济南中考数学押题卷2017
2017年山东省济南市数学中考试题含答案(供参考)
2017山东济南中考试题一、选择题(本大题共15小题,每小题3分,共45分)1.(2017济南,1,3分)在实数0,-2,5,3中,最大的是( ) A .0B .-2C .5D .32.(2017济南,2,3分)如图所示的几何体,它的左视图是( )A .B .C .D .3.(2017济南,3,3分)2017年5月5日国产大型客机C 919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .×104B .×104C .×103D .×1034.(2017济南,4,3分)如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( ) A .40°B .45°C .50°D .60°a b5.(2017济南,5,3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(2017济南,6,3分)化简a 2+ab a -b ÷aba -b 的结果是( )A .a 2B .a 2a -bC .a -b bD .a +b b7.(2017济南,7,3分)关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是( ) A .-6B .-3C .3D .68.(2017济南,8,3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .⎩⎨⎧y -8x =3y -7x =4B .⎩⎨⎧y -8x =37x -y =4C .⎩⎨⎧8x -y =3y -7x =4D .⎩⎨⎧8x -y =37x -y =49.(2017济南,9,3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .2310.(2017济南,10,3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6cm ,则圆形螺母的外直径是( ) A .12cmB .24cmC .63cmD .123cm11.(2017济南,11,3分)将一次函数y =2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( ) A .x >-1B .x >1C .x >-2D .x >212.(2017济南,12,3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE =,又量的杆底与坝脚的距离AB =3m ,则石坝的坡度为( ) A .34B .3C .35D .4出口出口13.(2017济南,13,3分)如图,正方形ABCD 的对角线AC ,BD 相较于点O ,AB =32,E 为OC 上一点, OE =1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( ) A .3105B .22C .354D .32214.(2017济南,14,3分)二次函数y =ax 2+bx +c (a ≠0)的图象经过点(-2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a -b -1<0;④2a +c <0.其中正确结论的个数是( ) A .1B .2C .3D .415.(2017济南,15,3分)如图,有一正方形广场ABCD ,图形中的线段均表示直行道路,EAAB⌒BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( ) A .A →B →E →G B .A →E →D →CC .A →E →B →FD .A →B →D →C二、填空题(本大题共6小题,每小题3分,共18分)16.(2017济南,16,3分)分解因式:x 2-4x +4=__________.17.(2017济南,17,3分)计算:│-2-4│+(3)0=________________.18.(2017济南,18,3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________.19.(2017济南,19,3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC =120°,BD =2AD ,则BD 的长度为____________cm .第15题图1第15题图2第15题图320.(2017济南,20,3分)如图,过点O 的直线AB 与反比例函数y =kx 的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y =-3kx (x <0)的图象交于点C ,连接AC ,则△ABC 的面积为_________________.21.(2017济南,21,3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿综或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (-1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,-3),C (-1,-5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______________.CDACCB DBCBC ABACD【答案】(x-2)2790208(1,-2)三、解答题(本大题共7小题,共57分)22.(2017济南,22,7分)(1)先化简,再求值:(a+3)2-(a+2)(a+3),其中a=3.【解】原式=a 2+6a +9-(a 2+2a +3a +6) = a 2+6a +9-a 2-2a -3a -6) =a +3. 当a =3时, 原式=3+3=6.(2)解不等式组:⎩⎪⎨⎪⎧3x -5≥2(x -2) ①x 2>x -1 ②【解】由①,得x ≥1. 由②,得x <2.∴不等式组的解集为:1≤x <2. 23.(2017济南,23,7分)(1)如图,在矩形ABCD ,AD =AE ,DF ⊥AE 于点F .求证:AB =DF .证明:∵四边形ABCD 是矩形,∴∠B =90°,AD ∥B C. ∴∠DAF =∠BE A . ∵DF ⊥AE , ∴∠AFD =90°. ∴∠B =∠AFD =90°.ECA B又∵AD =AE , ∴△ADF ≌△EB A. ∴AB =DF .(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.【解】∵AB 是⊙O 的直径,∴∠ADB =90°. ∵∠B =∠C =25°, ∴∠BAD =90°-25°=65°.24.(2017济南,24,8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的倍,那么银杏树和玉兰树的单价各是多少? 【解】设银杏树的单价是x 元,玉兰树的单价是元,则12000x+错误!=150. 解得x =120.经检验x =120是方程的解. ∴=180.答:银杏树的单价是120元,玉兰树的单价是180元,CD25.(2017济南,25,8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【解】(1)a =10,b =,c =50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=(本). 814187652015105人数0本(4)该校八年级学生课外阅读7本及以上的人数为:+×1200=528(人).26.(2017济南,26,9分)如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A (2,1),反比例函数y =kx (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y =kx (x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.【解】(1)过点A 作AP ⊥x 轴于点P ,则AP =1,OP =2.又∵AB =OC =3, ∴B (2,4).∵反比例函数y =kx (x >0)的图象经过的B ,∴4=k2.∴k =8.∴反比例函数的关系式为y =8x.(2)设MN 交OB 于点H ,过点B 作BG ⊥y 轴于点G ,则BG =2,OG =4.∴OB =22+42=2 5.∵点H 是OB 的中点,∴点H (1,2).∴OH =12+22= 5. ∵∠OHN =∠OGB =90°,∠HON =∠GOB ,∴△OHN ∽△OGB ,∴ON OB =OH OG .∴ON 25=54.∴ON =. (3)ED =BF .理由:由点A (2,1)可得直线OA 的解析式为y =12x .解方程组⎩⎨⎧y =12x y =8x,得⎩⎨⎧x 1=4y 1=2,⎩⎨⎧x 2=-2y 2=-4.∵点D 在第一象限,∴D (4,2).由B (2,4),点D (4,2)可得直线BD 的解析式为y =-x +6. 把y =0代入上式,得0=-x +6.解得x =6. ∴E (6,0).∵ED=(6-4)2+(0-2)2=22,BF=(0-2)2+(6-4)2=2 2.∴ED=BF.27.(2017济南,27,9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE 绕点A 逆时针旋转某个角度时,连接CE ,延长DE 交BC 的延长线于点P ,其他条件不变,判断△CEF 的形状并给出证明.【解】(1)①证明中所叙述的辅助线如下图所示:②证明的括号中的理由是:AAS.(2)△CEF 是等边三角形.证明如下:设AE =a ,AC =b ,则AD =2a ,AB =2b ,DE =3a ,BC =3b ,CE =a +b . ∵△BGF ≌△DEF ,∴BG =DE =3a .∴CG =BC +BG =3(a +b ). ∵CB CG =3b 3(a +b )=b a +b ,CA CE =b a +b ,∴CB CG =CA CE .又∵∠ACB =∠ECG ,∴△ACE ∽△ECG . 第27题图2第27题图1CC第27题答案图1C A∴∠CEF =∠CAB =60°. 又∵CF =EF (已证), ∴△CEF 是等边三角形. (3)△CEF 是等边三角形.证明方法一:如答案图2,过点B 作BN ∥DE ,交EF 的延长线于点N ,连接CN ,则∠DEF =∠FN B.又∵DF =BF ,∠DFE =∠BFN ,∴△DEF ≌△BNF .∴BN =DE ,EF =FN . 设AC =a ,AE =b ,则BC =3a ,DE =3b . ∵∠AEP =∠ACP =90°,∴∠P +∠EAC =180°. ∵DP ∥BN ,∴∠P +∠CBN =180°.∴∠CBN =∠EA C . 在△AEC 和△BNC 中,∵AE BN =AE DE =AC BC =33,∠CBN =∠EAC , ∴△AEC ∽△BN C .∴∠ECA =∠NC B .∴∠ECN =90°. 又∵EF =FN , ∴CF =12EN =EF .又∵∠CEF =60°, ∴△CEF 是等边三角形.证明方法二:如答案图3,取AB 的中点M ,并连接CM ,FM ,则CM =12AB =A C.又∵∠CAM =60°,∴△ACM 是等边三角形. ∴∠ACM =∠AMC =60°.∵AM =BM ,DF =BF ,∴MF 是△ABD 的中位线.∴MF =12AD =AE 且MF ∥A D .∴∠DAB +∠AMF =180°.∴∠DAB +∠AMF +∠AMC =180°+60°=240°. 即∠DAB +∠CMF =180°+60°=240°.又∵∠CAE +∠DAB =360°-∠DAE -∠BAC =360°-60°-60=240°, ∴∠DAB +∠CMF =∠CAE +∠DAB ∴∠CMF =∠CAE . 又∵CM =AC ,MF =AE ,∴△CAE ≌△CMF .∴CE =CF ,∠ECA =∠FCM . 又∵∠ACM =∠ACF +∠FCM =60°, ∴∠ACF +∠ECA =60°.即∠ECF =60°. 又∵CE =CF , 第27题答案图2N第27题答案图3C∴△CEF 是等边三角形. 28.(2017济南,28,9分)如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交B C 于点D ,tan ∠OAD =2,抛物线M 1:y =ax 2+bx (a ≠0)过A ,D 两点.(1)求点D 的坐标和抛物线M 1的表达式;(2)点P 是抛物线M 1对称轴上一动点,当∠CP A =90°时,求所有符合条件的点P 的坐标;(3)如图2,点E (0,4),连接AE ,将抛物线M 1的图象向下平移m (m >0)个单位得到抛物线M 2.①设点D 平移后的对应点为点D ′,当点D ′ 恰好在直线AE 上时,求m 的值; ②当1≤x ≤m (m >1)时,若抛物线M 2与直线AE 有两个交点,求m 的取值范围.【解】(1)过点D 作DF ⊥OA 于点F ,则DF =6.∵tan ∠OAD =DFAF =2,∴AF =3.∴OF =1.∴D (1,6).把A (4,0),D (1,6)分别代入 y =ax 2+bx (a ≠0),得⎩⎨⎧0=16a +4b 6=a +b .解得⎩⎨⎧a =-2b =8. ∴抛物线M 1的表达式为:y =-2x 2+8x .(2)连接AC ,则AC =42+62=213. ∵y =-2x 2+8x =-2(x -2)2+8, ∴抛物线M 1的对称轴是直线x =2. 设直线x =2交OA 于点N ,则N (2,0).以AC 为半径作⊙M ,交直线x =2于P 1、P 2两点,分别连接P 1C 、P 1A 、P 2C 、P 2A ,则点P 1、P 2两点就是符合题意的点,且这两点的横坐标都是2. ∵点M 是AC 的中点,∴点M (2,3).∴MN =2.∵P 1M 是Rt △CP 1A 的斜边上的中线,∴P 1M =12AC =13.∴P 1N =MN + P 1M =3+13. ∴点P 1(2,3+13). 同理可得点P 2(2,3-13).(3)由A (4,0),点E (0,4)可得直线AE 的解析式为y =-x +4. ①点D (1,6)平移后的对应点为点D ′(1,6-m ),∵点D ′ 恰好在直线AE 上 ∴6-m =-1+4. 解得m =3. ∴D ′(1,3),m =3.②如答案图4,作直线x =1,它与直线AE 的交点就是点D ′(1,3).作直线x =m 交直线AE 于点Q (m ,-m +4).设抛物线M 2的解析式为y =-2x 2+8x -m .若要直线AE 与抛物线M 2有两个交点N 1、N 2,则关于x 的一元二次方程-2x 2+8x -m =-x +4有两个不相等的实数根,将该方程整理,得2x 2+9x +m +4=0. 由△=92-4×2(m +4)>0,答案图3解得m <498.又∵m >1,∴1<m <498.…………………………………………………………………………①∵1≤x ≤m (m >1),∴抛物线M 2与直线AE 有两个交点N 1、N 2要在直线x =1与直线x =m 所夹的区域内(含左、右边界).当点N 1与点D ′(1,3)重合时,把D ′(1,3)的坐标代入y =-2x 2+8x -m ,可得m =3. ∴m ≥3…………………………………………………………………………②当点N 2与点Q (m ,-m +4)重合时,把点Q (m ,-m +4)的坐标代入y =-2x 2+8x -m ,可得-m +4=-2m 2+8m -m .解得m 1=2+2,m 2=2-2(不合题意,舍去). ∴m ≥2+2…………………………………………………………………………③ 由①、②、③可得符合题意的m 的取值范围为:2+2≤m <498..。
2017年济南市中考数学试卷(含答案解析版)
20XX年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)20XX年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b的结果是( )A .a 2B .a2a−bC .a−b bD .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( ) A .﹣6 B .﹣3 C .3D .68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( ) A .{y −8x =3y −7x =4 B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A.12B.13C.16D.2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.413.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√2C.3√54D.3√2214.(3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a <b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.415.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,BD̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4=.17.(3分)计算:|﹣2﹣4|+(√3)0=.18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为.21.(3分)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 .三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3. (2)解不等式组:{3x −5≥2(x −2)①x2>x −1②. 23.(4分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .24.(4分)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少? 26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C 在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∵∠ACB=∠AED=90°,∴ED∥CG.∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.20XX年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)20XX年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC ⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a2+aba−b÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b•a−bab=a+bb,故选:D.【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.6【考点】AB:根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣b a,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n ,则有﹣2+n=﹣5,解得:n=﹣3.故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a 是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23 【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13.故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O ,与AB 切于E ,连接OD ,OE ,OA ,如图所示: ∵AD ,AB 分别为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°, 在Rt △AOD 中,∠OAD=60°,AD=6cm ,∴tan ∠OAD=tan60°=OD AD ,即OD 6=√3, ∴OD=6√3cm ,则圆形螺母的直径为12√3cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C作CF⊥AB于F,根据DE∥CF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴ADAC=DECF,即15=0.6CF,解得CF=3,∴Rt△ACF中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CFBF =31=3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF 的长是()A.3√105B.2√2C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,∴△BFG∽△BOE,∴BFOB=BGBE,即BF3=√10,解得,BF=3√10 5,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b >0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD,图形中的线段均表示直行̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A 道路,BD处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20cm.【考点】MO :扇形面积的计算.【分析】设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360,解方程即可. 【解答】解:设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360, 解得x=10,∴BD=2x=20cm .故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O 的直线AB 与反比例函数y=k x的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x ,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=k x的图象上, ∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x, 设AB 的解析式为y=kx ,把A (2,1)代入得,k=12, ∴y=12x , 解方程组{y =12x y =2x 得:{x 1=2y 1=1,{x 2=−2y 2=−1, ∴B (﹣2,﹣1),∵BC ∥y 轴,∴C 点的横坐标为﹣2,∴C 点的纵坐标为−6−2=3, ∴BC=3﹣(﹣1)=4,∴△ABC 的面积为12×4×4=8, 故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A (3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 【考点】4J :整式的混合运算—化简求值;CB :解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a +3)2﹣(a +2)(a +3)=a 2+6a +9﹣a 2﹣5a ﹣6=a +3,当a=3时,原式=3+3=6;(2){3x −5≥2(x −2)①x 2>x −1② 由不等式①,得x ≥1,由不等式②,得x <2故原不等式组的解集是1≤x <2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中∵{∠AEB=∠DAE ∠AFD=∠B AD=AE∴△ABE≌△DFA,∴AB=DF.【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=10,b=0.28,c=50;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a 组人数,画出直方图即可; (3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可; 【解答】解:(1)由题意c=18÷0.36=50,∴a=50×0.2=10,b=1450=0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn ,DM=km.由△EDM∽△EBN,推出EM EN =DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,。
2017年山东省济南市中考数学试卷(含标准答案解析版)
2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()第1页(共47页)第2页(共47页)A .40°B .45°C .50°D .60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A.12B.13C.16D.2310.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()第3页(共47页)第4页(共47页)A .34B .3C .35D .413.(3分)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√2,E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( )A .3√105B .2√2C .3√54D .3√2214.(3分)二次函数y=ax 2+bx +c (a ≠0)的图象经过点(﹣2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a <b ;③2a ﹣b ﹣1<0;④2a +c <0.其中正确结论的个数是( )A .1B .2C .3D .415.(3分)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD̂表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A→B→E→GB .A→E→D→C C .A→E→B→FD .A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4=.17.(3分)计算:|﹣2﹣4|+(√3)0=.18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=−3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为.第5页(共47页)第6页(共47页)21.(3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 .三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 23.(4分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .第7页(共47页)24.(4分)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数)频率5a 0.2 618 0.36 714 b 88 0.16 合计 c 1 (1)统计表中的a= ,b= ,c= ;第8页(共47页)(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=k x (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式; (2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y=kx(x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC 和△ADE 中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.第9页(共47页)29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.第10页(共47页)2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()第11页(共47页)A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,第12页(共47页)其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC ⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.第13页(共47页)5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a2+aba−b÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b•a−bab=a+bb,第14页(共47页)第15页(共47页)故选:D .【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .6【考点】AB :根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣b a,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n ,则有﹣2+n=﹣5,解得:n=﹣3.故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4第16页(共47页)C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.第17页(共47页)【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13. 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.第18页(共47页)【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O ,与AB 切于E ,连接OD ,OE ,OA ,如图所示: ∵AD ,AB 分别为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°, 在Rt △AOD 中,∠OAD=60°,AD=6cm ,∴tan ∠OAD=tan60°=OD AD ,即OD 6=√3, ∴OD=6√3cm ,则圆形螺母的直径为12√3cm .故选D .【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( )A.x>﹣1B.x>1C.x>﹣2D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.第19页(共47页)【分析】先过C作CF⊥AB于F,根据DE∥CF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴ADAC=DECF,即15=0.6CF,解得CF=3,∴Rt△ACF中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CFBF =31=3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF 的长是()第20页(共47页)A.3√105B.2√2C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,第21页(共47页)∴△BFG∽△BOE,∴BFOB=BGBE,即BF3=√10,解得,BF=3√10 5,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b >0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,第22页(共47页)则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.第23页(共47页)第24页(共47页)【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD̂表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m )时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( )A .A→B→E→GB .A→E→D→C C .A→E→B→FD .A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x 的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.第25页(共47页)17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.第26页(共47页)第27页(共47页)19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC=120°,BD=2AD ,则BD 的长度为 20 cm .【考点】MO :扇形面积的计算.【分析】设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360,解方程即可. 【解答】解:设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360, 解得x=10,∴BD=2x=20cm .故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O 的直线AB 与反比例函数y=k x的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .第28页(共47页)【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x ,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=k x的图象上, ∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x, 设AB 的解析式为y=kx ,把A (2,1)代入得,k=12, ∴y=12x , 解方程组{y =12x y =2x 得:{x 1=2y 1=1,{x 2=−2y 2=−1, ∴B (﹣2,﹣1),∵BC ∥y 轴,∴C 点的横坐标为﹣2,∴C 点的纵坐标为−6−2=3, ∴BC=3﹣(﹣1)=4,∴△ABC的面积为12×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A (3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).第29页(共47页)第30页(共47页)【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 【考点】4J :整式的混合运算—化简求值;CB :解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a +3)2﹣(a +2)(a +3)=a 2+6a +9﹣a 2﹣5a ﹣6=a +3,当a=3时,原式=3+3=6;(2){3x −5≥2(x −2)①x 2>x −1②由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中第31页(共47页)第32页(共47页)∵{∠AEB =∠DAE ∠AFD =∠B AD =AE∴△ABE ≌△DFA , ∴AB=DF .【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD ,再根据同弧所对的圆周角相等,求得∠B 的度数,即可求得∠BAD 的度数. 【解答】解:∵AB 为⊙O 直径 ∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25° ∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36第33页(共47页)714b880.16合计c1(1)统计表中的a=10,b=0.28,c=50;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷0.36=50,第34页(共47页)第35页(共47页)∴a=50×0.2=10,b=1450=0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=k x(x >0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn ,DM=km.由△EDM∽△EBN,推出EM EN =DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,第36页(共47页)。
2017年山东省济南市中考数学试题及解析
2017年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,满分45分,每小题只有一个选项符合题意)2.(3分)(2017•济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为3.(3分)(2017•济南)如图,OA⊥OB ,∠1=35°,则∠2的度数是( )5.(3分)(2017•济南)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是( )B6.(3分)(2017•济南)若代数式4x ﹣5与的值相等,则x 的值是( )7.(3分)(2017•济南)下列图标既是轴对称图形又是中心对称图形的是( )B9.(3分)(2017•济南)如图,在平面直角坐标系中,△ABC 的顶点都在方格纸的格点上,如果将△ABC 先向右平移4个单位长度,在向下平移1个单位长度,得到△A 1B 1C 1,那么点A 的对应点A1的坐标为( )10.(3分)(2017•济南)化简﹣的结果是( )11.(3分)(2017•济南)如图,一次函数y 1=x+b 与一次函数y 2=kx+4的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是( )12.(3分)(2017•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做313.(3分)(2017•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、CD于M、N两点.若AM=2,则线段ON的长为()B14.(3分)(2017•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P201715.(3分)(2017•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x 轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m 与C1、C2共有3个不同的交点,则m的取值范围是()<﹣二、填空题(共6小题,每小题3分,满分18分)16.(3分)(2017•济南)分解因式:xy+x=.17.(3分)(2017•济南)计算:+(﹣3)0=.18.(3分)(2017•济南)如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为(结果保留π).19.(3分)(2017•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.20.(3分)(2017•济南)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=.21.(3分)(2017•济南)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).三、解答题(共7小题,满分57分)22.(7分)(2017•济南)(1)化简:(x+2)2+x(x+3)(2)解不等式组:.23.(7分)(2017•济南)(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.24.(8分)(2017•济南)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.25.(8分)(2017•济南)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根(1)计算m=;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.26.(9分)(2017•济南)如图1,点A(8,1)、B(n,8)都在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由.27.(9分)(2017•济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M 为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.28.(9分)(2017•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y 轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分,每小题只有一个选项符合题意)2.(3分)(2017•济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为3.(3分)(2017•济南)如图,OA⊥OB,∠1=35°,则∠2的度数是()5.(3分)(2017•济南)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是()B6.(3分)(2017•济南)若代数式4x﹣5与的值相等,则x的值是()5= x=B9.(3分)(2017•济南)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()10.(3分)(2017•济南)化简﹣的结果是()=m+311.(3分)(2017•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()12.(3分)(2017•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做313.(3分)(2017•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、CD于M、N两点.若AM=2,则线段ON的长为()BAM=,则,于是利用正方形的性质得到AB=2+2AC=AH=2+AM=×,,,AB=AC=+1+2=2+=,即=14.(3分)(2017•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2017=1==33515.(3分)(2017•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x 轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m 与C1、C2共有3个不同的交点,则m的取值范围是()<﹣,<﹣时直线二、填空题(共6小题,每小题3分,满分18分)16.(3分)(2017•济南)分解因式:xy+x=x(y+1).17.(3分)(2017•济南)计算:+(﹣3)0=3.18.(3分)(2017•济南)如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为6π(结果保留π).19.(3分)(2017•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.块)的,则它最终停留在黑色方砖上的概率是故答案为:.20.(3分)(2017•济南)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=﹣4.OB=2×=2).21.(3分)(2017•济南)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是①②③(把所有正确结论的序号都填在横线上).的面积为DCF=,,DM=DCF=三、解答题(共7小题,满分57分)22.(7分)(2017•济南)(1)化简:(x+2)2+x(x+3)(2)解不等式组:.,23.(7分)(2017•济南)(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.BAD=∠24.(8分)(2017•济南)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.﹣25.(8分)(2017•济南)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根m=40;(2)在扇形统计图中,“其他”类所占的百分比为15%;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.类所占的百分比为=.26.(9分)(2017•济南)如图1,点A(8,1)、B(n,8)都在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由.的图象上,根据反比例函数y=,,即.====a=b=t t±,t=t=27.(9分)(2017•济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M 为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.,++1CK= a=,,AM=28.(9分)(2017•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y 轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.NB=.m)﹣(BE==.MB=AE=2.。
2017济南中考数学试卷及答案解析
2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1、在实数0,﹣2,√5,3中,最大的是()A.0B.﹣2C.√D.32、如图所示的几何体,它的左视图是()A.B.C.D.3、2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034、如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB 交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5、中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.6、化简a 2+aba−b ÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb7、关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.68、《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y钱,以下列出的方程组正确的是()A.{y−8x=3 y−7x=4B.{y−8x=3 7x−y=4C.{8x−y=3 y−7x=4D.{8x−y=3 7x−y=49、如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.12B.13C.16D.2310、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cmB.24cmC.6√3cmD.12√3cm11、将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>212、如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3C.35D.413、如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√C.3√54D.3√2214、二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.415、如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该BD广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→GB.A→E→D→CC.A→E→B→FD.D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16、分解因式:x2﹣4x+4= .17、计算:|﹣2﹣4|+(√3)0= .18、在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19、如图,扇形纸叠扇完全打开后,扇形ABC的面积为300π的图象交于A,B两点,20、如图,过点O的直线AB与反比例函数y=kx(x<0)的图象交于A(2,1),直线BC∥y轴,与反比例函数y=−3kx点C,连接AC,则△ABC的面积为.21、定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为.三、解答题(本大题共8小题,共57分)22、1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.23、如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.24、如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.25、某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26、中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5 a 0.26 18 0.367 14 b8 8 0.16合计 c 1(1)统计表中的a= ,b= ,c= ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27、如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx (x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;(x>0)的图象于点D,过B,D (3)如图3,将线段OA延长交y=kx的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28、某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF 的两条边是否相等,如EF=CF ,以下是她的证明过程证明:延长线段EF 交CB 的延长线于点G .∵F 是BD 的中点,∴BF=DF .∵∠ACB=∠AED=90°,∴ED ∥CG .∴∠BGF=∠DEF . 又∵∠BFG=∠DFE , ∴△BGF ≌△DEF ( ). ∴EF=FG . ∴CF=EF=12EG . 请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS ,ASA ,AAS ,SSS 中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29、如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m (m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m 的取值范围.答案解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√,3中,最大的是()A.0 B.﹣2 C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√3,实数0,﹣2,√3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40° B.45° C.50° D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B 是轴对称图形又是中心对称图形,故选:B .【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a 2+ab a−b ÷ab a−b 的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b【考点】6A :分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b •a−b ab =a+b b , 故选:D .【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x 的方程x 2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.6【考点】AB:根与系数的关系.【分析】设方程的另一个根为n,根据两根之和等于﹣ba,即可得出关于n的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n,则有﹣2+n=﹣5,解得:n=﹣3.故选C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.{y−8x=3y−7x=4B.{y−8x=37x−y=4C.{8x−y=3y−7x=4D.{8x−y=37x−y=4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x人,物价为y钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x人,物价为y钱,根据题意,可列方程组:{8x−y=3 y−7x=4,故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.12B.13C.16D.23【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A进入景区并从C,D出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,∵小红从入口A进入景区并从C,D出口离开的有2种情况,∴P=1.3故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6√3cm D.12√3cm【考点】MC:切线的性质.【分析】设圆形螺母的圆心为O,连接OD,OE,OA,如图所示:根据切线的性质得到AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=6cm,∴tan∠OAD=tan60°=ODAD ,即OD6=√3,∴OD=6√3cm,则圆形螺母的直径为12√3cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3 C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C 作CF ⊥AB 于F ,根据DE ∥CF ,可得AD AC =DE CF,进而得出CF=3,根据勾股定理可得AF 的长,根据CF 和BF 的长可得石坝的坡度.【解答】解:如图,过C 作CF ⊥AB 于F ,则DE ∥CF ,∴AD AC =DE CF,即15=0.6CF,解得CF=3,∴Rt △ACF 中,AF=√52−32=4, 又∵AB=3, ∴BF=4﹣3=1,∴石坝的坡度为CF BF =31=3,故选:B .【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB=3√E 为OC 上一点,OE=1,连接BE ,过点A 作AF ⊥BE 于点F,与BD交于点G,则BF的长是()A.3√105B.2√2C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO , ∴△BFG ∽△BOE , ∴BF OB =BG BE,即BF3=√10,解得,BF=3√105,故选:A .【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax 2+bx+c (a ≠0)的图象经过点(﹣2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a <b ;③2a ﹣b ﹣1<0;④2a+c <0.其中正确结论的个数是( ) A .1 B .2 C .3 D .4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a >0,由y=ax 2+bx+c 与x 轴的另一个交点坐标为(x 1,0 ),且1<x 1<2,则该抛物线的对称轴为x=﹣b2a=−2+x 12>﹣12,即 b a <1,于是得到b >0;故①正确;②由x=﹣2时,4a ﹣2b+c=0得2a ﹣b=﹣c2,而﹣2<c >0,解不等式即可得到2a >b ,所以②正确.③由②知2a ﹣b <0,于是得到2a ﹣b ﹣1<0,故③正确;④把(﹣2,0)代入y=ax 2+bx+c 得:4a ﹣2b+c=0,即2b=4a+c >0(因为b >0),等量代换得到2a+c <0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a =−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD,图形中的线̂表示一条以A为圆心,以AB为半径的圆弧形段均表示直行道路,BD道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4= (x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0= 7 .【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90 .【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20 cm.【考点】MO:扇形面积的计算.【分析】设AD=x,则AB=3x.由题意300π=120⋅π⋅(3x)2360,解方程即可.【解答】解:设AD=x,则AB=3x.由题意300π=120⋅π⋅(3x)2360,解得x=10,∴BD=2x=20cm.故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O的直线AB与反比例函数y=kx的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3k x(x<0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x,y=−6x,与AB的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论. 【解答】解:∵A (2,1)在反比例函数y=kx的图象上, ∴k=2×1=2,∴两个反比例函数分别为y=2x,y=−6x,设AB 的解析式为y=kx ,把A (2,1)代入得,k=12, ∴y=12x ,解方程组{y =12x y =2x得:{x 1=2y 1=1,{x 2=−2y 2=−1, ∴B (﹣2,﹣1), ∵BC ∥y 轴,∴C 点的横坐标为﹣2, ∴C 点的纵坐标为−6−2=3,∴BC=3﹣(﹣1)=4,∴△ABC的面积为1×4×4=8,2故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:{3x−5≥2(x−2)①x2>x−1②.【考点】4J:整式的混合运算—化简求值;CB:解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a+3)2﹣(a+2)(a+3)=a2+6a+9﹣a2﹣5a﹣6=a+3,当a=3时,原式=3+3=6;(2){3x−5≥2(x−2)①x2>x−1②由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°, 在△ABE 和△DFA 中∵{∠AEB =∠DAE∠AFD =∠BAD =AE∴△ABE ≌△DFA , ∴AB=DF .【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD ,再根据同弧所对的圆周角相等,求得∠B 的度数,即可求得∠BAD 的度数. 【解答】解:∵AB 为⊙O 直径 ∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25° ∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5 a 0.26 18 0.367 14 b8 8 0.16合计 c 1(1)统计表中的a= 10 ,b= 0.28 ,c= 50 ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷0.36=50,=0.28,∴a=50×0.2=10,b=1450故答案为10,0.28,50.(2)频数分布表直方图如图所示.=6.4(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及=528(名).以上的人数有1200×14+850【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=kx (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y=kx (x >0)的图象于点D ,过B ,D的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.【考点】GB :反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B 的坐标即可解决问题; (2)根据两直线垂直的条件,求出直线MN 的解析式即可解决问题; (3)结论:BF=DE .如图3中,延长BA 交x 轴于N ,作DM ⊥x 轴于M ,作NK ∥EF 交y 轴于K .设ON=n ,OM=m ,ME=a .则BN=kn,DM=km.由△EDM ∽△EBN ,推出EM EN =DM BN,即am+a−n=km k n,可得a=m ,由△KNO ≌△DEM ,推出DE=KN ,再证明四边形NKFB 是平行四边形,即可解决问题; 【解答】解:(1)如图1中,∵四边形OABC 是平行四边形, ∴AB=OC=3, ∵A (2,1), ∴B (2,4),把B (2,4)代入y=kx 中,得到k=8,∴反比例函数的解析式为y=8x.(2)如图2中,设K 是OB 的中点,则K (1,2).∵直线OB 的解析式为y=2x , ∴直线MN 的解析式为y=﹣12x+52,∴N (0,52), ∴ON=52.(3)结论:BF=DE .理由如下:如图3中,延长BA 交x 轴于N ,作DM ⊥x 轴于M ,作NK ∥EF 交y 轴。
2017年山东省济南市数学中考试题含答案
2017山东济南中考试题一、选择题(本大题共15小题,每小题3分,共45分)1.(2017济南,1,3分)在实数0,-2,5,3中,最大的是()A .0B .-2C .5D .3【答案】D2.(2017济南,2,3分)如图所示的几何体,它的左视图是()A .B .C .D .【答案】A3.(2017济南,3,3分)2017年5月5日国产大型客机C 919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A .0.555×104B .5.55×104C .5.55×103D .55.5×103【答案】C4.(2017济南,4,3分)如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是()A .40°B .45°C .50°D .60°【答案】C5.(2017济南,5,3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A .B .C .D .【答案】B6.(2017济南,6,3分)化简a 2+ab a -b÷ab a -b 的结果是()A .a 2B .a 2a -bC .a -b bD .a +bb【答案】D7.(2017济南,7,3分)关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是()A .-6B .-3C .3D .6【答案】B8.(2017济南,8,3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是()A -8x =3-7x =4B -8x =3x -y =4C x -y =3-7x =4D x -y =3x -y =4【答案】C9.(2017济南,9,3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是()A .12B .13C .16D .23【答案】B10.(2017济南,10,3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6cm ,则圆形螺母的外直径是()A .12cm B .24cm C .63cm D .123cm【答案】C11.(2017济南,11,3分)将一次函数y =2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是()A .x >-1B .x >1C .x >-2D .x >2【答案】A12.(2017济南,12,3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE =0.6m ,又量的杆底与坝脚的距离AB =3m ,则石坝的坡度为()A .34B .3C .35D .4【答案】B13.(2017济南,13,3分)如图,正方形ABCD的对角线AC,BD相较于点O,AB=32,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3105B.22C.354D.322【答案】A14.(2017济南,14,3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(-2,0),(x0,0),1<x0<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.4【答案】C15.(2017济南,15,3分)如图,有一正方形广场ABCD,图形中的线段均表示直行道路,⌒BD表示一条以A 为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x(m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是() A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【答案】D二、填空题(本大题共6小题,每小题3分,共18分)16.(2017济南,16,3分)分解因式:x2-4x+4=__________.【答案】(x-2)217.(2017济南,17,3分)计算:│-2-4│+(3)0=________________.【答案】718.(2017济南,18,3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________.【答案】9019.(2017济南,19,3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD =2AD,则BD的长度为____________cm.【答案】2020.(2017济南,20,3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=-3kx(x<0)的图象交于点C,连接AC,则△ABC的面积为_________________.【答案】821.(2017济南,21,3分)定义:在平面直角坐标系xOy中,把从点P出发沿综或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(-1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,-3),C(-1,-5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为______________.【答案】(1,-2)三、解答题(本大题共7小题,共57分)22.(2017济南,22,7分)(1)先化简,再求值:(a+3)2-(a+2)(a+3),其中a=3.【解】原式=a2+6a+9-(a2+2a+3a+6)=a2+6a+9-a2-2a-3a-6)=a+3.当a=3时,原式=3+3=6.(2-5≥2(x-2)①x-1②【解】由①,得x≥1.由②,得x<2.∴不等式组的解集为:1≤x<2.23.(2017济南,23,7分)(1)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.证明:∵四边形ABCD是矩形,∴∠B=90°,AD∥B C.∴∠DAF=∠BE A.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD=90°.又∵AD=AE,∴△ADF≌△EB A.∴AB=DF.(2)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【解】∵AB 是⊙O 的直径,∴∠ADB =90°.∵∠B =∠C =25°,∴∠BAD =90°-25°=65°.24.(2017济南,24,8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【解】设银杏树的单价是x 元,玉兰树的单价是1.5x 元,则12000x +90001.5x =150.解得x =120.经检验x =120是方程的解.∴1.5x =180.答:银杏树的单价是120元,玉兰树的单价是180元,25.(2017济南,25,8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【解】(1)a =10,b =0.28,c =50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校八年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).26.(2017济南,26,9分)如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A (2,1),反比例函数y =kx (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y =kx(x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F两点,请探究线段ED 与BF的数量关系,并说明理由.【解】(1)过点A 作AP ⊥x 轴于点P ,则AP =1,OP =2.又∵AB =OC =3,∴B (2,4).∵反比例函数y =kx(x >0)的图象经过的B ,∴4=k2.∴k =8.∴反比例函数的关系式为y =8x.(2)设MN 交OB 于点H ,过点B 作BG ⊥y 轴于点G ,则BG =2,OG =4.∴OB =22+42=2 5.∵点H 是OB 的中点,∴点H (1,2).∴OH =12+22= 5.∵∠OHN =∠OGB =90°,∠HON =∠GOB ,∴△OHN ∽△OGB ,∴ON OB =OHOG .∴ON 25=54.∴ON =2.5.(3)ED =BF .理由:由点A (2,1)可得直线OA 的解析式为y =12x .=12x =8x1=41=22=-22=-4.∵点D 在第一象限,∴D (4,2).由B (2,4),点D (4,2)可得直线BD 的解析式为y =-x +6.把y =0代入上式,得0=-x +6.解得x =6.∴E (6,0).∵ED =(6-4)2+(0-2)2=22,BF =(0-2)2+(6-4)2=2 2.∴ED =BF .27.(2017济南,27,9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC 和△ADE 中,∠ACB =∠AED =90°,∠CAB =∠EAD =60°,点E ,A ,C 在同一条直线上,连接BD ,点F 是BD 的中点,连接EF ,CF ,试判断△CEF 的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF 的两条边是否相等,如EF =CF ,以下是她的证明过程证明:延长线段EF 交CB 的延长线于点G .∵F 是BD 的中点,∴BF =DF .∵∠ACB =∠AED =90°,∴ED ∥CG .∴∠BGF =∠DEF .又∵∠BFG =∠DFE ,∴△BGF ≌△DEF ().∴EF =FG .∴CF =EF =12EG .请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS ,ASA ,AAS ,SSS 中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF 的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE 绕点A 逆时针旋转某个角度时,连接CE ,延长DE 交BC 的延长线于点P ,其他条件不变,判断△CEF 的形状并给出证明.【解】(1)①证明中所叙述的辅助线如下图所示:②证明的括号中的理由是:AAS.(2)△CEF 是等边三角形.证明如下:设AE =a ,AC =b ,则AD =2a ,AB =2b ,DE =3a ,BC =3b ,CE =a +b .∵△BGF ≌△DEF ,∴BG =DE =3a .∴CG =BC +BG =3(a +b ).∵CB CG =3b 3(a +b )=b a +b ,CA CE =b a +b,∴CB CG =CACE .又∵∠ACB =∠ECG ,∴△ACE ∽△ECG .∴∠CEF =∠CAB =60°.又∵CF =EF (已证),∴△CEF 是等边三角形.(3)△CEF 是等边三角形.证明方法一:如答案图2,过点B 作BN ∥DE ,交EF 的延长线于点N ,连接CN ,则∠DEF =∠FN B.又∵DF =BF ,∠DFE =∠BFN ,∴△DEF ≌△BNF .∴BN =DE ,EF =FN .设AC =a ,AE =b ,则BC =3a ,DE =3b .∵∠AEP =∠ACP =90°,∴∠P +∠EAC =180°.∵DP ∥BN ,∴∠P +∠CBN =180°.∴∠CBN =∠EA C .在△AEC 和△BNC 中,∵AE BN =AE DE =ACBC =33,∠CBN =∠EAC ,∴△AEC ∽△BN C .∴∠ECA =∠NC B .∴∠ECN =90°.又∵EF =FN ,∴CF =12EN =EF .又∵∠CEF =60°,∴△CEF 是等边三角形.证明方法二:如答案图3,取AB 的中点M ,并连接CM ,FM ,则CM =12AB =A C.又∵∠CAM =60°,∴△ACM 是等边三角形.∴∠ACM =∠AMC =60°.∵AM =BM ,DF =BF ,∴MF 是△ABD 的中位线.∴MF =12AD =AE 且MF ∥A D .∴∠DAB +∠AMF =180°.∴∠DAB +∠AMF +∠AMC =180°+60°=240°.即∠DAB +∠CMF =180°+60°=240°.又∵∠CAE +∠DAB =360°-∠DAE -∠BAC =360°-60°-60=240°,∴∠DAB +∠CMF =∠CAE +∠DAB ∴∠CMF =∠CAE .又∵CM =AC ,MF =AE ,∴△CAE ≌△CMF .∴CE =CF ,∠ECA =∠FCM .又∵∠ACM =∠ACF +∠FCM =60°,∴∠ACF +∠ECA =60°.即∠ECF =60°.又∵CE =CF ,∴△CEF 是等边三角形.28.(2017济南,28,9分)如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交BC 于点D ,tan ∠OAD =2,抛物线M 1:y =ax 2+bx (a ≠0)过A ,D 两点.(1)求点D 的坐标和抛物线M 1的表达式;(2)点P 是抛物线M 1对称轴上一动点,当∠CPA =90°时,求所有符合条件的点P 的坐标;(3)如图2,点E (0,4),连接AE ,将抛物线M 1的图象向下平移m (m >0)个单位得到抛物线M 2.①设点D 平移后的对应点为点D ′,当点D ′恰好在直线AE 上时,求m 的值;②当1≤x ≤m (m >1)时,若抛物线M 2与直线AE 有两个交点,求m 的取值范围.【解】(1)过点D 作DF ⊥OA 于点F ,则DF =6.∵tan ∠OAD =DFAF=2,∴AF =3.∴OF =1.∴D (1,6).把A (4,0),D (1,6)分别代入y =ax 2+bx (a ≠0),得=16a +4b=a +b .=-2=8.∴抛物线M 1y =-2x 2+8x .(2)连接AC ,则AC =42+62=213.∵y =-2x 2+8x =-2(x -2)2+8,∴抛物线M 1的对称轴是直线x =2.设直线x =2交OA 于点N ,则N (2,0).以AC 为半径作⊙M ,交直线x =2于P 1、P 2两点,分别连接P 1C 、P 1A 、P 2C 、P 2A ,则点P 1、P 2两点就是符合题意的点,且这两点的横坐标都是2.∵点M 是AC 的中点,∴点M (2,3).∴MN =2.∵P 1M 是Rt △CP 1A 的斜边上的中线,∴P 1M =12AC =13.∴P 1N =MN +P 1M =3+13.∴点P 1(2,3+13).同理可得点P 2(2,3-13).(3)由A (4,0),点E (0,4)可得直线AE 的解析式为y =-x +4.①点D (1,6)平移后的对应点为点D ′(1,6-m ),∵点D ′恰好在直线AE 上∴6-m =-1+4.解得m =3.∴D ′(1,3),m =3.②如答案图4,作直线x =1,它与直线AE 的交点就是点D ′(1,3).作直线x =m 交直线AE 于点Q (m ,-m +4).设抛物线M 2的解析式为y =-2x 2+8x -m .若要直线AE 与抛物线M 2有两个交点N 1、N 2,则关于x 的一元二次方程-2x 2+8x -m =-x +4有两个不相等的实数根,将该方程整理,得2x 2+9x +m +4=0.由△=92-4×2(m +4)>0,解得m <498.又∵m >1,∴1<m <498.…………………………………………………………………………①∵1≤x ≤m (m >1),∴抛物线M 2与直线AE 有两个交点N 1、N 2要在直线x =1与直线x =m 所夹的区域内(含左、右边界).当点N 1与点D ′(1,3)重合时,把D ′(1,3)的坐标代入y =-2x 2+8x -m ,可得m =3.∴m ≥3…………………………………………………………………………②当点N 2与点Q (m ,-m +4)重合时,把点Q (m ,-m +4)的坐标代入y =-2x 2+8x -m ,可得-m +4=-2m 2+8m -m .解得m 1=2+2,m 2=2-2(不合题意,舍去).∴m ≥2+2…………………………………………………………………………③由①、②、③可得符合题意的m 的取值范围为:2+2≤m<498..。
2017年济南数学中考真题(解析版)
济南市2017中考数学试卷答案一、选择题(每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一元二次方程的根是A.B.C.D.2.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则大多边形的周长为A.48 cm B.54 cm C.56cm D.64 cm3.端午节吃粽子是中华民族的传统习俗,小颖的妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其他均相同,若小颖随意吃一个,则吃到红豆粽的概率是A.B.C.D.4.中央电视台有一个非常受欢迎的娱乐节目《墙来了》,选手需按墙上的空洞造型摆成相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体能恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞(如图),则该几何体为A B C D5.如图,是的直径,弦,,.则阴影部分的面积是A.32πB.16πC.16 D.326.二次函数的图象可由的图象A.向左平移1个单位,再向下平移2个单位得到B.向左平移1个单位,再向上平移2个单位得到C.向右平移1个单位,再向下平移2个单位得到D.向右平移1个单位,再向上平移2个单位得到7.如图,在直角三角形中,,点是斜边的中点,经过、、三点,是弧上的一个点,且,则A.B.C.D.8.如图,直线与曲线交于点A,将直线向右平移6个单位后,与曲线交于点B,与轴交于点C,若,则的值为A.12 B.14 C.18 D.24第II卷二、填空题(每小题3分,共21分)9.在实数范围内定义一种运算“”,其规则为,则方程的所有解的和为____________.10.如图,,分别是正五边形的边,上的点,,连接,.将绕正五边形的中心按逆时针方向旋转到,旋转角为(),则____________.11.若,是一元二次方程的实根,且满足,,则实数的取值范围是____________.12.设二次函数的图象经过点(3,0),(7,–8),当时,y随x的增大而减小,则实数a的取值范围是____________.13.中,,cm,cm,以为圆心,为半径作圆,若圆与直线相切,则____________cm.14.如图,将边长为6 cm的正方形折叠,使点落在边的中点处,折痕为,点落在处,与交于点,则的周长是____________cm.第14题图第15题图15.如图,一段抛物线:,记为,它与x轴交于点,;将绕点旋转得,交x轴于点;将绕点旋转得,交x轴于点;…如此进行下去,直至得.若在第13段抛物线上,则____________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本题8分)如图,一次函数与反比例函数的图象相交于,两点,已知.(1)求及的值;(2)不解关于x,y的方程组,直接写出点的坐标;(3)根据图象,直接写出当时,自变量x的取值范围.17.(本题9分)某单位计划于“十一”期间组织职工到清明上河园观光旅游.下面是领队与旅行社导游关于收费标准的一段对话:领队:组团去清明上河园旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团游览清明上河园结束后,共支付给旅行社2700元.请你根据上述信息,求该单位这次到清明上河园观光旅游的共有多少人?18.(本题9分)某景区为了对一棵倾斜的古杉树进行保护,需测量其高度.如图,在地面上选取一点,测得,m,,求这棵古杉树的高度.(结果取整数)参考数据:,,,.19.(本题9分)在同一平面内,和如图①放置,其中.小明做了如下操作:将绕着边的中点旋转得到,将绕着边的中点旋转得到,如图②所示,请完成下列问题:(1)试猜想四边形是什么特殊四边形,并说明理由;(2)如图③,连接,,求证:四边形是平行四边形.20.(本题9分)某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率;(3)求2名主持人恰好1男1女的概率.21.(本题10分)如图1,在中,,,点,分别是边,的中点,连接.将绕点按顺时针方向旋转,记旋转角为.图1 图2 备用图(1)问题发现①当时,_____________;②当时,_____________.(2)拓展探究试判断:当时,的值有无变化?请仅就图2的情况给出证明.(3)问题解决当旋转至,,三点共线时,直接写出线段的长.22.(本题10分)如图,内接于,为直径,点是弧的中点,连接,设,交于点,于点,交于点.备用图(1)求证:;(2)判断与是否相等,并说明理由;(3)当点为半圆弧的中点,小李通过操作发现,请问小李的发现是否正确?若正确,请说明理由;若不正确,请写出与正确的关系式.23.(本题11分)如图,在平面直角坐标系中,抛物线经过,两点,且与y轴交于点,.动点从点出发,沿线段以每秒1个单位长度的速度向点移动,同时动点从点出发,沿线段以某一速度向点移动.(1)求该抛物线的解析式;(2)若经过秒的移动,线段被垂直平分,求此时的值;(3)在第一象限的抛物线上取一点,使得,再在抛物线上找点(不与点,,重合),使得,求点的坐标.1 2 3 4 5 6 7 8D A B A A D D A9.1 10.11.12.或13.14.12 15.216.(本题8分)【解析】(1)将点的坐标分别代入一次函数与反比例函数,可得,,解得,.(3分)(2)∵,两点关于直线对称,∴点的坐标为.(6分)(3)当时,自变量x的取值范围为或.(8分)17.(本题9分)【解析】设该单位这次参加旅游的共有人,因为,所以.(2分)依题意得,即,解得,.(4分)①当时,,符合题意;(5分)②当时,,不符合题意,应舍去.(6分)由①②可得.(7分)答:该单位这次参加旅游的共有人.(9分)18.(本题9分)【解析】如图,过点作于.(2分)∵,,∴在中,,(4分)在中,,∵m,∴,解得m,(6分)∴m.(8分)故这棵古杉树的高度大约为m.(9分)19.(本题9分)【解析】(1)四边形是菱形.(1分)理由如下:∵将绕着边的中点旋转得到,∴,,(2分)∵,∴,∴四边形是菱形.(4分)(2)∵四边形是菱形,∴,且,∵将绕着边的中点旋转得到,∴,,(6分)∴四边形为平行四边形,∴,且,∴,,∴四边形是平行四边形.(9分)20.(本题9分)【解析】(1)列表可得:A B C a bA AB AC Aa AbB BA BC Ba BbC CA CB Ca Cba aA aB[aC abb bA bB bC ba共有20种等可能的结果.(3分)(2)∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为.(6分)(3)∵2名主持人恰好1男1女的情况有12种,∴2名主持人恰好1男1女的概率为.(9分)21.(本题10分)【解析】(1)①当时,在中,,,点,分别是边,的中点,,,.②当时,可得,,.(3分)(2)无变化.如题图2中,在旋转过程中形状、大小不变,.又,,,在中,,,,的值不变.(6分)(3)或.(10分)注:如图①,当在上方,且,,三点共线时,四边形为矩形,;如图②,当在下方,且,,三点共线时,为直角三角形,由勾股定理可得,∴,根据,可得.图①图②22.(本题10分)【解析】(1)如图1,连接,∵是的直径,∴,∵于,∴,∴,∴,∵点是弧的中点,∴,∴,∴.(3分)(2).理由如下:由(1)知,,∴,∴.(5分)(3)小李的发现是正确的.理由如下:如图2,延长,交于点,∵为半圆弧的中点,是弧的中点,∴,,,在和中,,∴,∴.(7分)∵为直径,∴,∵为弧的中点,∴.在和中,,∴,(9分)∴,∴.(10分)23.(本题11分)【解析】(1)将,代入,得,解得,故抛物线的解析式为.(3分)(2)如图,连接,由和,可得,∵,∴,∴,则,∴,∴,∴,∴,即,∴,=.(6分)(3)如图,过点作于点,过点作于点,连接,∵,∴只有时,点才符合题意,∵,∴,解得,,∴,(7分)∵,∴,∴,∴(注:为等腰直角三角形,斜边),(9分)设,则,解得,(舍去),故.(11分)新杏坛家教一点通的资源,微信扫描二维码获取更多资源!。
2017山东省济南市数学中考试题(含答案)
2017山东济南中考试题一、选择题(本大题共15小题,每小题3分,共45分)1.(2017济南,1,3分)在实数0,-2,5,3中,最大的是( ) A .0B .-2C .5D .32.(2017济南,2,3分)如图所示的几何体,它的左视图是( )A .B .C .D .3.(2017济南,3,3分)2017年5月5日国产大型客机C 919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .0.555×104B .5.55×104C .5.55×103D .55.5×1034.(2017济南,4,3分)如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( ) A .40°B .45°C .50°D .60°5.(2017济南,5,3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()a bA .B .C .D .6.(2017济南,6,3分)化简a2+ab a -b ÷aba -b的结果是( ) A .a 2 B .a2a -bC .a -b bD .a +b b7.(2017济南,7,3分)关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是( ) A .-6B .-3C .3D .68.(2017济南,8,3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .⎩⎨⎧y -8x =3y -7x =4 B .⎩⎨⎧y -8x =37x -y =4 C .⎩⎨⎧8x -y =3y -7x =4 D .⎩⎨⎧8x -y =37x -y =49.(2017济南,9,3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .2310.(2017济南,10,3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6cm ,则圆形螺母的外直径是( ) A .12cmB .24cmC .63cmD .123cm出口出口11.(2017济南,11,3分)将一次函数y =2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( ) A .x >-1B .x >1C .x >-2D .x >212.(2017济南,12,3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE =0.6m ,又量的杆底与坝脚的距离AB =3m ,则石坝的坡度为( ) A .34B .3C .35D .413.(2017济南,13,3分)如图,正方形ABCD 的对角线AC ,BD 相较于点O ,AB =32,E为OC 上一点,OE =1,连接BE ,过点A 作AF⊥BE 于点F ,与BD 交于点G ,则BF 的长是( ) A .3105B .22C .354D .322EA14.(2017济南,14,3分)二次函数y =ax 2+bx +c (a≠0)的图象经过点(-2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a -b -1<0;④2a +c <0.其中正确结论的个数是( ) A .1B .2C .3D .415.(2017济南,15,3分)如图,有一正方形广场ABCD ,图形中的线段均表示直行道路, ⌒BD表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x(m)时,相应影子的长度为y(m),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( ) A .A →B →E →G B .A →E →D →CC .A →E →B →FD .A →B →D →C二、填空题(本大题共6小题,每小题3分,共18分)16.(2017济南,16,3分)分解因式:x 2-4x +4=__________.17.(2017济南,17,3分)计算:│-2-4│+(3)0=________________.18.(2017济南,18,3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________.AB第15题图1第15题图2第15题图319.(2017济南,19,3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC =120°,BD =2AD ,则BD 的长度为____________cm .20.(2017济南,20,3分)如图,过点O 的直线AB 与反比例函数y =kx的图象交于A ,B 两点,A (2,1),直线BC∥y 轴,与反比例函数y =-3kx(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为_________________.21.(2017济南,21,3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿综或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (-1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ =5或PT +TQ =5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,-3)C,C(-1,-5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为______________.DACCB DBCBC ABACD【答案】(x-2)2790208(1,-2)三、解答题(本大题共7小题,共57分)22.(2017济南,22,7分)(1)先化简,再求值:(a+3)2-(a+2)(a+3),其中a=3.【解】原式=a2+6a+9-(a2+2a+3a+6)=a2+6a+9-a2-2a-3a-6)=a+3.当a=3时,原式=3+3=6.(2)解不等式组:⎩⎨⎧3x -5≥2(x -2) ①x 2>x -1 ②【解】由①,得x ≥1. 由②,得x <2.∴不等式组的解集为:1≤x <2. 23.(2017济南,23,7分)(1)如图,在矩形ABCD ,AD =AE ,DF ⊥AE 于点F .求证:AB =DF .证明:∵四边形ABCD 是矩形,∴∠B =90°,AD ∥B C. ∴∠DAF =∠BE A . ∵DF ⊥AE , ∴∠AFD =90°. ∴∠B =∠AFD =90°. 又∵AD =AE , ∴△ADF ≌△EB A. ∴AB =DF .(2)如图,AB 是⊙O 的直径,∠ACD =25°,求∠BAD 的度数.【解】∵AB 是⊙O 的直径,∴∠ADB =90°. ∵∠B =∠C =25°, ∴∠BAD =90°-25°=65°.ECABCD24.(2017济南,24,8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【解】设银杏树的单价是x 元,玉兰树的单价是1.5x 元,则12000x +90001.5x=150. 解得x =120.经检验x =120是方程的解. ∴1.5x =180.答:银杏树的单价是120元,玉兰树的单价是180元, 25.(2017济南,25,8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a =________,b =___________,c =____________; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【解】(1)a =10,b =0.28,c =50;(2)将频数分布表直方图补充完整,如图所示:814187652015105人数0(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本). (4)该校八年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).26.(2017济南,26,9分)如图1,□OABC 的边OC 在y 轴的正半轴上,OC =3,A (2,1),反比例函数y =kx (x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA 延长交y =kx (x >0)的图象于点D ,过B ,D 的直线分别交x 轴、y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.【解】(1)过点A 作AP ⊥x 轴于点P ,则AP =1,OP =2.又∵AB =OC =3, ∴B (2,4).本∵反比例函数y =kx (x >0)的图象经过的B ,∴4=k2.∴k =8.∴反比例函数的关系式为y =8x.(2)设MN 交OB 于点H ,过点B 作BG ⊥y 轴于点G ,则BG =2,OG =4.∴OB =22+42=25.∵点H 是OB 的中点,∴点H (1,2).∴OH =12+22=5.∵∠OHN =∠OGB =90°,∠HON =∠GOB , ∴△OHN ∽△OGB ,∴ON OB =OH OG .∴ON 25=54.∴ON =2.5. (3)ED =BF .理由:由点A (2,1)可得直线OA 的解析式为y =12x .解方程组⎩⎨⎧y =12x y =8x,得⎩⎨⎧x 1=4y 1=2,⎩⎨⎧x 2=-2y 2=-4.∵点D 在第一象限,∴D (4,2).由B (2,4),点D (4,2)可得直线BD 的解析式为y =-x +6. 把y =0代入上式,得0=-x +6.解得x =6. ∴E (6,0). ∵ED =(6-4)2+(0-2)2=22,BF =(0-2)2+(6-4)2=22.∴ED =BF .27.(2017济南,27,9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG. ∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF( ). ∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.【解】(1)①证明中所叙述的辅助线如下图所示:②证明的括号中的理由是:AAS.(2)△CEF 是等边三角形.证明如下:设AE =a ,AC =b ,则AD =2a ,AB =2b ,DE =3a ,BC =3b ,CE =a +b . ∵△BGF ≌△DEF ,∴BG =DE =3a .∴CG =BC +BG =3(a +b ). ∵CB CG =3b 3(a +b )=b a +b ,CA CE =b a +b,∴CB CG =CA CE . 又∵∠ACB =∠ECG ,∴△ACE ∽△ECG . ∴∠CEF =∠CAB =60°. 又∵CF =EF (已证), ∴△CEF 是等边三角形. (3)△CEF 是等边三角形.证明方法一:如答案图2,过点B 作BN ∥DE ,交EF 的延长线于点N ,连接CN ,则∠DEF =∠FN B.第27题图2第27题图1B CC第27题答案图1BC A又∵DF =BF ,∠DFE =∠BFN ,∴△DEF ≌△BNF .∴BN =DE ,EF =FN . 设AC =a ,AE =b ,则BC =3a ,DE =3b . ∵∠AEP =∠ACP =90°,∴∠P +∠EAC =180°. ∵DP ∥BN ,∴∠P +∠CBN =180°.∴∠CBN =∠EA C . 在△AEC 和△BNC 中, ∵AE BN =AE DE =AC BC =33,∠CBN =∠EAC , ∴△AEC ∽△BN C .∴∠ECA =∠NC B .∴∠ECN =90°. 又∵EF =FN , ∴CF =12EN =EF .又∵∠CEF =60°, ∴△CEF 是等边三角形.证明方法二:如答案图3,取AB 的中点M ,并连接CM ,FM ,则CM =12AB =A C.又∵∠CAM =60°,∴△ACM 是等边三角形. ∴∠ACM =∠AMC =60°.∵AM =BM ,DF =BF ,∴MF 是△ABD 的中位线.∴MF =12AD =AE 且MF ∥A D .∴∠DAB +∠AMF =180°.∴∠DAB +∠AMF +∠AMC =180°+60°=240°. 即∠DAB +∠CMF =180°+60°=240°.又∵∠CAE +∠DAB =360°-∠DAE -∠BAC =360°-60°-60=240°, ∴∠DAB +∠CMF =∠CAE +∠DAB ∴∠CMF =∠CAE .第27题答案图2N第27题答案图3又∵CM =AC ,MF =AE ,∴△CAE ≌△CMF .∴CE =CF ,∠ECA =∠FCM . 又∵∠ACM =∠ACF +∠FCM =60°, ∴∠ACF +∠ECA =60°.即∠ECF =60°. 又∵CE =CF ,∴△CEF 是等边三角形. 28.(2017济南,28,9分)如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交B C 于点D ,tan ∠OAD =2,抛物线M 1:y =ax 2+bx (a ≠0)过A ,D 两点.(1)求点D 的坐标和抛物线M 1的表达式;(2)点P 是抛物线M 1对称轴上一动点,当∠CPA =90°时,求所有符合条件的点P 的坐标;(3)如图2,点E (0,4),连接AE ,将抛物线M 1的图象向下平移m (m >0)个单位得到抛物线M 2.①设点D 平移后的对应点为点D ′,当点D ′ 恰好在直线AE 上时,求m 的值; ②当1≤x ≤m (m >1)时,若抛物线M 2与直线AE 有两个交点,求m 的取值范围.【解】(1)过点D 作DF ⊥OA 于点F ,则DF =6.∵tan ∠OAD =DFAF =2,∴AF =3.∴OF =1.∴D (1,6).把A (4,0),D (1,6)分别代入 y =ax 2+bx (a ≠0),得⎩⎨⎧0=16a +4b 6=a +b .解得⎩⎨⎧a =-2b =8. ∴抛物线M 1的表达式为:y =-2x 2+8x .(2)连接AC ,则AC =42+62=213.∵y =-2x 2+8x =-2(x -2)2+8, ∴抛物线M 1的对称轴是直线x =2. 设直线x =2交OA 于点N ,则N (2,0).以AC 为半径作⊙M ,交直线x =2于P 1、P 2两点,分别连接P 1C 、P 1A 、P 2C 、P 2A ,则点P 1、P 2两点就是符合题意的点,且这两点的横坐标都是2. ∵点M 是AC 的中点,∴点M (2,3).∴MN =2.∵P 1M 是Rt △CP 1A 的斜边上的中线,∴P 1M =12AC =13.∴P 1N =MN + P 1M =3+13. ∴点P 1(2,3+13). 同理可得点P 2(2,3-13).(3)由A (4,0),点E (0,4)可得直线AE 的解析式为y =-x +4. ①点D (1,6)平移后的对应点为点D ′(1,6-m ),∵点D ′ 恰好在直线AE 上 ∴6-m =-1+4. 解得m =3.∴D ′(1,3),m =3.②如答案图4,作直线x =1,它与直线AE 的交点就是点D ′(1,3).作直线x =m 交直线AE 于点Q (m ,-m +4).设抛物线M 2的解析式为y =-2x 2+8x -m .若要直线AE 与抛物线M 2有两个交点N 1、N 2,则关于x 的一元二次方程-2x 2+8x -m =-x +4有两个不相等的实数根,将该方程整理,得2x 2+9x +m +4=0. 由△=92-4×2(m +4)>0, 解得m <498.又∵m >1,∴1<m <498.…………………………………………………………………………①∵1≤x ≤m (m >1), ∴抛物线M 2与直线AE 有两个交点N 1、N 2要在直线x =1与直线x =m 所夹的区域内(含左、右边界).当点N 1与点D ′(1,3)重合时,把D ′(1,3)的坐标代入y =-2x 2+8x -m ,可得m =3. ∴m ≥3…………………………………………………………………………②当点N 2与点Q (m ,-m +4)重合时,把点Q (m ,-m +4)的坐标代入y =-2x 2+8x -m ,可得答案图3-m +4=-2m 2+8m -m .解得m 1=2+2,m 2=2-2(不合题意,舍去). ∴m ≥2+2…………………………………………………………………………③ 由①、②、③可得符合题意的m 的取值范围为:2+2≤m <498..。
2017年山东省济南市中考数学试卷(含答案解析版)
2017年山东省济南市中考数学试卷(含答案解析版)2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,,3中,最大的是()A.0 B.﹣2 C.D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,﹣2,,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,A.a2B.C.D.【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=•=,故选:D.【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6 B.﹣3 C.3 D.6【考点】AB:根与系数的关系.【分析】设方程的另一个根为n,根据两根之和等于﹣,即可得出关于n的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n,则有﹣2+n=﹣5,解得:n=﹣3.故选C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A. B.C. D.【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x人,物价为y钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x人,物价为y钱,根据题意,可列方程组:,故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A进入景区并从C,D出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,∵小红从入口A进入景区并从C,D出口离开的有2种情况,∴P=.故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6cm D.12cm【考点】MC:切线的性质.【分析】设圆形螺母的圆心为O,连接OD,OE,OA,如图所示:根据切线的性质得到AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,得到∠OAE=∠OAD=∠DAB=60°,根据三角函数的定义求出OD的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=6cm,∴tan∠OAD=tan60°=,即=,∴OD=6cm,则圆形螺母的直径为12cm.故选D.【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.B.3 C.D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C作CF⊥AB于F,根据DE∥CF,可得=,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴=,即=,解得CF=3,∴Rt△ACF中,AF==4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为==3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.B.2C.D.【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE==,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,∴△BFG∽△BOE,∴=,即=,解得,BF=,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=>﹣,即<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b>0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣=>﹣,即<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4= (x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017•济南)计算:|﹣2﹣4|+()0= 7 .【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+()0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90 .【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为20 cm.【考点】MO:扇形面积的计算.【分析】设AD=x,则AB=3x.由题意300π=,解方程即可.【解答】解:设AD=x,则AB=3x.由题意300π=,解得x=10,∴BD=2x=20cm.故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O的直线AB与反比例函数y=的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=(x<0)的图象交于点C,连接AC,则△ABC的面积为8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A(2,1)求得两个反比例函数分别为y=,y=,与AB的解析式y=x,解方程组求得B的坐标,进而求得C点的纵坐标,即可求得BC,根据三角形的面积公式即可求得结论.【解答】解:∵A(2,1)在反比例函数y=的图象上,∴k=2×1=2,∴两个反比例函数分别为y=,y=,设AB的解析式为y=kx,把A(2,1)代入得,k=,∴y=x,解方程组得:,,∴B(﹣2,﹣1),∵BC∥y轴,∴C点的横坐标为﹣2,∴C点的纵坐标为=3,∴BC=3﹣(﹣1)=4,∴△ABC的面积为×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A,B,C点的坐标,进而得出答案.【解答】解:由题意可得:M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2),此时M到A,B,C的实际距离都为5.故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a+3)2﹣(a+2)(a+3),其中a=3.(2)解不等式组:.【考点】4J:整式的混合运算—化简求值;CB:解一元一次不等式组.【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题;(2)根据解不等式组的方法可以解答本题.【解答】解:(1)(a+3)2﹣(a+2)(a+3)=a2+6a+9﹣a2﹣5a﹣6=a+3,当a=3时,原式=3+3=6;(2)由不等式①,得x≥1,由不等式②,得x<2故原不等式组的解集是1≤x<2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠AFD=∠B,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠AEB=∠DAE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中∵∴△ABE≌△DFA,∴AB=DF.【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180 . 3 6714b 880.16c1合计(1)统计表中的a= 10 ,b= 0.28 ,c= 50 ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷0.36=50,∴a=50×0.2=10,b==0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数==6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A (2,1),反比例函数y=(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=,DM=.由△EDM∽△EBN,推出=,即=,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,∵四边形OABC是平行四边形,∴AB=OC=3,∵A(2,1),∴B(2,4),把B(2,4)代入y=中,得到k=8,∴反比例函数的解析式为y=.(2)如图2中,设K是OB的中点,则K(1,2).∵直线OB的解析式为y=2x,∴直线MN的解析式为y=﹣x+,∴N(0,),∴ON=.(3)结论:BF=DE.理由如下:如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=,DM=.∵△EDM∽△EBN,∴=,∴=,可得a=m,∵NK∥EF,∴∠KNO=∠DEM,∠KON=∠DME=90°,ON=EM,∴△KNO≌△DEM,∴DE=KN,∵FK∥BN,NK∥FB,∴四边形NKFB是平行四边形,∴NK=BF,∴BF=DE.【点评】本题考查一次函数,反比例函数、平行四边形,全等三角形,相似三角形等几何知识结合在一起,综合性比较强,要求学生有较强的分析问题好解决问题的能力.28.(9分)(2017•济南)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段E F 交C B 的延长线∴∠B G F =∠D E F .又∵∠B F点G .∵F 是B D 的中点,∴B F = D F .∵∠A C B =∠A E =∠D F E ,∴△B G F ≌△D E F (A S A).∴E F == 9 0°,∴E D ∥C G .G .∴C F = E F =E G .请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC 的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.【考点】RB:几何变换综合题.【分析】(1)①由证明过程即可作出图形;②根据判断三角形全等的方法即可得出结论;(2)先判断出EH=DE,进而判断出四边形BGEH是平行四边形,得出∠DEF=∠H=30°,即可求出∠CEF=∠AED﹣∠DEF=60°,即可得出结论;(3)先判断出△DEF≌△BGF(SAS),得出∠CAE=∠CBG ,再判断出,进而得出△BCG∽△ACE,得出∠BCG=∠ACE,进而判断出=90°,即可得出CF=EF=EG,再求出=,最后用锐角三角函数求出∠CEG即可得出结论.【解答】解:(1)①由题意作图如图1所示图形,②证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF( ASA).∴EF=FG.∴CF=EF=EG.故答案为ASA;(2)如图3,延长BA,DE相交于点F,∵∠BAC=60°,∴∠EAH=60°=∠EAD,∵∠AED=90°,∴∠H=30°,EH=DE,由(1)②知,△BGF≌△DEF,∴DE=BG,∴EH=BG,∵DE∥BG,∴四边形BGEH是平行四边形,∠DEF=∠H=30°,∴∠CEF=∠AED﹣∠DEF=60°,∵CF=EF,∴△CEF是等边三角形;(3)如图2,延长EF至G使,FG=EF,∵点F是BD的中点,∴DF=BF,∵∠DFE=∠BFG,∴△DEF≌△BGF(SAS),∴BG∥DP,∴∠P+∠CBG=180°,在四边形ACPE中,∠AEP=∠ACP=90°,根据四边形的内角和得,∠CAE+∠P=180°,∴∠CAE=∠CBG,在Rt△ADE中,∠DAE=60°,∴tan∠DAE==,即:,同理:,∴,∵∠CBG=∠CAE,∴△BCG∽△ACE,∴∠BCG=∠ACE,∴∠ECG=∠ACE+∠ACG=∠BCG+∠ACG=90°,在Rt△CEG中,EF=GF,∴CF=EF=EG,∵△BCG∽△ACE,∴=,在Rt△CEG中,tan∠CEG==,∴∠CEG=60°,∵CF=EF,∴△CEF是等边三角形.【点评】此题是几何变换综合题,主要考查了全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,锐角三角函数,四边形内角和公式,解本题的关键是构造全等三角形,难点是判断出△BCG∽△ACE,是一道典型的中考常考题.29.(9分)(2017•济南)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M:y=ax2+bx(a≠0)过1A,D两点.(1)求点D的坐标和抛物线M的表达式;1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点(2)点P是抛物线M1P的坐标;的图象向下平移m(m>0)个(3)如图2,点E(0,4),连接AE,将抛物线M1.单位得到抛物线M2①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;与直线AE有两个交点,求m的取值范围.②当1≤x≤m(m>1)时,若抛物线M2【考点】HF:二次函数综合题.【分析】(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.在Rt△ADH中,解直角三角形,求出点D坐标,利用待定系数法即可解决问题;(2)如图1﹣1中,设P(2,m).由∠CPA=90°,可得PC2+PA2=AC2,可得22+(m﹣6)2+22+m2=42+62,解方程即可;(3)①求出D′的坐标;②构建方程组,利用判别式△>0,求出抛物线与直线AE有两个交点时的m的范围;③求出x=m时,求出平移后的抛物线与直线AE的交点的横坐标;结合上述的结论即可判断.【解答】解:(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.∵四边形CDHO是矩形,∴OC=DH=6,∵tan∠DAH==2,∴AH=3,∵OA=4,∴CD=OH=1,∴D(1,6),把D(1,6),A(4,0)代入y=ax2+bx中,则有,解得,的表达式为y=﹣2x2+8x.∴抛物线M1(2)如图1﹣1中,设P(2,m).∵∠CPA=90°,∴PC2+PA2=AC2,∴22+(m﹣6)2+22+m2=42+62,解得m=3±,∴P(2,3+),P′(2,3﹣).(3)①如图2中,易知直线AE的解析式为y=﹣x+4,x=1时,y=3,∴D′(1,3),平移后的抛物线的解析式为y=﹣2x2+8x﹣m,把点D′坐标代入可得3=﹣2+8﹣m,∴m=3.②由,消去y得到2x2﹣9x+4+m=0,当抛物线与直线AE有两个交点时,△>0,∴92﹣4×2×(4+m)>0,∴m<,③x=m时,﹣m+4=﹣2m2+8m﹣m,解得m=2+或2﹣(舍弃),综上所述,当2+≤m<时,抛物线M与直线AE有两个交点.2【点评】本题考查二次函数综合题、一次函数的应用、解直角三角形、锐角三角函数、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程组,利用判别式解决问题,属于中考压轴题.。
最新山东济南2017届中考第一次模拟考试压轴题汇编(含答案)
3、 (2017 天桥一模) (本小题满分 9 分)如图,在平面直角坐标系中,矩形 OCDE 的三个顶点分别是 C(3, 0),D(3,4),E(0,4).点 A 在 DE 上,以 A 为顶点的抛物线过点 C,且对称轴 x=1 交 x 轴于点 B.连接 EC, AC.点 P,Q 为动点,设运动时间为 t 秒. (1)直接写出点 A 坐标,并求出该抛物线的函数表达式. (2)在图①中,若点 P 在线段 OC 上从点 O 向点 C 以 1 个单位/秒的速度运动,同时,点 Q 在线段 CE 上从点 C 向点 E 以 2 个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当 t 为何值 时,△PCQ 为直角三角形? (3)在图②中,若点 P 在对称轴上从点 B 开始向点 A 以 2 个单位/秒的速度运动,过点 P 作 PF⊥AB,交
6参考答案代数来自合1、 (2017 历下一模) 解: (1)将 A(-1,0) 、B(3,0)两点代入 y ax 2 bx 3 得:
a b 3 0 ……1 分 9a 3b 3 0
解得:
a 1 ∴抛物线的表达式为: y x 2 2 x 3 b 2
F
几何综合
1、 (2017 历下一模)如图,在△ABC 中,已知 CA=CB=5,BA=6,点 E 是线段 AB 上的动点(不与端点 重合),点 F 是线段 AC 上的动点,连接 CE、EF,若在点 E、点 F 的运动过程中,始终保证∠CEF=∠B. (1)求证:∠AEF=∠BCE; (2)当以点 C 为圆心,以 CF 为半径的圆与 AB 相切时,求 BE 的长; (3)探究:在点 E、F 的运动过程中,△CEF 可能为等腰三角形吗?若能,求出 BE 的长;若不能,请说 明理由.
【精品】2017年山东省济南市数学中考试题含答案(Word版)
一、选择题(本大题共 15 小题,每小题 3 分,共 45 分)
1. (2017 济南, 1, 3 分) 在实数 0,- 2, 5, 3 中,最大的是 (
A .0 【答案】 D
B .- 2
C. 5
) D.3
2. (2017 济南, 2, 3 分) 如图所示的几何体,它的左视图是 (
18. (2017 济南, 18, 3 分 )在学校的歌咏比赛中, 10 名选手的成绩如统计图所示,则这 10 名选手成绩的众数是 _________________ .
【答案】 90
19. (2017 济南, 19,3 分 )如图,扇形纸叠扇完全打开后,扇形 ABC 的面积为 300π cm2,∠ BAC= 120 °,BD= 2AD,则 BD 的长度为 ____________cm .
= a2+ 6a+9- a2- 2a- 3a- 6)
= a+ 3. 当 a= 3 时, 原式= 3+ 3= 6.
3x- 5≥2(x- 2) ①
( 2)解不等式组: x> x- 1
②
2
【解】 由①,得 x≥1.
由②,得 x< 2. ∴不等式组的解集为: 1≤ x<2.
23. (2017 济南, 23, 7 分 ) ( 1)如图,在矩形 ABCD , AD= AE,DF ⊥AE 于点 F .求证: AB= DF .
a2 B. a- b
a- b C. b
【答案】 D
a+ b D. b
7.(2017 济南, 7,3 分 )关于 x 的方程 x2+5x+ m= 0 的一个根为- 2,则另一个根是 (
)
A .- 6
B .- 3
C. 3
D.6
2017山东济南中考数学真题(word-含答案解析)
2017年XX 省初中学业水平考试XX 市〔考试时间:120分钟 满分:120分〕第Ⅰ卷〔选择题 共45分〕一、选择题〔本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的〕1.在实数0,2-,2中,最大的是〔 〕.A .0B .2-CD .2[答案]C[解析]2,202>>-,故选C .2.如图所示的几何体,它的左视图是〔 〕.正面A.B.C.D.[答案]A[解析]从左侧看,有两列正方形,左侧一列有三个正方形,右侧只有一个正方形,故选A .3.2017年5月5日国产大型客机C919首飞成功圆了中国人的“大飞机梦〞,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里,数字5550用科学记数法表示为〔 〕.A .40.55510⨯B .35.5510⨯C .45.5510⨯D .355.510⨯[答案]B[解析]35550 5.5510=⨯.4.如图,直线a b ∥,直线l 与a ,b 分别相交于A ,B 两点,AC AB ⊥交b 于点C ,140∠=︒,则2∠的度数是〔 〕.12la bCBAA .40︒B .45︒C .50︒D .60︒[答案]C [解析]∵a b ∥, ∴140ABC ∠=∠=︒. 又∵90BAC ∠=︒,∴250∠=︒.5.中国古代建筑中的窗格图案实用大方,寓意吉祥.以下给出的图案中既是轴对称图形又是中心对称图形的是〔 〕.A .B .C .D .[答案]B[解析]A 项、D 项不是中心对称图形,C 项不是轴对称图形,B 项既是轴对称图形又是中心对称图形,故选B .6.化简2a ab aba b a b +÷--的结果是〔 〕.A .2aB .2a a b-C .a ba- D .a bb+ [答案]D[解析]2()a ab ab a a b a b a b a b a b a b ab b ++-+÷=⋅=---.7.关于x 的方程250x x m ++=的一个根为2-,则另一个根为〔 〕.A .6-B .3-C .3D .6[答案]B[解析]∵2-是方程250x x m ++=的一个根, ∴4100m -+=,解得6m =,故原方程为2560x x ++=,解得12x =-,23x =-,因此方程的另一个根为3-.8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是〔 〕.A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩[答案]C[解析]由“每人出8钱,会多3钱〞,可得83x y -=;由“每人出7钱,又差4钱〞,可得77y x -=, ∴所列方程组为83,7 4.x y y x -=⎧⎨-=⎩9.如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口景区,游玩后任选一个出口离开,则她选择从A 口进入,从C ,D 口离开的概率是〔 〕.E D C B A 出口出口入口入口景区出口A .12B .13C .16D .23[答案]B[解析]画树状图如下:ED A B CCDE出口入口开始由上图可知,一共有6种不同的情况,其中从A 口进,从C ,D 口出的情况有2种,所以所求概率2163P ==.10.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,60CAB ∠=︒,若量出6cm AD =,则圆形螺母的外直径是〔 〕.A .12cmB .24cmC.D.[答案]D[解析]如图,记螺母的圆心为O ,连接OA ,OD .∵60CAB ∠=︒,∴120DAB ∠=︒,60DAO ∠=︒.在Rt AOD △中,60DAO ∠=︒,6cm AD =,∴tan OD AD DAO =⋅∠=,∴圆形螺母的外直径2OD ==.11.将一次函数2y x =的图象向上平移2个单位后,当0y >时,x 的取值X 围是〔 〕.A .1x >-B .1x >C .2x >-D .2x >[答案]A[解析]一次函数2y x =的图象向上平移2个单位后,得到的函数解析式为22y x =+. 当0y >时,即220x +>,解得1x >-.12.如图,为了测量山坡护坡石坝的坡度〔坡面的铅直高度与水平宽度的比称为坡度〕,把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度0.6m DE =,又量的杆底与坝脚的距离3m AB =,则石坝的坡度为〔 〕.A .34B .3C .35D .4[答案]B[解析]如图,作CM AB ⊥于点M .在Rt ADE △中,由勾股定理得0.8AE .易知ADE ACM △∽△,∴AD AE DEAC AM CM ==, 即10.80.65AM CM==,解得4AM =,3CM =, ∴431BM AM AB =-=-=,∴坡度3CMBM==.13.如图,正方形ABCD 的对角线AC ,BD 相交于点O,AD =E 为OC 上一点,1OE =,连接BE ,过点A 作AF BE ⊥于点F ,与BD 交于点G ,则BF 的长为〔 〕.FE CBAG O DAB.CD[答案]A[解析]在正方形ABCD 中,∵AD = ∴6BD =,3OB =. 在Rt BOE △中, ∵1OE =,3OB =,∴BE∵3OA OB ==,1122ABE S AE OB BE AF =⋅=⋅△,∴AE OB AF BE ⋅=∴BF =.14.二次函数2(0)y ax bx c a =++≠的图象经过点(2,0)-,0(,0)x ,012x <<,与y 轴的负半轴相交,且交点在(0,2)-的上方,下列结论:①0b >;②2a b <;③210a b --<;④20a c +<,其中正确结论的个数是〔 〕.A .1B .2C .3D .4[答案]C[解析]∵012x <<,∴021022x -+-<<,即1022ba-<-<.根据题意,画出抛物线的大致图象如下:由图象可知,0a >, ∴0b >,①正确;∵1022ba-<-<,∴a b >,2a b >,②错误;∵图象过(2,0)-, ∴420a b c -+=,∴22ca b -=-.又∵20c -<<,∴012c<-<,∴21102ca b --=--<,∴③正确; 设12x =-,则01c x x a=, ∵012x <<, ∴0142x x -<<-, ∴42ca-<<-,∴20a c +<. ④正确,故选C .15.如图1,有一正方形广场ABCD ,图形中的线段均表示直行道路,BD 表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜间小齐同学沿广场道路散步时,影子长度随行走路程的变化而变化,设他步行的路程为(m)x 时,相应影子的长度为(m)y ,根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是〔 〕.图1FE CBAG D图2A .AB E G →→→ B .A E DC →→→ C .A E B F →→→D .A B D C →→→[答案]D[解析]利用排除法解答此题.对于选项A ,在E G →时,影子的长度是减小的,与图象不符; 对于选项C ,在B F →时,影子的长度是减小的,与图象不符;比较选项B 与D ,区别在于走的是A E →还是A B →,观察图象可以发现,第二段的路程要比第一段的路程长, ∴排除B ,选D .第Ⅱ卷〔非选择题共75分〕二、填空题〔本大题共6个小题,每小题3分,共18分〕16.分解因式:244x x -+=__________. [答案]2(2)x -[解析]2244(2)x x x -+=-.17.计算:0|24|--+=__________. [答案]7[解析]0|24|617--+=+=.18.在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是__________.[答案]90[解析]由统计图可知,得分为80的有2人,得分为85的有1人,得分为90的有5人,得分为95的有2人,故成绩的众数为90.19.如图,扇形纸扇完全打开后,扇形ABC 的面积为2300πcm ,120BAC ∠=︒,2BD AD =,则BD 的[答案]20[解析]设AD x =,则2BD x =,3AB x =.由题意知2120π(3)300π360x ⋅=, 解得10x =,故20BD =.20.如图,过点O 的直线AB 与反比例函数ky x=的图象相交于A ,B 两点,(2,1)A ,直线BC y ∥轴,与反比例函数3(0)ky x x-=<的图象交于点C ,连接AC ,则ABC △的面积是__________.[答案]8[解析]∵点(2,1)A 在反比例函数ky x=上,∴2k =.根据反比例的图象关于原点对称,可知(2,1)B --, ∴点C 的横坐标为2-,∵点C 在反比例函数6y x=-的图象上,∴(2,3)C -,∴1(31)(22)82ABC S =⨯+⨯+=△.21.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q 〔至多拐一次弯〕的路径长称为P ,Q 的“实际距离〞.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离〞为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具,设A ,B ,C 三个小区的坐标分别为(3,1)A ,(5,3)B -,(1,5)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离〞相等,则点M 的坐标为__________.[答案](1,2)-[解析]如图,在平面直角坐标系中画出A ,B ,C 三点,易知点M 在第四象限,大致位置如图所示.故所求的M 点的坐标为(1,2)-.三、解答题〔本大题共7个小题,共57分.解答应写出必要的文字说明、证明过程或演算步骤〕 22.〔本题满分7分〕〔1〕先化简,再求值:2(3)(2)(3)a a a +-++,其中3a =.〔2〕解不等式组352(2),1.2x x x x ++⎧⎪⎨-⎪⎩①②≥≥[注意有①②][答案]见解析[解析]解:〔1〕原式2269(56)3a a a a a =++-++=+. 当3a =时,原式336=+=. 〔2〕由①得1x -≥,由②得2x ≤, 故不等式组的解集为12x -≤≤.23.〔本题满分7分〕〔1〕如图,在矩形ABCD 中,AD AE =,DF AE ⊥于点F ,求证:AB DF =. 〔2〕如图,AB 是⊙O 的直径,25ACD ∠=︒,求BAD ∠的度数.1()题F ECBA D2()题[答案]见解析[解析]〔1〕证明:在矩形ABCD 中, ∵AD BC ∥, ∴DAF AEB ∠=∠. 在ADF △和EAB △中, ,90,,DAF AEB AFD EBA AD AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴ADF △≌EAB △, ∴AB DF =.〔2〕解:∵25ACD ∠=︒, ∴25ABD ∠=︒, ∵AB 是⊙O 的直径, ∴90ADB ∠=︒.在ABD △中,1801802565BAD ABD ADB ∠=︒-∠-∠=︒-︒-90︒=︒. 24.〔本题满分8分〕某小区响应XX 市提出的“建绿透绿〞号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树的1.5倍,那么银杏树和玉兰树的单价各是多少? [答案]见解析[解析]解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元, 由题意得1200090001501.5x x+=,解得120x =.经检验,120x =是原分式方程的根,且符合实际意义, 则1.5180x =︒.答:银杏树的单价为120元,玉兰树的单价为180元. 25.〔本题满分8分〕中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书〞,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:本数/本〔1〕统计图表中的a =__________,b =__________,c =__________. 〔2〕请将频数分布直方图补充完整. 〔3〕求所有被调查学生课外阅读的平均本数.〔4〕若该校八年级共有1200名学生,请你估计该校八年级学生课外阅读7本与以上的人数. [答案]见解析[解析]解:〔1〕10,0.28,50 〔2〕补全频数分布直方图如下:本数/本〔3〕1(10518614788) 6.450⨯+⨯+⨯+⨯=. 答:所有被调查学生课外阅读的平均本数为6.4本.〔4〕148120052850+⨯=. 答:估计该校八年级学生课外阅读7本与以上的人数为528人.26.〔本题满分9分〕如图1,平行四边形OABC 的边OC 在y 轴的正半轴上,3OC =,(2,1)A ,反比例函数(0)ky x x=>的图象经过点B .〔1〕求点B 的坐标和反比例函数的关系式.〔2〕如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长.〔3〕如图3,将线段OA 延长交(0)ky x x=>于点D ,过B ,D 的直线分别交x 轴,y 轴于E ,F 两点,请探究线段ED 与BF 的数量关系,并说明理由.[答案]见解析[解析]解:〔1〕在平行四边形OABC 中, ∵3OC =,(2,1)A , ∴(2,4).∵点B 在反比例函数ky x=的图象上, ∴248k =⨯=,故反比例函数的关系式为8y x=. 〔2〕∵点O 和点B 关于直线MN 成轴对称,∴直线MN 是线段OB 的垂直平分线, ∵点(0,0)O ,(2,4)B ,∴OB 的中点坐标为(1,2),直线OB 的关系式为2y x =.设直线MN 的关系式为12y x b =-+,∵直线MN 过OB 中点(1,2),∴1212b =-⨯+,解得52b =.∴52ON =.〔3〕ED BF =.理由如下: ∵(2,1)A ,∴直线OA 的关系式为12y x =.由1,28.y x y x ⎧=⎪⎪⎨⎪=⎪⎩得216x =, 解得4x =±, ∴(4,2)D .设直线BD 的关系式为y mx n =+. 则24,42,m n m n +=⎧⎨+=⎩解得1,6.m n =-⎧⎨=⎩∴直线BD 的关系式为6y x =-+,易知(6,0)E ,(0,6)F .∵BF =,ED =, ∴ED BF =. 27.〔本小题满分9分〕某学习小组在学习时遇到了下面的问题:如图1,在ABC △和ADE △中,90ACB AED ∠=∠=︒,60CAB EAD ∠=∠=︒,点E ,A ,C 在同一直线上,连接BD ,F 是BD 的中点,连接EF ,CF ,试判断CEF △的形状并说明理由. 问题探究〔1〕小婷同学提出解题思路:先探究CEF △的两条边是否相等,如EF CF =.以下是她的证明过程:①在图1上作出证明中所描述的辅助线.②在证明的括号中填写理由〔请在SAS ,ASA ,AAS ,SSS 中选择〕.〔2〕在〔1〕在探究结论的基础上,请你帮助小婷求出CEF ∠的度数,并判断CEF △的形状. 问题拓展〔3〕如图2,当ADE △绕点A 逆时针旋转某个角度时,连接CE ,延长DE 交BC 的延长线于点P ,其它条件不变,判断CEF △的形状并给出证明.图1D ABCE F 图2DPA BC E F[答案]见解析[解析]解:〔1〕如图:M NFE CBAGD②AAS〔2〕设AE a =,AC b =,则2AD a =,2AB b =,DE,BC . ∵DEF △≌BGF △,∴DE BG =.CE AE AC a b =+=+,)CG BG BC a b =+++.∵AC bCE a b =+,BC b CG a b=+, ∴AC BCCE CG=. 又∵90ACB ECG ∠=∠=︒,∴ACB ECG △∽△, ∴60CEG CAB ∠=∠=︒, ∴CEF △是等边三角形.〔3〕如图,作BN DE ∥,延长EF 交BN 于N ,连接CN ,NFE CBAPD则DEF FNB ∠=∠,又∵DF BF =,DFE BFN ∠=∠, ∴DEF △≌BNF △, ∴BN DE =,EF FN =. 设AB a =,AE b =,则BC,DE . ∵90AEP ACP ∠=∠=︒, ∴180P EAC ∠+∠=︒. ∵DP BN ∥,∴180P CBN ∠+∠=︒, ∴CBN EAC ∠=∠. 在AEC △和BNC △中,∵AE AE AC BN DE BC ==CBN EAC ∠=∠. ∴ABC BNC △∽△, ∴ECA NCB ∠=∠. ∴90ECN ∠=︒, ∴EF CF =. 又∵60CEF ∠=︒, ∴CEF △为等边三角形. 28.〔本小题满分9分〕如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交BC 于点D .tan 2OAD ∠=,抛物线21:(0)M y ax bc a =+≠过A ,D 两点. 〔1〕求点D 的坐标和抛物线1M 的表达式.〔2〕点P 是抛物线1M 对称轴上一动点,当90CPA ∠=︒时,求所有满足条件的点P 的坐标. 〔3〕如图2,点(0,4)E ,连接AE ,将抛物线1M 的图象向下平移(0)m m >个单位得到抛物线2M . ①设点D 平移后的对应点为点D ',当点D '恰好落在直线AE 上时,求m 的值. ②当1(1)x m m >≤≤时,若抛物线2M 与直线AE 有两个交点,求m 的取值X 围.图2备用图[答案]见解析[解析]解:〔1〕∵OA BC ∥, ∴OAD ADB ∠=∠,∴tan tan 2ADB OAD ∠=∠=. 在Rt ABD △中,∵6AB OC ==,∴63tan 2AB DB ADB ===∠.∴1CD CB BD =-=,(1,6)D .∵抛物线21:(0)M y ax bx a =+≠过A ,D 两点, ∴1640,6,a b a b +=⎧⎨+=⎩解得2,8.a b =-⎧⎨=⎩∴抛物线1M 的表达式为228y x x =-+.〔2〕∵222282(4)2(2)8y x x x x x =-+=--=--+. ∴抛物线的对称轴为2x =. 设点(2,)P y , ∵(4,0)A ,(0,6)C ,∴2224652AC =+=,2222(42)4AP y y =-+=+, 22222(6)4(6)CP y y =+-=+-.∵90CPA ∠=︒,∴222AC AP CP =+,即225244(6)y y =+++-, 整理得2640y y --=.解得13y =+23y =,故1(2,3P +,2(2,3P .〔2〕由题意知,抛物线2M 的表达式为228y x x m =-+-, ①∵(1,6)D , ∴(1,6)D m '-,设直线AE 的表达式为y mx n =+, 则40,4,m n n +=⎧⎨=⎩解得1,4,m n =-⎧⎨=⎩∴直线AE 的表达式为4y x =-+. ∵点(1,6)D m '-在直线AE 上, ∴146m -+=-,解得3m =.②由①知,当抛物线经过点(1,3)时,m 的值为3; 当x m =时,设直线与抛物线交于点(,4)P m m -+, 则2428m m m m -+=-+-,解得2m =或2m =〔舍去〕;当抛物线228y x x m =-+-与直线AE 只有一个交点时, 联立228,4,y x x m y x ⎧=-+-⎨=-+⎩消去y ,整理得32940x x m -++=, 由818(4)0m ∆=-+=,解得498m =.综上可知,所求m 的取值X 围为4928m <.。
2017年山东省济南市数学中考试题(含答案)
2017山东济南中考试题一、选择题(本大题共15小题,每小题3分,共45分)1.(2017济南,1,3分)在实数0,-2,错误!,3中,最大的是( ) A .0B .-2C .错误!D .32.(2017济南,2,3分)如图所示的几何体,它的左视图是( )A .B .C .D .3.(2017济南,3,3分)2017年5月5日国产大型客机C 919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .0。
555×104B .5。
55×104C .5.55×103D .55.5×1034.(2017济南,4,3分)如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( ) A .40°B .45°C .50°D .60°a b5.(2017济南,5,3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( )A .B .C .D .6.(2017济南,6,3分)化简错误!÷错误!的结果是( ) A .a 2 B .错误!C .错误!D .错误!7.(2017济南,7,3分)关于x 的方程x 2+5x +m =0的一个根为-2,则另一个根是( ) A .-6B .-3C .3D .68.(2017济南,8,3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( ) A .错误! B .错误! C .错误! D .错误!9.(2017济南,9,3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .错误!B .错误!C .错误!D .错误!出口出口10.(2017济南,10,3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB =60°,若量出AD =6cm ,则圆形螺母的外直径是( ) A .12cmB .24cmC .6错误!cmD .12错误!cm11.(2017济南,11,3分)将一次函数y =2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( ) A .x >-1B .x >1C .x >-2D .x >212.(2017济南,12,3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度DE =0.6m,又量的杆底与坝脚的距离AB =3m ,则石坝的坡度为( ) A .错误!B .3C .错误!D .4EA13.(2017济南,13,3分)如图,正方形ABCD 的对角线AC ,BD 相较于点O ,AB =3错误!,E 为OC 上一点, OE =1,连接BE ,过点A 作AF ⊥BE 于点F ,与BD 交于点G ,则BF 的长是( ) A .错误!B .2错误!C .错误!D .错误!14.(2017济南,14,3分)二次函数y =ax 2+bx +c (a ≠0)的图象经过点(-2,0),(x 0,0),1<x 0<2,与y 轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b >0;②2a <b ;③2a -b -1<0;④2a +c <0.其中正确结论的个数是( ) A .1B .2C .3D .415.(2017济南,15,3分)如图,有一正方形广场ABCD ,图形中的线段均表示直行道路, 错误!表示一条以A 为圆心,以AB 为半径的圆弧形道路.如图2,在该广场的A 处有一路灯,O 是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m ),根据他步行的路线得到y 与x 之间关系的大致图象如图3,则他行走的路线是( ) A .A →B →E →G B .A →E →D →CC .A →E →B →FD .A →B →D →C二、填空题(本大题共6小题,每小题3分,共18分)AB第15题图1第15题图2第15题图316.(2017济南,16,3分)分解因式:x 2-4x +4=__________.17.(2017济南,17,3分)计算:│-2-4│+(错误!)0=________________.18.(2017济南,18,3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________.19.(2017济南,19,3分)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC =120°,BD =2AD ,则BD 的长度为____________cm .20.(2017济南,20,3分)如图,过点O 的直线AB 与反比例函数y =错误!的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y =错误!(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为_________________.C21.(2017济南,21,3分)定义:在平面直角坐标系xOy中,把从点P出发沿综或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离".如图,若P(-1,1),Q (2,3),则P,Q的“实际距离"为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,-3),C(-1,-5),若点M表示单车停放点,且满足M到A,B,C的“实际距离"相等,则点M的坐标为______________.DACCB DBCBC ABACD【答案】(x-2)2790208(1,-2)三、解答题(本大题共7小题,共57分)22.(2017济南,22,7分)(1)先化简,再求值:(a+3)2-(a+2)(a+3),其中a=3.【解】原式=a2+6a+9-(a2+2a+3a+6)=a2+6a+9-a2-2a-3a-6)=a+3.当a=3时,原式=3+3=6.(2)解不等式组:错误!【解】由①,得x≥1.由②,得x<2.∴不等式组的解集为:1≤x<2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学猜押卷(二)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-23的相反数是( ) A.-23 B.23 C.-32 D.322.811的平方根是( )A.91B.91±C.31 D.31±3.下列四种图形中,既是轴对称图形又是中心对称图形的是( )4.“厉行勤俭节约,反对铺张浪费”势在必行.最新统计数据显示,中国每年浪费食物总量折合粮食大约是230 000 000人一年的口粮,将230 000 000用科学记数法表示为( )A.2.3×109B.0.23×109C.2.3×108D.23×1077.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )8.如图,在□ABCD 中,∠A=65°,DE ⊥AB ,垂足为点E ,点F 为边AD 上的中点,连接FE ,则∠AFE 的度数为( )A.40°B.50°C.60°D.70°9.若不等式组⎪⎩⎪⎨⎧-+≤+<+132211x x a x ,的解集是x <a-1,则实数a 的取值范围是( )A.a ≤-6B.a ≤-5C.a ≤-4D.a <-410.如图,已知AB ,AD 是⊙O 的弦,∠B=30°,点C 在弦AB 上,连接CO 并延长CO 交⊙O 于点D ,∠D=20°,则∠BAD 的度数是( )A.30°B.40°C.50°D.60°11.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级学生对“分组合作学习”方式非常喜欢和喜欢的人数约为( )A. 216 B .324 C.288 D.25212.在中考理科实验操作试题中有物理、化学、生物三科,考生从中随机抽取一科进行考试,不同场次的考生抽取某一科的机会均等,小明与小亮同学同时抽到生物的概率是( )A.21B.31C.61 D.91 13.如果代数式()5110+++k k 有意义,那么一次函数()k x k y --+=12的大致图象是( )14.若关于x 的方程1222=-+-xm x 的解为正数,则m 的取值范围是( ) A.m <4 B.m >4 C.m <4且m ≠2 D.m >0且m ≠2 15.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE=1.8 m ,窗户下檐到地面的距离BC=1 m ,EC=1.2 m ,那么窗户的高AB 为( ) A.1.5 m B.1.6 m C.1.86 m D.2.16 m 16.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△,当两个三角形重叠部分的面积为32时,它移动的距离等于( )(第16题图)A.4B.6或4C.8D.4或8 17.规定()()()⎩⎨⎧<≥=,,,min b a a b a b b a 如min(2,4)=2.按照上面的规定,方程()x x x x 12,min +=-的根是( )A. B.-1 C. D. 18.如图,在平面直角坐标系中直线y=x+2与反比例函数 xky -=的图象有唯一公共点,若直线y=x+m 与反比例函数xky -=的图象有2个公共点,则m 的取值范围是( )(第18题图)A.m >2B.-2<m <2C.m <-2D.m >2或m <-219.如图,在菱形ABCD 中,F 为边AB 的中点,DF 与对角线AC 交于点G ,过点G 作GE ⊥AD 于点E.若AB=2,且∠1=∠2,则下列结论:①DF ⊥AB ;②CG=2GA ;③CG=DF+GE ;④.其中正确的有( )(第19题图)A.1个B.2个C.3个D.4个20.如图,△ABC 是边长为4 cm 的等边三角形,动点P 从点A 出发,以2 cm/s 的速度沿A C B 运动,到达B 点后停止运动.过点P 作PD ⊥AB 于点D ,设运动时间为x(s),△ADP 的面积为y (),则能够反映y 与x 之间函数关系的图象大致是( )二、填空题 21.计算:21850-=. 22.计算:()=⋅+-423222a aa .23.函数y=562--x x 中,自变量x 的取值范围是.24.如果抛物线y=ax 2-2ax+1经过点A (-1,7)、B (m ,7),那么m=. 25.如图,AB 是⊙O 的直径,弦AD ,BC 相交于点E ,若CD=5,AB=13,则BEDE=.(第25题图)26.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90°后,B 点的坐标为.(第26题图)27.已知m ,n 是关于x 的一元二次方程的两实根,那么m+n 的最大值是.28.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将Rt △ABC 绕A 点逆时针旋转30°后得 到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是.(第28题图)29.如图,已知反比例函数xky =的图象过Rt △ABO 斜边OB 的中点D ,与直角边AB 相交于 点C ,连接AD ,OC.若△ABO 的周长为,AD=2,则△ACO 的面积为.(第29题图)30.如图,已知∠MON=,点,…在射线ON 上,点,…在射线OM 上,△,△,△,…均为等边三角形.若O ,则△的 边长为.(第30题图)三、解答题(解答应写出必要的文字说明、证明过程或演算步骤)33.计算:(1)()95345tan 3205118321--︒+-⎪⎭⎫⎝⎛+--;(2)解不等式()⎪⎩⎪⎨⎧≤+--+<-,1215312,1315x x x x 并把解集在数轴上表示出来.34.在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF . (1)求证:△BDF ≌△CDE ;(2)若DE=21BC ,试判断四边形BFCE 是什么特殊四边形,并说明理由.(第34题图)35.青少年视力水平下降已引起全社会的广泛关注,为了解某市初中毕业年级5 000名学生的视力情况,我们从中抽取了一部分学生的视力作为样本进行数据处理,得到如下的不完整的频数分布表和频数分布直方图:请根据以上图表信息回答下列问题: (1)在频数分布表中,a=,b=; (2)补全条形统计图;(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少?36.如图,利用热气球探测器测量大楼AB 的高度,从热气球P 处测得大楼顶部B 的俯角为,大楼底部A 的俯角为,此时热气球P 离地面的高度为120 m.试求大楼AB 的高度(结果精确到0.1 m ).(参考数据:sin ≈0.60,cos ≈0.80,tan ≈0.75,≈1.73)(第36题图) 37.如图,⊙O 的弦AD ∥BC ,过点D 的切线交BC 的延长线于点E ,AC ∥DE 交BD 于点H ,DO 及其延长线分别交AC ,BC 于点G ,F. (1)求证:DF 垂直平分AC ;(2)若弦AD=10,AC=16,求⊙O 的半径.(第37题图)38.如图,点A (-2,n ),B (1,-2)是一次函数y=kx+b 的图象和反比例函数xmy的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.39.服装店准备购进甲、乙两种服装,甲种服装每件进价80元,售价120元,乙种服装每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7 500元,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在5月1日劳动节当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?40.模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题.如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.(1)理由:如图③,在直线l上另取任一点C′,连接AC′,BC′,B′C′,∵直线l是点B,B′的对称轴,点C,C′在l上,∴CB=,C′B=.∴AC+CB=AC+CB′=.在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′,即AC+CB最小.归纳小结:本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.(2)模型应用①如图④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点,求EF+FB的最小值.分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC 对称,连接ED交AC于F,则EF+FB的最小值就是线段的长度,EF+FB的最小值是.②如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是弧AD的中点,在直径CD上找一点P ,使BP+AP 的值最小,则BP+AP 的最小值是;③如图⑥,一次函数y=-2x+4的图象与x ,y 轴分别交于A ,B 两点,点O 为坐标原点,点C 与点D 分别为线段OA ,AB 的中点,点P 为OB 上一动点,求PC+PD 的最小值,并写出取得最小值时P 点坐标.41.如图1,在△ABC 中,∠BAC=,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF.(1)证明:AF=AE ; (2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图2,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;(3)在图2的基础上,将△CED 绕点C 继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图3写出证明过程;若变化,请说明理由.(第41题图)42.如图,已知抛物线(m >0)与x 轴相交于点A ,B ,与y 轴相交于点C ,且点A 在点B 的左侧.(1)若抛物线过点(2,2),求抛物线的解析式;(2)在(1)的条件下,抛物线的对称轴上是否存在一点H ,使AH+CH 的值最小,若存在,求出点H 的坐标;若不存在,请说明理由;(3)在第四象限内,抛物线上是否存在点M ,使得以点A ,B ,M 为顶点的三角形与△ACB 相似?若存在,求出m 的值;若不存在,请说明理由.(第42题图)2017年中考数学猜押卷(二)答案1-5.BDBCD 6-10.ADBCC 11-15.DDACA 16-20.DADCB 21.2 22.66a - 23.x ≥3且x ≠5 24.3 25.13526.(4,0)27.4 28.6π 29.41 30.n31. 解:如图所示,P 点即为所求.32. 解:原式. 由,解得a=2或a=1.当a=1时,分式无意义,则a=2. 则原式=2.33.解:(1)原式=.553935251=+-+-+(2)()⎪⎩⎪⎨⎧≤+--+<-②①,1215312,1315x x x x解不等式①得2<x ,解不等式②得1-≥x ,所以不等式组的解集为.21<≤-x 解集在数轴上表示为:34.(1)证明:∵CE ∥BF ,∴∠CED=∠BFD. ∵D 是BC 边的中点,∴BD=DC.在△BDF 和△CDE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,DC BD CDE BDF CED BFD∴△BDF ≌△CDE (AAS ).(2)四边形BFCE 是矩形.理由如下: ∵△BDF ≌△CDE ,∴DE=DF. ∵BD=DC ,∴四边形BFCE 是平行四边形. ∵BD=CD ,DE=21BC ,∴BD=DC=DE , ∴∠BEC=90°,∴平行四边形BFCE 是矩形. 35.解:(1)由频数分布表知,视力在4.0≤x <4.3的人数为20,频率为0.1, 则此次调查的总人数为20÷0.1=200. ∴a=200×0.3=60,b=10÷200=0.05.(2)由(1)知a=60,则补全条形统计图如下:(3)5 000(0.35+0.3+0.05)=3 500.答:估计全市九年级学生中视力正常的有3 500人. 36.解:如图,过点P 作PC ⊥AB 的延长线于点C ,则∠APC=60°,∠BPC=37°,AC=120 m. 在Rt △APC 中,由tan ∠APC=PCAC, 得PC=APC ACtan =3120=403(m).在Rt △BPC 中,由tan ∠BPC=PCBC, 得BC=PC ·tan ∠BPC=403×0.75≈51.9(m). 则AB=AC-BC=120-51.9=68.1(m). 答:大楼AB 的高度约为68.1 m. 37.解:(1)∵DE 是⊙O 的切线,且DF 过圆心O , ∴DF ⊥DE.又∵AC ∥DE ,∴DF 垂直平分AC. (2)如图,连接AO ,∵AG=GC ,AC=16,∴AG=8. 在Rt △AGD 中,GD=.设⊙O 的半径为r ,则OG=r-6. 在Rt △AOG 中,∵, ∴. 解得r=325.即⊙O 的半径为325. 38.解:(1)∵点B (1,-2)在反比例函数xmy =的图象上, ∴m=-2,∴反比例函数解析式为xy 2-=. ∵点A (-2,n )在反比例函数的图象上,∴n=1, ∴A (-2,1). 由题意知⎩⎨⎧-=+=+-,2,12b k b k 解得⎩⎨⎧-=-=,1,1b k故一次函数的解析式为y=-x-1.(2)如图,作点A 关于x 轴的对称点A ′,连接BA ′并延长交x 轴于点C ,则点C 即为所求.∵A (-2,1),∴A ′(-2,-1). 设直线A ′B 的解析式为y=mx+n ,则⎩⎨⎧+=-+-=-,2,21n m n m 解得⎪⎪⎩⎪⎪⎨⎧-=-=,35,31n m故直线A ′B 的解析式为.3531--=x y 令y=0,得x=-5,则C 点坐标为(-5,0),此时t=CB-CA 有最大值,则t 最大=CB-CA ′=A ′B=10.39.解:(1)设购进甲种服装x 件,由题意,得80x+60(100-x)≤7 500. 解得x ≤75.答:甲种服装最多购进75件.(2)∵x ≥65,∴x 的取值范围为65≤x ≤75.设总利润为w 元, 则w=(40-a)x+30(100-x)=(10-a)x+3 000.当0<a <10时,则10-a >0,w 随x 的增大而增大.∴当x=75时,w 有最大值,此时购进甲种服装75件,乙种服装25件. 当a=10时,所有方案获利相同,均为3000元. 当10<a <20时,则10-a <0,w 随x 的增大而减小.∴当x=65时,w 有最大值,此时购进甲种服装65件,乙种服装35件. 40.解:(1)CB' C'B' AB'(2)①DE 5 ②22③如图,由平面坐标系中的对称性可知,C 与C'关于y 轴对称,连接C'D 交y 轴于P ,则PC+PD 的最小值就是线段C'D 的长度.∵一次函数y=-2x+4的图象与x ,y 轴分别交于A ,B 两点,∴A (2,0),B (0,4),∴C (1,0),D (1,2).∵C 与C'关于y 轴对称,∴C'(-1,0),∴C'D=()2221122=++,∴PC+PD 的最小值为22.∵C'(-1,0),D (1,2),∴直线C'D 的解析式为y=x+1,∴P (0,1).41.解:(1)∵四边形ABFD 是平行四边形,∴AB=DF.∵AB=AC ,∴AC=DF.∵DE=EC ,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AF=2AE.(2)AF=2AE.理由如下:如图,连接EF ,DF 交BC 于点K ,∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴∠EKF=180°-∠DKE=135°,EK=ED.∵∠ADE=180°-∠EDC=135°,∴∠EKF=∠ADE.∵∠DKC=∠C ,∴DK=DC.∵DF=AB=AC ,∴KF=AD.在△EKF 和△EDA 中,EK=ED ,∠EKF=∠EDA ,FK=AD ,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=2AE.(3)结论不变.理由如下:如图,连接EF,延长FD交AC于点K,∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,∠ACE=(90°-∠KDC)+∠DCE=135°-∠KDC,∴∠EDF=∠ACE.∵DF=AB,AB=AC,∴DF=AC.在△EDF和△ECA中,DF=CA,∠EDF=∠ECA,DE=CE,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=2AE.42.解:(1)把点(2,2)代入抛物线,得2=.解得m=4.∴抛物线的解析式为.(2)令,解得.则A(-2,0),B(4,0).对称轴x=-.令x=0,则y=2,即C(0,2).∵点A和点B关于抛物线的对称轴对称,∴连接BC与对称轴的交点即为点H.此时AH+CH的值最小.设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入,得解得∴直线BC的解析式为y=.当x=1时,y==.∴点H的坐标为(1,).(3)假设存在点M,使得以点A,B,M为顶点的三角形与△ACB相似. 如图,连接AC,BC,AM,BM,过点M作MN⊥x轴于点N,由图易知,∠ACB 和∠ABM 为钝角,①当△ACB ∽△ABM 时,有AB AC =AMAB ,即. ∵A (-2,0),C (0,2),即OA=OC=2,∴∠CAB=∠BAM=.∵MN ⊥x 轴,∴∠BAM=∠AMN=45°,∴AN=MN.设M (x ,-x-2)(x >0),把点M 的坐标代入抛物线的解析式,得-x-2=.∵x >0,∴x+2>0.∵m >0,∴x=2m ,即M (2m ,-2m-2).∴AM=.∵,AC=,AB=m+2,∴.解得m=.∵m >0,∴m=.②当△ACB ∽△MBA 时,有MA AB =BACB ,即. ∵∠CBA=∠BAM ,∠ANM=∠BOC=,∴△ANM ∽△BOC ,∴AN MN =BO CO . ∵BO=m ,设ON=x , ∴x MN 2=m 2,即MN=m2(x+2). 令M (x ,)(x >0),把M 点的坐标代入抛物线的解析式,得=.解得x=m+2.即M (m+2,).∵,CB=,MN=,∴.整理,得16=0,显然不成立.综上所述,当m=时,在第四象限内抛物线上存在点M ,使得以点A ,B ,M 为顶点的三角形与△ACB 相似.。