高中物理选修3-1知识点归纳(完美版)复习过程
物理选修3-1-知识点归纳(全)
物理选修3-1-知识点归纳(全) 第一章电学基础1.电荷、电场与库仑定律•电荷的本质和性质•电场的概念及特征•库仑定律的表述和应用2.电势、电势差和电势能•电势的概念、性质和单位•电势差的概念、性质和计算•电势能的概念、性质和计算3.电容与电容器•电容的概念、性质和计算•平行板电容器、球形电容器、电容的串、并联组合4.电流、电阻和欧姆定律•电流的概念、性质和单位•电阻的概念、性质、计算和分类•欧姆定律的表述和应用5.磁学基础•磁场的概念和特征•磁感应强度的概念和计算•洛伦兹力的概念、表述和应用第二章电磁感应1.电磁感应现象•感生电动势的概念和计算•导体在磁场中的运动规律2.电磁感应定律•法拉第电磁感应定律的表述和应用•楞次定律的表述和应用3.自感和互感•自感系数和互感系数的概念、性质和计算•互感器的应用4.交流电路•交变电压和交变电流的概念和表示方法•交流电路的基本元件和参数•交流电路的基本特性和计算方法第三章光学基础1.光的本质和性质•光的本质和特征•干涉、衍射、反射、折射的现象和解释2.光的传播•光速、光程、光程差的概念和计算•光的直线传播和折射定律•全反射和光的色散现象3.光的成像和光学仪器•光的成像公式和规律•球面镜的成像特点和应用•复合透镜的成像原理和计算方法第四章物质结构和性质1.物质的结构和组成•原子结构和基本粒子•周期表和元素的性质2.固体物质的结构和性质•晶体的结构和性质•固体材料的物理性质3.材料的热学性能•温度、热能和内能的关系•热力学定律和热学过程的基本属性•热传导、热辐射和热对流的计算和应用以上是对物理选修3-1的全面知识点归纳,希望能对大家的学习有所帮助。
高中物理选修3-1知识点详细汇总
第一章 电场主要知识点一、基本概念1、起电方式(摩擦、传导、感应),库仑定律(也叫静电力或库仑力)2、电场强度的定义式: E=F/q , 电场力F= qE正电荷受的电场力与场强方向相同3、点电荷的场强公式: E=KQ/r 24、电场中两点间的电势差公式(两个):U AB =W AB /q ;U AB =5、电场中某点的电势公式: =W A ∞/q 或=εA (电势能)/ q6、匀强电场中电场强度与电势差关系公式: U=Ed, 或 E=U/d注意:d 是沿场强方向的距离,或初末两个位置等势面间的距离。
7、电场力做功W ab =qU ab 。
U ab 指a 与b 之间电势差,即U AB = 电场力做正功,电荷的电势能减少;反之,增大。
8、动能定理(合外力对物体做的功=物体动能的增量) W 合= mV t 2/2 - mV o 2/2 或 W 合=ΔE K 9、电容器:(1)、电容器的电容的定义式:C=Q/U , (2)、平行板电容器:kdsc πε4=(3)、电容器连接中通常遇到的两类问题①、断开电源情况下,Q 不变; ②、始终接通电源情况下,U 不变。
上面两类问题主要用三个公式解决:C=Q/U 、kdsc πε4=、E=U/d二、五个静电场物理量的判断 (一)、电场(场强E) 的判断(1)、用电场线判断:疏密表示E 大小, ;切线方向或 +q 受力的方向(-q 受力的反方向)表示E 的方向。
(2)、用定义式判断:E=F/q (二)、电场力的判断:大小:F= q ·E ;方向:区分正、负电,“正同负反” (三)、电势高低的判断1、看电场线的方向2、由电势差U AB 的正负判断(四)、电场力作正功、负功的判断: 看电场力的方向与移动方向,明确电场力是作动力还是阻力。
(五)、电势能增减的判断: 看电场力做功的正、负E PA 电势能- E PB 电势能=W AB三、重要概念理解 (一)、电场强度 1.电场的物质性电荷之间存在着相互作用力,这一相互作用力是靠电场来实现的.电荷周围存在着电场,电场是一种物质,其一个重要特性是对其中的电荷施加力的作用.用电场强度来描述电场的力的方面的性质.BA ϕϕ-A ϕBA ϕϕ-Aϕ2.电场强度的概念 电场强度的定义式 qF E =其意义是:检验电场中A 点的电场强度,可以在A 点放一电量为q 的检验电荷,其受力为F .实验发现检验电荷受到的电场力与检验电荷的电量成正比,其比值可以反映电场中A 点的性质,定义为电场强度.而这个比值与F 和q 均无关,只与场源电荷和场中位置有关,即便在电场中没有检验电荷q ,A 点的电场依旧是客观存在的,其电场强度E 的大小和方向不会因检验电荷q 的不同而不同. 与密度ρ类似,密度ρ定义为Vm =ρ ,而ρ与m 和V 均无关,只与物质本身的性质有关.3.电场强度是矢量,其大小等于F 与q 的比值,反映电场的强弱;其方向规定为正电荷受力的方向. 4.注意区分场强的三个公式 qF E =是电场强度的定义式,对于任何电场都适用.2r kQ E =是点电荷的电场强度的公式,此式只适用于点电荷的电场,由该式可以看出,电场强度与场源电荷Q 和场中位置r 有关,与检验电荷q 无关. dU E =只适用于匀强电场,它反映匀强电场中场强和电势差的关系,其中U 为两点间的电势差,d是这两点在场强方向上的距离. 5.电场强度的叠加是矢量的叠加空间中若存在着几个电荷,它们在P 点都激发电场,则P 点的电场为这几个电荷单独在P 点产生电场的场强的矢量合.(二)、电势能、电势差、电势电场中的电势、电势差、电势能可以与重力场中的高度、高度差和重力势能类比,比较如下:重力做功h G W ∆⋅=——电场力做功ABU q W ⋅=高度差末初h h h -=∆——电势差B A ABUϕϕ-=某点的“高度” h ——某点的“电势” ϕ重力势能——电势能类比方法是科学研究的重要方法,也是我们掌握知识的好方法,要学会自觉运用这种方法.通过类比,可以帮助我们理解一些概念和规律,也有助于记忆. (三)、电容器、电容 1.电容器的电容(1)将电容器的带电量与电容器两板间的电势差的比值定义为电容器的电容,定义式为: UQ C =(2)平行板电容器的电容与两极板间电介质的介电常数ε成正比,与两极板的正对面积S 成正比,与两极板间的距离d 成反比,即dSC ε∝,写成等式kdSC πε4=.(3)注意:电容是反映电容器本身贮电性能的物理量,由电容器本身的构造决定,与电容器带电多少、是否带电及两极间电势差大小等均无关.由平行板电容器电容的决定式可以看出,其电容只与ε、S 和d 有关.2.解决平行板电容器问题的基本思路(1) 首先确定不变量,电容器始终与电源相接,则电势差U 不变,若电容器充电后断开电源,则Q不变.(2)用式kdSC πε4=分析平行板电容器电容的变化.(3) 用定义式UQ C =分析电量Q 或者电势差U 的变化. (4) 用SkQE dU E επ4==或者分析两极板间电场强度的变化.(四)、带电粒子在电场中的运动1.带电粒子重力是否可忽略?(1)基本粒子:如电子、质子、离子、原子核等一般忽略重力;(2)带电颗粒:如尘埃、液滴、小球等一般不能忽略。
高中物理选修3-1知识点归纳总结
⾼中物理选修3-1知识点归纳总结 在⼈教版普通⾼中物理课本选修3-1模块中,有很多⾼考物理考试中会出现的知识点需要我们去进⾏针对性的复习。
下⾯是店铺给⼤家带来的⾼中物理选修3-1知识点,希望对你有帮助。
⾼中物理选修3-1知识点(⼀) ⼀、电动势 (1)定义:在电源内部,⾮静电⼒所做的功W与被移送的电荷q的⽐值叫电源的电动势。
(2)定义式:E=W/q (3)单位:伏(V) (4)物理意义:表⽰电源把其它形式的能(⾮静电⼒做功)转化为电能的本领⼤⼩。
电动势越⼤,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。
⼆、电源(池)的⼏个重要参数 (1)电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的⼤⼩⽆关。
(2)内阻(r):电源内部的电阻。
(3)容量:电池放电时能输出的总电荷量。
其单位是:A·h,mA·h. ⾼中物理选修3-1知识点(⼆) ⼀、导体的电阻 (1)定义:导体两端电压与通过导体电流的⽐值,叫做这段导体的电阻。
(2)公式:R=U/I(定义式) 说明: A、对于给定导体,R⼀定,不存在R与U成正⽐,与I成反⽐的关系,R只跟导体本⾝的性质有关。
B、这个式⼦(定义)给出了测量电阻的⽅法——伏安法。
C、电阻反映导体对电流的阻碍作⽤ ⼆、欧姆定律 (1)定律内容:导体中电流强度跟它两端电压成正⽐,跟它的电阻成反⽐。
(2)公式:I=U/R (3)适应范围:⼀是部分电路,⼆是⾦属导体、电解质溶液。
三、导体的伏安特性曲线 (1)伏安特性曲线:⽤纵坐标表⽰电流I,横坐标表⽰电压U,这样画出的I-U图象叫做导体的伏安特性曲线。
(2)线性元件和⾮线性元件 线性元件:伏安特性曲线是通过原点的直线的电学元件。
⾮线性元件:伏安特性曲线是曲线,即电流与电压不成正⽐的电学元件。
四、导体中的电流与导体两端电压的关系 (1)对同⼀导体,导体中的电流跟它两端的电压成正⽐。
(完整)高中物理选修3-1知识点归纳(完美版),推荐文档 (2)
U d AB AB 物理选修 3-1一、电场1. 两种电荷、电荷守恒定律、元电荷(e =1.60×10-19C ;) 带电体电荷量等于元电荷的整数倍2. 库仑定律:FKQ 1Q 2 r2(真空中的点电荷{)F:点电荷间的作用力(N);k:静电力常量k =9.0×109N•m 2/C 2;Q 1、Q 2:两点电荷的电量(C);r:两点电荷间的距离(m); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸}引3. 电场强度: E验电荷的电量(C)}F (定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理;)q :检q4. 真空点(源)电荷形成的电场EKQ r2{r :源电荷到该位置的距离(m ),Q :源电荷的电量} 5. 匀强电场的场强E U AB d{U AB :AB 两点间的电压(V),d:AB 两点在场强方向的距离(m)} 6. 电场力:F =qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7. 电势与电势差:U =φ -φ ,U =W /q =Δ8. 电场力做功:W A B =q U A B =q E d =ΔE P 减{W A B :带电体由A 到 B 时电场力所做的功(J),q:带电量(C),U AB :电场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔE P 减 :带电体由A 到 B 时势能的减少量}9. 电势能:E PA =q φA {E PA :带电体在A 点的电势能(J),q:电量(C),φA :A 点的电势(V)} 10. 电势能的变化ΔE P 减=E PA -E PB {带电体在电场中从A 位置到B 位置时电势能的减少量} 11. 电场力做功与电势能变化W A B =ΔE P 减=q U A B (电场力所做的功等于电势能的减少量) 12. 电容C =Q /U (定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13. 平行板电容器的电容C =常见电容器εS 4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)14. 带电粒子在电场中的加速(V o =0):W =ΔE K 增或qU =15. 带电粒子沿垂直电场方向以速度V 0 进入匀强电场时的偏转(不考虑重力作用) :类平抛运动(在带等量异种电荷的平行极板中:E =垂直电场方向:匀速直线运动L =V 0t平行电场方向:初速度为零的匀加速直线运动d =at 2F qE qU ,a === 2 m mm注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;-1-E P 减 qmVt 2 2 AB ABdmv 0求得2(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的分布要求熟记;(4) 电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5) 处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F =106μF=1012PF ;(7)电子伏(eV)是能量的单位,1eV =1.60×10-19J ;(8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面一、模型原题带电粒子在匀强电场中的类平抛运动一质量为m ,带电量为q 的正粒子从两极板的中部以速度 v 0水平射入电压为U的竖直向下的匀强电场中,如图所示,已知极板长度为L ,极板间距离为d 。
(完整版)高中物理选修3-1知识点清单(非常详细精选全文
最新精选全文完整版(可编辑修改)(完整版)高中物理必修3-1知识点清单(非常详细)第一章 静电场精选全文,可以编辑修改文字!一、电荷和电荷守恒定律1.点电荷:形状和大小对研究问题的影响可忽略不计的带电体称为点电荷. 2.电荷守恒定律(1)电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电. 二、库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.公式:F =kq 1q 2r2,式中的k =9.0×109 N ·m 2/C 2,叫做静电力常量. 3.适用条件:(1)点电荷;(2)真空. 三、电场强度1.意义:描述电场强弱和方向的物理量. 2.公式(1)定义式:E =F q,是矢量,单位:N/C 或V/m.(2)点电荷的场强:E =k Q r ,Q 为场源电荷,r 为某点到Q 的距离.(3)匀强电场的场强:E =Ud.3.方向:规定为正电荷在电场中某点所受电场力的方向. 四、电场线及特点1.电场线:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度方向.2.电场线的特点(1)电场线从正电荷或无限远处出发,终止于负电荷或无限远处. (2)电场线不相交.(3)在同一电场里,电场线越密的地方场强越大. (4)沿电场线方向电势降低.(5)电场线和等势面在相交处互相垂直. 3.几种典型电场的电场线(如图所示)考点一 对库仑定律的理解和应用 1.对库仑定律的理解 (1)F =kq 1q 2r 2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,它们之间的静电力不能认为趋于无限大.2.电荷的分配规律(1)两个带同种电荷的相同金属球接触,则其电荷量平分.(2)两个带异种电荷的相同金属球接触,则其电荷量先中和再平分. 考点二 电场线与带电粒子的运动轨迹分析1.电荷运动的轨迹与电场线一般不重合.若电荷只受电场力的作用,在以下条件均满足的情况下两者重合:(1)电场线是直线.(2)电荷由静止释放或有初速度,且初速度方向与电场线方向平行. 2.由粒子运动轨迹判断粒子运动情况:(1)粒子受力方向指向曲线的内侧,且与电场线相切. (2)由电场线的疏密判断加速度大小.(3)由电场力做功的正负判断粒子动能的变化. 3.求解这类问题的方法: (1)“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向),从二者的夹角情况来分析曲线运动的情景.(2)“三不知时要假设”——电荷的正负、场强的方向(或等势面电势的高低)、电荷运动的方向,是题意中相互制约的三个方面.若已知其中的任一个,可顺次向下分析判定各待求量;若三个都不知(三不知),则要用“假设法”分别讨论各种情况.第二章 电势能和电势差一、电场力做功和电势能 1.电场力做功(1)特点:静电力做功与实际路径无关,只与初末位置有关. (2)计算方法①W =qEd ,只适用于匀强电场,其中d 为沿电场方向的距离. ②W AB =qU AB ,适用于任何电场. 2.电势能(1)定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时静电力所做的功.(2)静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量,即W AB =E p A-E p B =-ΔE p .(3)电势能具有相对性. 二、电势、等势面 1.电势(1)定义:电荷在电场中某一点的电势能与它的电荷量的比值.(2)定义式:φ=E p q.(3)相对性:电势具有相对性,同一点的电势因零电势点的选取不同而不同. 2.等势面(1)定义:电场中电势相同的各点构成的面. (2)特点①在等势面上移动电荷,电场力不做功.②等势面一定与电场线垂直,即与场强方向垂直. ③电场线总是由电势高的等势面指向电势低的等势面.④等差等势面的疏密表示电场的强弱(等差等势面越密的地方,电场线越密). 三、电势差1.定义:电荷在电场中,由一点A 移到另一点B 时,电场力所做的功W AB 与移动的电荷的电量q 的比值.2.定义式:U AB =W ABq. 3.电势差与电势的关系:U AB =φA -φB ,U AB =-U BA . 4.电势差与电场强度的关系匀强电场中两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积,即U AB =Ed .特别提示:电势和电势差都是由电场本身决定的,与检验电荷无关,但电场中各点的电势与零电势点的选取有关,而电势差与零电势点的选取无关.考点一 电势高低及电势能大小的比较 1.比较电势高低的方法(1)根据电场线方向:沿电场线方向电势越来越低.(2)根据U AB =φA -φB :若U AB >0,则φA >φB ,若U AB <0,则φA <φB .(3)根据场源电荷:取无穷远处电势为零,则正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低.2.电势能大小的比较方法 (1)做功判断法电场力做正功,电势能减小;电场力做负功,电势能增加(与其他力做功无关). (2)电荷电势法正电荷在电势高处电势能大,负电荷在电势低处电势能大.考点二等势面与粒子运动轨迹的分析 1电场 等势面(实线)图样 重要描述匀强电场垂直于电场线的一簇平面点电荷的电场以点电荷为球心的一簇球面等量异种点电荷的电场连线的中垂线上的电势为零2.带电粒子在电场中运动轨迹问题的分析方法(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负;(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等;(3)根据动能定理或能量守恒定律判断动能的变化情况.考点三公式U=Ed的拓展应用1.在匀强电场中U=Ed,即在沿电场线方向上,U∝d.推论如下:(1)如图甲,C点为线段AB的中点,则有φC=φA+φB2.(2)如图乙,AB∥CD,且AB=CD,则U AB=U CD.2.在非匀强电场中U=Ed虽不能直接应用,但可以用作定性判断.考点四电场中的功能关系1.求电场力做功的几种方法(1)由公式W=Fl cos α计算,此公式只适用于匀强电场,可变形为W=Eql cos α.(2)由W AB=qU AB计算,此公式适用于任何电场.(3)由电势能的变化计算:W AB=E p A-E p B.(4)由动能定理计算:W电场力+W其他力=ΔE k.注意:电荷沿等势面移动电场力不做功.2.电场中的功能关系(1)若只有电场力做功,电势能与动能之和保持不变.(2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变.(3)除重力、弹簧弹力之外,其他各力对物体做的功等于物体机械能的变化.(4)所有外力对物体所做的功等于物体动能的变化.3.在解决电场中的能量问题时常用到的基本规律有动能定理、能量守恒定律和功能关系.(1)应用动能定理解决问题需研究合外力的功(或总功).(2)应用能量守恒定律解决问题需注意电势能和其他形式能之间的转化.(3)应用功能关系解决该类问题需明确电场力做功与电势能改变之间的对应关系.(4)有电场力做功的过程机械能不守恒,但机械能与电势能的总和可以守恒.四、电容器、电容1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成.(2)带电量:一个极板所带电量的绝对值.(3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能.放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能.2.电容(1)定义式:C=QU.(2)单位:法拉(F),1 F=106μF=1012pF.3.平行板电容器(1)影响因素:平行板电容器的电容与正对面积成正比,与介质的介电常数成正比,与两极板间距离成反比.(2)决定式:C =εr S4πkd,k 为静电力常量.特别提醒:C =Q U ⎝ ⎛⎭⎪⎫或C =ΔQ ΔU 适用于任何电容器,但C =εr S4πkd仅适用于平行板电容器.五、带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20;(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:利用运动的合成与分解. ①沿初速度方向:做匀速运动.②沿电场方向:做初速度为零的匀加速运动. 特别提示:带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.六、带电粒子在电场中的偏转 1.基本规律设粒子带电荷量为q ,质量为m ,两平行金属板间的电压为U ,板长为l ,板间距离为d (忽略重力影响),则有(1)加速度:a =F m =qE m =qUmd.(2)在电场中的运动时间:t =l v 0.(3)位移⎩⎪⎨⎪⎧v x t =v 0t =l 12at 2=y ,y =12at 2=qUl22mv 20d . (4)速度⎩⎪⎨⎪⎧v x =v 0v y =at,v y =qUtmd, v =v 2x +v 2y ,tan θ=v y v x =qUl mv 20d. 2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的.证明:由qU 0=12mv 20及tan θ=qUl mdv 20得tan θ=Ul2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l2.3.带电粒子在匀强电场中偏转的功能关系:当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.第三章 恒定电流 第四章 闭合电路的欧姆定律一、电流、欧姆定律 1.电流(1)定义:自由电荷的定向移动形成电流. (2)方向:规定为正电荷定向移动的方向. (3)三个公式①定义式:I =q /t ;②微观式:I =nqvS ;③I =U R.2.欧姆定律(1)内容:导体中的电流I 跟导体两端的电压U 成正比,跟导体的电阻R 成反比. (2)公式:I =U /R .(3)适用条件:适用于金属和电解液导电,适用于纯电阻电路. 二、电阻、电阻率、电阻定律 1.电阻(1)定义式:R =U I.(2)物理意义:导体的电阻反映了导体对电流阻碍作用的大小,R 越大,阻碍作用越大. 2.电阻定律(1)内容:同种材料的导体,其电阻与它的长度成正比,与它的横截面积成反比,导体的电阻还与构成它的材料有关.(2)表达式:R =ρl S . 3.电阻率(1)计算式:ρ=R S l.(2)物理意义:反映导体的导电性能,是导体材料本身的属性. (3)电阻率与温度的关系①金属:电阻率随温度的升高而增大. ②半导体:电阻率随温度的升高而减小. ③超导体:当温度降低到绝对零度附近时,某些材料的电阻率突然减小为零成为超导体. 三、电功、电功率、焦耳定律 1.电功 (1)实质:电流做功的实质是电场力对电荷做正功,电势能转化为其他形式的能的过程. (2)公式:W =qU =UIt ,这是计算电功普遍适用的公式. 2.电功率(1)定义:单位时间内电流做的功叫电功率.(2)公式:P =W t=UI ,这是计算电功率普遍适用的公式.3.焦耳定律电流通过电阻时产生的热量Q =I 2Rt ,这是计算电热普遍适用的公式. 4.热功率(1)定义:单位时间内的发热量. (2)表达式:P =Q t=I 2R .四、串、并联电路的特点 1.特点对比串联并联电流 I =I 1=I 2=…=I n I =I 1+I 2+…+I n 电压 U =U 1+U 2+…+U nU =U 1=U 2=…=U n 电阻R =R 1+R 2+…+R n1R =1R 1+1R 2+…+1R n2.几个常用的推论(1)串联电路的总电阻大于其中任一部分电路的总电阻.(2)并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻.(3)无论电阻怎样连接,每一段电路的总耗电功率P 总是等于各个电阻耗电功率之和. (4)无论电路是串联还是并联,电路中任意一个电阻变大时,电路的总电阻变大. 五、电源的电动势和内阻 1.电动势(1)定义:电动势在数值上等于非静电力把1 C 的正电荷在电源内从负极移送到正极所做的功.(2)表达式:E =W q.(3)物理意义:反映电源把其他形式的能转化成电能的本领大小的物理量. 2.内阻电源内部也是由导体组成的,也有电阻,叫做电源的内阻,它是电源的另一重要参数. 六、闭合电路欧姆定律1.内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比.2.公式⎩⎪⎨⎪⎧I =E R +r只适用于纯电阻电路E =U 外+U 内适用于任何电路3.路端电压U 与电流I 的关系(1)关系式:U =E -Ir . (2)U -I 图象如图所示.①当电路断路即I =0时,纵坐标的截距为电源电动势. ②当外电路电压为U =0时,横坐标的截距为短路电流. ③图线的斜率的绝对值为电源的内阻. 七、测量电路的选择对伏安法测电阻,应根据待测电阻的大小选择电流表不同的接法.1.阻值判断法:当R V ≫R x 时,采用电流表“外接法”; 当R x ≫R A 时,采用电流表“内接法”. 2.倍率比较法:(1)当R V R x =R x R A ,即R x =R V ·R A 时,既可选择电流表“内接法”,也可选择“外接法”;(2)当R V R x >R xR A即R x <R V ·R A 时,采用电流表外接法;(3)当R V R x <R x R A即R x >R V ·R A 时,采用电流表内接法. 3.试触法:ΔU U 与ΔII 比较大小:(1)若ΔU U >ΔII ,则选择电压表分流的外接法;(2)若ΔI I>ΔUU,则选择电流表的内接法.八、实验器材的选择 1.安全因素通过电源、电表、电阻的电流不能超过允许的最大电流. 2.误差因素选择电表时,保证电流和电压均不超过其量程.使指针有较大偏转(一般取满偏度的13~23);使用欧姆表选挡时让指针尽可能在中值刻度附近. 3.便于操作选滑动变阻器时,在满足其他要求的前提下,可选阻值较小的. 4.关注实验的实际要求.第五章 磁场一、磁场、磁感应强度 1.磁场(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用. (2)方向:小磁针的N 极所受磁场力的方向. 2.磁感应强度(1)物理意义:描述磁场强弱和方向.(2)定义式:B =F IL(通电导线垂直于磁场).(3)方向:小磁针静止时N 极的指向. (4)单位:特斯拉,符号T. 二、磁感线及特点 1.磁感线在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致. 2.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱.(3)磁感线是闭合曲线,没有起点和终点.在磁体外部,从N 极指向S 极;在磁体内部,由S 极指向N 极.(4)同一磁场的磁感线不中断、不相交、不相切. (5)磁感线是假想的曲线,客观上不存在. 3.电流周围的磁场直线电流通电螺线管环形电流非匀强磁场三、安培力的大小和方向1.安培力的大小(1)磁场和电流垂直时,F=BIL.(2)磁场和电流平行时:F=0.2.安培力的方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)四、洛伦兹力1.定义:运动电荷在磁场中所受的力.2.大小(1) v∥B时,F=0.(2) v⊥B时,F=qvB.(3) v与B夹角为θ时,F=qvB sin_θ.3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向.(2)方向特点:F⊥B,F⊥v.即F垂直于B、v决定的平面.(注意B和v可以有任意夹角).由于F始终垂直于v的方向,故洛伦兹力永不做功.五、洛伦兹力和电场力的比较1.洛伦兹力方向的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)左手判断洛伦兹力方向,但一定分正、负电荷.六、带电粒子在匀强磁场中的运动1.圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心(如图甲所示,图中P 为入射点,M为出射点).(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M为出射点).2.半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.3.运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT⎝⎛⎭⎪⎫或t=θRv.4.求解粒子在匀强磁场中运动问题的步骤:(1)画轨迹:即确定圆心,画出运动轨迹.(2)找联系:轨迹半径与磁感应强度、运动速度的联系,偏转角度与圆心角、运动时间的联系,在磁场中的运动时间与周期的联系.(3)用规律:即牛顿运动定律和圆周运动的规律,特别是周期公式、半径公式.总之,在这一学年中,我不仅在业务能力上,还是在教育教学上都有了一定的提高。
高中物理选修3-1知识点汇总(详细)
物理选修3-1知识点总结一、静电力1.电荷电荷守恒定律点电荷Ⅰ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。
电荷的多少叫电量。
基本电荷_________________。
带电体电荷量等于元电荷的整数倍(Q=ne)⑵使物体带电也叫起电。
使物体带电的方法有三种:①摩擦起电②接触带电③感应起电。
⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。
带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。
2.库仑定律Ⅱ在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为______________________,其中比例常数K叫静电力常量,______________________。
(F:点电荷间的作用力(N),Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引)库仑定律的适用条件是(a)真空,(b)点电荷。
点电荷是物理中的理想模型。
当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。
3.静电场电场线Ⅰ为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。
电场线的特点:(a)始于正电荷(或无穷远),终止负电荷(或无穷远);(b)任意两条电场线都不相交。
电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。
带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。
4.电场强度点电荷的电场Ⅱ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。
高中物理选修3-1知识点归纳
高中物理选修3-1知识点归纳编辑:周中行 策划:解佳玲第一章 静电场1、库仑力:221rq q k F =(适用条件:真空中静止的点电荷) k = 9.0×109N ·m 2/ c 2 静电力常量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反)2、电场强度: 电场强度是表示电场性质的物理量。
是矢量。
定义式: qF E = 单位: N / C 或V/m 点电荷电场场强 2r Q kE = 匀强电场场强 d U E =3、电势能:电势能的单位:J通常取无限远处或大地表面为电势能的零点。
静电力做功等于电势能的减少量 PB PA AB E E W -=4、电势: 电势是描述电场能的性质的物理量。
是标量。
电势的单位:V电势的定义式:q E p=ϕ顺着电场线方向,电势越来越低。
一般点电荷形成的电场取无限远处的电势为零,在实际应用中常取大地的电势为零。
5、电势差U ,又称电压 qW U = U AB = φA -φB 电场力做功和电势差的关系:W AB = q U AB6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量(侧移距离): 做类似平抛运动 2022022212121V L md qU V L m qE at y ===粒子通过偏转电场的偏转角度 200tan mdv qUl v at v v x y ===θ 8、电容器的电容: 电容是表示电容器容纳电荷本领大小的物理量。
单位:F 定义式: c Q U =电容器的带电荷量: Q=cU平行板电容器的电容: kdS c πε4= 平行板电容器与电源的两极相连,则两极板间电压不变平行板电容器充电后,切断电源,电容器所带电荷量不变电容器接在电源上,电压不变;断开电源时,电容器上电量不变;改变两板距离E 不变。
高中物理选修3-1全册知识点总结
111076.1⨯=em e 高中物理选修3-1全册知识点总结第一章 静电场1.1电荷及其守恒定律一、电荷 1、 使物体带电的三种方式电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变 三、元电荷电荷的多少叫做电荷量.符号:Q 或q 单位:库仑 符号:C 1、元电荷:电子所带的电荷量(最小的电荷量),用e 表示.注意:所有带电体的电荷量或者等于e ,或者等于e 的整数倍。
2、电荷量e 的值:e =1.60×10-19C3、比荷(荷质比):电子的电荷量e 和电子的质量m e 的比值,为C/㎏1.2库仑定律一、库仑定律1、内容:真空中两个静止点电荷之间的相互作用力,与他们的电荷量的乘积成正比,与它们的距离的二次方成反比.作用力的方向在两个点电荷的连线上表达式:221r q q kF = (适用条件:真空中,点电荷——理想化模型)2静电力常量k = 9.0×109N ·m2/C2 二、库仑的实验库仑扭秤实验(1785年,法国物理学家.库仑)1.3电场强度一、电场:1、产生:电荷的周围都存在电场A、电荷之间的相互作用是通过特殊形式的物质——电场发生的B、物质性:是客观存在的2、基本性质:A、对放入其中的电荷有力的作用引入电场中的任何带电体都将受到电场力的作用,且同一点电荷在电场中不同点处受到的电场力的大小或方向都可能不一样.B、有能的性质当带电体在电场中移动时,电场力将对带电体做功,这表示电场具有能量.可见,电场具有力和能的特征二、电场强度1.物理意义:描述电场强弱的物理量2.定义:电荷在电场中某点所受到的电场力F跟它的电荷量q的比值,叫做该点的电场强度,简称场强.用E表示。
(比值法)3.定义式:E=F/q (适用于所有电场)4、方向:与正电荷在该点所受的电场力的方向相同;与负电荷在该点所受的电场力的方向相反5.单位:N/C V/m注意:电场中某一点处的电场强度E是唯一的,它的大小和方向与放入该点电荷q无关,它决定于电场的源电荷及空间位置,电场中每一点对应着的电场强度与是否放入电荷无关三、(真空中)点电荷周围的电场1、大小:E=kQ/r2 (只适用于点电荷的电场)2、方向:如果是正电荷,E的方向就是沿着PQ的连线并背离Q;如果是负电荷:E的方向就是沿着PQ的连线并指向Q四、电场强度的叠加电场中某点的电场场强为各个点电荷单独在该点产生的电场场强的矢量和五、电场线----形象描述电场强度的大小和方向(人们假想的)1、定义:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度的方向。
高中物理选修3-1知识点归纳(完美版)
高中物理选修3-1知识点归纳(完美版)前言高中物理选修3-1是高三物理的一门选修课,是学习物理的重要组成部分。
下面将会对此课程的主要知识点进行系统的归纳。
第一部分:电磁场基础1. 静电场静电场是指电荷所产生的电场,它是在相对静止的带电粒子周围的区域产生的。
静电场中电场强度矢量的方向是电荷的正向,所以在空间中,静电场的分布形状与带电体形状有关。
静电场的主要概念有:电荷、电场、电势、电场线等。
2. 电容器和电场能电容器是由两个导体构成的器件,它们之间放置绝缘材料,可以储存电荷,并且可以储存电场能。
电场能是指带电粒子在电场中的能量,它的大小与电势有关。
3. 当量电荷和库仑力当量电荷是标准单位电荷,在电磁学中通常使用“库仑”作为当量电荷的计量单位。
库仑力是指电荷之间相互作用的力,它的大小与电荷的数量和距离有关。
第二部分:交流电1. 交流电基础交流电是指电压和电流随时间周期性变化的电流,其频率一般为50Hz或60Hz。
交流电的频率和振幅都是周期性变化的,可以表示为正弦波形。
交流电的主要特点是可以实现远距离传输,并且可以通过变压器进行改变电压。
2. 交流电路分析交流电路是指由交流电源、电感器、电容器和电阻器等组成的电路。
在分析交流电路时,需要用到阻抗的概念,阻抗是指交流电流通过电子元件时产生的电阻力。
3. 电感和互感电感是指通过电流改变电场的电磁器件,其基本特征是电流变化的速率对电压的改变速率有影响。
互感是指两个电磁元件之间相互影响的量,是指相互产生的电感量。
第三部分:电磁波1. 电磁波概述电磁波是指由电场和磁场通过介质或真空中传递的波动。
电磁波的典型特点是不需要介质即可传递,其传播速度是恒定的。
2. 电磁波的特性电磁波的特性包括:频率、波长、速度、偏振等。
其中,频率和波长是电磁波的主要特性,也是区分不同类型电磁波的重要标志。
3. 光的本质与光学显微镜光是电磁波中的一种,是人类最重要的感官之一。
光学显微镜是一种通过光学原理来观察细胞、菌群、细菌和物质组织的一种显微镜。
物理选修3-1核心知识总结
物理选修3-1核心知识总结
本文档将总结物理选修3-1的核心知识内容。
知识点1: 光的折射
- 折射定律:光线在两种介质之间传播时,入射角、折射角和两种介质的折射率之间满足的关系。
- 折射率:介质对光的折射能力的度量值,是光在真空中速度与在该介质中传播速度之比。
- 折射现象:光线从一种介质进入另一种介质时,由于介质的不同,光线的传播方向发生改变的现象。
知识点2: 电场与电势
- 电场:点电荷周围的空间中由电荷产生的力场。
- 电势:单位正电荷在电场中具有的能量。
- 电势差:单位正电荷从一个电势点移动到另一个电势点所做的功。
- 电势能:带电粒子在电场中由于位置改变而具有的能量。
知识点3: 波的特性
- 波的分类:机械波和电磁波。
- 波的传播:波动的传播方式有纵波和横波两种。
- 波的干涉:两个或多个波在空间叠加形成新的波动现象。
- 波的衍射:波传播过程中遇到障碍物时发生的现象。
以上是物理选修3-1的核心知识总结,希望对你的研究有所帮助!
参考资料:
- 清华大学物理系. (2010). 《高中物理知识思维示例与解析》. 人民教育出版社.
- 张伯达, 戴主民. (2016). 《高中物理》(第二版). 北京师范大学出版社.。
高中物理选修3-1知识点总结
-1-
E 与 q 成反比。
E KQ
点电荷场强的计算式
r 2 ( r:源电荷到该位置的距离(m),Q:源电荷的电量(C))
E
要区别场强的定义式
F q
E
与点电荷场强的计算式
KQ r2
,前者适用于任何电场,
后者只适用于真空(或空气)中点电荷形成的电场。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷0资配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中2体2资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
(word完整版)高中物理选修3-1知识点归纳(完美版),推荐文档
物理选修3-1一、电场1.两种电荷、电荷守恒定律、元电荷(e =1.60×10-19C );带电体电荷量等于元电荷的整数倍 2.库仑定律:F KQ Q r=122(真空中的点电荷){F:点电荷间的作用力(N); k:静电力常量k =9.0×109N •m 2/C 2;Q 1、Q 2:两点电荷的电量(C);r:两点电荷间的距离(m); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E Fq=(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理);q :检验电荷的电量(C)}4.真空点(源)电荷形成的电场E KQr =2{r :源电荷到该位置的距离(m ),Q :源电荷的电量} 5.匀强电场的场强ABU E d={U AB :AB 两点间的电压(V),d:AB 两点在场强方向的距离(m)} 6.电场力:F =qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:U AB =φA -φB ,U AB =W AB/q =qP E Δ减8.电场力做功:W AB =qU AB =qEd =ΔE P 减{W AB :带电体由A 到B 时电场力所做的功(J),q:带电量(C),U AB :电场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔE P 减 :带电体由A 到B 时势能的减少量}9.电势能:E PA =q φA {E PA :带电体在A 点的电势能(J),q:电量(C),φA :A 点的电势(V)} 10.电势能的变化ΔE P 减=E PA -E PB {带电体在电场中从A 位置到B 位置时电势能的减少量} 11.电场力做功与电势能变化W AB =ΔE P 减=qU AB (电场力所做的功等于电势能的减少量)12.电容C =Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容εSC 4πkd=(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器14.带电粒子在电场中的加速(Vo =0):W =ΔE K 增或22mVt qU =15.带电粒子沿垂直电场方向以速度V 0进入匀强电场时的偏转(不考虑重力作用) : 类平抛运动(在带等量异种电荷的平行极板中:dU E = 垂直电场方向:匀速直线运动L =V 0t平行电场方向:初速度为零的匀加速直线运动22at d =, F qE qUa m m m===注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的分布要求熟记;(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F =106μF =1012PF ;(7)电子伏(eV)是能量的单位,1eV =1.60×10-19J ;(8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面带电粒子在匀强电场中的类平抛运动一、模型原题一质量为m ,带电量为q 的正粒子从两极板的中部以速度v 0水平射入电压为U 的竖直向下的匀强电场中,如图所示,已知极板长度为L ,极板间距离为d 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理选修3-1一、电场1.两种电荷、电荷守恒定律、元电荷(e =1.60×10-19C );带电体电荷量等于元电荷的整数倍 2.库仑定律:F KQ Q r=122(真空中的点电荷){F:点电荷间的作用力(N); k:静电力常量k =9.0×109N •m 2/C 2;Q 1、Q 2:两点电荷的电量(C);r:两点电荷间的距离(m); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E Fq=(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理);q :检验电荷的电量(C)}4.真空点(源)电荷形成的电场E KQr =2{r :源电荷到该位置的距离(m ),Q :源电荷的电量} 5.匀强电场的场强ABU E d={U AB :AB 两点间的电压(V),d:AB 两点在场强方向的距离(m)} 6.电场力:F =qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:U AB =φA -φB ,U AB =W AB/q =qP E Δ减8.电场力做功:W AB =qU AB =qEd =ΔE P 减{W AB :带电体由A 到B 时电场力所做的功(J),q:带电量(C),U AB :电场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔE P 减 :带电体由A 到B 时势能的减少量}9.电势能:E PA =q φA {E PA :带电体在A 点的电势能(J),q:电量(C),φA :A 点的电势(V)} 10.电势能的变化ΔE P 减=E PA -E PB {带电体在电场中从A 位置到B 位置时电势能的减少量} 11.电场力做功与电势能变化W AB =ΔE P 减=qU AB (电场力所做的功等于电势能的减少量)12.电容C =Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容εSC 4πkd=(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器14.带电粒子在电场中的加速(Vo =0):W =ΔE K 增或22mVt qU =15.带电粒子沿垂直电场方向以速度V 0进入匀强电场时的偏转(不考虑重力作用) : 类平抛运动(在带等量异种电荷的平行极板中:dU E = 垂直电场方向:匀速直线运动L =V 0t平行电场方向:初速度为零的匀加速直线运动22at d =, F qE qUa m m m===注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的分布要求熟记;(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F =106μF =1012PF ;(7)电子伏(eV)是能量的单位,1eV =1.60×10-19J ;(8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面带电粒子在匀强电场中的类平抛运动一、模型原题一质量为m ,带电量为q 的正粒子从两极板的中部以速度v 0水平射入电压为U 的竖直向下的匀强电场中,如图所示,已知极板长度为L ,极板间距离为d 。
1.初始条件:带电粒子有水平初速度v 02.受力特点:带电粒子受到竖直向下的恒定的电场力mqd U 3.运动特点:水平方向为匀速直线运动,竖直方向为初速度为零的匀加速直线运动。
4.运动时间:若带电粒子与极板不碰撞,则运动时间为0v Lt =;若带电粒子与极板碰撞,则运动时间可以从竖直方向求得2212t m q d U d =,故Uqmdt = 二、模型特征 1.特征描述:侧移2)(21v L m q d U y =2.能量特点:电场力做正功qy dUW =。
电场力做多少正功,粒子动能增加多少,电势能减少多少。
3.重要结论:速度偏向角的正切2tan dmv UqLv v y ==θ,位移偏向角的正切202tan dmv UqL L y ==φ,即φθtan 2tan =,即带电粒子垂直进入匀强电场,它离开电场时,就好象是从初速度方向的位移中点沿直线射出来的。
电容器(1)两个彼此绝缘,而又互相靠近的导体,就组成了一个电容器。
(2)电容:表示电容器容纳电荷的本领。
++ + +LUm ,qa 定义式:C Q U QU==()∆∆,即电容C 等于Q 与U 的比值,不能理解为电容C 与Q 成正比,与U 成反比。
一个电容器电容的大小是由电容器本身的因素决定的,与电容器是否带电及带电多少无关。
b 决定因素式:如平行板电容器C Sk d=επ4(不要求应用此式计算)(3)对于平行板电容器有关的Q 、E 、U 、C 的讨论时要注意两种情况:a 保持两板与电源相连,则电容器两极板间的电压U 不变b 充电后断开电源,则带电量Q 不变 (4)电容的定义式:C QU=(定义式)(5)C 由电容器本身决定。
对平行板电容器来说C 取决于:C SKd=επ4(决定式) (6)电容器所带电量和两极板上电压的变化常见的有两种基本情况:第一种情况:若电容器充电后再将电源断开,则表示电容器的电量Q 为一定,此时电容器两极的电势差将随电容的变化而变化。
第二种情况:若电容器始终和电源接通,则表示电容器两极板的电压V 为一定,此时电容器的电量将随电容的变化而变化。
二、 恒定电流1.电流强度:qI t ={I:电流强度(A ),q:在时间t 内通过导体横载面的电量(C ),t:时间(s )} 2.欧姆定律:UI R= {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:L R ρS ={ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m 2)}4.闭合电路欧姆定律: +EI r R=或E =Ir+ IR (纯电阻电路);E =U 内 +U 外 ;E =U 外 + I r ;(普通适用){I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路和非纯电阻电路8.电源总动率P总=IE;电源输出功率P出=IU;电源效率η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联:串联电路(P、U与R成正比) 并联电路(P、I与R成反比)10.欧姆表测电阻:11.伏安法测电阻1、电压表和电流表的接法2、滑动变阻器的两种接法:注:(1)单位换算:1A=103mA=106μA;1kV=103V=106mV;1MΩ=103kΩ=106Ω(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;半导体和绝缘体的电阻率随温度升高而减小。
(3)串联时,总电阻大于任何一个分电阻;并联时,总电阻小于任何一个分电阻;(4)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(4r);三、磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.二、磁感线为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.1.疏密表示磁场的强弱.2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。
4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.5.安培定则(右手定则):姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·*熟记常用的几种磁场的磁感线:三、磁感应强度1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。
2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度.①表示磁场强弱的物理量.是矢量.②大小:B=F/Il(决定式)(电流方向与磁感线垂直时的公式).③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.(根据实验得出的)④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.⑥匀强磁场的磁感应强度处处相等.⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.四、磁通量与磁通密度1.磁通量Φ:穿过某一面积磁力线条数,是标量.2.磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.3.二者关系:B=Φ/S(当B与面垂直时),Φ=BScosθ,Scosθ为面积垂直于B方向上的投影,θ是B 与S法线的夹角.磁场对电流的作用一、安培力1.安培力:通电导线在磁场中受到的作用力叫做安培力.说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.2.安培力的计算公式:F=BILsinθ(θ是I与B的夹角);①通电导线与磁场方向垂直时,即θ=900,此时安培力有最大值;②通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F=0N;00<B<900时,安培力F介于0和最大值之间.3.安培力公式的适用条件:①公式F=BIL一般适用于匀强磁场中I⊥B的情况,对于非匀强磁场只是近似适用(如对电流元),但对某些特殊情况仍适用.如图所示,电流I1//I2,如I1在I2处磁场的磁感应强度为B,则I1对I2的安培力F=BI2L,方向向左,同理I2对I1,安培力向右,即同向电流相吸,异向电流相斥.I1I2②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.两根通电导线间的磁场力也遵循牛顿第三定律.二、左手定则1.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.2.安培力F的方向既与磁场方向垂直,又与通电导线垂直,即F跟BI所在的面垂直.但B与I的方向不一定垂直.规律方法 1。