人教版初三数学上册24.4.1弧长和扇形面积 教学设计
九年级数学上册(人教版)24.4弧长与扇形面积(第一课时)教学设计
"首先,我们来看弧长的计算公式。弧长等于圆周长的一部分,我们可以通过圆心角和半径来计算。其公式为:弧长= (圆心角/360) × 2πr。接下来,我们学习扇形面积的计算公式。扇形面积是圆面积的一部分,它等于圆心角所对的圆弧与半径所围成的图形。其公式为:扇形面积= (圆心角/360) × πr²。"
2.教师通过示例题,展示如何运用这些公式解决实际问题,让学生理解并掌握计算方法。
(三)学生小组讨论,500字
1.教师将学生分成小组,让学生合作讨论以下问题:
"如何计算一个圆的1/4弧长和扇形面积?如果圆的半径是10cm,圆心角是90度,你能计算出弧长和扇形面积吗?"
2.学生在小组内进行讨论,共同解决这些问题,教师巡回指导,解答学生的疑问。
3.梯度练习,巩固知识
设计不同难度的练习题,让学生独立完成,巩固所学知识。针对学生的错误,进行及时反馈和指导。
4.理论联系实际,学以致用
通过解决实际问题,让学生感受数学的实用性。例如,计算一段弯曲的道路的长度、计算扇形门的面积等。
5.总结反馈,拓展提高
在课堂结束时,让学生总结本节课所学内容,并进行自我评价。教师对学生的表现给予肯定和鼓励,同时对学生的不足之处进行指导。
(四)课堂练习,500字
1.教师设计不同难度的练习题,让学生独立完成,巩固所学知识。
"请同学们完成以下练习题:计算半径为5cm的圆的1/6弧长和扇形面积;计算圆心角为120度的扇形面积,半径为8cm。"
2.教师对学生的练习进行批改和反馈,针对错误进行讲解,确保学生掌握所学知识。
(五)总结归纳,500字
人教版九年级数学上册24.4.1《弧长和扇形面积》教学设计
人教版九年级数学上册24.4.1《弧长和扇形面积》教学设计一. 教材分析人教版九年级数学上册第24章《弧长和扇形面积》是中学数学中的重要内容,主要让学生掌握弧长和扇形面积的计算方法。
这一部分内容在教材中占据了重要的位置,是因为它不仅涉及到圆的相关知识,而且与实际生活中的许多问题密切相关。
通过学习这部分内容,学生可以更好地理解圆的性质,提高解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对圆的相关概念也有了一定的了解。
但是,对于弧长和扇形面积的计算方法,他们可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过已有的知识体系来理解和掌握这部分内容。
三. 教学目标1.让学生掌握弧长和扇形面积的计算方法。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对圆的性质的理解,培养学生的空间想象能力。
四. 教学重难点1.弧长和扇形面积的计算公式的推导。
2.如何将实际问题抽象为弧长和扇形面积的问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过已有的知识体系来理解和掌握弧长和扇形面积的计算方法。
2.使用多媒体辅助教学,帮助学生直观地理解弧长和扇形面积的概念。
3.创设实际问题情境,让学生在解决实际问题的过程中,掌握弧长和扇形面积的计算方法。
六. 教学准备1.多媒体教学设备。
2.弧长和扇形面积的计算公式的教案。
3.与弧长和扇形面积相关的实际问题。
七. 教学过程1.导入(5分钟)教师通过多媒体展示一些与圆相关的实际问题,引导学生关注弧长和扇形面积的概念。
2.呈现(10分钟)教师讲解弧长和扇形面积的定义,并通过多媒体展示弧长和扇形面积的计算公式。
3.操练(10分钟)教师给出一些简单的例题,让学生运用弧长和扇形面积的计算公式进行计算。
4.巩固(10分钟)教师通过一些变式训练,让学生进一步理解和掌握弧长和扇形面积的计算方法。
5.拓展(10分钟)教师引导学生将弧长和扇形面积的计算方法应用于实际问题,培养学生解决实际问题的能力。
九年级数学上册 24.4.1 弧长和扇形面积精品教案 人教新课标版【教案】
板书设计
巩固深化提高
用心
爱心
专心
2
课题 弧长公式 应用
扇形面积公式关系定理应用 应用
归纳
弧长公式与扇形面积公式的关 系
教 学 反思
用心
爱心
专心
3
迁移能力.
弧长,扇形面积公式的导出及应用.
用公式解决实际问题 教学过程设计
教学程序及教学内容
师生行为
设计意图
一、情境引入 课本 110 页引例:制造弯形管道时,经常要先按中心线计算 “展直长度”,再下料,这就涉及到计算弧长的问题,这节课 来探究弧长求法. 二、探究新知 (一)弧长公式 1 推导: 问题:①弧长属于圆周上部分,圆周长计算公式是什么?
用心
爱心
专心
1
线”,其中
的圆心依次按 A、B、C、D 用意识,并让学生逐
循环,它们依次连接.取 AB=l,则曲线 DAlBl…C2D2 的长是 渐的学会总结,教师
______ (结果保留 π )
检查知识的实性,
(二)扇形面积公式
以便发现问题和及时
1 推导:
解决问题。
1)圆面积 S=π R2;(2)圆心角为 1°的扇形的面积:
教师提出问题,学生 通过复习圆周长公 式,以及圆心角和其 所对弧的关系自主探 究弧长公式,经历猜 想 计算 推理 感性 理性,加深对 弧长公式的理解,小 组之间进行交流,汇 总,师生总结.
由实际问题引 出课题,激发 学生的学习兴 趣,感受数学 来源于生活.
推导弧长公 式,使学生明 确公式的推导 过程,知道公 式的来龙去 脉,让学生体 会从特殊推广 到一般的研究 方法
人教版九年级数学上册24.4弧长和扇形面积教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与弧长和扇形面积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用硬纸板制作一个扇形,测量并计算其面积。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了弧长和扇形面积的基本概念、计算公式以及它们在实际中的应用。通过实践活动和小组讨论,我们加深了对弧长和扇形面积的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解弧长和扇形面积的基本概念。弧长是圆上两点间的弧与半径的对应圆心角的比值;扇形面积是由圆心、圆上两点和这两点间的弧所围成的图形。它们在工程、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算一个半圆的弧长和面积,通过这个案例,我们可以了解弧长和扇形面积在实际中的应用,以及它们如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《弧长和扇形面积》这一章节。在开始之前,我想先问大家一个问题:“你们在生活中是否遇到过需要计算圆的一部分长度或面积的情况?”比如,设计一个扇形花园,我们该如何计算它的面积?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索弧长和扇形面积的奥秘。
人教版九年级上册24.4.1弧长和扇形面积教学设计
24.4 弧长和扇形面积
24.4.1 弧长和扇形面积
一、教材分析:
本节教材是在学生学习了圆的有关概念性质、圆心角圆周角和过三点的圆等内容之后,对弧长和扇形面积的计算的学习,研究的是初中阶段弧长公式和扇形面积公式的推导过程及其在实际问题中的应用。
弧长公式和扇形面积公式是以圆的周长和面积公式为依据的。
本节内容是圆的有关计算中的一个重要问题,是学习圆锥的侧面展开图的基础,也是高中进一步学习弧长公式和扇形面积公式的基本内容。
二、教学目标:
①知识与能力:掌握弧长和扇形面积的计算公式;并能灵活应用,解决实际问题
②过程与方法:利用圆的周长及面积公式,推导弧长和扇形面积的计算公式,培养学生由“特殊到一般”的数学思想,发展学生合情推理的能力。
③情感态度与价值观:通过学生对图形观察、对比、归纳,激发学生的求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
三、教学重点和难点
重点:利用圆的周长和面积公式,探索弧长l=和扇形的面积公式S=和S=。
难点:弧长公式和扇形面积公式的推导过程以及应用。
四、教学方法:。
人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1
人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1一. 教材分析人教版数学九年级上册第24.4节《弧长和扇形的面积》是本册教材中的重要内容,它是在学生已经掌握了圆的性质、圆的周长和面积的基础上进行授课的。
本节课主要介绍了弧长的计算方法和扇形的面积计算方法,旨在让学生理解和掌握弧长和扇形面积的计算公式,并能够运用这些知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的性质、周长和面积的概念已经有了初步的了解。
但是,对于弧长和扇形面积的计算方法,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,循序渐进地引导他们理解和掌握这些概念和方法。
三. 说教学目标1.知识与技能目标:让学生理解和掌握弧长和扇形的面积的计算方法,能够运用这些方法解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索弧长和扇形面积的计算方法,培养他们的观察能力和思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们的自主学习能力和团队合作精神。
四. 说教学重难点1.教学重点:弧长和扇形面积的计算方法。
2.教学难点:弧长和扇形面积计算公式的推导过程。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、案例教学法和小组合作法等教学方法,结合多媒体课件和黑板等教学手段,引导学生主动参与课堂,提高他们的学习兴趣和积极性。
六. 说教学过程1.导入新课:通过一个实际问题,引出弧长和扇形面积的概念,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、归纳等方法,自主探索弧长和扇形面积的计算方法。
3.讲解与演示:讲解弧长和扇形面积的计算公式,并通过多媒体课件和黑板进行演示。
4.练习与巩固:让学生通过课堂练习和小组讨论,巩固所学知识。
5.拓展与应用:引导学生运用弧长和扇形面积的知识解决实际问题。
6.课堂小结:总结本节课的主要内容和知识点。
七. 说板书设计板书设计如下:1.弧长的计算方法–弧长 = 半径 × 弧度2.扇形面积的计算方法–扇形面积 = 1/2 × 弧长 × 半径八. 说教学评价教学评价将从学生的知识掌握、能力培养和情感态度三个方面进行。
九年级数学上册 24.4.1 弧长和扇形面积教案 (新版)新人教版
24.4.1弧长和扇形面积一、教学目标1.理解弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.二、课时安排1课时三、教学重点理解弧长和扇形面积公式的探求过程.四、教学难点会利用弧长和扇形面积的计算公式进行计算.五、教学过程(一)导入新课问题1 如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?问题2 怎样来计算弯道的“展直长度”?(二)讲授新课探究1:弧长公式的推导思考:(1)半径为R的圆,周长是多少?2)1°的圆心角所对弧长是多少?(3)n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍?(4) n°的圆心角所对弧长l是多少?明确; C=2πR ;2360180R Rππ=; n倍;180n Rlπ=探究2:扇形及扇形的面积由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.思考(1)半径为R 的圆,面积是多少?(2)圆心角为1°的扇形的面积是多少?(3)圆心角为n °的扇形的面积是圆心角为1°的扇形的面积的多少倍? (4)圆心角为n °的扇形的面积是多少?明确:S =πR 2;2360R π;n 倍;2360n R π探究3:扇形的弧长公式与面积公式有联系吗?11180221802n R R n R S R lR ππ=⋅=⋅⋅=扇形 活动2:探究归纳1.弧长公式: 180n Rl π= 用弧长公式180n Rl π=,进行计算时,要注意公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的.2. 扇形面积公式若设⊙O 半径为R ,圆心角为n °的扇形的面积2=360n R S π扇形①公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的;②公式要理解记忆(即按照上面推导过程记忆).(三)重难点精讲例1 制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm ,精确到1mm)解:由弧长公式,可得弧AB 的长1009005001570(mm),180l ⨯⨯π==π≈因此所要求的展直长度l =2×700+1570=2970(mm ). 答:管道的展直长度为2970mm .例2 :如图,水平放置的圆柱形排水管道的截面半径是0.6cm ,其中水面高0.3cm ,求截面上有水部分的面积.(精确到0.01cm )讨论:(1)截面上有水部分的面积是指图上哪一部分?(2)水面高0.3 m 是指哪一条线段的长?这条线段应该怎样画出来? (3)要求图中阴影部分面积,应该怎么办? 答案: (1)阴影部分(2)线段DC .过点O 作OD 垂直符号于AB 并长交圆O 于C . (3)阴影部分面积=扇形OAB 的面积- △OAB 的面积解:如图,连接OA ,OB ,过点O 作弦AB 的垂线,垂足为D ,交AB 于点C ,连接AC . ∵ OC =0.6, DC =0.3, ∴ OD =OC - DC =0.3, ∴ OD =DC . 又 AD ⊥DC ,∴AD 是线段OC 的垂直平分线, ∴AC =AO =OC .从而 ∠AOD =60˚, ∠AOB =120˚.有水部分的面积:S =S 扇形OAB - S ΔOAB22120π10.6360210.12π30.320.22(m )AB OD =⨯-•=-⨯≈(四)归纳小结1.了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.2. 通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.3.能够具体的应用公式进行计算。
人教版九年级数学上册24.4《弧长和扇形面积》优秀教学案例
1.设计一系列问题,引导学生从已知知识出发,逐步探索和发现弧长和扇形面积的计算方法。
2.通过提问、答疑等方式,引导学生深入思考,激发学生的思维活力。
3.鼓励学生提出问题,培养学生的质疑精神和批判性思维。
(三)小组合作
1.组织学生进行小组合作,让学生在讨论和交流中共同解决问题,提高学生的团队合作能力。
人教版九年级数学上册24.4《弧长和扇形面积》优秀教学案例
一、案例背景
本节课为人教版九年级数学上册24.4《弧长和扇形面积》,是在学生掌握了角的概念、圆周率以及圆的方程等知识的基础上进行学习的。通过学习弧长和扇形面积,使学生能够进一步理解圆的相关概念,提高解决实际问题的能力。
九年级的学生已经具备了一定的逻辑思维能力和空间想象力,对于圆的相关知识也有一定的了解。但是,学生在解决实际问题时,往往不能灵活运用所学知识,对于弧长和扇形面积的计算方法容易混淆。因此,在教学过程中,我将以生活实际为出发点,引导学生通过观察、思考、交流、探究等方式,理解和掌握弧长和扇形面积的计算方法,提高学生的数学素养。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些日常生活中常见的圆形物体,如硬币、圆桌、地球等,引导学生观察和思考这些物体与弧长和扇形面积的关系。
2.提出问题:“你们知道硬币的弧长是多少吗?圆桌的面积又是多少呢?”激发学生的求知欲。
3.总结:今天我们将学习弧长和扇形面积的计算方法,帮助大家解决这些问题。
(一)情景创设
1.生活情境:以日常生活中常见的圆形物体为例,如硬币、圆桌、地球等,引导学生观察和思考这些物体与弧长和扇形面积的关系。
2.问题情境:设计一些与弧长和扇形面积相关的问题,如计算硬币的弧长、计算扇形的面积等,激发学生的求知欲。
人教版九年级上册数学 24.4 第1课时 弧长和扇形面积 优质教案
24.4.1 弧长和扇形面积教 学 目 标知识技能 掌握弧长和扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算.数学思考通过弧长和扇形面积公式的推导过程,发展学生分析问题、解决问题的能力.解决问题通过扇形面积公式的推导,发展学生抽象、理解、概括、归纳能力和迁移能力. 情感态度在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想.重点 弧长,扇形面积公式的导出及应用. 难点对图形的分析24.4 弧长和扇形面积公式弧长公式: 例题分析扇形面积公式:教学任务分析板书设计 课后反思教学过程设计问题与情境师生行为设计意图C B A 1︒n ︒活动一:创设情境,引入课题制造弯形管道时,经常要先按中心线计算“展直长度”(图1中虚线的长度),再下料,这就涉及到计算弧长的问题.活动二:思考:试一试问题1:你还记得圆周长的计算公式吗?圆的周长可以看作多少度的圆心角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n 的圆心角呢?设:圆的半径为R ,求n 的圆心角所对的弧长.问题2:你还记得圆面积的计算公式吗?圆面积可以看作多少度的圆心角所对的扇形的面积?1°的圆心角所对的扇形面积是多少?n 的圆心角呢?设:已知⊙O 半径为R ,求n 的圆心角所对的扇形面积.教师提出问题后,学生认真思考,说明解题的关键是求中心线“展直长度”,但如何求呢?从而引出今天的课题:弧长和扇形面积. 教师根据学生已有的知识结构,强调弧、扇形的有关概念. 教师引导学生由圆周长入手,推导弧长公式. 教师提出问题后,学生认真思考,由中等学生回答:圆周长为2R π,可看作是360°的圆心角所对的弧长;1°的圆心角所对的弧长为2360180R R ππ=;圆心角为n °的弧长是圆心角为1°的弧长的n 倍;∴n 的圆心角所对的弧长为180n R π.∴弧长公式为:180n R l π=注:不写度,n 和180表示的是倍、分关系. 教师关注学生对公式的理解程度.教师引导学生类比弧长公式的推导过程,推导出扇形面积公式:(1)圆面积S=πR 2,可以看作是360°的圆心角所对的扇形面积;由实际问题引出课题,可激发学生的学习兴趣.在教师的引导下,推出弧长公式,使学生明确公式的推导过程,知道公式的来龙去脉,更要学会学习新知识的方法.教会学生用类比的方法研究问题. D C B AO R=900mm100︒700mm 700mm图1教学过程设计问题与情境师生行为设计意图比较扇形面积公式和弧长公式,看看它们之间有什么关系?活动三:解决问题对于本节开头提出的问题,你能解答吗?活动四:比一比,看谁算得快?练习:1.半径为4,80°的圆心角所对的弧长为;2.扇形的弧长为4π,半径为3,则其面积为;3.扇形的半径为24,面积为240π,则这个扇形的圆心角为;活动五:例题分析如图2,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(精(2)圆心角为1°的扇形的面积=2360Rπ.(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;∴扇形面积公式为2R=360nSπ扇形.经过观察,学生能够看出:1=2S lR扇形,其中,l是扇形的弧长,R为半径.学生观察本节开头提出的问题,根据图1中所给的数据,由弧长公式,就可以得出AB的长:1009005001570180180n Rlπππ⨯⨯===≈因此所要求的展直长度L=2×700+1570=2970∴所要求的展直长度约为2970mm.教师提出问题后,学生认真思考,独立完成,看谁最先做好.教师出示例题后,引导学生分析已知条件,教师要关注学生对题目中的有关概念是否清楚,如水面高指的是什么?类比的推出扇形面积公式,并由学生比较两个公式的联系,使学生在学习知识时,明确知识之间的联系,在解题时,根据题目条件,选择适当的公式.数学知识来源于生活实际,又用来解决实际中的问题,强化数学的应用意识.迅速、正确的运用所学公式解题,培养学生良好的学习习惯,训练学生的解题速度.培养学生综合运用知识解题的能力.确到0.012m)教学过程设计O D C B A 问题与情境师生行为设计意图活动六:理一理学生小结教师归纳 布置作业:A 组:P 122页练习:1,2,P 124页习题24.4:1.(1)、(2),2,6,7.B 组:P 122页练习:1,2,P 124页习题24.4:2,3,5,6.经过分析,学生知道了水面高即弧AB 的中点到弦AB 的距离.因此想到做辅助线的方法: 连接OA 、AB ,过O 作OC ⊥AB 于点D ,交AB 于点C .教师关注学生对题目的理解,师生共同分析题目条件后,由学生独立写出解题过程,用实物投影展示学生的解题过程,再由学生对解题过程给予评价. 由学生谈谈本节课学习的体会和收获,各抒己见.教师对学生的回答给予帮助,让语言表达更准确. 知识:弧长公式180n R l π=;扇形面积公式: 2R =360n S π扇形12lR =.能力:灵活运用公式解决实际问题. 数学思想:数形结合思想. 学生课下独立完成. 教师对学生的作业在批改后及时反馈. B 组补充作业:已知:如图,矩形ABCD 中,AB =1cm ,BC =2cm ,以B 为圆心,BC 为半径作14圆弧交AD 于F ,交BA 延长线于E ,求扇形BCE 被矩形所截剩余部分的面积.学生在学习新知识的同时要想到学过的知识,在这里就运用了垂径定理.巩固所学知识,达到复习的目的,教师及时了解学生对本节知识的掌握情况,对教学进度和方法进行适当调整,并对有困难的学生给予指导。
人教版九年级数学上册教学设计:24.4弧长和扇形面积
3.教学过程中,关注学生的情感态度与价值观的培养,设想如下:
a.创设生动、有趣的教学情境,激发学生的学习兴趣,使学生感受到数学学习的乐趣。
b.引导学生关注生活中的数学现象,培养学生的应用意识,使学生认识到数学知识在实际生活中的价值。
4.学会使用量角器、圆规等工具,准确地画出给定圆心角和半径的扇形,培养动手操作能力和空间观念。
(二)过程与方法
1.通过自主探究、合作交流的学习方式,引导学生发现弧长和扇形面积的计算方法,培养学生的探究精神和团队协作能力。
2.利用问题驱动法,设置具有启发性的问题,引导学生主动思考,培养学生的问题意识。
(二)讲授新知
1.讲解弧长和扇形面积的概念,明确弧长是指圆上两点间的弧度,扇形面积是指由圆心角和半径围成的图形的面积。
2.引导学生通过观察、分析,发现弧长与半径、圆心角之间的关系,以及扇形面积与半径、圆心角之间的关系。
3.推导弧长和扇形面积的计算公式,强调公式中各个量的含义。
4.结合实际例子,讲解如何运用公式计算弧长和扇形面积,让学生理解公式的实际意义。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中常见的弧长和扇形面积的例子,如彩虹桥、扇子等,引导学生观察、思考,激发学生的兴趣。
2.提问:“我们学过圆的相关知识,那么如何计算一个扇形的面积和弧长呢?”通过问题引导学生回顾圆的性质,为新课的学习做好铺垫。
3.学生分享自己对扇形和弧长的理解,教师适时总结,导入新课。
(二)教学设想
1.对于教学重点和难点的处理,我设想通过以下步骤进行:
a.利用多媒体教学手段,展示生活中的弧长和扇形面积实例,引导学生观察、思考,激发学生的学习兴趣。
人教版初三数学上册弧长和扇形面积.4.1弧长与扇形面积教案
24.4.1弧长与扇形面积延津县司寨乡高寨初级中学王继凤课型:新授课教学目标:(1)通过学生的自主探索,掌握弧长和扇形面积的计算方法。
(2) 通过等分圆周的方法,体验弧长和扇形面积公式的推导过程,培养学生的自我探能力。
(3) 体会数学与实际生活的密切联系,充分认识学好数学的重要性,树立正确的价值观。
重点:弧长和扇形面积公式的推导和有关的计算。
难点:弧长和扇形面积公式的灵活应用。
关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程.教法:类比、自主探究教学过程:【活动1】情境引入制造弯形管道时,要先按中心线计算“展直长度”,再下料,你能计算如图所示管道的展直长度L(单位:mm,精确到1mm)吗?【活动2】探索新知1.半径为R的圆,周长是多少?2.圆的周长可以看作度的圆心角所对的弧.3.01的圆心角所对的弧长是_.4.0n 的圆心角所对的弧长是通过学生的探索过程,可得到:0n 圆心角所对的弧长L=180R n π 注意:(1)要注意公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的;(2)理解等弧.弧长相等的弧不一定是等弧,而只有在同圆或等圆中,才可能是等弧.【活动3】解决情境引入问题解:由弧长公式,可得弧AB 的长因此所要求的展直长度 L=2×700+1570=2970(mm)【活动4】小测试1.半径弧为1㎝的圆弧所对的圆心角的度数60°, 求这条弧长。
2.已知弧长为30π ㎝ ,弧的半径为20㎝ , 求弧的度数。
【活动5】了解扇形概念图片引出扇形定义: 像这样.由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
l (mm ) 1570500180900100≈=⨯⨯=ππ【活动6】探索新知1、半径为R 的圆,圆的面积是多少?2、圆可以看作是_度的圆心角所对的扇形的面积.3、设圆的半径为R. 01的圆心角所对的扇形面积S=4、 设圆的半径为R, 0n 的圆心角所对的扇形面积S=归纳小结扇形的面积公式:3602R n S π= 5、学生观察弧长公式、扇形面积公式,猜想怎样用弧长表示扇形的面积?【活动7】小测试;1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积S 扇形=_ .2、已知半径为2cm 的扇形,其弧长为 ,则这个扇形的面积,S 扇形=_ .【活动7】例题学习例题、如图,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m.求截面上有水部分的面积(结果精确到0.01)【活动8】练习 如图,⊙A 、⊙B 、⊙C 、⊙D 两两不相交,它们的半径都是2cm,顺次连接四个圆心得到四边形ABCD,求图形中阴影部分的面积。
人教版数学九上24.4.1《弧长和扇形面积》授课教学设计
弧长和扇形面积教学设计教学地位与作用本节课的内容为弧长及扇形面积,是在学习了圆的有关性质后,利用圆的性质探索推导弧长及扇形的面积,并能运用得出的结论进行有关计算,实质上是圆的有关性质的运用.本节的重点和难点是学生自己能推导并掌握弧长及扇形的面积,并能应用公式解决问题.教学目标1、了解扇形的定义2、了解n°的圆心角所对的弧长和扇形面积的计算公式的推导过程。
3、熟记n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决相关问题。
能力训练要求1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.情感与价值观要求1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学重点1.经历探索弧长及扇形面积计算公式的过程.2.了解弧长及扇形面积计算公式.3.会用公式解决问题.教学难点1.探索弧长及扇形面积计算公式.2.用公式解决实际问题.教学方法学生自主探索法教学过程设计一、复习提问 引入新课在小学时,我们学习过圆的周长公式及面积的公式:r c π2=、2r S π=。
这节课,我们在原有的基础上,学习弧长公式及扇形的面积公式。
二、新课探究1.弧长公式回忆:在讲解圆心角时,大家还记得我们是如何推导出圆心角的度数与所对的弧的度数相同的?我们把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角。
我们把每一份这样的弧叫做1°的弧。
所以,圆心角的度数和它所对的弧的度数相等。
圆的弧长也是一样,把一个圆平均分成360份,那么圆弧的公式就是:R n R n l ππ1802360=⨯=只要知道圆弧的度数、半径、弧长的其中两个,那么我们就可以求得另一个未知的量。
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时教学设计一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》是学生在学习了角的度量、圆的性质、圆的周长等知识的基础上,进一步探究圆的弧长和扇形面积的计算。
这一节内容不仅是前面学习内容的延续,也为后面学习圆锥、圆柱等几何体提供了基础。
教材通过生活中的实例,引导学生探究弧长和扇形面积的计算公式,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有一定的了解。
但是,对于弧长和扇形面积的计算,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作、探究活动等,理解和掌握弧长和扇形面积的计算方法。
三. 教学目标1.理解弧长和扇形面积的概念。
2.掌握弧长和扇形面积的计算公式。
3.能够运用弧长和扇形面积的知识解决实际问题。
四. 教学重难点1.重点:弧长和扇形面积的计算公式。
2.难点:弧长和扇形面积公式的推导过程。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际问题,探究弧长和扇形面积的计算方法。
2.利用几何画板等软件,直观展示弧长和扇形的计算过程,帮助学生理解。
3.采用小组合作学习的方式,让学生在合作中交流、讨论,提高学生的合作能力。
六. 教学准备1.准备相关的教学课件、几何画板软件。
2.准备一些实际的例子,用于引导学生探究。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如自行车轮子的周长,引出弧长的概念。
提问:如何计算这个弧长?引导学生思考,为下面的学习做好铺垫。
2.呈现(10分钟)利用几何画板软件,展示一个圆的扇形,让学生直观地感受弧长和扇形面积的计算过程。
通过软件的动态演示,引导学生探究弧长和扇形面积的计算公式。
3.操练(10分钟)让学生分组合作,利用准备好的实际例子,计算弧长和扇形面积。
数学人教版九年级上册弧长和扇形面积公式教案
§24.4弧长和扇形面积(第一课时)一、教学目标1、知识与技能:掌握弧长和扇形面积公式,并能够利用公式求扇形弧长及扇形面积;理解扇形弧长公式与面积公式间的联系。
2、过程与方法:经历弧长公式与扇形面积公式的推导过程;通过对弧长和扇形面积公式中已知量与未知量的变换关系的理解,体会数学中的转化思想。
3、情感态度与价值观:培养学生观察探究及思考解决实际问题的能力。
二、教学重点:弧长、扇形面积公式及其应用。
三、教学难点:弧长、扇形面积公式的应用。
四、教学方法:探究法、提问法、练习法五、教学手段:多媒体六、课时安排:1课时七、课型:新授课八、教学过程:(一)、新课引入1、生活中的扇形有很多,到底什么是扇形?定义:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.多媒体出示扇形,以及讨论扇形弧与面积关系。
2、弧长相等的两段弧是等弧么?生答:不一定,在同圆或者等圆中。
意图:让学生体会扇形及扇形构成,明白弧长及扇形面积是由什么构成,并且区分等弧,以及等弧所包含面积关系。
(二)、探究思考思考1:如何计算弧长?提问:1. 你还记得圆周长的计算公式吗?2. 圆的周长可以看作是多少度的圆 心角所对的弧长?3. 1°的圆心角所对弧长是多少?4. n °的圆心角呢?教师带领学生思考解决,探究弧长公式: 例1(问题情境)制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线成的长度),再下料,这就涉及到计算弧长的问题. 如何求弧AB 的长 ?课本意图:学生探究发现弧长公式后可以应用该公式解决实际问题。
(三)、课堂练习1.有一段弯道是圆弧形的,道长是12m ,弧所对的圆心角是81°,求这段圆弧的半径R (精确到0.1m ).学生思考练习,板书解题过程。
意图:应用公式变形解决问题。
(四)、探究思考思考2:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形,可以发现,扇形面积与组成扇形的圆心角的大小有关,圆心180n rl π=角越大,扇形面积也就越大.怎样计算圆半径为R 圆心角为n °的扇形面积呢?提问:5. 你还记得圆面积的计算公式吗?6. 圆的面积可以看作是多少度的圆心角所对的扇形?7. 1°的圆心角所对扇形面积是多少?8. n °的圆心角呢?教师带领学生思考解决,探究扇形面积公式: (五)、课堂练习2. 如图,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m ,求截面上有水部分的面积(精确到0.01m2).(多媒体出示图片)。
人教版数学九年级上册24.4弧长和扇形面积(第1课时)优秀教学案例
4.对学生进行激励性评价,鼓励他们自信心,激发他们继续学习的动力。
5.教师要根据学生的评价结果,调整教学策略,以提高教学效果。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示生活中常见的弧长和扇形面积的实际问题,如自行车轮子的周长、扇形统计图等,让学生感受数学与生活的紧密联系。
2.创设有趣的问题情境,如“猜灯谜”、“数学谜语”等,激发学生的学习兴趣,引导他们主动探究。
3.小组合作:本节课通过组织学生进行小组讨论和合作,培养了学生的团队协作能力和沟通能力。在小组合作中,学生能够互相学习、互相帮助,共同解决问题,提高了学习效果。
4.空间想象能力培养:本节课利用多媒体课件和实物模型,直观地展示了弧长和扇形面积的计算过程,提高了学生的空间想象能力。通过直观的展示,学生能够更好地理解和掌握知识,提高了学习效果。
人教版数学九年级上册24.4弧长和扇形面积(第1课时)优秀教学案例
一、案例背景
本节课为人教版数学九年级上册第24章第4节“弧长和扇形面积”,是学生在学习了圆的相关知识后,对圆的更深入理解的拓展。在现实生活和学习中,九年级学生已经对圆有了初步的认识和理解,但弧长和扇形面积的计算对他们来说还是一个新的挑战。因此,在教学案例的设计中,我将以学生已有的知识为基础,通过生活实例引入弧长和扇形面积的概念,引导学生运用转化思想,将未知转化为已知,从而更好地理解和掌握本节课的知识。同时,我会注重培养学生的空间想象能力和数学思维能力,使他们在学习过程中能够体会到数学的实用性和趣味性。
人教版数学九年级上册24.4 第1课时 弧长和扇形面积-教案
1 / 4图(1)A BCOA 'B 'C '(第8题)24.4 弧长和扇形面积第1课时 弧长和扇形面积1.在半径为4π的圆中,45°的圆心角所对的弧长等于.2. 已知扇形的弧长为6πcm ,圆心角为60°,则扇形的面积为_________. 3.母线长为2,底面圆的半径为1的圆锥的侧面积为__________.4.一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为. 5.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是( )A..5π B .4π C .3π D .2π6、如图1,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.那么剪下的扇形ABC (阴影部分)的面积为; 用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r=.7.如图(2),将ABC △绕点B 逆时针旋转到A BC ''△使A 、B 、C’在同一直线上,若90BCA ∠=°,304cm BAC AB ∠==°,,则图中阴影部分面积为cm 2. 8、如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由BB ',B A '',A C ',CB 围成的阴影部分的面积是.9、如图,将半径为1、圆心角为︒60的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至扇形B O A '''处,则顶点O 经过的路线总长为10、如图,半圆的直径AB=10,P 为AB 上一点,点C\D 为半圆的三等分点,求得阴影部分的面积为11、如图,AC 是汽车挡风玻璃前的刮雨刷.如果AO=65,CO=15,当AC 绕点O 旋转90°时,则刮雨刷AC 扫过的面积为 cm2?图(2)′OBA B 'A 'O '︒60 CDP O10题图AO′CA ′ (第11题图)A 2A 1A╮30°2 / 4A′B剪去12、如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为12A A A →→,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( )A .10cmB .4cm πC .72cm π D .52cm 13.图1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部截面的示意图,AB 所在圆的圆心为O .车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积14、一位小朋友在粗糙不打滑的“Z ”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,AB 与C D 是水平的,BC 与水平面的夹角为600,其中AB=60cm ,CD=40cm ,BC=40cm ,请你作出该小朋友将园盘从A 点滚动到D 点其圆心所经过的路线的示意图,并求出此路线的长度。
人教版数学九年级上册24.4《弧长和扇形的面积》教学设计
人教版数学九年级上册24.4《弧长和扇形的面积》教学设计一. 教材分析人教版数学九年级上册24.4《弧长和扇形的面积》是本册教材中的一个重要内容,主要介绍了弧长和扇形面积的计算方法。
这部分内容与现实生活密切相关,既有实际意义,又为高中阶段学习更为复杂的圆周率及曲线提供基础。
教材通过生动的实例和图示,引导学生掌握弧长和扇形面积的计算公式,并能够运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有一定的深度。
但同时,这部分内容相对复杂,需要学生具有较强的逻辑思维能力和空间想象能力。
在导入阶段,教师需要激发学生的学习兴趣,引发学生对弧长和扇形面积的探究欲望。
在呈现和操练阶段,教师需引导学生通过合作交流,理解并掌握弧长和扇形面积的计算方法。
在巩固和拓展阶段,教师应关注学生的个体差异,给予不同程度的学生适当的引导和帮助。
三. 教学目标1.知识与技能:让学生掌握弧长和扇形面积的计算方法,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、分析、归纳、推理等数学活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:弧长和扇形面积的计算方法。
2.难点:理解并掌握弧长和扇形面积的计算原理,能够灵活运用所学知识解决实际问题。
五. 教学方法1.情境教学法:通过实例和图示,引导学生了解弧长和扇形面积的实际意义。
2.合作学习法:鼓励学生分组讨论,共同探究弧长和扇形面积的计算方法。
3.引导发现法:教师引导学生观察、分析、归纳、推理,发现弧长和扇形面积的计算规律。
4.实践操作法:让学生通过动手操作,加深对弧长和扇形面积计算方法的理解。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、教案、练习题等。
2.学具:学生手册、练习本、文具等。
七. 教学过程1.导入(5分钟)教师通过展示生活中的实例,如自行车轮胎的磨损、扇形的雨伞等,引导学生关注弧长和扇形面积的实际意义,激发学生的学习兴趣。
人教版数学九年级上册24.4.1《弧长和扇形面积》说课稿
人教版数学九年级上册24.4.1《弧长和扇形面积》说课稿一. 教材分析人教版数学九年级上册第24章《弧长和扇形面积》是本章的最后一节内容,本节课的主要内容是引导学生探究弧长和扇形面积的计算方法,进一步加深学生对圆的相关知识的理解。
教材通过生活中的实例,让学生感受弧长和扇形面积的实际应用,从而激发学生的学习兴趣。
接下来,我将结合教材内容,分析本节课的教学内容。
二. 学情分析在进入九年级上册的学习之前,学生已经掌握了圆的基本知识,如圆的周长、直径、半径等,他们对圆的知识有一定的了解。
然而,弧长和扇形面积的概念对于学生来说可能较为抽象,需要通过具体实例和实际操作来进一步理解。
此外,学生可能对计算弧长和扇形面积的公式记忆不牢,需要老师在课堂上进行引导和巩固。
三. 说教学目标根据教材内容和学情分析,我设定了以下教学目标:1.让学生理解弧长和扇形面积的概念,掌握计算弧长和扇形面积的方法。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生的合作交流能力,培养他们积极参与课堂活动的习惯。
四. 说教学重难点根据教材内容和学情分析,我确定了以下教学重难点:1.重点:让学生掌握弧长和扇形面积的计算方法,能够运用这些方法解决实际问题。
2.难点:让学生理解弧长和扇形面积的概念,以及如何将这些抽象的概念运用到实际问题中。
五. 说教学方法与手段为了达到教学目标,突破重难点,我计划采用以下教学方法与手段:1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来解决问题。
2.利用多媒体课件,展示实例和操作过程,帮助学生直观地理解弧长和扇形面积的概念。
3.运用练习题和实际问题,让学生在实践中运用所学知识,巩固学习成果。
六. 说教学过程接下来,我将详细阐述教学过程。
1.导入:以生活中的实例引入弧长和扇形面积的概念,激发学生的学习兴趣。
2.新课讲解:讲解弧长和扇形面积的计算方法,引导学生通过自主探究、合作交流来理解这些方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.4.1弧长和扇形面积教学设计
碧华学校林喜斌
一、教材分析
(一)本课的地位和作用
本节教材是人教版九年级下册《24.4.1弧长和扇形面积公式》,是在学生学习了圆的有关概念性质、圆心角圆周角等内容之后,对弧长和扇形面积的计算的学习,研究弧长公式、扇形面积公式的推导过程及其在实际问题中的应用。
本节内容的弧长公式和扇形面积公式是以圆的周长和面积公式为依据,通过特殊圆心角到一般圆心角所对的弧长和扇形面积,探索计算公式,并运用它们来计算和解决实际问题,是圆的有关计算中的一个重要问题。
(二)教学目标
1、知识目标:
经历探索弧长计算公式及扇形面积计算公式的过程;了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题。
2、能力目标:
经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力;了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.
3、情感与价值目标:
经历探索弧长及扇形面积计算公式.让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.
(三)教学重点、难点
重点:让学生经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形面积计算公式;会用公式解决问题.
难点:探索弧长及扇形面积计算公式;用公式解决实际问题.
二、教法设想
在本节课教学中,我从学生思维的起点出发,突出教师为主导、学生为主体的教学原则,在组织教学中,我主要采用了多媒体教学和自主探究法,让学生在老师的引导下提出问题,自主探索、合作交流,收获新知;通过尝试应用,巩固实践,来深化新知,感受收获的喜悦。
三、学法研究
教学中重视指导学生掌握一些最基本的学习方法和数学思想。
通过本节课的教学,让学生学会观察分析、自主探索、总结归纳的学习方法,掌握转化思想,培养学生的空间想象能力,充分调动学生自己动脑,引导他们自己分析、讨论、得出结论,鼓励他们尝试自己完成解题过程,大胆展示自我。
四、教学设计
本节课的设计是以教学大纲和教材为依据,遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。
在教学过程中,我采用引导探究、多媒体辅助教学的模式,教师在其中只起穿针引线的作用,注重对学生的启发,鼓励学生们大胆的猜想推导和应用,最后引导学生用学到的新知识解决一些实际问题。
其基本过程如下:
五、教学过程
81°
12m
R
利用“展直长度”设计情境,导入新课。
【引导探究1】观察下图并思考,补全问题
1、圆的周长可看作______度圆心角所对的弧.
2、如右图,在半径为R 的圆中, 1°的圆心角所对的弧长 是 . 2°的圆心角所对的弧长是 . 3°的圆心角所对的弧长 是 ____ _. …… n °的圆心角所对的弧长是 【例题回解】
制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm ,精确到1mm)
变式:
1、已知圆弧的弧长为2πcm ,圆心角为30°,求此圆弧的半径。
2、已知圆弧的弧长为34
cm ,半径为2cm ,求此圆弧的圆心
角。
课堂练习1:
1、已知圆的半径为9cm ,60°圆心角所对的弧长为________
2、已知半径为3,则弧长为π的弧所对的圆心角为_______
3、已知圆心角为150°,所对的弧长为20π,则圆的半径为_______。
4、有一段弯道是圆弧形的,道长是12π,
弧所对的圆心角是81°,求这段圆弧的半
径R.
小组抢
答,教师点评 教师出示
课件,学生观察、思考,小组交流结果
例题回解,通过实际问题讲解和变式训练,用新学公式加以运用解答,教师适时点评、表扬
小组交流
结果、回答,教师
点评
问题简单,学生争先回答
由于课件的层进式展示,问题不难,各小组学生争先回答
学生回答不全、不准;语言不规范
公式正向、逆向、变形用不熟练;计算出现问题
提高课堂气氛,调动学习热情
通过n °的圆心角所对的弧长l 公式的推导,让学生体会由“特殊到一般”的数学思想
启迪学生的思维,开拓学生视野,为再学习做好铺垫
加强对公式的全面理解,提高双基。