) 对转轴之矩均为零,所以系统对转轴的动量矩守恒,即
理论力学(哈工第七版) 课后练习答案 第二部分
5-1 图示曲线规尺的各杆, 长为OA =AB =200 mm ,CD = DE = AC = AE = 50mm 。
如杆 OA 以等角速度 rad/s 5πω=绕 O 轴转动,并且当运动开始时,杆 OA 水平向右,求尺上点 D 的运动方程和轨迹。
解:如图所示 ∠AOB =ωt ,则点 D 坐标为cos D x OA t ω=⋅sin 2sin D y OA t AC t ωω=⋅−⋅代入已知数据,得到点 D 的运动方程为200cos 5D x t π=× 200sin250sin 55100sin 5D y t t tπππ=×−××=×把以上两式消去 t 得点 D 轨迹方程22221200100x y += 即,D 点轨迹为中心在(0, 0),长半轴为0.2 m ,短半轴为0.1 m 的椭圆。
6-4 机构如图所示,假定杆AB 以匀速v 运动,开始时0ϕ=。
求当4πϕ=时,摇杆OC 的角速度和角加速度。
解:依题意,在0ϕ=时,A 在D 处。
由几何关系得tan vt l ϕ=杆OC 的运动方程为arctanvt lϕ= 角速度222vll v tωϕ==+& 角加速度322222()v lt l v t αϕ==+&&当4πϕ=时,vt l =。
将vt l =代入上二式得 2v lω=222v lα=另解:几何关系 tan vtlϕ=两边对t 求导,可得 2sec v l ϕϕ=& 即 2cos v l ϕϕ=& ;再求导,得 2cos sin v l ϕϕϕϕ=−⋅&&& ,将4πϕ=时,vt l=代入上二式得2vlωϕ==& 222v lαϕ==&&6-5 如图所示,曲柄 CB 以等角速度0ω绕轴 C 转动,其转动方程为0t ϕω=。
滑块 B 带动摇杆 OA 绕轴 O 转动。
哈工大理论力学(I)第七版答案、高等教育出版社出版
哈工大理论力学(I)第7版部分习题答案1-2两个老师都有布置的题目2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3以下题为老师布置必做题目1-1(i,j), 1-2(e,k)2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-47-9, 7-10, 7-17, 7-21, 7-268-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-611-5, 11-1512-10, 12-15, 综4,15,16,18 13-11,13-15,13-166-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。
在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B的轨迹方程。
10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统质心位置在水平方向守恒。
设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c所示。
两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。
求它从铅直位无初速地倒下时,端点A相对图b所示坐标系的轨迹。
哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案
解
设轮缘上任 1 点 M 的全加速度为 a,切向加速度 a t = rα ,法向加速度 a n = ω r ,如图
2
7-11b 所示。
tan θ =
把
α=
dω , θ = 60° 代入上式,得 dt
at α = 2 an ω
dω tan 60° = dt2
ω
分离变量后,两边积分:
∫ω
得
ω
0
dω
ω
2
=∫
⎤ ⎡ ⎥ ⎢ sin ω t 0 θ = tan −1 ⎢ ⎥ ⎢ h − cos ω 0 t ⎥ ⎥ ⎢ ⎦ ⎣r
故
50 π ⋅ 600 100π r ω1 = rad/s ⋅ = 100 − 5t 30 10 − 0.5t d dω 5 000 π d ⎛ 1 000π ⎞ α2 = 2 = ⎜ ⎟= dt dt ⎝ 100 − 5t ⎠ (100 − 5π )2
故得
h1 =
h4 = 2 mm 6
图 7-7
7-8 如图 7-8 所示,纸盘由厚度为 a 的纸条卷成,令纸盘的中心不动,而以等速 v 拉纸条。求 纸盘的角加速度(以半径 r 的函数表示) 。 解 纸盘作定轴转动,当纸盘转过 2π rad 时半径减小 a。设纸盘转过 dθ 角时半径增加 dr ,则
dθ =
y
B
t aB
α j
O
vA x
ω
(a) 图 7-12
aC
(b)
i 45° A n
C
t aC
解
由图 7-12b 得出
84
理论力学(第七版)课后题答案 哈工大.高等教育出版社
v A = 0.2 j m/s , v A = ω × Ri , ω × 0.1i = 0.200 j , ω = 2k ,
哈尔滨工业大学 第七版 理论力学11
上式代入式(4)得
FN = 4mB g − mB
11-10 如图 11-10a 所示,质量为 m 的滑块 A,可以在水平光滑槽中运动,具有刚性系 数为 k 的弹簧 1 端与滑块相连接,另 1 端固定。杆 AB 长度为 l,质量忽略不计,A 端与滑 块 A 铰接,B 端装有质量 m1,在铅直平面内可绕点 A 旋转。设在力偶 M 作用下转动角速度 ω 为常数。求滑块 A 的运动微分方程。
质量为 m2 的小车 D,由绞车拖动,相对于平台的运动规律为 s = 不计绞车的质量,求平台的加速度。
1 2 bt ,其中 b 为已知常数。 2
m2 g
y
S D
A
vr
m1 g FN
B
ω
v
(a) 图 11-8
x
(b)
解
受力和运动分析如图 11-8b 所示
& = bt vr = & s ar = & s& = b a Da = a e + a r = a AB + a r a Da = ar − a AB m2 (a r − a AB ) − m1a AB = F F = f (m1 + m2 ) g
1
(
)
开伞后,他受重力 mg 和阻力 F 作用,如图 11-2 所示。取铅直轴 y 向下为正, 根据动量定理有
mg y
图 11-2
mv 2 − mv1 = I y = (mg − F )t
由题知:当 t=5 s 时,有 v2=4.3 m/s 即
60 × (4.3 − 44.3) = (60 × 9.8 − F ) × 5
棱柱 B 接触水平面时系统质心坐标
a b ⎤ ⎡ m A (l − ) + m B ⎢l − (a − )⎥ 3 3 ⎦ 3(m A + m B )l − a (m A + 3m B ) + m B b ⎣ ′ = xC = m A + mB 3(m A + m B )