{3套试卷汇总}2018-2019东莞市中考数学阶段模拟试题

合集下载

(汇总3份试卷)2018年东莞市中考数学一模数学试题及答案

(汇总3份试卷)2018年东莞市中考数学一模数学试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .3【答案】B 【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B .【点睛】此题考查由三视图判断几何体,解题关键在于识别图形2.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.5【答案】B 【解析】解:∵∠ACB =90°,∠ABC =60°,∴∠A =10°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =10°, ∴∠A =∠ABD ,∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =1. 故选B .3.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C 3D .3【答案】D 【解析】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.4.下列计算或化简正确的是( )A .234265=B 842=C 2(3)3-=-D 2733= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B 822=,故B 错误;C 2(3)3-=,故C 错误;D 27327393=÷==,正确. 故选D .5.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =- B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.6.如图,在△ABC 中,∠C=90°,点D 在AC 上,DE ∥AB ,若∠CDE=165°,则∠B 的度数为( )A.15°B.55°C.65°D.75°【答案】D【解析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.7.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个【答案】C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.8.2-的相反数是A.2-B.2 C.12D.12-【答案】B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.9.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC 的度数为()A.125°B.75°C.65°D.55°【答案】D【解析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .二、填空题(本题包括8个小题)11.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG =﹣,﹣2),OH =,12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).【答案】①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC 与OD 垂直;②∵3cos301tan45sin60⨯+⋅=+= ∴OE 与OF 不垂直.③∵()1202+-⨯=, ∴OG 与OH 垂直.④∵()02210π⨯+⨯-=,∴OM 与ON 垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.13______________.【答案】-1-1.故答案为:-1.14.若点(a,1)与(﹣2,b)关于原点对称,则b a=_______.【答案】12.【解析】∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴b a=12-=12.故答案为12.考点:关于原点对称的点的坐标.15.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.【答案】85【解析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.16x<<x的值是_____.【答案】3,1【解析】直接得出23,15,进而得出答案.【详解】解:∵23,15,∴x<<x的值是:3,1.故答案为:3,1.【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.17.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.【答案】7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 18.在平面直角坐标系中,将点A (﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.【答案】(0,0)【解析】根据坐标的平移规律解答即可.【详解】将点A (-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题(本题包括8个小题)19.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p 取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x 1+x 2=5、x 1x 2=6-p 2-p ,结合x 12+x 22-x 1x 2=3p 2+1,即可求出p 值. 详解:(1)证明:原方程可变形为x 2-5x+6-p 2-p=1.∵△=(-5)2-4(6-p 2-p )=25-24+4p 2+4p=4p 2+4p+1=(2p+1)2≥1,∴无论p 取何值此方程总有两个实数根;(2)∵原方程的两根为x 1、x 2,∴x 1+x 2=5,x 1x 2=6-p 2-p .又∵x 12+x 22-x 1x 2=3p 2+1,∴(x 1+x 2)2-3x 1x 2=3p 2+1,∴52-3(6-p 2-p )=3p 2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.20.在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.【答案】(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+3或7﹣3【解析】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC 是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,AB ABABD ABD BD BD'=⎧⎪∠=∠⎨='⎪⎩∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,AD AD D B D C AB AC=⎧⎪=⎨⎪=''⎩'∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠ABC﹣∠DBC=90°﹣12α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣12α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣12α﹣β+90°﹣12α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴3,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=73;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣12α﹣[β﹣(90°﹣12α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴3,∴3故答案为:373【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21.观察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D 落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=2,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.【答案】(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AMCF DC,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴MD AM,CF DC设DC=x,∵∠ACB=45°,2,∴AM=CM=1,MD=1-x,∴11x CF x -=, ∴CF=-x 2+x=-(x-12)2+14, ∴当x=12时有最大值,CF 最大值为14. 点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质. 22.某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?【答案】(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】(1)设文学书的单价为x 元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购进m 本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m 的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x 元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x =40,经检验,x =40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m 本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m 为整数,∴m 的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.如图,二次函数232(0)2y ax x a =-+≠的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).求抛物线与直线AC 的函数解析式;若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.【答案】(1)122y x =+(1)S=﹣m 1﹣4m+4(﹣4<m <0)(3)(﹣3,1)、(3412-,﹣1)、(3412-+,﹣1) 【解析】(1)把点A 的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A ,C 两点的坐标,可求得直线AC 的函数解析式;(1)先过点D 作DH ⊥x 轴于点H ,运用割补法即可得到:四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,据此列式计算化简就可求得S 关于m 的函数关系;(3)由于AC 确定,可分AC 是平行四边形的边和对角线两种情况讨论,得到点E 与点C 的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E 的坐标.【详解】(1)∵A (﹣4,0)在二次函数y=ax 1﹣32x+1(a≠0)的图象上, ∴0=16a+6+1,解得a=﹣12, ∴抛物线的函数解析式为y=﹣12x 1﹣32x+1; ∴点C 的坐标为(0,1),设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=, 解得1{22k b ==,∴直线AC 的函数解析式为:122y x =+;(1)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣12m 1﹣32m+1),过点D 作DH ⊥x 轴于点H ,则DH=﹣12m 1﹣32m+1,AH=m+4,HO=﹣m ,∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=12(m+4)×(﹣12m 1﹣32m+1)+12(﹣12m 1﹣32m+1+1)×(﹣m ),化简,得S=﹣m 1﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=1,∴y E =±1.当y E =1时,解方程﹣12x 1﹣32x+1=1得,x 1=0,x 1=﹣3,∴点E 的坐标为(﹣3,1);当y E =﹣1时,解方程﹣12x 1﹣32x+1=﹣1得,x 1,x 1,∴点E 的坐标为(32-,﹣1)或(32-,﹣1);②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =1,∴点E 的坐标为(﹣3,1).综上所述,满足条件的点E 的坐标为(﹣3,1)、,﹣1)、,﹣1).24.解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.【答案】x≥3 5【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:()3172323x xxx x⎧--<⎪⎨--≤⎪⎩①②,由①得,x>﹣2;由②得,x≥35,故此不等式组的解集为:x≥35.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C 的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使3,请说明你的理由.【答案】(1)275(2)证明见解析(3)F在直径BC下方的圆弧上,且23BF BC=【解析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得CD CEBA BC=,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=3CD=3CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且23BF BC=.【详解】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴CE EFBE CE=,∵BE=15,CE=9,即:9159EF=,解得:EF=275;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴CF CDBF BA=,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴CF CEBF BC=,∴CD CEBA BC=,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD ,∴BC=3CD=3CE ,在Rt △BCE 中,tan ∠CBE=13CE BC =, ∴∠CBE=30°,故CF 为60°,∴F 在直径BC 下方的圆弧上,且23BF BC =.【点睛】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.26.为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长602米,坡角(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 3:1,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?【答案】(1)(30103)-m (2)(30213)+米【解析】分析:(1)由三角函数的定义,即可求得AM 与AF 的长,又由坡度的定义,即可求得NF 的长,继而求得平台MN 的长;(2)在RT △BMK 中,求得BK=MK=50米,从而求得 EM=84米;在RT △HEM 中,求得283HE =,继而求得28350HG =+米.详解:(1)∵MF ∥BC ,∴∠AMF=∠ABC=45°,∵斜坡AB 长1002米,M 是AB 的中点,∴AM=502(米),∴AF=MF=AM•cos ∠AMF=2502502⨯=(米), 在RT ANF 中,∵斜坡AN 的坡比为3∶1,∴31AF NF =, ∴5033NF ==, ∴MN=MF-NF=50-503=150503-.(2)在RT △BMK 中,BM=502,∴BK=MK=50(米),EM=BG+BK=34+50=84(米)在RT △HEM 中,∠HME=30°,∴3tan30HE EM =︒=, ∴384283HE == ∴28350HG HE EG HE MK =+=+=(米)答:休闲平台DE 150503-GH 高为()28350米. 点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似【答案】B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.2.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0D.k≥﹣1且k≠0【答案】C【解析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.3.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8 C.5x+4y=-3 D.3x-4y=-8【解析】试题分析:将x 与y 的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x ﹣4y=﹣1.故选D .点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 4.抛物线223y x =(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 【答案】A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A .【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .5.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等【答案】C【解析】图中,线段GH 和EF 将大平行四边形ABCD 分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.6.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )A .小亮骑自行车的平均速度是12 km/hB .妈妈比小亮提前0.5 h 到达姥姥家C .妈妈在距家12 km 处追上小亮D .9:30妈妈追上小亮【答案】D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A 、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h ),故正确;B 、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时), ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C 、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km ,∴妈妈在距家12km 出追上小亮,故正确;D 、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D .【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.7.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,D E ,则E 为BC 的中点,已知50BAC ∠=,则C ∠=( )A.55B.60C.65D.70【答案】C【解析】连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,∵AB是直径,∴∠AEB=90°,即AE⊥BC,∵EB=EC,∴AB=AC,∴∠C=∠B,∵∠BAC=50°,∴∠C=12(180°-50°)=65°,故选:C.【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.8.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.3 【答案】D【解析】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.9.在平面直角坐标系中,点(2,3)所在的象限是()A.第一象限B.第二象限 C.第三象限D.第四象限【答案】A【解析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限.故答案为:A【点睛】考核知识点:点的坐标与象限的关系.10.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1【答案】C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.二、填空题(本题包括8个小题)11.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.。

{3套试卷汇总}2018-2019东莞市中考数学第二次练兵模拟试题

{3套试卷汇总}2018-2019东莞市中考数学第二次练兵模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC=()A.3B.2 C.3 D.3+2【答案】C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.2.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.4【答案】A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质3.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.14【答案】B【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.4.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--【答案】A【解析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .5.如图1,在矩形ABCD 中,动点E 从A 出发,沿A→B→C 方向运动,当点E 到达点C 时停止运动,过点E 作EF ⊥AE 交CD 于点F ,设点E 运动路程为x ,CF =y ,如图2所表示的是y 与x 的函数关系的大致图象,给出下列结论:①a =3;②当CF =14时,点E 的运动路程为114或72或92,则下列判断正确的是( )A .①②都对B .①②都错C .①对②错D .①错②对【答案】A 【解析】由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,可得△ABE ∽△ECF ,继而根据相似三角形的性质可得y=﹣2155a x x a a ++-,根据二次函数的性质可得﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭,由此可得a=3,继而可得y=﹣218533x x +-,把y=14代入解方程可求得x 1=72,x 2=92,由此可求得当E 在AB 上时,y=14时,x=114,据此即可作出判断. 【详解】解:由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,∵E 作EF ⊥AE ,∴△ABE ∽△ECF ,∴AB CE BE FC =, ∴5a x x a y -=-, ∴y=﹣2155a x x a a++-, ∴当x=522b a a +-=时,﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭, 解得a 1=3,a 2=253(舍去), ∴y=﹣218533x x +-, 当y=14时,14=﹣218533x x +-, 解得x 1=72,x 2=92, 当E 在AB 上时,y=14时, x=3﹣14=114, 故①②正确,故选A .【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.6.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°【答案】D 【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B 以及∠ODC 度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.7.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣2x(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=kx(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.53B.34C.43D.23【答案】C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数2yx=-(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y=,∴P4(3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标. 8.3的倒数是()A.3B.3-C.13D.13-【答案】C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.一、单选题如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.2【答案】B【解析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.10.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A.2B.2C.2D.2【答案】A【解析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=2282为22,所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.二、填空题(本题包括8个小题)11.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.【答案】1【解析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.12.把多项式x3﹣25x分解因式的结果是_____【答案】x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.详解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案为x(x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.13.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm .【答案】2 【解析】设圆锥的底面圆的半径为r ,由于∠AOB =90°得到AB 为圆形纸片的直径,则OB =2222AB =cm ,根据弧长公式计算出扇形OAB 的弧AB 的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【详解】解:设圆锥的底面圆的半径为r ,连结AB ,如图,∵扇形OAB 的圆心角为90°,∴∠AOB =90°,∴AB 为圆形纸片的直径,∴AB =4cm ,∴OB =222AB =cm , ∴扇形OAB 的弧AB 的长=90222180π⋅⋅=π, ∴2πr =2π,∴r =22(cm ). 故答案为22.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.14.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为 .【答案】1.【解析】∵AB =5,AD =12,∴根据矩形的性质和勾股定理,得AC =13.∵BO 为R t△ABC 斜边上的中线∴BO =6.5∵O 是AC 的中点,M 是AD 的中点,∴OM 是△ACD 的中位线∴OM =2.5∴四边形ABOM 的周长为:6.5+2.5+6+5=1故答案为115.若直角三角形两边分别为6和8,则它内切圆的半径为_____.【答案】2或7-1【解析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8是直角边,则该三角形的斜边的长为:226+8=10,∴内切圆的半径为:6+810=22-; 若8是斜边,则该三角形的另一条直角边的长为:228627=-,∴内切圆的半径为:6+278=71--. 故答案为2或7-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键. 16.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为 .【答案】1.【解析】∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.∴△DOE的周长="OD+OE+DE=" OD +12(BC+CD)=3+9=1,即△DOE的周长为1.17.已知20n是整数,则正整数n的最小值为___【答案】1【解析】因为20n是整数,且20=25n n,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵20=25n n,且20n是整数,∴25n是整数,即1n是完全平方数;∴n的最小正整数值为1.故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.18.计算:82-=_______________.【答案】2【解析】先把8化简为22,再合并同类二次根式即可得解.【详解】82-=22-2=2.故答案为2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.三、解答题(本题包括8个小题)19.如图,在△ABC中,BC=12,tanA=34,∠B=30°;求AC和AB的长.【答案】3.【解析】如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;【详解】解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=12BC=6,BH=22BC CH-=63,在Rt△ACH中,tanA=34=CHAH,∴AH=8,∴AC=22AH CH+=10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.【答案】(1)证明见解析;(2)35.【解析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,AD AEAB AC=,又易证△EAF∽△CAG,所以AF AEAG AC=,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴35AD AE AB AC == 由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC ,∴△EAF ∽△CAG , ∴AF AE AG AC=, ∴AF AG =35 考点:相似三角形的判定21.如果a 2+2a-1=0,求代数式24()2a a a a -⋅-的值. 【答案】1【解析】221a a +=2224422a a a a a a a a -⎛⎫-⋅= ⎪--⎝⎭=()()()()2222222a a a a a a a a a +-=+=+-=1. 故答案为1.22.在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.【答案】(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=.∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1. 【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 23.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x 元,则商场日销售量增加____件,每件商品,盈利______元(用含x 的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?【答案】(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x ;50﹣x .(3)每件商品降价1元时,商场日盈利可达到2000元.【解析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x 元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x 的一元二次方程,解之即可得出x 的值,再根据尽快减少库存即可确定x 的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x 元,则商场日销售量增加2x 件,每件商品,盈利(50-x )元.故答案为2x ;50-x .(3)根据题意,得:(50-x )×(30+2x )=2000,整理,得:x 2-35x+10=0,解得:x 1=10,x 2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式). 24.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02t ≤≤ ),B 类(24t <≤),C 类(46t <≤),D 类(68t <≤),E 类(8t >),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:E 类学生有 人,补全条形统计图;D 类学生人数占被调查总人数的 %;从该班做义工时间在04t ≤≤的学生中任选2人,求这2人做义工时间都在24t <≤ 中的概率.【答案】(1)5;(2)36%;(3)310. 【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数=该组频数数据总数,进行求解即可; (3)利用列举法求概率即可.试题解析:(1)E 类:50-2-3-22-18=5(人),故答案为:5;补图如下:(2)D 类:18÷50×100%=36%,故答案为:36%;(3)设这5人为12123A A B B B ,,,,有以下10种情况:12111213212223121323(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A B A B A B A B A B A B B B B B B B 其中,两人都在24t <≤ 的概率是:310P = . 25.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【答案】(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.26.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.【答案】(1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.【解析】(1)根据题意只需要证明a2+b2=c2,即可解答(2)根据题意将n=5代入得到a=12(m2﹣52),b=5m,c=12(m2+25),再将直角三角形的一边长为37,分别分三种情况代入a=12(m2﹣52),b=5m,c=12(m2+25),即可解答【详解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n为正整数,∴a、b、c是一组勾股数;(2)解:∵n=5∴a=12(m2﹣52),b=5m,c=12(m2+25),∵直角三角形的一边长为37,∴分三种情况讨论,①当a=37时,12(m2﹣52)=37,解得m=(不合题意,舍去) ②当y=37时,5m=37,解得m=375(不合题意舍去);③当z=37时,37=12(m2+n2),解得m=±7,∵m>n>0,m、n是互质的奇数,∴m=7,把m=7代入①②得,x=12,y=1.综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.【点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.4的平方根是( )A.2 B.2C.±2 D.±2【答案】D【解析】先化简4,然后再根据平方根的定义求解即可.【详解】∵4=2,2的平方根是±2,∴4的平方根是±2.故选D.【点睛】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.2.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.3.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为3,则弦CD的长为()A.32cm B.3cm C.23cm D.9cm【答案】B【解析】解:∵∠CDB=30°,∴∠COB=60°,又∵OC=3,CD ⊥AB 于点E ,∴3sin 6023CE ︒==, 解得CE=32cm ,CD=3cm . 故选B .考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.4.在△ABC 中,AB=3,BC=4,AC=2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .11【答案】B 【解析】试题解析:∵D 、E 、F 分别为AB 、BC 、AC 中点,∴DF=12BC=2,DF ∥BC ,EF=12AB=32,EF ∥AB ,∴四边形DBEF 为平行四边形,∴四边形DBEF 的周长=2(DF+EF )=2×(2+32)=1.故选B . 5.如图,已知D 是ABC 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )A .△BAC ∽△BDAB .△BFA ∽△BEC C .△BDF ∽△BECD .△BDF ∽△BAE【答案】C 【解析】根据相似三角形的判定,采用排除法,逐项分析判断.【详解】∵∠BAD=∠C ,∠B=∠B ,∴△BAC ∽△BDA .故A 正确.∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴△BFA ∽△BEC .故B 正确.∴∠BFA=∠BEC ,∴∠BFD=∠BEA ,∴△BDF ∽△BAE .故D 正确.而不能证明△BDF ∽△BEC ,故C 错误.故选C .【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.6.如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠A=∠ABED .∠C=∠ABC【答案】C 【解析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C=∠ABE 不能判断出EB ∥AC ,故本选项错误;B 、∠A=∠EBD 不能判断出EB ∥AC ,故本选项错误;C 、∠A=∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故本选项正确;D 、∠C=∠ABC 只能判断出AB=AC ,不能判断出EB ∥AC ,故本选项错误.故选C .【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定【答案】B【解析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=1,设抛物线与x轴交于点A、B,2∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.8.下列几何体中,俯视图为三角形的是( )A.B.C.D.【答案】C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.9.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.10.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,20【答案】D【解析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.二、填空题(本题包括8个小题)11.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.【答案】1【解析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=23,∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.12.方程21x=1的解是_____.【答案】x=3【解析】去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.13.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.【答案】2 5 .【解析】找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.【详解】∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,∴所画三角形时等腰三角形的概率是25,故答案是:25.【点睛】考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=_____度.【答案】1【解析】分析:连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.详解:连接OC,由圆周角定理得,∠COD=2∠A=64°,∵CD为⊙O的切线,∴OC⊥CD,∴∠D=90°-∠COD=1°,故答案为:1.点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键. 15.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠1,故答案为m >2且m≠1.16.当x = __________时,二次函数226y x x =-+ 有最小值___________.【答案】1 5【解析】二次函数配方,得:2(1)5y x =-+,所以,当x =1时,y 有最小值5,故答案为1,5.17.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .【答案】-6【解析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解!18.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .。

[试卷合集3套]东莞市2019届中考数学毕业升学考试三模试题

[试卷合集3套]东莞市2019届中考数学毕业升学考试三模试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C .33D.32【答案】B【解析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=3BC=3x,根据题意得:AD=BC=x,AE=DE=AB=3x,作EM⊥AD于M,则AM=12AD=12x,在Rt△AEM中,cos∠EAD=1323xAMAE x==;故选B.【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.2.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.【答案】D【解析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=118,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.3.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A .AC=ABB .∠C=12∠BODC .∠C=∠BD .∠A=∠B0D【答案】B 【解析】先利用垂径定理得到弧AD=弧BD ,然后根据圆周角定理得到∠C=12∠BOD ,从而可对各选项进行判断.【详解】解:∵直径CD ⊥弦AB ,∴弧AD =弧BD ,∴∠C=12∠BOD . 故选B .【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 4.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A .4b+2cB .0C .2cD .2a+2c【答案】A【解析】由数轴上点的位置得:b<a<0<c ,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.5.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3【答案】D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题. 详解:∵y=2x 2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,当x <-1时,y 随x 的增大而减小,故选项C 错误,当x=-1时,y 取得最小值,此时y=-3,故选项D 正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.6.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.【答案】C【解析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.7.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E【答案】C【解析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由//AB ED,得∠B=∠D,因为CD BF=,若ABC≌EDF,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.8.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.9.不等式5+2x <1的解集在数轴上表示正确的是( ).A.B.C.D.【答案】C【解析】先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.10.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,20【答案】D【解析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.二、填空题(本题包括8个小题)11.如图,在△PAB 中,PA =PB ,M 、N 、K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK .若∠MKN =40°,则∠P 的度数为___【答案】100°【解析】由条件可证明△AMK ≌△BKN ,再结合外角的性质可求得∠A =∠MKN ,再利用三角形内角和可求得∠P .【详解】解:∵PA =PB ,∴∠A =∠B ,在△AMK 和△BKN 中,AM BK A B AK BN =⎧⎪∠=∠⎨⎪=⎩,∴△AMK ≌△BKN (SAS ),∴∠AMK =∠BKN ,∵∠A+∠AMK =∠MKN+∠BKN ,∴∠A =∠MKN =40°,∴∠P =180°﹣∠A ﹣∠B =180°﹣40°﹣40°=100°,故答案为100°【点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK ≌△BKN 是解题的关键.12.如图,Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB′与边BC 交于点E .若△DEB′为直角三角形,则BD 的长是_______.【答案】5或1.【解析】先依据勾股定理求得AB 的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【详解】∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=5.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如图5所示:当∠B′ED=90°时,C与点E重合.∵AB′=5,AC=6,∴B′E=5.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.综上所述,BD的长为5或1.13.菱形的两条对角线长分别是方程214480-+=的两实根,则菱形的面积为______.x x【答案】2【解析】解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.14.一元二次方程x2﹣4=0的解是._________【答案】x=±1【解析】移项得x1=4,∴x=±1.故答案是:x=±1.15.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=kx的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k=_____.【答案】1【解析】设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=12•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=12A′O′=1,BD=12BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案为1.16.64的立方根是_______.【答案】4.【解析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.17.在△ABC中,∠C=90°,若tanA=12,则sinB=______.【答案】25 5【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=12,∴设BC=x,则AC=2x,故AB=5x,则sinB=2555ACAB x==.故答案为:25.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.18.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为______.【答案】160°【解析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.三、解答题(本题包括8个小题)19.某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?【答案】(1)y1=273x-+;y2=13x2﹣4x+2;(2)5月出售每千克收益最大,最大为73.【解析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=⎧⎨+=⎩,解得237kb⎧=-⎪⎨⎪=⎩.∴y1=﹣23x+1.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+2.(2)收益W=y1﹣y2,=﹣23x+1﹣(13x2﹣4x+2)=﹣13(x﹣5)2+73,∵a=﹣13<0,∴当x=5时,W最大值=73.故5月出售每千克收益最大,最大为73元.【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法20.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?【答案】(1)10,30;(2)y=15(02)3030(211)x xx x≤≤⎧⎨-≤≤⎩;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【解析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30,故答案为10,30;(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30,当y=30x﹣30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=()()1502 3030211x xx x⎧≤≤⎪⎨-≤≤⎪⎩;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4,当30x﹣30﹣(10x+100)=50时,解得:x=9,当300﹣(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.21.如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC=DE=4,当AE取最大值时,求AF的值.【答案】(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=213【解析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.【详解】(1)BG=AE.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图3,当旋转角为270°时,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得+,22AE EF+3616∴13.【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.22.清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?【答案】每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田13亩.【解析】设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.【详解】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩.可列方程组为36 4.7 53 5.5 x yx y+=⎧⎨+=⎩解得0.913 xy=⎧⎪⎨=⎪⎩答:每亩山田相当于实田0.9亩,每亩场地相当于实田13亩.23.某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.【答案】(1)①30;(2)y1=0.1x+30,y2=0.2x;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.【解析】试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解:(1)①;30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:500k1+30=80,∴k1=0.1,500k2=100,∴k2=0.2故所求的解析式为y1=0.1x+30;y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.24.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1)12;(2)316【解析】(1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=1 2 .(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=3 16.考点:列表法与树状图法;概率公式.25.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?【答案】(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.26.4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.【答案】今年妹妹6岁,哥哥10岁.【解析】试题分析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据两个孩子的对话,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.试题解析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据题意得:()()16322342x y x y +=⎧⎨+++=+⎩ 解得:610x y =⎧⎨=⎩. 答:今年妹妹6岁,哥哥10岁.考点:二元一次方程组的应用.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【答案】D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.2.下列关于x的方程中一定没有实数根的是()A.210x x--=B.24690x x-+=C.2x x=-D.220x mx--=【答案】B【解析】根据根的判别式的概念,求出△的正负即可解题.【详解】解: A. x2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根,B. 24x6x90-+=, △=36-144=-108<0,∴原方程没有实数根,C. 2x x=-, 2x x0+=, △=1>0,∴原方程有两个不相等的实数根,D. 2x mx20--=, △=m2+8>0,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.3.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形【答案】C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.4.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.2003503x x=-B.2003503x x=+C.2003503x x=+D.2003503x x=-【答案】B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程5.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.6.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3【答案】A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.7.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2【答案】C【解析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.8.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126=.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.9.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24【答案】D【解析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】E、F分别是AC、DC的中点,∴EF是ADC的中位线,。

2019届广东省东莞市中考模拟数学试卷【含答案及解析】

2019届广东省东莞市中考模拟数学试卷【含答案及解析】

2019届广东省东莞市中考模拟数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. -2的绝对值是()A.2 B.-2 C.0 D.2. 下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6 D.()2=3. 人体中红细胞的直径约为0.0000077m,将0.0000077用科学记数法表示为()A.7.7×10-5 B.7.7×10-6 C.77×10-7D.0.77×10-54. 如图所示支架(一种小零件,支架的两个台阶的高度和宽度都是同一长度)的主视图是()5. 如图,所给图形中是中心对称图形但不是轴对称图形的是()6. 要了解某市九年级学生的视力状况,从中抽查了500名学生的视力状况,那么样本是指()A.某市所有的九年级学生 B.被抽查的500名九年级学生C.某市所有的九年级学生的视力状况 D.被抽查的500名学生的视力状况7. 已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于()A.15° B.20° C.25° D.30°8. 一元二次方程x2+2x+2=0的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.无实数根9. 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.1610. 在同一坐标系中,正比例函数y=-x与反比例函数y=的图象大致是()二、填空题11. 函数:y=中,自变量x的取值范围是.12. 一元二次方程x2-2x=0的解是.13. 化简= .14. 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.15. 如图,∠A=90°,∠ABC的角平分线交AC于E,AE=3,则E到BC的距离为.16. 如图,在平行四边形ABCD中,AB=5,BC=8,∠ABC的角平分线交AD于E,F在AE上,且AF=3,BE与CF交于点G,则△EFG与△BCG面积之比是.三、计算题17. 计算:四、解答题18. 某市一中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)C等级对应扇形的圆心角为度;(2)学校欲从获A等级的学生中随机选取2人参加市演讲比赛,请利用列表法或树形图法求获A等级的小明参加市演讲比赛的概率.(假设小明用A1表示,其他三人分别用A2、A3、A4表示)19. 已知:如图,在△ABC中,CB=CA,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若BD=1,cosB=,求的长.20. 如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.21. “六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?22. 如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1,-2,一次函数图象与y轴的交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数y=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例图象上是否存在一个点P,使得S△ODP=2S△OCA?若存在,请求出来P的坐标;若不存在,请说明理由.23. 如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.24. 如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(-1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第9题【答案】第10题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

广东省东莞市2018-2019学年九年级中考数学模拟卷(含参考答案)

广东省东莞市2018-2019学年九年级中考数学模拟卷(含参考答案)

广东省东莞市2018-2019学年九年级中考数学模拟卷一、选择题(共10题;共20分)1.下列四个图形中既是轴对称图形,又是中心称图形的是( )A. B. C. D.2.已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是A. m>0B. n<0C. mn<0D. m-n>03.在四张完全相同的卡片上,分别画有等边三角形、菱形、正五边形、圆.现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A. B. C. D. 14.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A. 2.7×105B. 2.7×106C. 2.7×107D. 2.7×1085.若方程x2-5x=0的一个根是a,则a2-5a+2的值为()A. -2B. 0C. 2D. 46.下列四个几何体中,主视图、左视图、俯视图完全相同的是()A. 圆锥B. 球C. 圆柱D. 三棱柱7.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是()A. 25,23B. 23,23C. 23,25D. 25,258.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,过E作EG⊥EF于点E,交CD于点G.若∠CFE=120°,则∠BEG的大小为()A. 20°B. 30°C. 60°D. 120°第8题图第9题图9.如图,已知E′(2,﹣1),F′(,),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A. (﹣4,2)B. (4,﹣2)C. (﹣1,﹣1)D. (﹣1,4)10.如图,是一种古代计时器﹣﹣“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)A. B. C. D.二、填空题(共6题;共6分)11.分解因式:3a2-3________.12.把抛物线向左平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为________ .13.若三项式4a2-2a+1加上一个单项式后能用完全平方公式分解因式,请写出一个这样的单项式________.14.如图,Rt⊿ABC中,∠C = 90º,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,第14题图第15题图第16题图已知AC=6,OC= ,则直角边BC的长为________15.如图,BD为长方形ABCD的对角线,BD=10,∠ABD=30°,求长方形ABCD的面积________.16.如图,过点C(2,1)分别作x轴、y轴的平行线,交直线y=﹣x+4于B、A两点,若二次函数y=ax2+bx+c 的图象经过坐标原点O,且顶点在矩形ADBC内(包括边上),则a的取值范围是________.三、解答题(一)(共3题;共15分)17.计算:2cos45°﹣tan60°+sin30°﹣|﹣|.18.先化简,再求值:;其中,.19.作图题:已知:△ABC如图,求作一点P,使点P到AB,AC两边的距离相等,并且点P到A、B两点的距离也相等(保留作图痕迹)20.如图,某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6 m,小明身高(AB)1.5 m,小军身高(CD)1.75 m,求旗杆的高EF.(结果精确到0.1 m,参考数据: ≈1.41,≈1.73)21.田忌赛马的故事为我们熟知.小亮与小齐学习概率初步知识后设计了如下游戏:小亮手中有方块10、8、6三张扑克牌,小齐手中有方块9、7、5三张扑克牌.每人从各自手中取出一张牌进行比较,数字大的为本“局”获胜,每次取得牌不能放回.(1)若每人随机取手中的一张牌进行比赛,求小齐本“局”获胜的概率;(2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者.当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,求小齐本次比赛获胜的概率.22.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.23.经过实验获得两个变量x(x > 0), y( y > 0) 的一组对应值如下表。

∥3套精选试卷∥东莞市2018-2019中考数学考前模拟题

∥3套精选试卷∥东莞市2018-2019中考数学考前模拟题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图2.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+【答案】D【解析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.3.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A .y =(x+2)2+3B .y =(x ﹣2)2+3C .y =x 2+1D .y =x 2+5 【答案】A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y =x 2+3向左平移2个单位可得y =(x +2)2+3, 故选A. 【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 4.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( ) A .20% B .11% C .10% D .9.5%【答案】C【解析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可. 【详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x =,2 1.9x =-(不合题意,舍去). 答:二,三月份平均每月降价的百分率为10% 【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a ,每次降价的百分率为a ,则第一次降价后为a (1-x );第二次降价后后为a (1-x )2,即:原数x (1-降价的百分率)2=后两次数. 5.已知关于x 的一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4,则m+n 的值是( ) A .﹣10 B .10C .﹣6D .2【答案】D【解析】根据“一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4”,结合根与系数的关系,分别列出关于m 和n 的一元一次不等式,求出m 和n 的值,代入m+n 即可得到答案. 【详解】解:根据题意得: x 1+x 2=﹣m =2+4, 解得:m =﹣6, x 1•x 2=n =2×4, 解得:n =8, m+n =﹣6+8=2,【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.6.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1【答案】B【解析】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.7.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2 B.23C.3D.22【答案】B【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=3OE=23.8.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;=,所以B选项不成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβC选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.9.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似【答案】B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.10.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样【答案】B【解析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.二、填空题(本题包括8个小题)11.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.【答案】8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等12.函数11yx=-的自变量的取值范围是.【答案】x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠113.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:111112151012-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是.【答案】1.【解析】依据调和数的意义,有15-1x=13-15,解得x=1.14.如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限。

2018年广东省东莞市XX学校中考数学一模试卷含答案解析

2018年广东省东莞市XX学校中考数学一模试卷含答案解析

年广东省东莞市学校中考数学一模试卷一.选择题(本大题小题,每小题分,共分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上).(分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约.亿吨的有机物,可用科学记数法表示为().×.×.×.×.(分)下列图形既是轴对称图形,又是中心对称图形的是().....(分)某大米包装袋上标注着“净含量±”,小华从商店买了袋大米,这两袋大米相差的克数不可能是().....(分)下列因式分解正确的是().﹣()(﹣).().﹣﹣(﹣)﹣.().(分)一个菱形的两条对角线的长分别为和,那么这个菱形的面积是().....(分)一个不透明的袋子中装有个红球、个白球,每个球除颜色外都相同.从中任意摸出个球,下列事件为必然事件的是().至少有个球是红球.至少有个球是白球.至少有个球是红球.至少有个球是白球.(分)如图,一只蚂蚁从长宽都是,高是的长方体纸箱的点沿纸箱爬到点,那么它所行的最短路线的长是().()...无法确定.(分)使式子有意义的的值是().>.≠.≥或≠.>或≠.(分)如图,在△中,点,分别是边,上的点,且∥,若,,则的长度是().....(分)已知抛物线的部分图象如图所示,若<,则的取值范围是().﹣<<.﹣<<.<﹣或>.<﹣或>二.填空题(本大题小题,每小题分,共分.).(分)写出一个二次项系数为,且一个根是的一元二次方程..(分)点在射线上,若,,则为..(分)如图,已知△≌△,若,,则的值为..(分)如图,⊙的直径经过弦的中点,∠°,则∠等于..(分)不等式组的解为..(分)如图所示,△中,∠°,将△绕点按顺时针方向旋转°,对应得到△′′,则∠′的度数为.三.解答题(一)(本大题小题,每小题分,共分).(分)计算:(﹣)÷.(分)已知,≠,求的值..(分)如图,已知在四边形中,∠°,,,,,求四边形的面积.四.解答题(二)(本大题小题,每小题分,共分).(分)怡然美食店的、两种菜品,每份成本均为元,售价分别为元、元,这两种菜品每天的营业额共为元,总利润为元.()该店每天卖出这两种菜品共多少份?()该店为了增加利润,准备降低种菜品的售价,同时提高种菜品的售价,售卖时发现,种菜品售价每降元可多卖份;种菜品售价每提高元就少卖份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?.(分)第中学的九年级学生在社会实践中,调查了位杭州市民某天早上出行上班所用的交通工具,结果用以下扇形统计图表示.()请你将这个统计图改成用折线统计图表示的形式;()请根据此项调查,对城市交通给政府提出一条建议..(分)在平面直角坐标系中按下列要求作图.()作出三象限中的小鱼关于轴的对称图形;()将()中得到的图形再向右平移个单位长度..(分)如图,在△中,,∠°,以为直径的⊙分别交,于点,,过点作⊙的切线,交的延长线于点.()求证:;()求∠的度数;()若,求弧的长..(分)如图,已知:在△中,∠°,,是上不与、重合的一动点,⊥于,⊥于.()求证:;()设的长为,的长为,求与之间的函数关系式及自变量的取值范围,并在平面直角坐标系作出函数图象.()能否平行于?如果能,试求出的值;若不能,请简述理由..(分)已知如图,抛物线﹣﹣与轴交于和两点(点在点的左侧),与轴相交于点,点的坐标是(,﹣),连接、()求出直线的解析式;()如图,若在直线上方的抛物线上有一点,当△的面积最大时,有一线段(点在点的左侧)在直线上移动,首尾顺次连接点、、、构成四边形,请求出四边形的周长最小时点的横坐标;()如图,将△绕点逆时针旋转α°(<α°<°),记旋转中的△为△′′,若直线′′与直线交于点,直线′′与直线交于点,当△是等腰三角形时,求的值.年广东省东莞市学校中考数学一模试卷参考答案与试题解析一.选择题(本大题小题,每小题分,共分.在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应位置上).(分)随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约亿吨的有机物,可用科学记数法表示为().×.×.×.×【解答】解:×,故选:..(分)下列图形既是轴对称图形,又是中心对称图形的是()....【解答】解:、不是轴对称图形,是中心对称图形,故此选项不合题意;、不是轴对称图形,是中心对称图形,故此选项不合题意;、是轴对称图形,不是中心对称图形,故此选项不合题意;、是轴对称图形,是中心对称图形,故此选项符合题意;故选:..(分)某大米包装袋上标注着“净含量±”,小华从商店买了袋大米,这两袋大米相差的克数不可能是()....【解答】解:根据题意得:(),﹣(),因为两袋两大米最多差﹣()(),所以这两袋大米相差的克数不可能是;故选:..(分)下列因式分解正确的是().﹣()(﹣).().﹣﹣(﹣)﹣.()【解答】解:、﹣()(﹣),故此选项错误;、(),故此选项错误;、等式的右边不是乘积形式,不是因式分解,故此选项错误;、(),故此选项正确;故选:..(分)一个菱形的两条对角线的长分别为和,那么这个菱形的面积是()....【解答】解:∵菱形的两条对角线的长分别为和,∴这个菱形的面积是,故选:..(分)一个不透明的袋子中装有个红球、个白球,每个球除颜色外都相同.从中任意摸出个球,下列事件为必然事件的是().至少有个球是红球.至少有个球是白球.至少有个球是红球.至少有个球是白球【解答】解:、至少有个球是红球是随机事件,选项错误;、至少有个球是白球是必然事件,选项正确;、至少有个球是红球是随机事件,选项错误;、至少有个球是白球是随机事件,选项错误.故选:..(分)如图,一只蚂蚁从长宽都是,高是的长方体纸箱的点沿纸箱爬到点,那么它所行的最短路线的长是().()...无法确定【解答】解:将点和点所在的两个面展开,则矩形的长和宽分别为和,故矩形对角线长,即蚂蚁所行的最短路线长是.故选:..(分)使式子有意义的的值是().>.≠.≥或≠.>或≠【解答】解:当满足,即≥且≠时,式子有意义.故选:..(分)如图,在△中,点,分别是边,上的点,且∥,若,,则的长度是()....【解答】解:∵,∴,∵∥,∴△∽△,∴,∵,∴,故选:..(分)已知抛物线的部分图象如图所示,若<,则的取值范围是().﹣<<.﹣<<.<﹣或>.<﹣或>【解答】解:由图象知,抛物线与轴交于(﹣,),对称轴为,∴抛物线与轴的另一交点坐标为(,),∵<时,函数的图象位于轴的下方,且当﹣<<时函数图象位于轴的下方,∴当﹣<<时,<.故选:.二.填空题(本大题小题,每小题分,共分.).(分)写出一个二次项系数为,且一个根是的一元二次方程﹣.【解答】解:根据题意,设该一元二次方程为:()();∵该方程的一个根是,∴该一元二次方程可以是:(﹣).即﹣故答案是:﹣..(分)点在射线上,若,,则为或.【解答】解:当在线段上时,﹣﹣,当在线段的延长线时,,即或,故答案为:或..(分)如图,已知△≌△,若,,则的值为.【解答】解:∵△≌△,∴,∵,,∴﹣﹣﹣.故答案为:..(分)如图,⊙的直径经过弦的中点,∠°,则∠等于°.【解答】解:∵⊙的直径过弦的中点,∠°,∴弧弧,且弧的度数是°,∴∠°,答案为°..(分)不等式组的解为≤<.【解答】解:解不等式﹣≥,得:≥,解不等式<,得:<,∴不等式组的解集为≤<,故答案为:≤<..(分)如图所示,△中,∠°,将△绕点按顺时针方向旋转°,对应得到△′′,则∠′的度数为°.【解答】解:∵∠°,将△绕点按顺时针方向旋转°,对应得到△′′,∴∠''°,∠'°,∴∠′的度数°﹣°°.故答案为:°.三.解答题(一)(本大题小题,每小题分,共分).(分)计算:(﹣)÷【解答】解:原式(﹣)÷÷.(分)已知,≠,求的值.【解答】解:由原方程组得,①×﹣②,得:,,将代入①,得:,解得,将、代入得:原式..(分)如图,已知在四边形中,∠°,,,,,求四边形的面积.【解答】解:连接.∵∠°,,,∴根据勾股定理可得,又∵,,∴,∴△是直角三角形,∴∠°,∴四边形△△••××××().四.解答题(二)(本大题小题,每小题分,共分).(分)怡然美食店的、两种菜品,每份成本均为元,售价分别为元、元,这两种菜品每天的营业额共为元,总利润为元.()该店每天卖出这两种菜品共多少份?()该店为了增加利润,准备降低种菜品的售价,同时提高种菜品的售价,售卖时发现,种菜品售价每降元可多卖份;种菜品售价每提高元就少卖份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【解答】解:()设该店每天卖出、两种菜品分别为、份,根据题意得,,解得:,答:该店每天卖出这两种菜品共份;()设种菜品售价降元,即每天卖()份;总利润为元因为两种菜品每天销售总份数不变,所以种菜品卖(﹣)份每份售价提高元.(﹣﹣)()(﹣)(﹣)(﹣)()()(﹣)(﹣﹣)(﹣)﹣﹣(﹣)当,最大,答:这两种菜品每天的总利润最多是元..(分)第中学的九年级学生在社会实践中,调查了位杭州市民某天早上出行上班所用的交通工具,结果用以下扇形统计图表示.()请你将这个统计图改成用折线统计图表示的形式;()请根据此项调查,对城市交通给政府提出一条建议.【解答】解:()如下图:步行:×人,自行车:×人,电动车:×人,公交车:×人,私家车:×人,()诸如公交优先,或宣传步行有利健康等..(分)在平面直角坐标系中按下列要求作图.()作出三象限中的小鱼关于轴的对称图形;()将()中得到的图形再向右平移个单位长度.【解答】解:如图所示:.(分)如图,在△中,,∠°,以为直径的⊙分别交,于点,,过点作⊙的切线,交的延长线于点.()求证:;()求∠的度数;()若,求弧的长.【解答】证明:()连接∵是⊙直径∴∠°(即⊥)∵∴()∵∠°,∴∠°∵是⊙切线∴∠°∴∠∠﹣∠°()连接∵∠°∴∠°∵∴∴的长..(分)如图,已知:在△中,∠°,,是上不与、重合的一动点,⊥于,⊥于.()求证:;()设的长为,的长为,求与之间的函数关系式及自变量的取值范围,并在平面直角坐标系作出函数图象.()能否平行于?如果能,试求出的值;若不能,请简述理由.【解答】()证明:∵∠°,,∴△为等腰直角三角形,∴∠∠°,∵⊥,∴△为等腰直角三角形,∴;()解:∵△为等腰直角三角形,∴,∵△为等腰直角三角形,∴,同理可证得为△等腰直角三角形,∴,∵,∴,∴﹣(<<),如图,()解:能.理由如下:∵﹣,﹣,∴﹣(﹣),当时,∥,即﹣(﹣)﹣,解得,∵<<,∴能平行于..(分)已知如图,抛物线﹣﹣与轴交于和两点(点在点的左侧),与轴相交于点,点的坐标是(,﹣),连接、()求出直线的解析式;()如图,若在直线上方的抛物线上有一点,当△的面积最大时,有一线段(点在点的左侧)在直线上移动,首尾顺次连接点、、、构成四边形,请求出四边形的周长最小时点的横坐标;()如图,将△绕点逆时针旋转α°(<α°<°),记旋转中的△为△′′,若直线′′与直线交于点,直线′′与直线交于点,当△是等腰三角形时,求的值.【解答】解:()∵抛物线﹣﹣与轴交于和两点,∴﹣﹣,∴或﹣,∴(﹣,),(,),∵(,﹣),∴直线解析式为﹣﹣;()如图,过点作⊥轴,交于,设(,﹣﹣),(,﹣﹣),∴﹣﹣﹣(﹣﹣)﹣﹣,∴×﹣(﹣﹣)﹣﹣﹣(),△△△最大,当﹣时,△∴(﹣,)如图,作点关于直线的对称点,把沿平行直线方向平移到,且,连接,交直线于点,把点沿直线向左平移得点,此时四边形的周长最小.∵,,∴∠,∵,∴,∴,在△中,,,∴﹣,∴(﹣,﹣),过作⊥,∴∠∠,∵,∴,,∴(,﹣)∵(﹣,)∴的解析式为﹣﹣①, ∵(,),(,﹣),∴直线解析式为﹣②,联立①②得,﹣,∴点的横坐标为:﹣. ()∵(,),(,),(,﹣)∴,,,边上的高为,根据等面积法得, ××,∴,∵(﹣,),(,),∴,,∴∠, ①当时,简图如图,过点作⊥,过点作⊥,∵∠∴设,则,,,∴﹣﹣∵△∽△,∴,∴,∴,∴;②当时,简图如图,过点作⊥,∵∠∴设,则,∴,∴﹣,∴,∴﹣﹣∵△∽△,同①的方法得出,﹣,③当时,简图如图过点作⊥,过点作⊥,设,则,,∴,∴∴﹣﹣,利用等面积法得,××,∴,∵△∽△同①的方法得出④当时,简图如图,过点作⊥,过作⊥,设,则,,∴,,∵△∽△,同①方法得出.综上所述,的值为:;﹣,,.。

《试卷5份集锦》东莞市2018-2019年中考达标检测数学试题

《试卷5份集锦》东莞市2018-2019年中考达标检测数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【答案】B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 2.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个B.4个C.3个D.2个【答案】B【解析】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴bx2a=-,x>3.∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.3.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣1x图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1【答案】D【解析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【详解】解:∵反比例函数y=﹣1x中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,∴x2<x3<x1.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.4.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A.点A和点C B.点B和点DC.点A和点D D.点B和点C【答案】C【解析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.5.如图,二次函数y=ax 1+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=1,且OA=OC .则下列结论:①abc >0;②9a+3b+c >0;③c >﹣1;④关于x 的方程ax 1+bx+c=0(a≠0)有一个根为﹣1a;⑤抛物线上有两点P (x 1,y 1)和Q (x 1,y 1),若x 1<1<x 1,且x 1+x 1>4,则y 1>y 1.其中正确的结论有( )A .1个B .3个C .4个D .5个【答案】D 【解析】根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:2b a->0,∴b >0,∴abc >0,故①正确; 令x=3,y >0,∴9a+3b+c >0,故②正确;∵OA=OC <1,∴c >﹣1,故③正确;∵对称轴为直线x=1,∴﹣2b a=1,∴b=﹣4a . ∵OA=OC=﹣c ,∴当x=﹣c 时,y=0,∴ac 1﹣bc+c=0,∴ac ﹣b+1=0,∴ac+4a+1=0,∴c=41a a +-,∴设关于x 的方程ax 1+bx+c=0(a≠0)有一个根为x ,∴x ﹣c=4,∴x=c+4=1a-,故④正确; ∵x 1<1<x 1,∴P 、Q 两点分布在对称轴的两侧,∵1﹣x 1﹣(x 1﹣1)=1﹣x 1﹣x 1+1=4﹣(x 1+x 1)<0,即x 1到对称轴的距离小于x 1到对称轴的距离,∴y 1>y 1,故⑤正确.故选D .【点睛】 本题考查的是二次函数图象与系数的关系,二次函数y=ax 1+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型.6.下列函数中,y 随着x 的增大而减小的是( )A.y=3x B.y=﹣3x C.3yx=D.3yx=-【答案】B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、3yx=,每个象限内,y随着x的增大而减小,故此选项错误;D、3yx=-,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.7.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B 逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A.12a B.a C.32a D.3a【答案】A【解析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH 是等边△ABC 的对称轴,∴HB=12AB , ∴HB=BG ,又∵MB 旋转到BN ,∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===,∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a , ∴HN=2a , 故选A .【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.8.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )A .B .C .D .【答案】A【解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A .【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.9.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1 D.m<1【答案】D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.详解:∵方程2x2x m0-+=有两个不相同的实数根,∴()2240m=-->,解得:m<1.故选D.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.10.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.32C.3D.23【答案】C【解析】连接AE,OD,OE.∵AB是直径,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.又∵点E为BC的中点,∠AED=90°,∴AB=AC.∴△ABC是等边三角形,∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是3.∴∠BOE=∠EOD=60°,∴BE和弦BE围成的部分的面积=DE和弦DE围成的部分的面积.∴阴影部分的面积=EDC1S=23=32∆⋅⋅.故选C.二、填空题(本题包括8个小题)11.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.【答案】①②③④.【解析】由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=12FB•FG=12S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出④正确.【详解】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,G CAFG CADAF AD===∠∠⎧⎪∠∠⎨⎪⎩,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=12FB•FG=12S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故答案为①②③④.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.12.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.【答案】(Ⅰ)AC=3(Ⅱ)33.【解析】(Ⅰ)如图,过B作BE⊥AC于E,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,解直角三角形即可得到结论.【详解】解:(Ⅰ)如图,过B作BE⊥AC于E,∵BA=BC=4,∴AE=CE,∵∠A=30°,∴AE=32AB=3∴AC=2AE=3;(Ⅱ)如图,作BC的垂直平分线交AC于D,则BD=CD,此时BD+12DC的值最小,∵BF=CF=2,∴BD =CD =230COS ︒ =433, ∴BD+12DC 的最小值=23, 故答案为:43,23.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.13.分解因式:xy 2﹣2xy+x =_____.【答案】x (y-1)2【解析】分析:先提公因式x ,再用完全平方公式把221y y -+继续分解.详解:22xy xy x -+=x(221y y -+)=x(1y -)2.故答案为x(1y -)2.点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.14.规定:()a b a b b ⊗=+,如:()2323315⊗=+⨯=,若23x ⊗=,则x =__.【答案】1或-1【解析】根据a ⊗b=(a+b )b ,列出关于x 的方程(2+x )x=1,解方程即可. 【详解】依题意得:(2+x )x=1,整理,得 x 2+2x=1,所以 (x+1)2=4,所以x+1=±2,所以x=1或x=-1.故答案是:1或-1.【点睛】用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.15.如图,直线4y x =+与双曲线k y x =(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.【答案】(0,52). 【解析】试题分析:把点A 坐标代入y=x+4得a=3,即A (﹣1,3),把点A 坐标代入双曲线的解析式得3=﹣k ,即k=﹣3,联立两函数解析式得:,解得:,,即点B 坐标为:(﹣3,1),作出点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为点P ,使得PA+PB 的值最小,则点C 坐标为:(1,3),设直线BC 的解析式为:y=ax+b ,把B 、C 的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y 轴的交点为:(0,52). 考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.16.如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 ▲ (结果保留π).【答案】133π-【解析】过D 点作DF ⊥AB 于点F .∵AD=1,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB ﹣AE=1.∴阴影部分的面积=平行四边形ABCD 的面积-扇形ADE 面积-三角形CBE 的面积 =2302114121336023ππ⨯⨯⨯--⨯⨯=-. 故答案为:133π-.17.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.【答案】5π【解析】根据题意得出球在无滑动旋转中通过的路程为12圆弧,根据弧长公式求出弧长即可. 【详解】解:由图形可知,圆心先向前走OO 1的长度,从O 到O 1的运动轨迹是一条直线,长度为14圆的周长,然后沿着弧O 1O 2旋转14圆的周长, 则圆心O 运动路径的长度为:112544π⨯⨯+×2π×5=5π, 故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度. 18.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____【答案】﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.三、解答题(本题包括8个小题)19.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02t ≤≤ ),B 类(24t <≤),C 类(46t <≤),D 类(68t <≤),E 类(8t >),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:E 类学生有 人,补全条形统计图;D 类学生人数占被调查总人数的 %;从该班做义工时间在04t ≤≤的学生中任选2人,求这2人做义工时间都在24t <≤ 中的概率.【答案】(1)5;(2)36%;(3)310. 【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数=该组频数数据总数,进行求解即可; (3)利用列举法求概率即可.试题解析:(1)E 类:50-2-3-22-18=5(人),故答案为:5;补图如下:(2)D 类:18÷50×100%=36%,故答案为:36%;(3)设这5人为12123A A B B B ,,,,有以下10种情况:12111213212223121323(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A B A B A B A B A B A B B B B B B B 其中,两人都在24t <≤ 的概率是:310P = . 20.如图,已知∠ABC=90°,AB=BC .直线l 与以BC 为直径的圆O 相切于点C .点F 是圆O 上异于B 、C 的动点,直线BF 与l 相交于点E ,过点F 作AF 的垂线交直线BC 于点D .如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=3CD,请说明你的理由.【答案】(1)275(2)证明见解析(3)F在直径BC下方的圆弧上,且23BF BC=【解析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得CD CEBA BC=,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=3CD=3CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且23BF BC=.【详解】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴CE EFBE CE=,∵BE=15,CE=9,即:9159EF=,解得:EF=275;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF ∽△BAF , ∴CF CD BF BA =, 又∵∠FCE=∠CBF ,∠BFC=∠CFE=90°,∴△CEF ∽△BCF ,∴CF CE BF BC=, ∴CD CE BA BC =, 又∵AB=BC ,∴CE=CD ;(3)解:∵CE=CD ,∴BC=3CD=3CE ,在Rt △BCE 中,tan ∠CBE=3CE BC =, ∴∠CBE=30°,故CF 为60°,∴F 在直径BC 下方的圆弧上,且23BF BC =.【点睛】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.21.如图,AB 为⊙O 的直径,点D 、E 位于AB 两侧的半圆上,射线DC 切⊙O 于点D ,已知点E 是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°.求证:CD ∥AB ;填空:①当∠DAE = 时,四边形ADFP 是菱形;②当∠DAE = 时,四边形BFDP 是正方形.【答案】(1)详见解析;(2)①67.5°;②90°.【解析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此时点P 与点O 重合,∴此时DE 是直径,∴∠EAD =90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.22.如图,△ABC 中,点D 在边AB 上,满足∠ACD=∠ABC ,若AC=3,AD=1,求DB 的长.【答案】BD= 2.【解析】试题分析:根据∠ACD=∠ABC ,∠A 是公共角,得出△ACD ∽△ABC ,再利用相似三角形的性质得出AB 的长,从而求出DB 的长.试题解析:∵∠ACD=∠ABC ,又∵∠A=∠A , ∴△ABC ∽△ACD ,∴AD AC AC AB =, ∵3,AD=1, ∴33AB=, ∴AB=3,∴BD= AB ﹣AD=3﹣1=2 .点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB 的长是解题关键.23.如图,抛物线2y ax 2ax c =-+(a≠0)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G .求抛物线的解析式;抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长;在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似?若存在,求出此时m 的值,并直接判断△PCM 的形状;若不存在,请说明理由.【答案】(1)抛物线的解析式为248y x x 433=-++;(2)PM=24m 4m 3-+(0<m <3);(3)存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为2316或1,△PCM 为直角三角形或等腰三角形. 【解析】(1)将A (3,0),C (0,4)代入2y ax 2ax c =-+,运用待定系数法即可求出抛物线的解析式.(2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,从而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长.(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC ∽△AEM ,②△CFP ∽△AEM ;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.【详解】解:(1)∵抛物线2y ax 2ax c =-+(a≠0)经过点A (3,0),点C (0,4), ∴,解得4a {3c 4=-=. ∴抛物线的解析式为248y x x 433=-++. (2)设直线AC 的解析式为y=kx+b ,∵A (3,0),点C (0,4),∴3k b 0{b 4+==,解得4k {3b 4=-=. ∴直线AC 的解析式为4y x 43=-+.∵点M 的横坐标为m ,点M 在AC 上,∴M 点的坐标为(m ,4m 43-+). ∵点P 的横坐标为m ,点P 在抛物线248y x x 433=-++上, ∴点P 的坐标为(m ,248m m 433-++). ∴PM=PE -ME=(248m m 433-++)-(4m 43-+)=24m 4m 3-+. ∴PM=24m 4m 3-+(0<m <3). (3)在(2)的条件下,连接PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下:由题意,可得AE=3﹣m ,EM=4m 43-+,CF=m ,PF=248m m 4433-++-=248m m 33-+, 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况: ①若△PFC ∽△AEM ,则PF :AE=FC :EM ,即(248m m 33-+):(3-m )=m :(4m 43-+), ∵m≠0且m≠3,∴m=2316. ∵△PFC ∽△AEM ,∴∠PCF=∠AME .∵∠AME=∠CMF ,∴∠PCF=∠CMF .在直角△CMF 中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM 为直角三角形.②若△CFP ∽△AEM ,则CF :AE=PF :EM ,即m :(3-m )=(248m m 33-+):(4m 43-+), ∵m≠0且m≠3,∴m=1.∵△CFP ∽△AEM ,∴∠CPF=∠AME .∵∠AME=∠CMF ,∴∠CPF=∠CMF .∴CP=CM .∴△PCM 为等腰三角形.综上所述,存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为2316或1,△PCM 为直角三角形或等腰三角形.24.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.【答案】(1)见解析;(2)4.1【解析】试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴22125+=13,AD=12,∵F是AM的中点,∴AF=12AM=6.5,∵△ABM∽△EFA,∴BM AMAF AE=,即513 6.5AE=,∴AE=16.1,∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.25.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.【答案】(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC 是等边三角形,则a=b=c ,进而代入方程求出即可.试题解析:(1)△ABC 是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c )×(﹣1)2﹣2b+(a ﹣c )=0,∴a+c ﹣2b+a ﹣c=0,∴a ﹣b=0,∴a=b ,∴△ABC 是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b )2﹣4(a+c )(a ﹣c )=0,∴4b 2﹣4a 2+4c 2=0,∴a 2=b 2+c 2,∴△ABC 是直角三角形;(3)当△ABC 是等边三角形,∴(a+c )x 2+2bx+(a ﹣c )=0,可整理为:2ax 2+2ax=0,∴x 2+x=0,解得:x 1=0,x 2=﹣1.考点:一元二次方程的应用.26.如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20m y m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -. 求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.【答案】 (1) 3y x=,2y x =-;(2)10x -<<或3x >. 【解析】(1)把点A 坐标代入()m y m 0x=≠可求出m 的值即可得反比例函数解析式;把点A 、点C 代入()1y kx b k 0=+≠可求出k 、b 的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B 的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x 的取值范围即可. 【详解】(1)把()A 3,1代入()m y m 0x =≠得m 3=. ∴反比例函数的表达式为3y x =把()A 3,1和()B 0,2-代入y kx b =+得132k b b=+⎧⎨-=⎩, 解得12k b =⎧⎨=-⎩∴一次函数的表达式为y x 2=-.(2)由3x 2y y x ⎧=⎪⎨⎪=-⎩得()B 1,3--∴当1x 0-<<或x 3>时,12y y >.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14B .7C .﹣2D .2 【答案】D【解析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6,x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集2.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H,下列结论:①△AED ≌△DFB ;②S 四边形 BCDG =CG 2;③若AF=2DF ,则BG=6GF,其中正确的结论A .只有①②.B .只有①③.C .只有②③.D .①②③.【答案】D 【解析】解:①∵ABCD 为菱形,∴AB=AD .∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=3CG,∴S四边形CMGN=1S△CMG=1×12×12CG×3CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.3.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40【答案】D【解析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数. 4.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.22B.1 C2D2﹣l【答案】D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=22AC′=1,∴DC′=AC′2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×2-1)22-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD ,AF ,DC′的长是解题关键.5.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =55,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D.6.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .【答案】D【解析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D 选项的图象符合,故选D .【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.7.在函数y =x 中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠1【答案】C【解析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x ﹣2≠2.解得:x≥2且x≠2.故x 的取值范围是x≥2且x≠2.故选C .【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.8.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 2【答案】C 【解析】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.9.4的平方根是( )A.2 B.2C.±2 D.±2【答案】D【解析】先化简4,然后再根据平方根的定义求解即可.【详解】∵4=2,2的平方根是±2,∴4的平方根是±2.故选D.【点睛】本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.10.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B. C.D.【答案】B【解析】试题解析:选项,,A C D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.二、填空题(本题包括8个小题)11.若221 6a b-=,13a b-=,则+a b的值为________ .【答案】-12.【解析】分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.详解:∵a2﹣b2=(a+b)(a﹣b)=16,a﹣b=13,∴a+b=12.故答案为12.点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.12.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC 上的点B 1重合,则AC =_____cm .【答案】4【解析】∵AB=2cm ,AB=AB 1,∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE ,∴∠ABE=∠AB 1E=90°∵AE=CE∴AB 1=B 1C∴AC=4cm .13.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,则水的最大深度CD 是______mm .【答案】200【解析】先求出OA 的长,再由垂径定理求出AC 的长,根据勾股定理求出OC 的长,进而可得出结论.【详解】解:∵⊙O 的直径为1000mm ,∴OA=OA=500mm .∵OD ⊥AB ,AB=800mm ,∴AC=400mm ,∴22OA AC -22500400-=300mm ,∴CD=OD-OC=500-300=200(mm ).答:水的最大深度为200mm .故答案为:200【点睛】本题考查的是垂径定理的应用,根据勾股定理求出OC 的长是解答此题的关键.14.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.【答案】20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.【详解】设黄球的个数为x 个,∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%, ∴x 50=60%, 解得x =30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.15.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则BE :BC 的值为_________.【答案】1:4【解析】由S △BDE :S △CDE =1:3,得到BE 1CE 3=,于是得到 41BE BC =. 【详解】解::1:3BDE CDE S S ,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4.【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.16.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .。

【精选3份合集】2018-2019学年东莞市考前冲刺必刷卷数学试题一

【精选3份合集】2018-2019学年东莞市考前冲刺必刷卷数学试题一

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤【答案】D 【解析】设直线y=x 与BC 交于E 点,分别过A 、E 两点作x 轴的垂线,垂足为D 、F ,则A (1,1),而AB=AC=2,则B (3,1),△ABC 为等腰直角三角形,E 为BC 的中点,由中点坐标公式求E 点坐标,当双曲线与△ABC 有唯一交点时,这个交点分别为A 、E ,由此可求出k 的取值范围.解:∵2AC BC ==,90CAB ∠=︒.()1,1A .又∵y x =过点A ,交BC 于点E ,∴2EF ED ==, ∴()2,2E ,∴14k ≤≤.故选D.2.已知关于x 的一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4,则m+n 的值是( ) A .﹣10B .10C .﹣6D .2【答案】D【解析】根据“一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4”,结合根与系数的关系,分别列出关于m 和n 的一元一次不等式,求出m 和n 的值,代入m+n 即可得到答案.【详解】解:根据题意得:x 1+x 2=﹣m =2+4,解得:m =﹣6,x 1•x 2=n =2×4,解得:n =8,m+n =﹣6+8=2,故选D .【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.3.若分式11x x -+的值为零,则x 的值是( ) A .1B .1-C .1±D .2 【答案】A【解析】试题解析:∵分式11x x -+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A . 4.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( ) A .1B .2C .3D .4【答案】A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y 代入即可得. 【详解】解:∵原式=223x y y x y-•+ =()()3x y x y y x y +-•+ =33x y y- ∵3x-4y=0,∴3x=4y原式=43y y y-=1 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.5.关于x 的一元二次方程x 2+2x+k+1=0的两个实根x 1,x 2,满足x 1+x 2﹣x 1x 2<﹣1,则k 的取值范围在数轴上表示为()A.B.C.D.【答案】D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1•x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D.点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.6.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7【答案】D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.7.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【答案】D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是A.B.C.D.【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.9.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【答案】A【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.10.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)【答案】C【解析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.二、填空题(本题包括8个小题)11.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:.①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=23其中正确的序号是(把你认为正确的都填上).【答案】①②④【解析】分析:∵四边形ABCD是正方形,∴AB=AD。

东莞市数学中考三模试卷

东莞市数学中考三模试卷

东莞市数学中考三模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分) (2018七上·云梦月考) 下列各对数中,互为相反数的有()(-1)与+(-1),+(+1)与-1,-(-2)与+(-2), +[-(+1)]与-[+(-1)],-(+2)与-(-2),与 .A . 6对B . 5对C . 4对D . 3对2. (1分) (2019六下·广饶期中) 已知∠α和∠β的和是平角,且∠α∶∠β=1∶8,则∠β的度数是()A . 20°B . 40°C . 80°D . 160°3. (1分) (2017七下·抚宁期末) 下列说法正确的是()A . 1的平方根是1B . 0没有平方根C . 0.01是0.1的一个平方根D . 1是1的一个平方根4. (1分)(2017·六盘水模拟) 把不等式组的解集表示在数轴上,正确的是()A .B .C .D .5. (1分)(2017·新乡模拟) 如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=20°,那么∠2的度数是()A . 100°D . 120°6. (1分)(2019·河南模拟) 若一组数据2,x,8,4,2的平均数是6,则这组数据的中位数和众数分别是()A . 8,2B . 3,2C . 4,2D . 6,87. (1分) (2019八下·南浔期末) 下列二次根式是最简二次根式的是()A .B .C .D .8. (1分) (2018八上·东台月考) 如图,△ACE≌△DBF,若∠E=∠F,AD=8,BC=2,则AB等于()A . 6B . 5C . 3D . 不能确定9. (1分)课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()C . (3,4)D . (4,3)10. (1分)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A . PA=PBB . PO平分∠APBC . OA=OBD . AB垂直平分OP11. (1分)一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其它两边的和是().A . 19B . 17C . 24D . 2112. (1分)已知圆锥的母线长为5,底面半径为3,则圆锥的表面积为()A . 15πB . 24πC . 30πD . 39π二、填空题 (共6题;共6分)13. (1分)(2017·渠县模拟) 234 610 000用科学记数法表示为________.(保留三个有效数字)14. (1分) (2017七下·海安期中) 小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数和★,请你帮他找回这个数, =________.15. (1分)(2017·抚州模拟) 在函数y= 中,自变量x的取值范围是________.16. (1分) (2017九上·下城期中) 如图,在⊙ 中,,,则________.17. (1分)关于x的一元二次方程的两个实数根分别是,且,则m的值是________.18. (1分)要在一个长方体中放入一细直木条,现知长方体的长为2,宽为,高为,则放入木盒的细木条最大长度为________.三、解答题 (共8题;共15分)19. (1分) (2017八下·仁寿期中) 计算:20. (1分)(2017·河南模拟) 先化简,再求值:(﹣a)÷(1+ ),其中a是不等式﹣<a<的整数解.21. (2分)(2017·历下模拟) 某校在艺术节宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:选项方式百分比A唱歌35%B舞蹈aC朗诵25%D器乐30%请结合统计图表,回答下列问题:(1)本次调查的学生共________人,a=________,并将条形统计图补充完整________ ;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式有一种是“唱歌”的概率.22. (1分)如图,为了测量某大桥的桥塔高度AB,在与桥塔底部B相距50米的C处,用高1米的测角仪DC 测得桥塔顶端A的仰角为41.5°,求桥塔AB的高度.(结果精确到0.1米)(参考数据:sin41.5°=0.663,cos41.5°=0.749,tan41.5°=0.885)23. (2分) (2019八上·咸阳期中) 如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1) B出发时与A相距________千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是________小时.(3) B出发后________小时与A相遇.(4)求出A行走的路程S与时间t的函数关系式:________.24. (2分) (2019八下·端州月考) 在Rt△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边(1)若a= ,c=4,求b(2)若c=8,∠A=30°,求b(3)若a:b=3:4,c=15,求Rt△ABC的面积.25. (3分)如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC(1)求证:PA是⊙O的切线(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为的中点,且∠DCF=∠P,求证:==26. (3分)(2019·润州模拟) 如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若tan∠ABC= ,求线段PC的长.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共15分)19-1、20-1、21-1、21-2、21-3、22-1、23-1、23-2、23-3、23-4、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。

东莞市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

东莞市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

东莞市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)比较2, , 的大小,正确的是()A. 2< <B. 2< <C. <2<D. < <2【答案】C【考点】实数大小的比较,估算无理数的大小【解析】【解答】解:∵1<<2,2<<3∴<2<故答案为:C【分析】根据题意判断和分别在哪两个整数之间,即可判断它们的大小。

2、(2分)下列说法正确的是()A. |-2|=-2B. 0的倒数是0C. 4的平方根是2D. -3的相反数是3【答案】D【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根【解析】【解答】A、根据绝对值的代数意义可得|﹣2|=2,不符合题意;B、根据倒数的定义可得0没有倒数,不符合题意;C、根据平方根的定义可4的平方根为±2,不符合题意;D、根据相反数的定义可得﹣3的相反数为3,符合题意,故答案为:D.【分析】根据绝对值的意义,可对选项A作出判断;利用倒数的定义,可对选项B作出判断;根据正数的平方根有两个,它们互为相反数,可对选项C作出判断;根据相反数的定义,可对选项D作出判断。

3、(2分)下列图形中,∠1和∠2不是同位角的是()A. B.C. D.【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:选项A、B、C中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;选项D中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故答案为:D.【分析】同位角是指位于两条直线的同旁,位于第三条直线的同侧。

根据同位角的构成即可判断。

4、(2分)9的平方根是()A. B. C. D.【答案】B【考点】平方根【解析】【解答】∵(±3)2=9,∴9的平方根是3或-3.故答案为:B.【分析】根据平方根的定义可求得答案.一个正数有两个平方根,它们互为相反数.5、(2分)下列各数中3.14,,1.060060006…(每两个6之间依次增加一个0),0,,3.14159是无理数的有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:上述各数中是无理数的是:,(每两个6之间依次增加一个0)共2个.故答案为:B.【分析】由无理数的定义:“无限不循环小数叫无理数”可知已知数中的无理数的个数。

【精选3份合集】2018-2019学年东莞市中考数学模拟联考试题

【精选3份合集】2018-2019学年东莞市中考数学模拟联考试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--【答案】A【解析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .2.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a =-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.3.空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1 【答案】C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C .考点:科学记数法—表示较小的数.4.计算:9115()515÷⨯-得( ) A .-95 B .-1125 C .-15 D .1125【答案】B【解析】同级运算从左向右依次计算,计算过程中注意正负符号的变化.【详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-=⎪ ⎪⎝⎭⎝⎭-1125故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.5.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.6.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=3,则△ACE的面积为()A.1 B3C.2 D.3【答案】B【解析】由折叠的性质可得3DE=EF,AC=23由三角形面积公式可求EF的长,即可求△ACE 的面积.【详解】解:∵点F是AC的中点,∴AF=CF=12AC,∵将△CDE沿CE折叠到△CFE,∴3DE=EF,∴AC=23, 在Rt △ACD 中,AD=22AC CD -=1.∵S △ADC =S △AEC +S △CDE ,∴12×AD×CD=12×AC×EF+12×CD×DE ∴1×3=23EF+3DE ,∴DE=EF=1,∴S △AEC=12×23×1=3. 故选B .【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键. 7.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm【答案】D 【解析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x ,宽为y ,根据题意得:x+2y=a ,则图②中两块阴影部分周长和是:2a+2(b-2y )+2(b-x )=2a+4b-4y-2x=2a+4b-2(x+2y )=2a+4b-2a=4b .故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6【答案】D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.9.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【答案】D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=k x(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣36【答案】B【解析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=kx(k<0)的图象经过点B,∴﹣4=k8,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.二、填空题(本题包括8个小题)11.如图,AB为⊙O的直径,C、D为⊙O上的点,AD CD.若∠CAB=40°,则∠CAD=_____.【答案】25°【解析】连接BC,BD, 根据直径所对的圆周角是直角,得∠ACB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠CBD,从而可得到∠BAD的度数.【详解】如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵AD CD =,∴∠ABD=∠CBD=12∠ABC=25°, ∴∠CAD=∠CBD=25°.故答案为25°.【点睛】本题考查了圆周角定理及直径所对的圆周角是直角的知识点,解题的关键是正确作出辅助线.12.在△ABC 中,点D 在边BC 上,BD=2CD ,AB a =,AC b =,那么AD = .【答案】1233a b + 【解析】首先利用平行四边形法则,求得BC 的值,再由BD=2CD ,求得BD 的值,即可求得AD 的值.【详解】∵AB a =,AC b =,∴BC =AC -AB =b -a ,∵BD=2CD ,∴BD =23BC =2()3b a -, ∴AD =AB +BD =2()3a b a +-=1233a b +.故答案为1233a b +. 13.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .【答案】1.【解析】试题分析:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=CD=12cm ,在Rt △ACB 中,AB=22AC BC +=22512+=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm ),故答案为1.考点:旋转的性质.14.因式分解:2xy 4x -= .【答案】.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 15.如图,Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB′与边BC 交于点E .若△DEB′为直角三角形,则BD 的长是_______.【答案】5或1.【解析】先依据勾股定理求得AB 的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x ,然后依据勾股定理列出关于x 的方程求解即可.【详解】∵Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD 为折痕△ABD 折叠得到△AB′D ,∴BD=DB′,AB′=AB=5.如图1所示:当∠B′DE=90°时,过点B′作B′F ⊥AF ,垂足为F .设BD=D B′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如图5所示:当∠B′ED=90°时,C与点E重合.∵AB′=5,AC=6,∴B′E=5.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.综上所述,BD的长为5或1.16.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.【答案】AC=BD.【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.试题解析:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=12AC;同理EF∥AC且EF=12AC,同理可得EH=12 BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.考点:1.菱形的性质;2.三角形中位线定理.17.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=_______________________.【答案】72°.【解析】解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=12∠BOC=12×144°=72°.故答案为72°.【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.18.,A B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y (千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有____________千米.【答案】90【解析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.三、解答题(本题包括8个小题)19.列方程解应用题八年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.【答案】15/km h【解析】试题分析:设骑车学生的速度为xkm /h ,利用时间关系列方程解应用题,一定要检验. 试题解析:解:设骑车学生的速度为xkm /h ,由题意得1010123x x -= , 解得 x 15=.经检验x 15=是原方程的解.答: 骑车学生的速度为15km/h .20.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,解得a 20≥,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.21.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.【答案】(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).【解析】试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.试题解析:(1)树状图如下图:则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),∴点M(x,y)在函数y=﹣的图象上的概率为:.考点:列表法或树状图法求概率.22.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.【答案】(1)13;(2)23.【解析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【详解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=1 3 ,(2)列表得:小明小亮A B CA (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=62=93.【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.23.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【答案】作图见解析;CE=4.【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.24.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方3C出发,沿斜面坡度3i CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)【答案】33+3.5【解析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=43•tan37°可得答案.【详解】如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠333,∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos∠33∴333过点E作EG⊥AB于点G,则3,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠3,则33,故旗杆AB的高度为(3)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题25.如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N .求证:=OM AN ;若O 的半径=3R ,=9PA ,求OM 的长【答案】(1)见解析(2)5【解析】解:(1)证明:如图,连接OA ,则OA AP ⊥.∵MN AP ⊥,∴//MN OA .∵//OM AP ,∴四边形ANMO 是平行四边形.∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP ,∴=OB MN ,=OMB NPM ∠∠.∴Rt OBM Rt MNP ∆≅∆.∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM .26.如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的距离.【答案】1.5千米【解析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若AB BC CD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π【答案】A 【解析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵AB BC CD ==,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=2606=6360⨯ππ. 故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°. 2.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是( )A .四边形AEDF 是平行四边形B .若∠BAC =90°,则四边形AEDF 是矩形C .若AD 平分∠BAC ,则四边形AEDF 是矩形D .若AD ⊥BC 且AB =AC ,则四边形AEDF 是菱形【答案】C【解析】A 选项,∵在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,∴DE ∥AF ,DF ∥AE ,∴四边形AEDF 是平行四边形;即A 正确;B 选项,∵四边形AEDF 是平行四边形,∠BAC=90°,∴四边形AEDF 是矩形;即B 正确;C 选项,因为添加条件“AD 平分∠BAC”结合四边形AEDF 是平行四边形只能证明四边形AEDF 是菱形,而不能证明四边形AEDF 是矩形;所以C 错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.3.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处【答案】D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.4.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.5.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.4【答案】B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题。

∥3套精选试卷∥东莞市2018-2019中考数学第三次练兵模拟试题

∥3套精选试卷∥东莞市2018-2019中考数学第三次练兵模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C【答案】C【解析】根据相反数的定义进行解答即可.【详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.2.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是( )A .掷一枚正六面体的骰子,出现1点的概率B .抛一枚硬币,出现正面的概率C .从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D .任意写一个整数,它能被2整除的概率【答案】C【解析】解:A .掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误; B .掷一枚硬币,出现正面朝上的概率为12,故此选项错误; C .从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确; D .任意写出一个整数,能被2整除的概率为12,故此选项错误. 故选C . 3.如图,二次函数y =ax 2+bx +c(a≠0)的图象经过点A ,B ,C .现有下面四个推断:①抛物线开口向下;②当x=-2时,y 取最大值;③当m<4时,关于x 的一元二次方程ax 2+bx +c=m 必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④【答案】B【解析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.4.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c <2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.4【答案】C【解析】试题解析:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选C.考点:二次函数图象与系数的关系.【详解】请在此输入详解!5.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6【答案】D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.6.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若AB BC CD==,则图中阴影部分的面积是()A .6πB .12πC .18πD .24π【答案】A 【解析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵AB BC CD ==,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=2606=6360⨯ππ. 故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°. 7.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为倒数的点是( )A .点A 与点BB .点A 与点DC .点B 与点D D .点B 与点C 【答案】A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A 对应的数为-2,B 对应的数为-12,所以A 与B 是互为倒数.故选A .考点:1.倒数的定义;2.数轴.8.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .3【答案】B 【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.【点睛】此题考查由三视图判断几何体,解题关键在于识别图形9.不等式5+2x <1的解集在数轴上表示正确的是( ).A.B.C.D.【答案】C【解析】先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.10.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–1998【答案】B【解析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1.故选B.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.二、填空题(本题包括8个小题)11.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数kyx(x<0)的图象上,则k= .【答案】-43.【解析】过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD= OB=2,BD=OB•sin60°=4×3=23,2∴B(﹣2,23),∴k=﹣2×23=﹣43.【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.12.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为cm.__________2【答案】16【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.14.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.【答案】1.【解析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.15.在平面直角坐标系中,如果点P坐标为(m,n),向量OP可以用点P的坐标表示为OP=(m,n),已知:OA=(x1,y1),OB=(x2,y2),如果x1•x2+y1•y2=0,那么OA与OB互相垂直,下列四组向量:①OC=(2,1),OD=(﹣1,2);②OE=(cos30°,tan45°),OF=(﹣1,sin60°);③OG=3﹣2,﹣2),OH=32,12);④OC=(π0,2),ON=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).【答案】①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC 与OD 垂直;②∵33cos301tan45sin60322⨯+⋅=+=, ∴OE 与OF 不垂直.③∵()()()13232202-++-⨯=, ∴OG 与OH 垂直.④∵()02210π⨯+⨯-=,∴OM 与ON 垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.16.如图,这是一幅长为3m ,宽为1m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m 1.【答案】1.4【解析】由概率估计图案在整副画中所占比例,再求出图案的面积.【详解】估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m 1.故答案为1.4【点睛】本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.17.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.【答案】2【解析】已知BC=8, AD 是中线,可得CD=4, 在△CBA 和△CAD 中, 由∠B=∠DAC ,∠C=∠C , 可判定△CBA ∽△CAD ,根据相似三角形的性质可得 AC CD BC AC= , 即可得AC 2=CD•BC=4×8=32,解得2.18.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________. 【答案】2k <且1k ≠【解析】根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.【详解】由题意可得,1−k≠0,△=4+4(1−k)>0,∴k <2且k≠1.故答案为k <2且k≠1.【点睛】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.三、解答题(本题包括8个小题)19.已知:如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE .求证:(1)△AFD ≌△CEB .(2)四边形ABCD 是平行四边形.【答案】证明见解析【解析】证明:(1)∵DF ∥BE ,∴∠DFE=∠BEF .又∵AF=CE ,DF=BE ,∴△AFD ≌△CEB (SAS ).(2)由(1)知△AFD ≌△CEB ,∴∠DAC=∠BCA ,AD=BC ,∴AD ∥BC .∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).(1)利用两边和它们的夹角对应相等的两三角形全等(SAS ),这一判定定理容易证明△AFD ≌△CEB .(2)由△AFD ≌△CEB ,容易证明AD=BC 且AD ∥BC ,可根据一组对边平行且相等的四边形是平行四边形.20.已知:正方形ABCD 绕点A 顺时针旋转至正方形AEFG ,连接CE DF 、.如图,求证:CE DF =;如图,延长CB 交EF 于M ,延长FG 交CD 于N ,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.【答案】(1)证明见解析;(2),,,DAG BAE CNF FMC ∠∠∠∠.【解析】(1)连接AF 、AC ,易证∠EAC=∠DAF ,再证明ΔEAC ≅ΔDAF ,根据全等三角形的性质即可得CE=DF ;(2)由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,由此即可解答.【详解】(1)证明:连接,AF AC ,∵正方形ABCD 旋转至正方形AEFG∴DAG BAE ∠∠=,45BAC GAF ∠=∠=︒∴BAE BAC DAG GAF ∠+∠=∠+∠∴EAC DAF ∠=∠在EAC ∆和DAF ∆中,AE AD EAC FAD AC AF =⎧⎪∠=∠⎨⎪=⎩, ∴EAC DAF ∆≅∆∴CE DF =(2).∠DAG 、∠BAE 、∠FMC 、∠CNF ;由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,【点睛】本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC ≅ΔDAF 是解决问题的关键. 21.某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?【答案】(1)2400元;(2)8台.【解析】试题分析:(1)设商场第一次购入的空调每台进价是x 元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;(2)设最多将y 台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.试题解析:(1)设第一次购入的空调每台进价是x 元,依题意,得 52000240002,200x x=⨯+ 解得2400.x = 经检验,2400x =是原方程的解.答:第一次购入的空调每台进价是2 400元.(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).设第二次将y 台空调打折出售,由题意,得()()()()30001030002000.95300020020122%2400052000y y ⨯++⨯⋅+⋅-≥+⨯+(),解得8y ≤. 答:最多可将8台空调打折出售.22.如图,已知,等腰Rt △OAB 中,∠AOB=90°,等腰Rt △EOF 中,∠EOF=90°,连结AE 、BF .求证:(1)AE=BF ;(2)AE ⊥BF .【答案】见解析【解析】(1)可以把要证明相等的线段AE ,CF 放到△AEO ,△BFO 中考虑全等的条件,由两个等腰直角三角形得AO=BO ,OE=OF ,再找夹角相等,这两个夹角都是直角减去∠BOE 的结果,所以相等,由此可以证明△AEO ≌△BFO ;(2)由(1)知:∠OAC=∠OBF ,∴∠BDA=∠AOB=90°,由此可以证明AE ⊥BF【详解】解:(1)证明:在△AEO 与△BFO 中,∵Rt △OAB 与Rt △EOF 等腰直角三角形,∴AO=OB ,OE=OF ,∠AOE=90°-∠BOE=∠BOF ,∴△AEO ≌△BFO ,∴AE=BF;(2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.23.已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ =2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.【答案】(1)证明见解析(2142(3)EP+EQ= 2EC【解析】(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ 于H,由题意可求2,可得2,根据勾股定理可求14,即可求AP 的长;作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O,由题意可证△CNP≌△ CMQ,可得CN=CM,QM=PN,即可证Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,则可求得EP、EQ、EC 之间的数量关系.【详解】解:(1)如图1 中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ 且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如图 2 中,作CH⊥PQ 于H∵A、P、Q 共线,PC=2,∴PQ=22,∵PC=CQ,CH⊥PQ∴CH=PH= 2在Rt△ACH 中,AH=22= 14AC CH∴PA=AH﹣PH= 14-2解:结论:EP+EQ=2EC理由:如图 3 中,作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM ,QM=PN ,∴CE=CE ,∴Rt △CEM ≌Rt △CEN (HL ),∴EN=EM ,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM ﹣MQ=2EN ,,∴EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.24.先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 【答案】21x +;2. 【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()222121112x x x x x x x ---⋅++-- =()21211x x x x --++ =21x + 2x ≤的非负整数解有:2,1,0,其中当x 取2或1时分母等于0,不符合条件,故x 只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.25.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为()4,5-,(1,3)-.请在如图所示的网格平面内作出平面直角坐标系;请作出ABC ∆关于y 轴对称的'''A B C ∆;点'B 的坐标为 .ABC ∆的面积为 .【答案】(1)见解析;(2)见解析;(3)'(2,1)B ;(4)4.【解析】(1)根据C 点坐标确定原点位置,然后作出坐标系即可;(2)首先确定A 、B 、C 三点关于y 轴对称的点的位置,再连接即可;(3)根据点B'在坐标系中的位置写出其坐标即可(4)利用长方形的面积剪去周围多余三角形的面积即可.【详解】解:(1)如图所示:(2)如图所示:(3)结合图形可得:()B'2,1;(4)ΔABC 111S 34231224222=⨯-⨯⨯-⨯⨯-⨯⨯ 123144=---=.【点睛】此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.26.如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .【答案】详见解析.【解析】试题分析:利用SSS 证明△ABC ≌△DEF ,根据全等三角形的性质可得∠B=∠DEF ,再由平行线的判定即可得AB ∥DE .试题解析:证明:由BE =CF 可得BC =EF ,又AB =DE ,AC =DF ,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.考点:全等三角形的判定与性质.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°【答案】C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元【答案】A【解析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 3.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.4.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D 恰好落在AC上时,∠CAE的度数是()A .30°B .40°C .50°D .60°【答案】C 【解析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE ,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.【详解】∵∠B =70°,∠BAC =30°∴∠ACB =80°∵将△ABC 绕点C 顺时针旋转得△EDC .∴AC =CE ,∠ACE =∠ACB =80°∴∠CAE =∠AEC =50°故选C .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.5.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些【答案】B【解析】试题解析:方差越小,波动越小. 22,A B s s >数据B 的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A.5B.2 C.52D.25【答案】C【解析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.7.如图所示的两个四边形相似,则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.8.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80°B.50°C.30°D.20°【答案】D【解析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.9.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是()A.26°.B.44°.C.46°.D.72°【答案】A【解析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.10.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE【答案】B【解析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.二、填空题(本题包括8个小题)11.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …-5 -4 -3 -2 -1 …y … 3 -2 -5 -6 -5 … 则关于x 的一元二次方程ax 2+bx +c =-2的根是______.【答案】x 1=-4,x 1=2【解析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax 1+bx+c=3的解是x 1=﹣4,x 1=2.故答案为x 1=﹣4,x 1=2.点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.12.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.【答案】1:2【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.13.已知a+ =3,则的值是_____.【答案】7【解析】根据完全平方公式可得:原式=.14.关于x 的不等式组3515-12x x a ->⎧⎨≤⎩有2个整数解,则a 的取值范围是____________. 【答案】8⩽a<13; 【解析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a ⩽12,得:x ⩽125a + , ∵不等式组有2个整数解,∴其整数解为3和4,则4⩽125a +<5, 解得:8⩽a<13, 故答案为:8⩽a<13 【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键15.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __.【答案】k>1【解析】根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.【详解】因为正比例函数y=(k-1)x的图象经过第一、三象限,所以k-1>0,解得:k>1,故答案为:k>1.【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.16.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.【答案】1【解析】根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.【详解】△=(﹣8)2﹣4m=0,解得m=1,故答案为:1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.17.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.【答案】1【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′=22=1cm.86故答案为1.考点:平面展开-最短路径问题.18.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=23,则BC的长为______.【答案】2【解析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵3,OC=2,∴22OC PC+222(23)+=4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本题包括8个小题)19.如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.。

东莞市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

东莞市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

东莞市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)比较2, , 的大小,正确的是()A. 2< <B. 2< <C. <2<D. < <2【答案】C【考点】实数大小的比较,估算无理数的大小【解析】【解答】解:∵1<<2,2<<3∴<2<故答案为:C【分析】根据题意判断和分别在哪两个整数之间,即可判断它们的大小。

2、(2分)下列说法正确的是()A. |-2|=-2B. 0的倒数是0C. 4的平方根是2D. -3的相反数是3【答案】D【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根【解析】【解答】A、根据绝对值的代数意义可得|﹣2|=2,不符合题意;B、根据倒数的定义可得0没有倒数,不符合题意;C、根据平方根的定义可4的平方根为±2,不符合题意;D、根据相反数的定义可得﹣3的相反数为3,符合题意,故答案为:D.【分析】根据绝对值的意义,可对选项A作出判断;利用倒数的定义,可对选项B作出判断;根据正数的平方根有两个,它们互为相反数,可对选项C作出判断;根据相反数的定义,可对选项D作出判断。

3、(2分)下列图形中,∠1和∠2不是同位角的是()A. B.C. D.【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:选项A、B、C中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;选项D中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故答案为:D.【分析】同位角是指位于两条直线的同旁,位于第三条直线的同侧。

根据同位角的构成即可判断。

4、(2分)9的平方根是()A. B. C. D.【答案】B【考点】平方根【解析】【解答】∵(±3)2=9,∴9的平方根是3或-3.故答案为:B.【分析】根据平方根的定义可求得答案.一个正数有两个平方根,它们互为相反数.5、(2分)下列各数中3.14,,1.060060006…(每两个6之间依次增加一个0),0,,3.14159是无理数的有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:上述各数中是无理数的是:,(每两个6之间依次增加一个0)共2个.故答案为:B.【分析】由无理数的定义:“无限不循环小数叫无理数”可知已知数中的无理数的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( )A.①②③B.①③⑤C.②③④D.②④⑤【答案】D【解析】根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.2.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【解析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.3.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m【答案】A【解析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=,△()()22249m 43m 3737m 4=-+=-,∵0m 2<<,∴2m 40-<,∴△0<,∴方程没有实数根,故选A .【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.已知二次函数y =ax 1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx+c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .5【答案】D 【解析】根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:02b a-<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a -=-,∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确;⑤∵11124-<-<-,∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.5.如图,在Rt △ABC 中,∠C=90°, BE 平分∠ABC ,ED 垂直平分AB 于D ,若AC=9,则AE 的值是( )A .3B .3C .6D .4【答案】C【解析】由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【详解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故选C.6.在同一直角坐标系中,函数y=kx-k与kyx=(k≠0)的图象大致是()A.B.C.D.【答案】D【解析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数kyx=(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数kyx=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数kyx=(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件. 故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.7.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF【答案】B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.8.把不等式组的解集表示在数轴上,下列选项正确的是( )A .B .C .D .【答案】B 【解析】由(1)得x >-1,由(2)得x≤1,所以-1<x≤1.故选B .9.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A .3B .2C .23D .()123+ 【答案】C 【解析】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由垂径定理得到C 为AB 的中点,再由折叠得到CD=OC ,求出OC 的长,在直角三角形AOC 中,利用勾股定理求出AC 的长,即可确定出AB 的长.【详解】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由折叠得到CD=OC=12OD=1cm , 在Rt △AOC 中,根据勾股定理得:AC 2+OC 2=OA 2,即AC 2+1=4,解得:AC=3cm ,则AB=2AC=23cm .故选C .【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.10.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a >0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C . 二、填空题(本题包括8个小题)11.已知方程x 2﹣5x+2=0的两个解分别为x 1、x 2,则x 1+x 2﹣x 1•x 2的值为______.【答案】1【解析】解:根据题意可得x 1+x 2=b a -=5,x 1x 2=c a=2,∴x 1+x 2﹣x 1x 2=5﹣2=1.故答案为:1. 点睛:本题主要考查了根据与系数的关系,利用一元二次方程的两个根x 1、x 2具有这样的关系:x 1+x 2=b a -,x 1x 2=c a是解题的关键. 12.若a m =5,a n =6,则a m+n =________.【答案】1.【解析】根据同底数幂乘法性质a m ·a n =a m+n ,即可解题. 【详解】解:a m+n = a m ·a n =5×6=1. 【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.13.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则BE :BC 的值为_________.【答案】1:4【解析】由S △BDE :S △CDE =1:3,得到BE 1CE 3=,于是得到 41BE BC =. 【详解】解::1:3BDE CDE S S ,= 两个三角形同高,底边之比等于面积比.13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4.【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.14.如图,在△ABC 中,AB≠AC .D,E 分别为边AB,AC 上的点.AC=3AD,AB=3AE,点F 为BC 边上一点,添加一个条件:______,可以使得△FDB 与△ADE 相似.(只需写出一个)【答案】//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.15.二次函数y=(a-1)x 2-x+a 2-1 的图象经过原点,则a 的值为______.【答案】-1【解析】将(2,2)代入y=(a-1)x 2-x+a 2-1 即可得出a 的值.【详解】解:∵二次函数y=(a-1)x 2-x+a 2-1 的图象经过原点,∴a 2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a 的值为-1.故答案为-1.【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.16.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.【答案】4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是AB 的中点,∴∠COD=45°,∴OC=2CD=42,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积=22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.17.如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 .【答案】7【解析】试题分析:∵△ABC 是等边三角形,∴∠B=∠C=60°,AB=BC .∴CD=BC -BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC .又∵∠B=∠C=60°,∴△ABD ∽△DCE .∴AB DC BD CE =,即96CE 23CE=⇒=. ∴AE AC CE 927=-=-=.18.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt △ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD ,再以 Rt △ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG ,则由这五个等腰直角三角形所构成的图形的面积为__________.【答案】12.2【解析】∵△ABC 是边长为1的等腰直角三角形,∴S △ABC =12×1×1=12=11-1;,,∴S △ACD=121-1 ∴第n 个等腰直角三角形的面积是1n-1.∴S △AEF =14-1=4,S △AFG =12-1=8, 由这五个等腰直角三角形所构成的图形的面积为12+1+1+4+8=12.2.故答案为12.2. 三、解答题(本题包括8个小题)19.现有一次函数y =mx+n 和二次函数y =mx 2+nx+1,其中m≠0,若二次函数y =mx 2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y =mx+n 经过点(2,0),且图象经过第一、三象限.二次函数y =mx 2+nx+1经过点(a ,y 1)和(a+1,y 2),且y 1>y 2,请求出a 的取值范围.若二次函数y =mx 2+nx+1的顶点坐标为A (h ,k )(h≠0),同时二次函数y =x 2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围.【答案】(1)y =x ﹣2,y=12-x 2+32+1;(2)a <12;(3)m <﹣2或m >1. 【解析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n =−2m ,利用m 与n 的关系能求出二次函数对称轴x =1,由一次函数经过一、三象限可得m >1,确定二次函数开口向上,此时当 y 1>y 2,只需让a 到对称轴的距离比a +1到对称轴的距离大即可求a 的范围.(3)将A (h ,k )分别代入两个二次函数解析式,再结合对称抽得h =n 2m-,将得到的三个关系联立即可得到11h m =-+,再由题中已知−1<h <1,利用h 的范围求出m 的范围. 【详解】(1)将点(2,1),(3,1),代入一次函数y =mx+n 中,0213m n m n=+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩, ∴一次函数的解析式是y =x ﹣2,再将点(2,1),(3,1),代入二次函数y =mx 2+nx+1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx+n 经过点(2,1),∴n =﹣2m ,∵二次函数y =mx 2+nx+1的对称轴是x =n 2m -, ∴对称轴为x =1,又∵一次函数y =mx+n 图象经过第一、三象限,∴m >1,∵y 1>y 2,∴1﹣a >1+a ﹣1,∴a <12. (3)∵y =mx 2+nx+1的顶点坐标为A (h ,k ),∴k =mh 2+nh+1,且h =n 2m-, 又∵二次函数y =x 2+x+1也经过A 点,∴k =h 2+h+1,∴mh 2+nh+1=h 2+h+1, ∴11h m =-+, 又∵﹣1<h <1,∴m <﹣2或m >1.【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.20.已知抛物线y =ax 2﹣bx .若此抛物线与直线y =x 只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y 轴上的点P (1,n )为中心,作该抛物线关于点P 对称的抛物线y',若这两条抛物线有公共点,求n 的取值范围;若a >1,将此抛物线向上平移c 个单位(c >1),当x =c 时,y =1;当1<x <c 时,y >1.试比较ac 与1的大小,并说明理由.【答案】(1)①212y x x =-+;②n≤1;(2)ac≤1,见解析. 【解析】(1)①△=1求解b =1,将点(3,1)代入平移后解析式,即可;②顶点为(1,12)关于P(1,n)对称点的坐标是(﹣1,2n﹣12),关于点P中心对称的新抛物线y'=12(x+1)2+2n﹣12=12x2+x+2n,联立方程组即可求n的范围;(2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1.b2a≥c,b≥2ac,ac+1≥2ac,ac≥1;【详解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),∴4a﹣2b=1,∴a=﹣12,b=﹣1,原抛物线:y=﹣12x2+x,②其顶点为(1,12)关于P(1,n)对称点的坐标是(﹣1,2n﹣12),∴关于点P中心对称的新抛物线y'=12(x+1)2+2n﹣12=12x2+x+2n.由221y=x+x+2n21y=-x+x2⎧⎪⎪⎨⎪⎪⎩得:x2+2n=1有解,所以n≤1.(2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),其解析式为:y=ax2﹣bx+c过点(c,1),∴ac2﹣bc+c=1 (c>1),∴ac﹣b+1=1,b=ac+1,且当x=1时,y=c,对称轴:x=b2a,抛物线开口向上,画草图如右所示.由题知,当1<x<c时,y>1.∴b2a≥c,b≥2ac,∴ac+1≥2ac,ac≤1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.21.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.【答案】(1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.【解析】(1)根据题意只需要证明a2+b2=c2,即可解答(2)根据题意将n=5代入得到a=12(m2﹣52),b=5m,c=12(m2+25),再将直角三角形的一边长为37,分别分三种情况代入a=12(m2﹣52),b=5m,c=12(m2+25),即可解答【详解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n为正整数,∴a、b、c是一组勾股数;(2)解:∵n=5∴a=12(m2﹣52),b=5m,c=12(m2+25),∵直角三角形的一边长为37,∴分三种情况讨论,①当a=37时,12(m2﹣52)=37,解得m=(不合题意,舍去) ②当y=37时,5m=37,解得m=375(不合题意舍去);③当z=37时,37=12(m2+n2),解得m=±7,∵m>n>0,m、n是互质的奇数,∴m=7,把m=7代入①②得,x=12,y=1.综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.【点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键22.解不等式组20 {5121123xx x->+-+≥①②,并把解集在数轴上表示出来.【答案】﹣1≤x<1.【解析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<1.不等式组的解集在数轴上表示如下:23.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.【答案】(1)13;(2)这个游戏不公平,理由见解析.【解析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:13;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=59,P(乙胜)=49.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.【答案】甲有钱752,乙有钱25.【解析】设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱x,乙有钱y.由题意得:15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,解方程组得:75225xy⎧⎪⎪=⎨⎪⎪=⎩,答:甲有钱752,乙有钱25.【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.25.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP 是⊙O 的切线;若⊙O 的半径为3cm ,求图中阴影部分的面积.【答案】(1)证明见解析;(2)2933()22cm . 【解析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可.(2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°. ∴OD ⊥DP .∵OD 为半径,∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm ,∴OP=6cm ,由勾股定理得:3. ∴图中阴影部分的面积221603933333()236022ODP DOB S S S cm 扇形 26.用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅计算111111223344556++++=⨯⨯⨯⨯⨯ .探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值. 【答案】解:(1)56;(2)n n 1+;(3)n=17. 【解析】(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n 的一元一次方程,从而得出n 的值.【详解】(1)原式=1−12+12−13+13−14+14−15+15−16=1−16=56. 故答案为56; (2)原式=1−12+12−13+13−14+…+1n −1n 1+=1−1n 1+=n n 1+ 故答案为n n 1+; (3)113⨯ +135⨯+157⨯+…+1n n (2-1)(2+1)=12 (1−13+13−15+15−17+…+12n 1-−12n 1+) =12(1−12n 1+) =n 2n 1+ =1735解得:n=17.考点:规律题.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知a为整数,且3<a<5,则a等于()A.1 B.2 C.3 D.4【答案】B【解析】直接利用3,5接近的整数是1,进而得出答案.【详解】∵a为整数,且3<a<5,∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.2.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.1326【答案】C【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,故选:C.点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.3.如图所示的几何体的俯视图是()A.B.C.D.【答案】D【解析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【详解】从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.4.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元【答案】D【解析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.5.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.【答案】C【解析】根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.6.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m【答案】D【解析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.7.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF【答案】B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.8.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮【答案】D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.9.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-【答案】B【解析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 10.不等式组325521x x +>⎧⎨-≥⎩的解在数轴上表示为( ) A .B .C .D .【答案】C 【解析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x >5-2,解得x >1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C .故选C .【点睛】考核知识点:解不等式组.二、填空题(本题包括8个小题)11.如图,已知△ABC 中,AB =AC =5,BC =8,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是______.【答案】258或5或1. 【解析】根据以点A ,D ,E 为顶点的三角形是等腰三角形分类讨论即可.【详解】解:如图(1)当在△ADE 中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m 个单位使得E 、C 点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE 、AD 为腰使ADE 为等腰三角形,设平移了m 个单位:则223(m-4)+AD=m , 得:2223(m-4)=m +,得m=258, 综上所述:m 为258或5或1,所以答案:258或5或1. 【点睛】 本题主要考查等腰三角形的性质,注意分类讨论的完整性.12.圆锥的底面半径为2,母线长为6,则它的侧面积为_____.【答案】12π.【解析】试题分析:根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.解:根据圆锥的侧面积公式:πrl=π×2×6=12π,故答案为12π.考点:圆锥的计算.13.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两,y 两,则根据题意,可得方程组为___.【答案】561645x y x y y x +=⎧⎨+=+⎩【解析】设每只雀、燕的重量各为x 两,y 两,由题意得:5616{45x y x y y x+++== 故答案是:5616{45x y x y y x +++==或5616{34x y x y+== . 14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG =﹣,﹣2),OH =,12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).【答案】①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC 与OD 垂直;②∵3cos301tan45sin60⨯+⋅=+= ∴OE 与OF 不垂直.。

相关文档
最新文档