2018-2019学年高一期末考试模拟试卷4

合集下载

北京市朝阳区2018_2019学年度高一化学第二学期期末质量检测及答案

北京市朝阳区2018_2019学年度高一化学第二学期期末质量检测及答案

高温北京市朝阳区2018~2019学年度第二学期期末质量检测高一年级化学试卷 2019.7(考试时间90分钟 满分100分)可能用到的相对原子质量:H 1 O 16 Na 23 S 32 Cl 35.5 Fe 56第一部分(选择题 共42分)本部分共14小题,每小题3分,共42分。

在每小题列出的四个选项中,选出最符合题目要求的一项。

1.下列设备工作时,将化学能转化为电能的是2A .AlB .FeC .CuD .Ag3.下列事实或做法与化学反应速率无关..的是 A .将食物存放在温度低的地方 B .用铁作催化剂合成氨C .将煤块粉碎后燃烧D .用浓硝酸和铜反应制备NO 2气体 4.下列有关糖类、油脂、蛋白质的说法中,不正确...的是 A .灼烧蚕丝织物有烧焦羽毛的气味 B .蔗糖可以水解生成葡萄糖与果糖C .将碘化钾溶液滴在土豆片上,可观察到蓝色D .利用油脂在碱性条件下的水解,可以制肥皂 5.下列化学用语不正确...的是 A .中子数为20的氯原子:B .聚乙烯的链节:—CH 2—CH 2—C .N 2的电子式:D .由Mg 和Cl 形成化学键的过程:6.下列有关铝热反应的说法中,不正确...的是 A .利用了铝的还原性 B .可用于焊接铁轨,反应为2Al + Fe 2O 3 === Al 2O 3 + 2FeC . 可用于冶炼某些高熔点金属D .能量变化可用右图表示7.氢氧燃料电池已用于航天飞机,其工作原理如图所示。

关于该燃料电池的说法不正确...的是 A .H 2在负极发生氧化反应B .电子从a 电极经外电路流向b 电极C.供电时的总反应为:2H2 + O2 == 2H2OD.燃料电池的能量转化率可达100%8.不同条件下,用O2氧化一定浓度的FeCl2溶液过程中所测的实验数据如图所示。

下列分析或推测不合理...的是A.Fe2+的氧化率随时间延长而逐渐增大B.由②和③可知,pH越大,Fe2+氧化速率越快C.由①和③可知,温度越高,Fe2+氧化速率越快D.氧化过程的离子方程式为:4Fe2+ + O2 + 4H+ == 4Fe3+ + 2H2O9.中国化学家研究出一种新型复合光催化剂(C3N4/CQDs),能利用太阳光高效分解水,原理如下图所示。

2018—2019学年度高一物理下学期期末试题(答案)

2018—2019学年度高一物理下学期期末试题(答案)

2018—2019学年度第二学期期末检测题(卷)高一物理2019 . 6温馨提示:1.本试题分为第Ⅰ卷、第Ⅱ卷和答题卡。

全卷满分100分,附加题10分,合计110分。

2.考生答题时,必须将第Ⅰ卷上所有题的正确答案用2B铅笔涂在答题卡上所对应的信息点处,答案写在Ⅰ卷上无效,第Ⅱ卷所有题的正确答案按要求用黑色签字笔填写在答题卡上试题对应题号上,写在其他位置无效。

3.考试结束时,将答题卡交给监考老师。

第Ⅰ卷(选择题,共48分)一、单选题:(本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一个选项符合题目要求。

)1、下列说法正确的是:()A.经典物理学的基础是牛顿运动定律B.经典物理学适用于一切领域C.相对论的建立,说明经典物理学是错误的D.经典物理学的成就可以被近代物理学所代替。

2、如图1是一个货车自动卸货示意图,若自动卸货车始终静止在水平地面上,车厢在液压机的作用下,θ角逐渐增大且货物相对车厢静止的过程中,下列说法正确的是( )A.货物受到的支持力不变B.货物受到的摩擦力减小C.货物受到的支持力对货物做正功D.货物受到的摩擦力对货物做负功3、我国复兴号列车运行时速可达350km/h.提高列车运行速度的一个关键技术问题是提高机车发动机的功率.动车组机车的额定功率是普通机车的27倍,已知匀速运动时,列车所受阻力与速度的平方成正比,即Ff=kv2,则动车组运行的最大速度是普通列车的()A.1倍 B.3倍 C.5倍 D.7倍4、2014年2月伦敦奥运会男子撑杆跳高冠军、法国人拉维涅在乌克兰顿涅茨克举行的国际室内田径大奖赛中,一举越过6.16米的高度,将“撑杆跳之王”布勃卡在1993年创造的6.15米的世界纪录提高了一厘米。

尘封了21年的纪录就此被打破。

如图2所示为她在比赛中的几个画面.下列说法中正确的是()A.运动员过最高点时的速度为零B.撑杆恢复形变时,弹性势能完全转化为动能C.运动员在上升过程中对杆先做正功后做负功D.运动员要成功跃过横杆,其重心必须高于横杆5、如图3所示,一轻弹簧固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速度地释放,让它自由摆下,不计空气阻力.在重物由A点摆向最低点B的过程中,下列说法正确的是( )A.重物的机械能守恒B.重物的机械能增加C.重物的重力势能与弹簧的弹性势能之和不变D.重物与弹簧组成的系统机械能守恒6、质量为60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来,已知弹性安全带的缓冲时间是1.2s,安全带长5m,g取10m/s2,则安全带所受的平均冲力的大小为()A. 1100NB. 600NC. 500ND. 100N7、北京时间1月18日,2019年斯诺克大师赛1/4决赛丁俊晖对阵布雷切尔,最终丁俊晖获胜晋级。

2019北京西城区高一化学第一学期期末试卷带答案Word版

2019北京西城区高一化学第一学期期末试卷带答案Word版

北京市西城区2018 —2019学年度第一学期期末试卷高一化学2019.1本试卷共9页, 共100分。

考试时长90分钟。

考生务必将答案答在答题纸上, 在试卷上作答无效。

可能用到的相对原子质量: H 1 C 12 O 16 Na 23 S 32 Cl 35.5 Fe 56第一部分(选择题共40分)每小题只有一个选项......符合题意(每小题2分)1. 下列试剂中, 标签上应标注的是A.纯碱B.铁粉C.浓硫酸D.酒精B. Na2O2C. Fe2O3D. Fe(OH)32. 下列固体呈淡黄色的是A. Na2OA.Na2OB. NaCl溶液C. NaOH固体D. 乙醇3. 下列物质中, 属于电解质的是A. CuA.CuB. 漂白粉C. 赤铁矿D. 氯水4. 下列物质中, 属于纯净物的是A. 液氨A.液氨高一化学第一学期期末试卷第1页(共16页)B. CO2C. NO2D. NO5. 下列气体过量排放不会导致酸雨的是A. SO2A.SO26. 胶体与其它分散系的本质区别是B. 胶体微粒能通过滤纸A. 能产生丁达尔效应A.能产生丁达尔效应C. 分散质微粒直径在1~100 nm之间D. 胶体在一定条件下能稳定存在7. 合金是一类用途B. 青铜C. 生铁D. 水银广泛的金属材料。

下列物质不属于合金的是A. 不锈钢A.不锈钢B. 浓盐酸C. 硫酸铜溶液D. 稀硫酸8. 下列溶液中, 常温下可以用铁制容器装运的是A. 浓硝酸A.浓硝酸B. 金属钠C. 氯化铁D. 稀硝酸9. 下列物质中, 常用作还原剂的是A. 氯气A.氯气10. 下列四种基本反应类型与氧化还原反应的关系图中, 正确的是A. B., 不正确的是高一化学第一学期期末试卷第2页(共16页)A. 新制氯水需要避光保存B. Na可保存在煤油中C. NaOH固体需要密封保存D. 保存FeCl3溶液时需加入少量Fe粉12.下列各组离子中, 能在水溶液中大量共存的是A. Na+、Ag+、Cl-、CO3B. Na+、Mg2+、Cl-、SO4C. Fe3+、K+、SO4.OH-D. Fe2+、H+、SO4.NO13.配制100 mL 1 mol/L的NaCl溶液时, 下列做法不正确的是A. 选择容积100 mL的容量瓶B. 在容量瓶中溶解NaCl固体C. 转移NaCl溶液时用玻璃棒引流D. 定容时向容量瓶中滴加蒸馏水至液面与刻度线相切14. 下列实验能达到目的的是A. 加热除去Na2CO3固体中的NaHCO3B. 用NaOH溶液除去CO2中的SO2气体C. 用氯水除去Fe2(SO4)3溶液中的少量FeSO4D. 用BaCl2溶液除去NaCl溶液中的K2SO415. 下列有关实验现象与物质性质对应关系的说法中, 错误的是A. Na2CO3溶液遇酚酞变红, 说明Na2CO3溶液呈碱性B. Cl2使湿润的有色布条褪色, 说明Cl2具有漂白性C. NO遇空气变为红棕色, 说明NO具有还原性D.新制的Fe(OH)2遇氧气变为红褐色, 说明Fe(OH)2具有还原性16. 下列离子方程式书写正确的是A. Fe+2H+ === Fe3++H2↑B. Fe2O3+6H+ === 2Fe3++3H2OC. Na+2H2O === Na ++OH-+H2↑D. Cl2+H2O === 2H ++Cl-+ClO-17. 下列说法正确的是A. NaCl的摩尔质量是58.5 gB. 标准状况下, 22.4 L水中约含6.02×1023个H2O分子C. 常温常压下, 22 g CO2中所含氧原子数约为6.02×1023D. 将40 g NaOH固体溶于1 L H2O中, 得到1 mol/L的NaOH溶液18.下图是进行气体性质实验的常用装置, 下列对有关实验现象的描述中, 不正确的是高一化学第一学期期末试卷第3页(共16页)A. 若水槽中盛有水, 试管中盛满SO2, 可看到试管中液面上升B. 若水槽中盛有水, 试管中盛满NO2, 可看到试管中液面上升并充满试管C. 若水槽中盛有水(滴有酚酞), 试管中是NH3, 可看到试管内液面上升并呈红色D.若水槽中盛有NaOH溶液, 试管中是Cl2, 可看到试管内液面上升, 黄绿色褪去高一化学第一学期期末试卷第4页(共16页)20. 将SO2通入BaCl2溶液至饱和的过程中, 始终未观察到溶液中出现浑浊, 若再通入另一种气体A, 则产生白色沉淀。

河南省郑州市中牟县2018_2019学年高一物理上学期期末考试试题(含解析)

河南省郑州市中牟县2018_2019学年高一物理上学期期末考试试题(含解析)

河南省郑州市中牟县2018-2019学年高一上学期期末考试物理试卷一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第18题只有一项符合题目要求,第9-12题有多项符合题目要求.全部选对得4分,选对但不全的得2分,有选错或不选的得0分)1.关于牛顿第一定律及物体惯性的论述,下列说法正确的是()A.牛顿第一定律是牛顿用实验直接验证获得的实验定律B.牛顿第一定律的建立过程体现的是理想实验的思维方法C.在月球上举重比在地球上容易,所以同物体在月球上比在地球上的惯性小D.强弩之末,势不能穿鲁缟也,这表明箭的速度减小了,惯性就减小了2.如图所示,F1=3N,F2=4N,F3=5N,三个力的合力大小为()A.0N B.8N C.10N D.12N3.物体以初速度v开始沿斜面下滑,做匀加速直线运动,到达水平面时速度为3v,然后在水平地面上做匀减速直线运动直至停止。

物体在斜面上的位移和水平面上的位移大小之比是8:9,则物体在斜面上和在水平面上的运动时间之比为()A.1:2 B.2:1 C.2:3 D.3:24.一质量为m的滑块在粗糙水平面上滑行,通过频闪照片分析得知,滑块在最开始2s内的位移是最后2s内位移的两倍,且已知滑块最开始1s内的位移为2.5m,由此可求得()A.滑块的加速度为5m/s2B.滑块的初速度为5m/sC.滑块运动的总时间为3.5sD.滑块运动的总位移为4.5m5.如图所示,轻杆长为L一端固定在水平轴上的O点,另一端系一个小球(可视为质点).小球以O为圆心在竖直平面内做圆周运动,且能通过最高点,g为重力加速度.下列说法正确的是()A.小球通过最高点时速度不可能小于B.小球通过最高点时所受轻杆的作用力可能为零C.小球通过最高点时所受轻杆的作用力随小球速度的增大而增大D.小球通过最高点时所受轻杆的作用力随小球速度的增大而减小6.如图所示,一定质量的物体通过两轻绳悬挂,两轻绳结点为O.人沿水平方向拉着OB绳,物体和人均处于静止状态。

2018~2019年度第二学期高一年级期末考试

2018~2019年度第二学期高一年级期末考试

2018~2019年度第二学期高一年级期末考试一、选择题:每小题给出的四个选项中只有一项是符合题目要求的.1.若,则下列不等式成立的是()A. B.C. D.【答案】D【解析】【分析】取特殊值检验,利用排除法得答案。

【详解】因为,则当时,故A错;当时,故B错;当时,,故C错;因为且,所以故选D.【点睛】本题考查不等式的基本性质,属于简单题。

2.在中,,,则()A. 或B.C.D.【答案】C【解析】【分析】由正弦定理计算即可。

【详解】由题根据正弦定理可得即,解得,所以为或,又因为,所以为故选C.【点睛】本题考查正弦定理,属于简单题。

3.已知数列满足,则()A. 10B. 20C. 100D. 200【答案】C【解析】【分析】由题可得数列是以为首相,为公差的等差数列,求出数列的通项公式,进而求出【详解】因为,所以数列是以为首相,为公差的等差数列,所以,则【点睛】本题考查由递推公式证明数列是等差数列以及等差数列的通项公式,属于一般题。

4.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.【答案】A【解析】【分析】由已知不等式的解集可知且;从而可解得的根,根据二次函数图象可得所求不等式的解集.【详解】由的解集为可知:且令,解得:,的解集为:本题正确选项:【点睛】本题考查一元二次不等式的求解问题,关键是能够通过一次不等式的解集确定方程的根和二次函数的开口方向.5.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤”,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重多少斤?()A. 6斤B. 7斤C. 9斤D. 15斤【答案】D【解析】分析】直接利用等差数列的求和公式求解即可.【详解】因为每一尺的重量构成等差数列,,,,数列的前5项和为.即金锤共重15斤,故选D.【点睛】本题主要考查等差数列求和公式的应用,意在考查运用所学知识解答实际问题的能力,属于基础题.6.等差数列前项和为,满足,则下列结论中正确的是()A. 是中的最大值B. 是中的最小值C. D.【答案】D【解析】本题考查等差数列的前n项和公式,等差数列的性质,二次函数的性质.设公差为则由等差数列前n项和公式知:是的二次函数;又知对应二次函数图像的对称轴为于是对应二次函数为无法确定所以根据条件无法确定有没有最值;但是根据二次函数图像的对称性,必有即故选D7.各项不为零的等差数列中,,数列是等比数列,且,则()A. 4B. 8C. 16D. 64【答案】D【解析】【分析】根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.8.在中,内角所对应的边分别为,若,且三边成等比数列,则的值为()A. B. C. D.【答案】D【解析】【分析】由正弦定理整理可得,进而可知在三角形中,由成等比数列得,再根据余弦定理化简配方,从而得出答案。

2018-2019学年度高一年级期末考试模拟试卷(一).doc

2018-2019学年度高一年级期末考试模拟试卷(一).doc

2018-2019学年度高一年级期末考试模拟试卷(一)一、单选题1.哥伦布航行到古巴附近时明确向土著居民表示:“远征军司令来此目的乃寻找黄金”,然而在给西班牙国王信中他又说:“这里的一切都应置于其(基督教)统治之下……因为发扬光大基督教乃吾人此行之初衷和目的。

”关于哥伦布远航的背景和目的,下列说法正确的是A.对外殖民与传播宗教并行不悖B.文化侵略的初衷多于经济掠夺C.宗教改革刺激人们远洋探险D.工业革命促进开辟海外市场2.“新航路开辟后,欧洲社会的价值观念、风尚习俗全都变了:水手成了最令人羡慕和尊敬的职业;各种游记成为畅销书;商业精神大大加强。

而这些观念、习俗变化的轨迹都强调了人的价值作用。

”对该现象本质原因的分析最准确是( )A.新航路开辟导致欧洲价值观念、风尚习俗巨变B.文艺复兴为探险家提供精神动力——人文主义C.宗教改革与启蒙运动,改变了人们的价值观念D.资本主义萌芽引起欧洲社会广泛变化3.如图为西欧某国早期殖民扩张示意图。

该国A.派遣哥伦布发现美洲新大陆B.17世纪成为商业殖民帝国C.最早发现直通印度的新航路D.18世纪成为世界殖民帝国4.阿萨·勃里格斯说:“(英国)当时总共有42条运河计划修建,需耗资650万英镑。

1792年,被当时的人们形容为运河狂热的年份,人们的投机热情像瘟疫般地传播。

运河的股票为当地商人、工厂主和土地所有者踊跃争购,虽然它们直到1811年才在证券交易所报价。

”该狂热现象的出现是由于A.价格革命出现,股票投资活动的狂热B.商业革命扩展,商业丰厚利润的刺激C.工业革命进行,科技创新的日益发展D.电气时代到来,生产社会化趋势加强5.纪录片《公司的力量》讲到:“从1872年2月17日到3月28日,短短39天,洛克菲勒一口气吞并了22个竞争对手,他还曾在48小时内,连续买下了6家炼油厂。

……1898年时,它(洛克菲勒美孚石油公司)……控制了近90%的石油运输。

”以上材料反映了19世纪后期出现了新的经济现象,该现象的实质是A.交通运输工具的变革B.世界市场的形成C.资本主义生产关系的局部调整D.财富资源的猎取6.如表是中国近代民族资本主义发展简表,此状况的出现主要得益于A.“抵制日货”运动开展B.政府经济政策调整C.“实业救国”思朝高涨D.列强侵华方式改变7.叶圣陶《开明国语课本》(1932年初版)中记载某乡村的婆婆的回忆“我年轻时候,纺纱织布,利息(收益)倒不少。

辽宁省抚顺一中2018-2019学年高一下学期学业水平模拟测试英语试卷

辽宁省抚顺一中2018-2019学年高一下学期学业水平模拟测试英语试卷

20182019学年辽宁省抚顺一中高一下学期学业水平模拟测试英 语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第I 卷(选择题)一、阅读理解A couple from Miami, Bill and Simone Butler, spent sixtysix days in a life raft (救生艇)in the seas of Central America after their boat sank.Twentyone days after they left Panama in their boat, in Simony, they met some whales (鲸).“ They started to hit t he side of the boat,” said Bill,“ and then suddenly we heard water. ” Two minutes later, the boat was sinking. They jumped into the life raft and watched the boat go under the water.For twenty days they had tins of food, biscuits, and bottles of water. They also had a fishing line and a machine to make salt water into drinking water —two things which saved their lives. They caught eight to ten fish a day and ate them raw(生的).Then the line broke. “So we had no more fish until something very strange happened. Some sharks(鲨鱼) came to feed, and the fish under the raft were afraid and came to the surface. I caught them with my hands.”About twenty ships passed them, but no one saw them. After fifty days at sea their life raft was beginning to break up. Then suddenly it was all over. A fishing boat saw them and picked them up. They couldn’t stand up. So the captain carried them onto his boat and took them to Costa Rica. Their two months at sea was over.1.Bill and Simone were traveling _______ when they met some whales. A .in a lakeB .in a riverC .in a seaD .in a desert2.After their boat sank, the couple _______.A .jumped into the seaB .heard waterC .watched the boat sail awayD .stayed in the life raft3.When the fishing boat picked them up, _______ . A .they stood up as quickly as possible B .they climbed onto the boat easilyC .their life raft was in good conditionD .their two months at sea was overOne afternoon I toured an art museum while waiting for my husband to finish a business meeting. I was looking forward to a quiet view of the wonderful works.A young couple viewing the paintings ahead of me chatted nonstop between themselves. I watched them a moment and decided she was doing all the talking. I admired his patience for tolerating her constant words. Disturbed by their noise, I moved on.I encountered them several times as I moved through the various rooms of art. Each time I heard her constant talking, I moved away quickly.I was standing at the counter of the museum gift store doing some shopping when the couple approached the exit. Before they left, the man reached into his pocket and pulled out a white object. He turned it into a long cane (手杖) and then tapped his way into the coatroom to get his wife’s jacket.“He’s a brave man,” the clerk at the counter said, “Most of us would give up if we were blinded at such a young age. During his recovery, he made a promise that his life wouldn’t change. So, as before, he and his wife e in whenever there’s a new art show.”“But what does he get out of the art?” I asked, “He can’t see.”“Can’t see! You’re wrong. He sees a lot. More than you or I do,” the clerk said, “His wife describes each painting so he can see it in his head.”I learned something about patience, courage and love that day. I saw the patience of a young wife describing paintings to a person without sight and the courage of a husband who would not allow blindness to change his life.And I saw the love shared by two people as I watched this couple walk away arm in arm. 4.Which of the following statements is true?A .The husband was doing all the talking when the couple viewed the works.B .The husband tapped his way to the coatroom to get his own jacket.C .The husband was considered a brave man by the clerk at the store.D .The husband allowed blindness to change his life.此卷只装订不密封班级 姓名 准考证号 考场号 座位号5.The underlined word “encountered” in the passage means “________”.A.cheated B.metC.talked D.argued6.We can infer from the passage that ___________.A.the man had his eyes blinded in a fightB.the man can see very well while visiting the museumC.the woman was very patient and devoted to his husbandD.the man often wasted time by visiting exhibitionsMy teenage son Karl became withdrawn after his father died. As a single parent, I tried to do my best to talk to him. But the more I tried, the more he pulled away. When his report card arrived during his junior year, it said that he had been absent 95 times from classes and had six falling grades for the year. At this rate he would never graduate. I sent him to the school adviser, and I even begged him. Nothing worked.One night I felt so powerless that I got down on my knees and begged for help. “Please God, I can’t do any thing more for my son. I’m at the end of my rope. I’m giving the whole thing up to you.”I was at work when I got a phone call. A man introduced himself as the headmaster. “I want to talk to you about Karl’s absences.” Before he could say another word, I cried and all my disappointment and sadness over Karl came pouring out into the ears of this stranger. “I love my son but I just don’t know what to do. I’ve tried everything to get Karl to go back to school and nothing has worked. It’s out of nay hands. ”For a moment there was silence on the other end of the line. The headmaster seriously said, “Thank you for your tim e”, and hung up.Karl’s next report card showed a marked improvement in his grades. Finally, he even made the honor roll. In his fourth year, I attended a parentteacher meeting with Karl. I noticed that his teachers were astonished at the way he had turned himself around. On our way home, he said, “Mum, remember that call from the headmaster last year?” I nodded. “That was me. I thought I’d play a joke but when I heard what you said, it really hit me how much I was hurting you. That's when I knew I had to m ake you proud.”7.There was silence on the other end of the line because __________A.the speaker was too moved to say anything to the motherB.the speaker was not listeningC.the speaker had gone awayD.the speaker was unable to speak8.The sentence “... he even made the honor roll” means that “_______”A.he was even on the list to be punishedB.he was even on the list of students who were lazyC.he was even on the list of students who were always late for schoolD.he was even on the list of the best students at school9.What is the main idea of this passage?A.Children in singleparent families often have mental problems.B.School education doesn’t work without full support from parents.C.Being understood by parents is very important to teenagers.D.Mothe r’s love plays an important role in teenagers’ life.10.Karl has a ________ mother.A.great B.foolishC.stupid D.dishonest二、七选五Are you feeling anxious about your test next week? Here are some tips that will help you in dealing with stress(压力) and anxiety.11.One of the most important ways of avoiding test anxiety is to prepare well in advance. Study regularly for a few hours every day. It helps in increasing the confidence of students.12.If students are not able to deal with anxiety or nervousness, they could talk to their teachers, student counselors(辅导员), parents or friends. Parents should also avoid pressurizing(加压) their kids to do well. Create a peaceful and relaxing atmosphere (放松的气氛) at home.Then your children can study without any tension(紧张). Another important point that arises here is neither the students nor the parents should pare the children with their other classmates and friends.13.Do not forget to eat and sleep properly. Many times due to anxiety students avoid sleep and starve themselves. They should sleep for at least 67 hours a day and eat nutritious and healthy food. Exercising regularly is equally important as talking to friends and socializing(社交).14.Plan your studies well. Chart(制图) out a timetable and take proper breaks between studying. Along with the study time, allot (分配) time to relax and do what you love to do. Practicing simple breathing skills will also help reduce stress.15.. While it is important to gain good scores in tests, it is not the most important thing in life. Learning to deal with nervousness and stress will not only help them to do well in school tests, but also in their future life.A.Third, physical fitnessB.First, study regularlyC.Fourth, prepare scheduleD.Second, reduce study pressureE.Students should remember that tests are just a part of lifeF.You should go to bed earlyG.You’d better turn to your teachers for help三、完形填空When a person is curious(好奇的) about something, it means he is interested in it and wishes to know more about it. There is nothing 16 with curiosity in itself. Whether it is good or bad 17 on what people are curious about.Curiosity (好奇心) is 18 silly or wrong. Some people with nothing to do are 19 of curiosity about what their neighbors are doing. They are 20 to know what they are eating or drinking, what they are bringing home or taking out or 21 they have e home so early or late. To be interested in these things is 22 because they are not important at all. It is none of their 23 to know what neighbors do or are doing. Such curiosity is 24 not only foolish but also harmful. For most probably, it 25 to small talk which often brings 26 , shame or disrespect to others, and thus hurt their feelings.On the other 27 , there is a noble curiosity— the curiosity of the wise, who 28 at all the great things and try to find out all they 29 about them. Columbus could 30 have found America if he had not been 31 . James Watt would not have made the steam engine 32 his curiosity about the raising of the kettle lid (水壶盖). All the great discoveries and inventions in human history have been made 33 a result of curiosity. So the curiosity is never 34 unimportant things, which have 35 or nothing to do with the happiness of the public.16.A.good B.wrong C.right D.well17.A.works B.puts C.takes D.depends18.A.never B.sometimes C.seldom D.hardly19.A.full B.fond C.proud D.lack20.A.angry B.worried C.pleased D.anxious21.A.how B.when C.why D.where22.A.silly B.necessary C.possible D.funny23.A.work B.homework C.duty D.business24.A.nothing B.anything C.something D.everything25.A.refers B.leads C.causes D.results26.A.pride B.harm C.good D.benefit27.A.face B.side C.way D.hand28.A.expect B.like C.wonder D.hate29.A.need B.dare C.must D.can30.A.never B.ever C.probably D.finally31.A.famous B.careful C.curious D.hard32.A.for B.without C.in D.from33.A.before B.as C.after D.during34.A.about B.by C.at D.to35.A.much B.little C.some D.few第II卷(非选择题)四、语法填空阅读下面短文,在空白处填入1个适当的单词或括号内单词的正确形式。

安徽省宿州市埇桥区2018-2019学年高一上学期期末考试数学试题(解析版)

安徽省宿州市埇桥区2018-2019学年高一上学期期末考试数学试题(解析版)

宿州市埇桥区2018-2019学年度第一学期期末联考高一数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,集合,则集合()A. B. C. D. ∅【答案】A【解析】试题分析:,故选A.考点:集合的运算.2.cos600°的值等于()A. B. C. D.【答案】B【解析】【分析】利用诱导公式化简即可得到结果.【详解】cos600°故选:B【点睛】本题考查利用诱导公式化简求值,考查特殊角的三角函数值,属于基础题.3.sin15°cos15°=( )A. B. C. D.【答案】A【解析】,选A4.已知、、是的三个内角,若,则是()A. 钝角三角形B. 锐角三角形C. 直角三角形D. 任意三角形【答案】A【解析】【分析】依题意,可知B,C中有一角为钝角,从而可得答案.【详解】∵A是△ABC的一个内角,∴sin A>0,又sin A cos B tan C<0,∴cos B tan C<0,∴B,C中有一角为钝角,故△ABC为钝角三角形.故选:A.【点睛】本题考查三角形的形状判断,求得B,C中有一角为钝角是判断的关键,属于中档题.5.已知,则的值为()A. B. C. D.【答案】D【解析】【分析】利用诱导公式化简即可得到结果.【详解】∵∴故选:D【点睛】本题考查利用诱导公式化简求值,考查配角法,属于基础题.6.函数的最小值和最小正周期为()A. 1和2πB. 0和2πC. 1和πD. 0和π【答案】D【分析】由正弦函数的性质即可求得的最小值和最小正周期.【详解】解:∵,∴当=﹣1时,f(x)取得最小值,即f(x)min;又其最小正周期Tπ,∴f(x)的最小值和最小正周期分别是:,π.故选:D.【点睛】本题考查正弦函数的周期性与最值,熟练掌握正弦函数的图象与性质是解题关键,属于中档题.7.在平行四边形ABCD中,设,,,,下列等式中不正确的是()A. B. C. D.【答案】B【解析】【分析】在平行四边形ABCD中,根据两个向量的加减法的法则,以及其几何意义可得,由此得出结论.【详解】解:在平行四边形ABCD中,∵,则,故B不正确,故选:B.【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,属于基础题.8.下列各组函数是同一函数的是()①与;②与;③与;④与。

2018~2019学年度高一年级第二学期期末考试

2018~2019学年度高一年级第二学期期末考试

2018~2019学年度高一年级第二学期期末考试本试卷分第Ⅰ卷(1~2页,选择题)和第Ⅱ卷(3~8页,非选择题)两部分.共150分,考试用时120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、试卷科目用2B铅笔涂写在答题卡上.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净,再选涂其它答案,不能答在试卷上.3.考试结束后,监考人员将本试卷和答题卡一并收回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B.C. D.【答案】A【解析】【分析】解出集合、,可得出集合.【详解】,,因此,,故选:A.【点睛】本题考查集合的交集运算,解题的关键在于解出两个集合,考查计算能力,属于中等题.2.下列说法正确的是()A. 若,则B. 若,,则C. 若,则D. 若,,则【答案】D【解析】【分析】利用不等式性质或举反例的方法来判断各选项中不等式的正误.【详解】对于A选项,若且,则,该选项错误;对于B选项,取,,,,则,均满足,但,B选项错误;对于C选项,取,,则满足,但,C选项错误;对于D选项,由不等式的性质可知该选项正确,故选:D.【点睛】本题考查不等式正误的判断,常用不等式的性质以及举反例的方法来进行验证,考查推理能力,属于基础题.3.在等比数列中,,,则()A. B.C. D.【答案】B【解析】【分析】设等比数列的公比为,由等比数列的定义知与同号,再利用等比中项的性质可求出的值.【详解】设等比数列的公比为,则,,.由等比中项的性质可得,因此,,故选:B.【点睛】本题考查等比中项性质的应用,同时也要利用等比数列的定义判断出项的符号,考查运算求解能力,属于中等题.4.在中,,,为的外接圆的圆心,则()A. B.C. D.【答案】A【解析】【分析】利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选:A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.5.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A. B.C. D.【答案】B【解析】【分析】设阴影部分正方形的边长为,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【详解】如图所示,设阴影部分正方形的边长为,则七巧板所在正方形的边长为,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.6.某型号汽车使用年限与年维修费(单位:万元)的统计数据如下表,由最小二乘法求得回归方程.现发现表中有一个数据看不清,推测该数据的值为()使用年限维修费A. B.C. D.【答案】C【解析】【分析】设所求数据为,计算出和,然后将点代入回归直线方程可求出的值.【详解】设所求数据为,则,,由于回归直线过样本的中心点,则有,解得,故选:C.【点睛】本题考查利用回归直线计算原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.7.设、满足约束条件,则的最大值为()A. B.C. D.【答案】C【解析】【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上截距取最值来取得,考查数形结合思想的应用,属于中等题.8.执行如下的程序框图,则输出的是()A. B.C. D.【答案】A【解析】【分析】列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.9.在中,根据下列条件解三角形,其中有一解的是()A. ,,B. ,,C. ,,D. ,,【答案】D【解析】【分析】根据三角形解的个数的判断条件得出各选项中对应的解的个数,于此可得出正确选项.【详解】对于A选项,,,此时,无解;对于B选项,,,此时,有两解;对于C选项,,则为最大角,由于,此时,无解;对于D选项,,且,此时,有且只有一解.故选:D.【点睛】本题考查三角形解的个数的判断,解题时要熟悉三角形个数的判断条件,考查推理能力,属于中等题.10.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D. 与的大小不确定【答案】A【解析】【分析】设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【详解】设等比数列公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【点睛】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.11.以下有四个说法:①若、为互斥事件,则;②在中,,则;③和的最大公约数是;④周长为的扇形,其面积的最大值为;其中说法正确的个数是()A. B.C. D.【答案】C【解析】【分析】设、为对立事件可得出命题①的正误;利用大边对大角定理和余弦函数在上的单调性可判断出命题②的正误;列出和各自的约数,可找出两个数的最大公约数,从而可判断出命题③的正误;设扇形的半径为,再利用基本不等式可得出扇形面积的最大值,从而判断出命题④的正误.【详解】对于命题①,若、为对立事件,则、互斥,则,命题①错误;对于命题②,由大边对大角定理知,,且,函数在上单调递减,所以,,命题②正确;对于命题③,的约数有、、、、、,的约数有、、、、、、、,则和的最大公约数是,命题③正确;对于命题④,设扇形的半径为,则扇形的弧长为,扇形的面积为,由基本不等式得,当且仅当,即当时,等号成立,所以,扇形面积的最大值为,命题④错误.故选:C.【点睛】本题考查命题真假的判断,涉及互斥事件的概率、三角形边角关系、公约数以及扇形面积的最值,判断时要结合这些知识点的基本概念来理解,考查推理能力,属于中等题.12.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()A. B.C. D.【答案】B【解析】【分析】设的最大角为,最小角为,可得出,,由题意得出,由二倍角公式,利用正弦定理边角互化思想以及余弦定理可得出关于的方程,求出的值,可得出的值.【详解】设的最大角为,最小角为,可得出,,由题意得出,,所以,,即,即,将,代入得,解得,,,则,故选:B.【点睛】本题考查利用正弦定理和余弦定理解三角形,解题时根据对称思想设边长可简化计算,另外就是充分利用二倍角公式进行转化是解本题的关键,综合性较强.第Ⅱ卷(非选择题,共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷上,不要在答题卡上填涂.2.答卷前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中横线上)13.把二进制数1111(2)化为十进制数是______.【答案】.【解析】【分析】由二进制数的定义可将化为十进制数.【详解】由二进制数的定义可得,故答案为:.【点睛】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.14.某公司当月购进、、三种产品,数量分别为、、,现用分层抽样的方法从、、三种产品中抽出样本容量为的样本,若样本中型产品有件,则的值为_______.【答案】.【解析】【分析】利用分层抽样每层抽样比和总体的抽样比相等,列等式求出的值.【详解】在分层抽样中,每层抽样比和总体的抽样比相等,则有,解得,故答案为:.【点睛】本题考查分层抽样中的相关计算,解题时要充分利用各层抽样比与总体抽样比相等这一条件列等式求解,考查运算求解能力,属于基础题.15.已知正数、满足,则的最小值是________.【答案】.【解析】【分析】利用等式得,将代数式与代数式相乘,利用基本不等式求出的最小值,由此可得出的最小值.【详解】,所以,由基本不等式可得,当且仅当时,等号成立,因此,的最小值是,故答案为:.【点睛】本题考查利用基本不等式求最值,解题时要对代数式进行合理配凑,考查分析问题和解决问题的能力,属于中等题.16.在数列中,,当时,.则数列的前项和是_____.【答案】【解析】【分析】先利用累加法求出数列的通项公式,然后将数列的通项裂开,利用裂项求和法求出数列的前项和.【详解】当时,.所以,,,,,.上述等式全部相加得,.,因此,数列的前项和为,故答案为:.【点睛】本题考查累加法求数列通项和裂项法求和,解题时要注意累加法求通项和裂项法求和对数列递推公式和通项公式的要求,考查运算求解能力,属于中等题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.某校进行学业水平模拟测试,随机抽取了名学生的数学成绩(满分分),绘制频率分布直方图,成绩不低于分的评定为“优秀”.(1)从该校随机选取一名学生,其数学成绩评定为“优秀”的概率;(2)估计该校数学平均分(同一组数据用该组区间的中点值作代表).【答案】(1);(2)该校数学平均分为.【解析】【分析】(1)计算后两个矩形的面积之和,可得出结果;(2)将每个矩形底边中点值乘以相应矩形的面积,再将这些积相加可得出该校数学平均分.【详解】(1)从该校随机选取一名学生,成绩不低于分的评定为“优秀”的频率为,所以,数学成绩评定为“优秀”的概率为;(2)估计该校数学平均分.【点睛】本题考查频率分布直方图频率和平均数的计算,解题时要熟悉频率和平均数的计算原则,考查计算能力,属于基础题.18.如图,为了测量河对岸、两点的距离,观察者找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、.并测量得到以下数据,,,,,米,米.求、两点的距离.【答案】米【解析】【分析】在中,求出,利用正弦定理求出,然后在中利用锐角三角函数定义求出,最后在中,利用余弦定理求出.【详解】由题意可知,在中,,由正弦定理得,所以米,在中,米,在中,由余弦定理得,所以,米.【点睛】本题考查利用正弦、余弦定理解三角形应用题,要将实际问题转化为三角形的问题,并结合已知元素类型选择正弦、余弦定理解三角形,考查分析问题和解决问题的能力,属于中等题.19.在公差是整数的等差数列中,,且前项和.(1)求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2).【解析】【分析】(1)设等差数列的公差为,由题意知,的最小值为,可得出,可得出的取值范围,结合,可求出的值,再利用等差数列的通项公式可求出;(2)将数列的通项公式表示为分段形式,即,于是得出可得出的表达式.【详解】(1)设等差数列的公差为,则,由题意知,的最小值为,则,,所以,解得,,,因此,;(2).当时,,则,;当时,,则,.综上所述:.【点睛】本题考查等差数列通项公式以及绝对值分段求和,解题的关键在于将的最小值转化为与项相关的不等式组进行求解,考查化归与转化数学思想,属于中等题.20.年月日是第二十七届“世界水日”,月日是第三十二届“中国水周”.我国纪念年“世界水日”和“中国水周”活动的宣传主题为“坚持节水优先,强化水资源管理”.某中学课题小组抽取、两个小区各户家庭,记录他们月份的用水量(单位:)如下表:小区家庭月用水量小区家庭月用水量(1)根据两组数据完成下面的茎叶图,从茎叶图看,哪个小区居民节水意识更好?(2)从用水量不少于的家庭中,、两个小区各随机抽取一户,求小区家庭的用水量低于小区的概率.【答案】(1)见解析(2)【解析】【分析】(1)根据表格中的数据绘制出茎叶图,并结合茎叶图中数据的分布可比较出两个小区居民节水意识;(2)列举出所有的基本事件,确定所有的基本事件数,然后确定事件“小区家庭的用水量低于小区”所包含的基本事件数,利用古典概型的概率公式可计算出事件“小区家庭的用水量低于小区”的概率.【详解】(1)绘制如下茎叶图:由以上茎叶图可以看出,小区月用水量有的叶集中在茎、上,而小区月用水量有的叶集中在茎、上,由此可看出小区居民节水意识更好;(2)从用水量不少于家庭中,、两个小区各随机抽取一户的结果:、、、、、、、,共个基本事件,小区家庭的用水量低于小区的的结果:、、,共个基本事件.所以,小区家庭的用水量低于小区的概率是.【点睛】本题考查茎叶图的绘制与应用,以及利用古典概型计算事件的概率,考查收集数据与处理数据的能力,考查计算能力,属于中等题.21.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.【答案】(1)(2)的最大值为,此时【解析】【分析】(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)由正弦定理得出,,然后利用三角恒等变换思想将转化为关于角的三角函数,可得出的值,并求出的值.【详解】(1)由正弦定理得,即,从而有,即,由得,因为,所以;(2)由正弦定理可知,,则有,,,其中,因为,所以,所以当时,取得最大值,此时,所以,的最大值为,此时.【点睛】本题考查正弦定理边角互化思想的应用,考查内角和定理、诱导公式,以及三角形中最值的求解,求解时常利用正弦定理将边转化为角的三角函数来求解,解题时要充分利用三角恒等变换思想将三角函数解析式化简,考查运算求解能力,属于中等题.22.设为数列的前项和,.(1)求证:数列是等比数列;(2)求证:.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)令,由求出的值,再令,由得,将两式相减并整理得,计算出为非零常数可证明出数列为等比数列;(2)由(1)得出,可得出,利用放缩法得出,利用等比数列求和公式分别求出数列和前项和,从而可证明出所证不等式成立.【详解】(1)当时,,解得;当时,由得,上述两式相减得,整理得.则,且.所以,数列是首项为,公比为的等比数列;(2)由(1)可知,则.因为,所以.又因为,所以.综上,.【点睛】本题考查利用前项和求数列通项,考查等比数列的定义以及放缩法证明数列不等式,解题时要根据数列递推公式或通项公式的结构选择合适的方法进行求解,考查分析问题和解决问题的能力,属于中等题.2018~2019学年度高一年级第二学期期末考试本试卷分第Ⅰ卷(1~2页,选择题)和第Ⅱ卷(3~8页,非选择题)两部分.共150分,考试用时120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、试卷科目用2B铅笔涂写在答题卡上.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净,再选涂其它答案,不能答在试卷上.3.考试结束后,监考人员将本试卷和答题卡一并收回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B.C. D.【答案】A【解析】【分析】解出集合、,可得出集合.【详解】,,因此,,故选:A.【点睛】本题考查集合的交集运算,解题的关键在于解出两个集合,考查计算能力,属于中等题.2.下列说法正确的是()A. 若,则B. 若,,则C. 若,则D. 若,,则【答案】D【解析】【分析】利用不等式性质或举反例的方法来判断各选项中不等式的正误.【详解】对于A选项,若且,则,该选项错误;对于B选项,取,,,,则,均满足,但,B选项错误;对于C选项,取,,则满足,但,C选项错误;对于D选项,由不等式的性质可知该选项正确,故选:D.【点睛】本题考查不等式正误的判断,常用不等式的性质以及举反例的方法来进行验证,考查推理能力,属于基础题.3.在等比数列中,,,则()A. B.C. D.【答案】B【解析】【分析】设等比数列的公比为,由等比数列的定义知与同号,再利用等比中项的性质可求出的值.【详解】设等比数列的公比为,则,,.由等比中项的性质可得,因此,,故选:B.【点睛】本题考查等比中项性质的应用,同时也要利用等比数列的定义判断出项的符号,考查运算求解能力,属于中等题.4.在中,,,为的外接圆的圆心,则()A. B.C. D.【答案】A【解析】【分析】利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选:A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.5.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A. B.C. D.【答案】B【解析】【分析】设阴影部分正方形的边长为,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【详解】如图所示,设阴影部分正方形的边长为,则七巧板所在正方形的边长为,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.6.某型号汽车使用年限与年维修费(单位:万元)的统计数据如下表,由最小二乘法求得回归方程.现发现表中有一个数据看不清,推测该数据的值为()使用年限维修费A. B.C. D.【答案】C【解析】【分析】设所求数据为,计算出和,然后将点代入回归直线方程可求出的值.【详解】设所求数据为,则,,由于回归直线过样本的中心点,则有,解得,故选:C.【点睛】本题考查利用回归直线计算原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.7.设、满足约束条件,则的最大值为()A. B.C. D.【答案】C【解析】【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上截距取最值来取得,考查数形结合思想的应用,属于中等题.8.执行如下的程序框图,则输出的是()A. B.C. D.【答案】A【解析】【分析】列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.9.在中,根据下列条件解三角形,其中有一解的是()A. ,,B. ,,C. ,,D. ,,【答案】D【解析】【分析】根据三角形解的个数的判断条件得出各选项中对应的解的个数,于此可得出正确选项.【详解】对于A选项,,,此时,无解;对于B选项,,,此时,有两解;对于C选项,,则为最大角,由于,此时,无解;对于D选项,,且,此时,有且只有一解.故选:D.【点睛】本题考查三角形解的个数的判断,解题时要熟悉三角形个数的判断条件,考查推理能力,属于中等题.10.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D. 与的大小不确定【答案】A【解析】【分析】设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【详解】设等比数列公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【点睛】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.11.以下有四个说法:①若、为互斥事件,则;②在中,,则;③和的最大公约数是;④周长为的扇形,其面积的最大值为;其中说法正确的个数是()A. B.C. D.【答案】C【解析】【分析】设、为对立事件可得出命题①的正误;利用大边对大角定理和余弦函数在上的单调性可判断出命题②的正误;列出和各自的约数,可找出两个数的最大公约数,从而可判断出命题③的正误;设扇形的半径为,再利用基本不等式可得出扇形面积的最大值,从而判断出命题④的正误.【详解】对于命题①,若、为对立事件,则、互斥,则,命题①错误;对于命题②,由大边对大角定理知,,且,函数在上单调递减,所以,,命题②正确;对于命题③,的约数有、、、、、,的约数有、、、、、、、,则和的最大公约数是,命题③正确;对于命题④,设扇形的半径为,则扇形的弧长为,扇形的面积为,由基本不等式得,当且仅当,即当时,等号成立,所以,扇形面积的最大值为,命题④错误.故选:C.【点睛】本题考查命题真假的判断,涉及互斥事件的概率、三角形边角关系、公约数以及扇形面积的最值,判断时要结合这些知识点的基本概念来理解,考查推理能力,属于中等题.12.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()。

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。

2018-2019学年高中名校高一第一学期期末调研数学试卷(四)含答案

2018-2019学年高中名校高一第一学期期末调研数学试卷(四)含答案

2018-2019学年高中名校高一第一学期期末调研数学试卷(四)数学全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡。

第I 卷(选择题 60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.)1.设全集{}1,2,3,4,5,6U =,集合{}1,2,3,4P =,{}3,4,5Q =,则()U PQ =ð( ) A .{}1,2,3,4,6 B .{}1,2,3,4,5 C .{}1,2,5 D .{}1,22.若直线//l 平面α,直线a α⊂,则l 与a 的位置关系是( )A .//l aB .l 与a 异面C .l 与a 相交D .l 与a 没有公共点3.已知直线3120x my --=在两个坐标轴上的截距之和等于10,则实数m 的值为( )A .2B .3C .4D .54.圆心为(2,3)-,且与y 轴相切的圆的方程是( )A .224690x y x y ++-+=B .224640x y x y ++-+=C .224690x y x y +-++=D .224640x y x y +-++= 5.设函数221,1,(),1,x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩若((0))4f f a =,则实数a 等于( ) A .1 B .2 C .3 D .46.已知ABC ∆的顶点(0,1)A ,(4,3)B ,(1,1)C -,则AB 边上的中线方程是( )A .230x y +-=B .340x y +-=C .340x y --=D .330x y -+=7.已知三条直线a ,b ,c 及平面α,具备以下哪一条件时//a b ?A .//a α,//b αB .a c ⊥,b c ⊥C .a c ⊥,c α⊥,//b αD .a α⊥,b α⊥ 8.已知函数||1()()3x f x =,若函数()y f x m =-有两个不同的零点,则m 的取值范围为( )A .1m <B .1m >C .01m <<D .0m > 9.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( )A .πB .2πC .4πD .8π10.若(ln )34f x x =+,则()f x 的表达式为( )A .34x e +B .3x eC .3ln 4x +D .3ln x11.已知函数(3)3,1,()log ,1aa x x f x x x --≤⎧=⎨>⎩在R 上单调递增,则实数a 的取值范围为( ) A .13a << B .36a << C .36a <≤ D .01a <<12.在平面直角坐标系xOy 中,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C :228150x y x +-+=有公共点,则实数k 的最大值为( )A .0B .43C .32D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.2(lg5)lg2lg5lg2+⨯+= .14.函数()lg(1)f x x =+的定义域为 . 15.直线3420x y +-=和直线6810x y ++=的距离是 .16.已知函数log (3)1a y x =+-(0a >,1a ≠)的图象恒过定点A ,若点A 也在函数()3x f x b =+的图象上,则3(log 2)f = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合{|lg(1)A x y x ==+,{}|213B x m x m =-≤≤+.(1)当1m =时,求()R B A ð;(2)若A B ⊆,求实数m 的范围.18.已知函数2()f x x bx c =++满足(0)(2)f f =,方程()80f x +=有两个相等的实数根.(1)求b ,c 的值;(2)求函数()f x 在区间[]1,4-的最大值和最小值.19.在ABC ∆中,已知点B 的坐标为(2,3),BC 边上的高所在直线的方程为210x y --=.(1)求边BC 所在直线的方程并化为一般式;(2)若A ∠的平分线所在直线的方程为2x y +=,求边AB 的长度.20.某工厂某种产品的年固定成本为250万元,每生产x 件,需另投入成本()C x ,当年产量不足80件时,21()103C x x x =+(万元),当年产量不少于80件时,()521450C x x =-(万元),每件商品售价50万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (件)的函数解析式;(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?21.已知圆C 的方程:22240x y x y m +--+=.(1)求m 的取值范围;(2)若圆C 与直线l :240x y +-=相交于M ,N 两点,且||MN =m 的值. 22.如图,三棱柱111ABC A B C -的侧面11ABB A 为正方形,侧面11BBC C 为菱形,160CBB ∠=︒,1AB B C ⊥.(1)求证:平面11ABB A ⊥平面11BB C C ;(2)若2AB =,求三棱锥1B ABC -的体积.高一数学试题答案一、选择题1-5:DDAAB 6-10:CDCBA 11、12:CB二、填空题13.1 14.(1,2)- 15.12 16.89三、解答题17.解:(1)易知{}|12A x x =-<≤,当1m =时,{}|14B x x =≤≤,∴{}()|11R B A x x =-<<ð.(2)由(1)知{}|12A x x =-<≤,∵A B ⊆,{}|213B x m x m =-≤≤+,∴211m -≤-,且32m +≥,∴10m -≤≤,∴实数m 的取值范围为[]1,0-.18.解:(1)由2()f x x bx c =++,(0)(2)f f =,得2b =-,又()80f x +=,即2280x x c -++=有两个相等的实数根,∴0∆=,得7c =-.(2)由(1)知22()27(1)8f x x x x =--=--,当4x =时,函数取最小值1,当1x =时,函数取最小值8-.19.解:(1)∵BC 与直线210x y --=垂直, ∴12BC k =-. ∴直线BC 的方程是13(2)2y x -=--,即280x y +-=. (2)∵点A 为2x y +=与210x y --=两直线的交点,∴点A 的坐标为(1,1),∵点B 的坐标为(2,3),∴AB ==20.解:(1)依题意,当080x <<时,2211()50(10)2504025033L x x x x x x =-+-=-+-, 当80x ≥时,()50(521450)25012002L x x x x =---=-, ∴2140250,080,()312002,80.x x x L x x x ⎧-+-<<⎪=⎨⎪-≥⎩(2)当080x <<时,21()(60)9503L x x =--+, ∴当60x =时,max ()(60)950L x L ==;当80x ≥时,()1200212002801040L x x =-≤-⨯=;当80x =时,max ()1040950L x =>,∴当产量为80件时,利润最大为1040万元.21.解:(1)方程22240x y x y m +--+=可化为22(1)(2)5x y m -+-=-, ∵此方程表示圆,∴50m ->,即5m <.(2)∵圆的方程化为22(1)(2)5x y m -+-=-,∴圆心(1,2)C ,半径r =则圆心(1,2)C 到直线l :240x y +-=的距离为d ==由于||MN =1||2MN =, ∵222||()2MN r d =+,∴225m -=+,得4m =. 22.(1)证明:由侧面11ABB A 为正方形,知1AB BB ⊥,又1AB B C ⊥,111BB B C B =,所以AB ⊥平面11BB C C ,又AB ⊂平面11ABB A ,所以平面11ABB A ⊥平面11BB C C .(2)解:∵侧面11ABB A 为正方形,2AB =, ∴12BB AB ==,∵侧面11BB C C 为菱形,160CBB ∠=︒,∴1BB C ∆为等边三角形,∴1224BB C S ∆==,由由(1)知AB ⊥平面11BB C C ,且2AB =,∴11111233B ABC A BB C BB C V V S AB --∆==⋅⋅==。

四川省宜宾市2018-2019学年高一上学期期末考试数学试题(解析版)

四川省宜宾市2018-2019学年高一上学期期末考试数学试题(解析版)

四川省宜宾市2018-2019学年高一上学期期末考试数学试题一、选择题。

1.已知集合,,则A. B.C. D.【答案】C【解析】【分析】求解一元一次不等式化简集合B,然后直接利用交集运算得答案.【详解】,.故选:C.【点睛】本题考查了交集及其运算,考查了一元一次不等式的解法,是基础题.2.下列函数中与表示同一函数的是A. B. C. D.【答案】B【解析】【分析】逐一检验各个选项中的函数与已知的函数是否具有相同的定义域、值域、对应关系,只有这三者完全相同时,两个函数才是同一个函数.【详解】A项中的函数与已知函数的值域不同,所以不是同一个函数;B项中的函数与已知函数具有相同的定义域、值域和对应关系,所以是同一个函数;C项中的函数与已知函数的定义域不同,所以不是同一个函数;D项中的函数与已知函数的定义域不同,所以不是同一函数;故选B.【点睛】该题考查的是有关同一函数的判断问题,注意必须保证三要素完全相同才是同一函数,注意对概念的正确理解.3.已知角的顶点在坐标原点,始边与x轴的非负半轴重合,为其终边上一点,则( )A. B. C. D.【答案】A【解析】【分析】首先根据题中所给的角的终边上的一点P的坐标,利用三角函数的定义,求得其余弦值,用诱导公式将式子进行化简,求得最后的结果.【详解】因为在角的终边上,所以,从而求得,所以,而,故选A.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有三角函数的定义,诱导公式,正确使用公式是解题的关键.4.函数的定义域是A. B. C. D.【答案】B【解析】试题分析:由得:,所以函数的定义域为(。

考点:函数的定义域;对数不等式的解法。

点评:求函数的定义域需要从以下几个方面入手:(1)分母不为零;(2)偶次根式的被开方数非负;(3)对数中的真数部分大于0;(4)指数、对数的底数大于0,且不等于1 ;(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等;( 6 )中。

2018-2019学年四川省攀枝花市高一(下)期末数学试卷

2018-2019学年四川省攀枝花市高一(下)期末数学试卷

2018-2019 学年四川省攀枝花市高一(下)期末数学试卷一、选择题:本大题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.( 5分)平面向量与共线且方向相同,则n 的值为()A .0B .± 2C. 2D.﹣ 22.( 5分)直线 x+y+k= 0 的倾斜角是()A .πB .C.D.3.( 5分)已知关于x 的不等式 x 2﹣ ax﹣ b< 0 的解集是(﹣2, 3),则 a+b 的值是()A .﹣ 11B .11C.﹣ 7D. 74.( 5分)如果 x+y< 0,且 y>0,那么下列不等式成立的是()22222222A .y> x > xyB .x > y >﹣ xy C. x <﹣ xy< y D. x>﹣ xy> y5.( 5 分)等比数列{ a n} 的各项均为正数,且 a4a5= 4,则 log 2a1+log 2a2+ +log 2a8=()A .7B .8C. 9D. 106.( 5 分)已知x, y 满足约束条件,则z=﹣2x+y的最大值是()A .﹣ 1B .﹣ 2C.﹣ 5D. 17.( 5 分)若,是夹角为 60°的两个单位向量,则与的夹角为()A .30°B .60°C. 90°D. 120°8.( 5 分)已知△ ABC 的内角 A、B、C 的对边分别为a、b、c,且 2b?cosC= 2a+c,若 b= 3,则△ ABC 的外接圆面积为()A .B .C. 12πD. 3π9.( 5 分)如图,为了测量山坡上灯塔CD 的高度,某人从高为h= 40 的楼 AB 的底部 A 处和楼顶 B 处分别测得仰角为β=60°,α=30°,若山坡高为a=35,则灯塔高度是()A .15B .25C. 40D. 6010.( 5 分)一条光线从点(﹣2, 3)射出,经x 轴反射后与圆( x﹣ 3)2+( y﹣ 2)2= 1 相切,则反射光线所在直线的斜率为()A .或B .或C.或D.或11.(5 分)已知正数x,y 满足 x+y=1,则的最小值为()A .5B .C.D. 212.(5 分)已知△ ABC 的内角 A、B、C 的对边分别为a、b、c,BC 边上的高为 h,且,则的最大值是()A .B .C. 4D. 6二、填空题:本大题共 4 小题,每小题 5 分,共20 分.13.( 5 分)直线 x+y+2= 0 与直线 ax﹣ 2y=0 垂直,则实数 a 的值为.14.( 5 分)已知点 P( 1,﹣ 2)及其关于原点的对称点均在不等式2x+by﹣ 1< 0 表示的平面区域内,则实数 b 的取值范围是.15.( 5 分)已知数列 { a n} 的通项公式,则 |a1﹣ a2|+|a2﹣ a3|+|a3﹣ a4|+ +|a9﹣a10|=.22=4,六边形 ABCDEF 为圆 M 的内接正16.( 5 分)如图,已知圆 M :(x﹣ 3) +(y﹣ 4)六边形,点P 为边 AB 的中点,当六边形ABCDEF 绕圆心 M 转动时,的取值范围是.三、解答题:本大题共 6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤.17.( 10 分)已知公差不为零的等差数列{ a n} 中, a2= 3,且 a1, a3, a7成等比数列.(Ⅰ)求数列{ a n} 的通项公式;(Ⅱ)令,求数列 { b n} 的前 n 项和 S n.18.( 12 分)已知向量,,,.(Ⅰ)若四边形 ABCD 是平行四边形,求x, y 的值;(Ⅱ)若△ ABC 为等腰直角三角形,且∠ B 为直角,求 x, y 的值.19.( 12 分)△ABC 的内角 A、B、C 的对边分别为 a、b、c,且.(Ⅰ)求角 A;(Ⅱ)若 a= b,且 BC 边上的中线 AM 的长为,求边 a 的值.2220.( 12 分)已知圆 C: x +y +Dx+Ey﹣ 2= 0关于直线 x﹣ y= 0 对称,半径为2,且圆心 C 在第一象限.(Ⅰ)求圆 C 的方程;(Ⅱ)若直线 l :3x﹣ 4y+m= 0( m> 0)与圆 C 相交于不同两点M、N,且,求实数 m 的值.21.( 12 分)为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为 3 米,底面为 24 平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400 元,左右两面新建墙体报价为每平方米 300 元,屋顶和地面以及其他报价共计14400 元.设屋子的左右两面墙的长度均为x 米( 3≤ x≤ 6).(Ⅰ)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价.(Ⅱ)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元( a> 0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求 a 的取值范围.22.( 12 分)已知数列 { a n} 的各项均不为零.设数列{ a n} 的前 n 项和为 S n,数列的前n 项和为 T n,且,n∈N*.(Ⅰ)求a1, a2的值;(Ⅱ)证明数列{ a n} 是等比数列,并求{ a n} 的通项公式;(Ⅲ)证明:.2018-2019 学年四川省攀枝花市高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.( 5 分)平面向量与共线且方向相同,则n 的值为()A .0B .± 2C . 2D .﹣ 2【分析】 利用向量共线的坐标运算求解n ,验证得答案.【解答】 解:∵向量与共线,∴ n 2﹣ 4= 0,解得 n =± 2.当 n =2 时, =( 2,1), =( 4,2)= 2 , ∴ 与 共线且方向相同.当 n =﹣ 2 时, =(﹣ 2, 1), =( 4,﹣ 2)=﹣ 2 ,∴ 与 共线且方向相反,舍去.故选: C .【点评】 本题考查向量共线的坐标运算,是基础的计算题.2.( 5 分)直线 x+y+k = 0 的倾斜角是()A . πB .C .D .【分析】 化方程为斜截式可得斜率,进而由斜率和倾斜角的关系可得.【解答】 解:化直线 x+y+k = 0 为斜截式可得 y =﹣ x ﹣ k ,∴直线的斜率为﹣,∴倾斜角为 150°,故选: A .【点评】 本题考查直线的一般式方程和斜截式方程,涉及直线的倾斜角,属基础题.3.( 5 分)已知关于 x 的不等式 x 2﹣ ax ﹣ b < 0 的解集是(﹣ 2, 3),则 a+b 的值是()A .﹣ 11B .11C .﹣ 7D . 7【分析】 利用不等式x 2﹣ax ﹣ b < 0 与对应方程的关系,和根与系数的关系,求出a 、 b的值,再计算 a+b .【解答】 解:关于 x 的不等式 x 2﹣ ax ﹣b < 0 的解集是(﹣ 2, 3),所以方程 x 2﹣ ax ﹣b = 0 的解﹣ 2 和 3,由根与系数的关系知,a =﹣ 2+3 = 1,﹣b =﹣ 2× 3,解得 b = 6,所以 a+b = 7.故选: D .【点评】 本题考查了一元二次不等式与对应方程的关系应用问题,也考查了根与系数的关系应用问题,是基础题.4.( 5 分)如果 x+y < 0,且 y >0,那么下列不等式成立的是()22222222A .y > x > xyB .x > y >﹣ xyC . x <﹣ xy < yD . x >﹣ xy > y【分析】 由 x+y < 0,且 y > 0,可得 x <﹣ y < 0.再利用不等式的基本性质即可得出x 2>﹣ xy , xy <﹣ y 2.【解答】 解:∵ x+y < 0,且 y > 0,∴ x <﹣ y < 0.∴ x 2>﹣ xy , xy <﹣ y 2,因此 x 2>﹣ xy > y 2.故选: D .【点评】 本题考查了不等式的基本性质,属于基础题.5.( 5 分)等比数列 { a n } 的各项均为正数, 且 a 4a 5= 4,则 log 2a 1+log 2a 2+ +log 2a 8=()A .7B .8C . 9D . 10【分析】 根据题意,由对数的运算性质可得a 1 8= a 2 7=a 3 6= a 4 5= 4,又由对数的运a aaa算性质可得 log 2a 1+log 2a 2+ +log 2 a 8= log 2( a 1a 2a 3a 4a 5 a 6a 7a 8),计算可得答案.【解答】 解:根据题意,等比数列{ a n } 的各项均为正数,且a 4a 5= 4,则有 a 1a 8= a 2a 7= a 3 a 6= a 4a 5= 4,4则 log 2a 1+log 2a 2+ +log 2a 8= log 2( a 1a 2a 3a 4a 5a 6a 7a 8)= log 24 =8;故选: B .【点评】 本题考查等比数列的性质以及对数的运算,属于基础题.6.( 5 分)已知 x , y 满足约束条件,则 z =﹣ 2x+y 的最大值是( )A .﹣ 1B .﹣ 2C .﹣ 5D . 1【分析】首先画出平面区域,z=﹣ 2x+y 的最大值就是y= 2x+z 在 y 轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线 y= 2x+z 经过 A 时使得 z 最大,由得到A(1,1),所以 z 的最大值为﹣ 2× 1+1=﹣ 1;故选: A.【点评】本题考查了简单线性规划,画出平面区域,分析目标函数取最值时与平面区域的关系是关键.7.( 5 分)若,是夹角为60°的两个单位向量,则与的夹角为()A .30°B .60°C. 90°D. 120°【分析】根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【解答】解:;∴=,=,=;∴;又;∴的夹角为 30°.故选: A .【点评】 考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.8.( 5 分)已知△ ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c ,且 2b?cosC = 2a+c ,若 b = 3,则△ ABC 的外接圆面积为( )A .B .C . 12πD . 3π【分析】 由已知利用余弦定理可求 cosB 的值,结合 B 的范围可求 B 的值, 利用正弦定理可求三角形的外接圆的半径即可计算得解△ ABC 的外接圆面积.【解答】 解:∵ 2b?cosC =2a+c ,若,∴ cosC = =2 22,可得: a +c ﹣ b =﹣ ac ,∴ cosB ==﹣,∴由 B ∈( 0,π),可得: B = ,设△ ABC 的外接圆半径为 R ,由正弦定理可得: 2R = = ,解得 R = ,可得△ ABC 的外接圆面积为 S = πR 2= 3π.故选: D .【点评】 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.9.( 5 分)如图,为了测量山坡上灯塔CD 的高度,某人从高为 h = 40 的楼 AB 的底部 A 处和楼顶 B 处分别测得仰角为β= 60°,α= 30°,若山坡高为 a =35,则灯塔高度是( )A .15B .25C . 40D . 60【分析】过点 B 作 BE ⊥DC 于点 E,过点 A 作 AF ⊥ DC 于点 F ,在△ ABD 中由正弦定理求得 AD ,在 Rt △ ADF 中求得 DF ,从而求得灯塔CD 的高度.【解答】解:过点 B 作 BE⊥DC 于点 E,过点 A 作 AF⊥ DC 于点 F,如图所示,在△ABD 中,由正弦定理得,,即,∴ AD=,在Rt△ADF中,DF=ADsinβ=,又山高为a,则灯塔CD 的高度是CD= DF ﹣ CF =﹣a==60﹣35=25.故选: B.【点评】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.10.( 5分)一条光线从点(﹣ 2, 3)射出,经x 轴反射后与圆( x﹣ 3)2+( y﹣ 2)2= 1 相切,则反射光线所在直线的斜率为()A .或B .或C.或D.或【分析】由题意可知:点(﹣2,﹣ 3)在反射光线上.设反射光线所在的直线方程为:y+3 = k( x+2),利用直线与圆的相切的性质即可得出.【解答】解:由题意可知:点(﹣2,﹣ 3)在反射光线上.设反射光线所在的直线方程为:y+3 =k( x+2),即 kx﹣ y+2k﹣3= 0.由相切的性质可得:=1,化为: 12k 2﹣ 25k+12 = 0,解得 k=或.故选: D .【点评】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.11.(5 分)已知正数x,y 满足 x+y=1,则的最小值为()A .5B .C.D. 2【分析】由 x+y= 1 得 x+( 1+y)= 2,再将代数式x+( 1+ y)与相乘,利用基本不等式可求出的最小值.【解答】解:∵ x+y= 1,所以, x+( 1+y)= 2,则 2==,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选: C.【点评】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.12.(5 分)已知△ ABC 的内角 A、B、C 的对边分别为a、b、c,BC 边上的高为 h,且,则的最大值是()A .B .C. 4D. 62【分析】由余弦定理化简可得=+2cosA,利用三角形面积公式可得a=bcsinA,解得= 2sinA+2cosA= 4sin( A+),利用正弦函数的图象和性质即可得解其最大值.222【解答】解:由余弦定理可得: b+c= a +2bccosA,故:===+2cosA,而 S△ABC=bcsinA=ah=,故a 2= bcsinA,所以:=+2cosA= 2sinA+2cosA=4sin(A+)≤ 4.故选: C.【点评】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.13.( 5 分)直线 x+y+2= 0 与直线 ax﹣ 2y=0 垂直,则实数 a 的值为2.【分析】由题意利用两条直线垂直的性质,求得 a 的值.【解答】解:∵直线x+y+2= 0 的斜率为﹣ 1,它与直线ax﹣ 2y= 0 垂直,故直线 ax﹣ 2y= 0 的斜率等于1,即a=2,故答案为: 2.【点评】本题主要考查两条直线垂直的性质,属于基础题.14.( 5 分)已知点P( 1,﹣ 2)及其关于原点的对称点均在不等式2x+by﹣ 1< 0 表示的平面区域内,则实数 b 的取值范围是(,).【分析】根据题意,设Q 与 P( 1,﹣ 2)关于原点的对称,分析可得Q 的坐标,由二元一次不等式的几何意义可得,解可得 b 的取值范围,即可得答案.【解答】解:根据题意,设 Q 与 P( 1,﹣ 2)关于原点的对称,则Q的坐标为(﹣1,2),若 P、 Q 均在不等式2x+by﹣ 1< 0 表示的平面区域内,则有,解可得:< b<,即b的取值范围为(,);故答案为:(,).【点评】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.15.( 5 分)已知数列{ a n} 的通项公式,则|a1﹣a2|+|a2﹣a3|+|a3﹣a4|++|a9﹣【分析】本题考查的是数列求和,关键是构造新数列b n= |a n﹣ a n+1|= |4n﹣ 11|,求和时先考虑比较特殊的前两项,剩余7 项按照等差数列求和即可.【解答】解:令 b n= |a n﹣ a n+1|= |4n﹣ 11|,则所求式子为{ b n} 的前 9 项和 s9.其中 b1= 7, b2=3,从第三项起,是一个以 1 为首项, 4 为公差的等差数列,∴,故答案为: 101.【点评】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前n 项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.16.( 5 分)如图,已知圆22=4,六边形 ABCDEF为圆 M 的内接正M :(x﹣ 3) +(y﹣ 4)六边形,点 P 为边 AB 的中点,当六边形ABCDEF 绕圆心 M 转动时,的取值范围是.【分析】运用向量的三角形法则,结合向量的数量积的定义及几何意义,=0,再由向量的数量积定义及余弦函数的值域即可得到最大值.【解答】解:∵ MP⊥ MF ,OM = 5,MP =,,由题意可得=﹣=﹣=﹣5cos, 5] .故答案为: [﹣ 5,5] .【点评】本题主要考查两个向量的数量积的定义,两个向量的加减法的法则,以及其几何意义,余弦函数的值域,属于中档题.三、解答题:本大题共 6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤.17.( 10 分)已知公差不为零的等差数列{ a n} 中, a2= 3,且 a1, a3, a7成等比数列.(Ⅰ)求数列{ a n} 的通项公式;(Ⅱ)令,求数列 { b n} 的前 n 项和 S n.【分析】(Ⅰ)由题意:,求出首项与公差,然后求解数列{ a n} 的通项公式为 a n=n+1.(Ⅱ)通过裂项消项法求解数列{ b n} 的前 n 项和.【解答】解:(Ⅰ)由题意:化简得 d 2﹣ d= 0,因为数列 { a n} 的公差不为零,∴ d= 1, a1= 2,故数列 { a n} 的通项公式为a n= n+1.(Ⅱ)由(Ⅰ)知,故数列 { b n} 的前 n 项和.【点评】本题考查数列的递推关系式数列求和的方法的应用,是基本知识的考查.18.( 12 分)已知向量,,,.(Ⅰ)若四边形ABCD 是平行四边形,求x, y 的值;(Ⅱ)若△ ABC 为等腰直角三角形,且∠ B 为直角,求 x, y 的值.【分析】(Ⅰ)根据条件即可求出,根据四边形ABCD 是平行四边形,即可得出,从而求出 x, y;(Ⅱ)可求出,根据∠ B 为直角即可得出,从而得出﹣ 3( x+1 )﹣ y=0①,而据题意可知22=10②,,从而得出(x+1)+y联立①②即可解出 x, y.【解答】解:(Ⅰ)∵,,;∴,;∵四边形 ABCD 是平行四边形;∴;∴ x=﹣ 2, y=﹣ 5;(Ⅱ)∵,;∵∠ B 为直角,则;∴=﹣ 3( x+1)﹣ y= 0;又;22∴( x+1) +y = 10,再由 y=﹣ 3( x+1),解得:或.【点评】考查向量减法的几何意义,向量坐标的减法和数量积运算,向量垂直的充要条件,以及根据向量坐标求向量长度的方法,相等向量的定义.19.( 12 分)△ABC 的内角 A、B、C 的对边分别为 a、b、c,且.(Ⅰ)求角 A;(Ⅱ)若 a= b,且 BC 边上的中线 AM 的长为,求边 a 的值.【分析】(Ⅰ)由三角函数恒等变换的应用化简已知等式可得,由范围 A∈( 0,π),可求 A 的值.(Ⅱ)由(Ⅰ),又 a= b,可求,设 AC= x,则,,在△ AMC 中,由余弦定理即可解得 a 的值.【解答】解:(Ⅰ)由题意,∴,∴,则,∵sinB≠ 0,∴, A∈( 0,π),∴.(Ⅱ)由(Ⅰ)知,又∵ a= b,设 AC= x,则,,在△ AMC 中,由余弦定理得:222 AC +MC﹣ 2AC?MC?cosC= AM ,即,解得 x= 4,即 a= 4.【点评】本题主要考查了三角函数恒等变换的应用,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.20.( 12 分)已知圆22关于直线 x﹣ y= 0 对称,半径为2,且圆心 C C: x +y +Dx+Ey﹣ 2= 0在第一象限.(Ⅰ)求圆 C 的方程;(Ⅱ)若直线 l :3x﹣ 4y+m= 0( m> 0)与圆 C 相交于不同两点M、N,且,求实数 m 的值.【分析】(Ⅰ)由已知求得圆心坐标与半径,可得关于D, E 的方程组,求得 D ,E 的值得答案;(Ⅱ)画出图形,由题意圆心到直线的距离,再由点到直线的距离公式列式求解.【解答】解:(Ⅰ)由22,C: x+y +Dx+Ey﹣2= 0,得圆 C 的圆心为∵圆 C 关于直线x﹣ y= 0 对称,∴ D =E① .∵圆 C 的半径为2,∴② .又∵圆心 C 在第一象限,∴D< 0, E< 0,由①②解得, D = E=﹣ 2,2 2故圆 C 的方程为x +y ﹣ 2x﹣ 2y﹣ 2= 0,即( x﹣1)2+( y﹣1)2= 4;(Ⅱ)取MN 的中点 P,则,∴???.∴?,即,又 m> 0,解得.【点评】本题考查圆的一般方程的求法,考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.21.( 12 分)为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为 3 米,底面为 24 平方米,且背面靠墙的长方体形状的校园警务室.由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400 元,左右两面新建墙体报价为每平方米 300 元,屋顶和地面以及其他报价共计14400 元.设屋子的左右两面墙的长度均为x 米( 3≤ x≤ 6).(Ⅰ)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价.(Ⅱ)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元( a> 0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求 a 的取值范围.【分析】(Ⅰ)设甲工程队的总造价为y 元,推出利用基本不等式求解最值即可.(Ⅱ)由题意对任意的x∈[3 , 6] 恒成立.即恒成立,利用换元法以及基本不等式求解最小值即可.【解答】解:(Ⅰ)设甲工程队的总造价为y 元,则,.当且仅当,即 x= 4 时等号成立.(Ⅱ)由题意可得,对任意的 x ∈[3, 6]恒成立.即,从而 恒成立,令 x+1=t ,, t ∈[4, 7]又在 t ∈[4, 7]为单调增函数,故 y min = 12.25.所以 0< a < 12.25.【点评】 本题考查实际问题的应用,基本不等式求解表达式的最值,考查转化思想以及计算能力.22.( 12 分)已知数列 { a n } 的各项均不为零.设数列 { a n } 的前 n 项和为 S n ,数列的前n 项和为 T n ,且, n ∈N *.(Ⅰ)求 a 1, a 2 的值;(Ⅱ)证明数列 { a n } 是等比数列,并求 { a n } 的通项公式; (Ⅲ)证明:.【分析】(Ⅰ)通过,令 n = 1,令 n = 2,求解 a 2= 4,(Ⅱ), ① ∴ , ② , ② ﹣ ① 得 ,说明数列 { a n } 是以 2 为首项,以 2 为公比的等比数列,求出通项公式.(Ⅲ)利用放缩法.转化求解数列的和,推出结果即可.【解答】 解:(Ⅰ)∵,令 n = 1,得,∵ a 1≠ 0,∴ a 1= 2;令 n = 2,得,即,∵ a 2≠ 0,∴ a 2= 4,证明:(Ⅱ)∵, ① ∴, ②② ﹣ ① 得:,∵ a n+1≠ 0,∴(S n+1+S n )+4﹣ 3a n+1= 0,③从而当 n ≥ 2 时,( S n +S n ﹣1) +4﹣ 3a n = 0,④③ ﹣④得:( a n+1+a n)﹣ 3a n+1+3a n= 0,即 a n+1= 2a n,∵ a n≠ 0,∴,又由(Ⅰ)知,a1= 2, a2= 4,∴.∴数列 { a n} 是以 2 为首项,以 2 为公比的等比数列,则.(Ⅲ)证明:由(Ⅱ)知,因为当 n≥ 1 时, 2n﹣ 1≥ 2n﹣1,所以.于是.【点评】本题考查数列的递推关系式以及数列求和的方法,考查分析问题解决问题的能力.。

2018-2019学年人教版高中英语高一上学期期末考试模拟测试题及答案-精编试题

2018-2019学年人教版高中英语高一上学期期末考试模拟测试题及答案-精编试题

2018-2019学年人教版高中英语高一上学期期末考试模拟测试题及答案-精编试题第一学期期末学业水平监测高一英语注意事项:1.本试卷分为第I卷﹙选择题﹚和第I卷﹙非选择题﹚两部分,共10页。

第I卷第1至第8页;第I卷第9至10页。

满分150分,考试时间120分钟。

2.答题前,请你务必将自己的姓名,准考证号用黑色墨水的0.5毫米签字笔填写在答题卡(卷)密封线内。

3.作答选择题必须用2B铅笔并把答题卡(卷)上对应的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答第I卷时必须使用0.5毫米的黑色墨水签字笔书写在答题卡(卷)上的指定位置,在其它位置作答一律无效。

4.考试结束时,只交答题卡(卷)。

第Ⅰ卷(共三部分,满分90分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.What will the woman do?A。

Stay in doors.B。

Have a walk.C。

Get a coat.2.What will the speakers order?A。

XXX andcoke.3.How did the woman know about the fire?A。

She read about it.B。

She witnessed it.C。

She saw it on TV.4.What is the man worried about?A。

The match may be delayed.B。

Their car may go out of control.C。

They arrive late for the game.5.What does the man mean?A。

2018-2019学年河南省南阳市高一下学期期末考试英语试题

2018-2019学年河南省南阳市高一下学期期末考试英语试题

南阳市2019年春期高中一年级期终质量评估英语试题注意事项:1、本试卷分第Ⅰ卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间120分钟。

2、考生作答时,将答案答在答题卡上,在本试题卷上答题无效。

3、试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷(选择题共100分)第一部分:听力理解(共两节,满分30分)第一节(共5小题;每题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后你都有10秒钟的时间来回答有关小题和阅读下一小题,每段对话仅读一遍。

1. When can the woman take a vacation?A.At the end ofAugust.B.At the end ofjune.C. This week.2. What is the woman trying to do?A. Hold a party for the man.B. Comfort the man.C. Apologize to the man.3. What are the speakers mainly talking about?A. The man's hobby. B, A holiday plan. C. Their childhood.4. What is the man's opinion on British food?A. Unhealthy.B. Tasteless.C. Excellent.5. When does the conversation take place?A. In the morning.B.In the attemoon.C.In the evening.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

2018-2019学年高一上学期期末考试数学试题(答案+解析)(4)

2018-2019学年高一上学期期末考试数学试题(答案+解析)(4)

2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5} B.{2,4} C.{2,4,5,6} D.{1,2,3,4,5,7}2.(5分)下列函数中,既是奇函数又是周期函数的是()A.y=sin x B.y=cos x C.y=ln x D.y=x33.(5分)已知平面向量=(1,﹣2),=(2,m),且∥,则m=()A.1 B.﹣1 C.4 D.﹣44.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.5.(5分)下列各组向量中,可以作为基底的是()A., B.,C.,D.,6.(5分)已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.(5分)已知cosα+cosβ=,则cos(α﹣β)=()A.B.﹣C.D.18.(5分)已知非零向量,满足||=4||,且⊥(2+),则与的夹角为()A.B.C.D.9.(5分)函数y=log0.4(﹣x2+3x+4)的值域是()A.(0,﹣2] B.[﹣2,+∞)C.(﹣∞,﹣2] D.[2,+∞)10.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.11.(5分)已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(﹣∞,0)上的最小值为()A.﹣5 B.﹣1 C.﹣3 D.512.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2017)B.(1,2018)C.[2,2018] D.(2,2018)二、填空题13.(5分)已知tanα=3,则的值.14.(5分)已知,则的值为.15.(5分)已知将函数的图象向左平移个单位长度后得到y=g(x)的图象,则g(x)在上的值域为.16.(5分)下列命题中,正确的是.①已知,,是平面内三个非零向量,则()=();②已知=(sin),=(1,),其中,则;③若,则(1﹣tanα)(1﹣tanβ)的值为2;④O是△ABC所在平面上一定点,动点P满足:,λ∈(0,+∞),则直线AP一定通过△ABC的内心.三、解答题17.(10分)已知=(4,3),=(5,﹣12).(Ⅰ)求||的值;(Ⅱ)求与的夹角的余弦值.18.(12分)已知α,β都是锐角,,.(Ⅰ)求sinβ的值;(Ⅱ)求的值.19.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x.(1)求f(x)的最小正周期;(2)当时,求f(x)的最小值以及取得最小值时x的集合.20.(12分)定义在R上的函数f(x)满足f(x)+f(﹣x)=0.当x>0时,f(x)=﹣4x+8×2x+1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣3,﹣1]时,求f(x)的最大值和最小值.21.(12分)已知向量=(),=(cos),记f(x)=.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若,求的值;(Ⅲ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k在上有零点,求实数k的取值范围.22.(12分)已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0(1)求证:f(x)是奇函数;(2)若,试求f(x)在区间[﹣2,6]上的最值;(3)是否存在m,使f(2()2﹣4)+f(4m﹣2())>0对任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.【参考答案】一、选择题1.B【解析】∵全集U={1,2,3,4,5,6,7},B={1,3,5,7},∴C U B={2,4,6},又A={2,4,5},则A∩(C U B)={2,4}.故选B.2.A【解析】y=sin x为奇函数,且以2π为最小正周期的函数;y=cos x为偶函数,且以2π为最小正周期的函数;y=ln x的定义域为(0,+∞),不关于原点对称,没有奇偶性;y=x3为奇函数,不为周期函数.故选A.3.D【解析】∵∥,∴m+4=0,解得m=﹣4.故选:D.4.A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ),又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z),∵,∴取k=0,得φ=﹣,故选:A.5.B【解析】对于A,,,是两个共线向量,故不可作为基底.对于B,,是两个不共线向量,故可作为基底.对于C,,,是两个共线向量,故不可作为基底..对于D,,,是两个共线向量,故不可作为基底.故选:B.6.B【解析】a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.7.B【解析】已知两等式平方得:(cosα+cosβ)2=cos2α+cos2β+2cosαcosβ=,(sinα+sinβ)2=sin2α+sin2β+2sinαsinβ=,∴2+2(cosαcosβ+sinαsinβ)=,即cosαcosβ+sinαsinβ=﹣,则cos(α﹣β)=cosαcosβ+sinαsinβ=﹣.故选B.8.C【解析】由已知非零向量,满足||=4||,且⊥(2+),可得•(2+)=2+=0,设与的夹角为θ,则有2+||•4||•cosθ=0,即cosθ=﹣,又因为θ∈[0,π],所以θ=,故选:C.9.B【解析】;∴有;所以根据对数函数log0.4x的图象即可得到:=﹣2;∴原函数的值域为[﹣2,+∞).故选B.10.A【解析】图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.11.B【解析】令F(x)=h(x)﹣2=af(x)+bg(x),则F(x)为奇函数.∵x∈(0,+∞)时,h(x)≤5,∴x∈(0,+∞)时,F(x)=h(x)﹣2≤3.又x∈(﹣∞,0)时,﹣x∈(0,+∞),∴F(﹣x)≤3⇔﹣F(x)≤3⇔F(x)≥﹣3.∴h(x)≥﹣3+2=﹣1,故选B.12.D【解析】作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.二、填空题13.【解析】===,故答案为:.14.﹣1【解析】∵,∴f()==,f()=f()﹣1=cos﹣1=﹣=﹣,∴==﹣1.故答案为:﹣1.15.[﹣1,]【解析】将函数=sin2x+﹣=sin(2x+)的图象,向左平移个单位长度后得到y=g(x)=sin(2x++)=﹣sin2x的图象,在上,2x∈[﹣],sin2x∈[﹣,1],∴﹣sin(2x)∈[﹣1,],故g(x)在上的值域为[﹣1,],故答案为:[﹣1,].16.②③④【解析】①已知,,是平面内三个非零向量,则()•=•()不正确,由于()•与共线,•()与共线,而,不一定共线,故①不正确;②已知=(sin),=(1,),其中,则•=sinθ+=sinθ+|sinθ|=sinθ﹣sinθ=0,则,故②正确;③若,则(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣tan(α+β)(1﹣tanαtanβ)+tanαtanβ=1﹣(﹣1)(1﹣tanαtanβ)+tanαtanβ=2,故③正确;④∵,λ∈(0,+∞),设=,=,=+λ(+),﹣=λ(+),∴=λ(+),由向量加法的平行四边形法则可知,以,为邻边的平行四边形为菱形,而菱形的对角线平分对角∴直线AP即为A的平分线所在的直线,即一定通过△ABC的内心,故④正确.故答案为:②③④.三、解答题17.解:(Ⅰ)根据题意,=(4,3),=(5,﹣12).则+=(9,﹣9),则|+|==9,(Ⅱ)=(4,3),=(5,﹣12).则•=4×5+3×(﹣12)=﹣16,||=5,||=13,则cosθ==﹣.18.解:(Ⅰ)∵α,β都是锐角,且,.∴cos,sin(α+β)=,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=;(Ⅱ)=cos2β=1﹣2sin2β=1﹣2×.19.解:f(x)=cos2x﹣2sin x cos x﹣sin2x=cos2x﹣sin2x=cos(2x+)(1)T=π(2)∵∴20.解:由f(x)+f(﹣x)=0.当,则函数f(x)是奇函数,且f(0)=0,当x>0时,f(x)=﹣4x+8×2x+1.当x<0时,﹣x>0,则f(﹣x)=﹣4﹣x+8×2﹣x+1.由f(x)=﹣f(﹣x)所以:f(x)=4﹣x﹣8×2﹣x﹣1.故得f(x)的解析式;f(x)=(Ⅱ)x∈[﹣3,﹣1]时,令,t∈[2,8],则y=t2﹣8t﹣1,其对称轴t=4∈[2,8],当t=4,即x=﹣2时,f(x)min=﹣17.当t=8,即x=﹣3时,f(x)max=﹣1.21.解:(Ⅰ)f(x)==sin cos+=sin+=sin(+)+,由2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,所以f(x)的单调递减区间是[4kπ+,4kπ+].(Ⅱ)由已知f(a)=得sin(+)=,则a=4kπ+,k∈Z.∴cos(﹣a)=cos(﹣4kπ﹣)=1.(Ⅲ)将函数y=f(x)的图象向右平移个单位得到g(x)=sin(﹣)+的图象,则函数y=g(x)﹣k=sin(﹣)+﹣k.∵﹣≤﹣≤π,所以﹣sin(﹣)≤1,∴0≤﹣sin(﹣)+≤.若函数y=g(x)﹣k在上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,所以实数k的取值范围为[0,].22.(1)证明:令x=0,y=0,则f(0)=2f(0),∴f(0)=0.令y=﹣x,则f(0)=f(x)+f(﹣x),∴﹣f(x)=f(﹣x),即f(x)为奇函数;(2)解:任取x1,x2∈R,且x1<x2,∵f(x+y)=f(x)+f(y),∴f(x2)﹣f(x1)=f(x2﹣x1),∵当x>0时,f(x)>0,且x1<x2,∴f(x2﹣x1)>0,即f(x2)>f(x1),∴f(x)为增函数,∴当x=﹣2时,函数有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.当x=6时,函数有最大值,f(x)max=f(6)=6f(1)=3;(3)解:∵函数f(x)为奇函数,∴不等式可化为,又∵f(x)为增函数,∴,令t=log2x,则0≤t≤1,问题就转化为2t2﹣4>2t﹣4m在t∈[0,1]上恒成立,即4m>﹣2t2+2t+4对任意t∈[0,1]恒成立,令y=﹣2t2+2t+4,只需4m>y max,而(0≤t≤1),∴当时,,则.∴m的取值范围就为.。

重庆市2018-2019学年高一上学期期末考试物理试卷(含解析)

重庆市2018-2019学年高一上学期期末考试物理试卷(含解析)

重庆市部分区县2018-2019学年高一上学期期末测试试题一、选择题(本大题共10 小题,每小题 4 分。

在每小题给出的四个选项中,第 1 题~第7 题只有一项符合题目要求,第8 题~第10 题有多项符合题目要求。

全部选对的得 4 分,选对但不全的得2 分,有选错的得0 分,共40 分。

)1.下列物理量中不属于矢量的是A. 位移B. 质量C. 加速度D. 力【答案】B【解析】【分析】矢量是既有大小又有方向的物理量,标量是只有大小没有方向的物理量.【详解】质量是只有大小没有方向的标量,而加速度、力和位移是既有大小又有方向的矢量;故B 正确,A、C、D错误;故选B.【点睛】本题要能抓住矢量与标量的区别:矢量有方向,标量没有方向,能正确区分物理量的矢标性.2.下列说法中正确的是A. 超重时物体所受的重力不变B. 生活小区电梯启动瞬时,电梯中的人就处于超重状态C. 超重就是物体所受的重力增加D. 飞机减速下降过程中,飞机中的乘客处于失重状态【答案】A【解析】【分析】失重状态:当物体对接触面的压力小于物体的真实重力时,就说物体处于失重状态,此时有向下的加速度,合力也向下;超重状态:当物体对接触面的压力大于物体的真实重力时,就说物体处于超重状态,此时有向上的加速度,合力也向上;无论超重还是失重,物体本身的质量并没有变化.【详解】A、C、处于超重与失重状态的物体所受的重力不变,是因为具有竖直加速度导致视重变了;故A正确,C错误.B、电梯向上启动的瞬间加速度向上,人所受的支持力变大,则压力变大即视重变大,处于超重;反之电梯向下启动的瞬间处于失重;故B错误.D、飞机减速下降时加速度向上,则飞机里的人处于超重;故D错误.故选A.【点睛】本题考查了超重和失重的知识,记住:1、具有向上的加速度超重,具有向下的加速度失重;2、无论超重还是失重,物体本身的质量并没有变化.3.一物体做匀加速直线运动,已知速度从v增大到2v过程中,物体位移为s,则速度从4v增大到5v过程中,物体位移为A. 3sB. 8sC. 16sD. 25s【答案】A【解析】【分析】根据匀变速直线运动的速度—位移关系列式进行解答.【详解】根据匀变速直线运动的速度—位移关系有,同理,联立解得;故选A.【点睛】此题考查匀变速直线运动的规律,注意计算技巧即可.4.如图所示,一轻弹簧下端固定在水平桌面上,当轻弹簧受大小为2N的竖直向上的拉力作用时,弹簧的总长度为18cm,当轻弹簧受大小为1N的竖直向下的压力作用时,弹簧的总长度为6cm,弹簧始终在弹性限度内,则该轻弹簧的劲度系数为A. N/mB. N/mC. 20N/mD. 25N/m【答案】D【解析】【分析】本题研究弹簧弹力与形变量之间关系的基础知识,利用胡克定律结合平衡知识即可正确求解.【详解】设弹簧的原长为L0,劲度系数为k,当弹簧受到拉力伸长而平衡时有:,即;当弹簧受到压力压缩而平衡时有:,则,联立两式可得,L0=0.1m;故选D.【点睛】本题对胡克定律的公式考查,明确x代表的是弹簧的形变量,为伸长量或压缩量,注意总长度、形变量和原长的关系.5.如图所示,一个重为10N的物体,用细线悬挂在O点,现在用力F拉物体,悬线与竖直方向夹角为θ=37°,处于静止状态,已知sin37°=0.6,cos37°=0.8,则此时拉F的最小值为A. 5NB. 6NC. 8ND. 10N【答案】B【解析】【分析】以物体为研究对象,采用作图法分析什么条件下拉力F最小.再根据平衡条件求解F的最小值.【详解】以物体为研究对象,根据作图法可知,当拉力F与细线垂直时最小.根据平衡条件得F的最小值为:F min=G sin37°=10×0.6N=6N;故选B.【点睛】本题是物体平衡中极值问题,难点在于分析F取得最小值的条件,采用作图法,也可以采用函数法分析确定.6.如图所示,质量为M的斜面体a置于水平面上,质量为m的物块b沿斜面加速下滑,斜面体a 始终保持静止状态,设物块与斜面间动摩擦因数为,斜面体与水平面间动摩擦因数为,则下列判断一定正确的是A. B. C. D.【答案】D【解析】【分析】分别对物体和整体进行分析,由牛顿第二定律进行分析明确加速度的表达式;对整体分析时,要注意整体在水平方向上是地面上的摩擦力充当合外力.【详解】A、B、由物块b沿斜面加速下滑,不能确定斜面是光滑或粗糙,比如时可推得斜面光滑,若可知斜面粗糙;故A、B均错误.C、D、对斜面和物块的整体分析可知,系统有水平个左的加速度,则说明斜面体一定受水平向左的静摩擦力作用;故C错误,D正确.故选D.【点睛】本题考查牛顿第二定律的应用,要注意明确对于牛顿第二定律的整体法和隔离法的应用的掌握;应用整体法进行分析要比应用隔离法简单的多.7.将质量为m的小球,以初速度竖直向上抛出,小球运动过程中受大小恒定的阻力作用,小球落回抛出点时速度大小为,重力加速度取g,则A. 小球上升最大高度为B. 下降过程比上升过程经历的时间短C. 小球阻力大小为D. 小球阻力大小为【答案】C【解析】【分析】根据牛顿第二定律和运动学公式求解阻力大小和上升的最大高度;再根据位移时间关系分析时间长短.【详解】A、C、D、设小球运动过程中受阻力大小为f,小球上升过程加速度大小为,上升最大高度为h,小球下降过程加速度大小为,由牛顿第二定律得:,,,,联立解得:,,故A,D错误,C正确.B、上升过程中的加速度大小为,下降过程中的加速度大小为,将上升的匀减速直线运动运用逆向思维看成初速度为零的匀加速直线,由,因可得,即下降过程比上升过程经历的时间长;故B错误.故选C.【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.8.下列说法中正确的是A. 任何物体都可当作参照系B. 速度越大的物体惯性越大C. 当物体沿直线朝一个方向运动时,位移就是路程D. 如果物体的形状和大小对所研究的问题属于无关或次要因素时,即可把物体看作质点【答案】AD【解析】【分析】研究物体的运动必须选择参考系,参考系的选择是任意的,但不能选研究对象自身作为参考系;质量是惯性大小的量度;当质点做单向直线运动时,位移的大小一定等于路程;当物体的大小和形状对所研究的问题没有影响或影响很小,可忽略不计时,可以把物体看成质点.【详解】A、研究物体的运动必须选择参考系,参考系的选择是任意的;选项A正确.B、质量是物体惯性大小的量度,与物体运动速度大小无关;选项B错误.C、路程是标量,位移是矢量;选项C错误.D、如果物体的形状和大小对所研究的问题属于无关或次要因素时,即可把物体看作质点;选项D 正确.故选AD.【点睛】本题考查参考系、质点、惯性、路程与位移等几个基本概念,关键是理清这些概念.9.某同学用水平力推教室的讲台,但没推动,下列说法正确的是A. 推力小于摩擦力B. 推力小于讲台所受合力C. 讲台所受合外力为零D. 推力小于或等于讲台最大静摩擦力【答案】CD【解析】【分析】对于平衡状态以及平衡条件的掌握程度,首先要判断讲台处于什么状态,然后再判断在这种状态下力的关系.【详解】C、讲台在水平推力作用下处于静止状态,讲台所受合外力为零,选项C正确.A、B、讲台没有被推动,则水平方向二力平衡,即推力大小等于静摩擦力,选项A,B错误.D、静摩擦力由外力产生的趋势决定,大小在零到最大之间变化,,推力等于静摩擦力,故推力小于或等于讲台所受的最大静摩擦力,选项D正确.故选CD.【点睛】本题考查的是对二力平衡条件的理解和应用,在分析时,要注意明确物体所处的平衡状态的判断,然后根据二力平衡的条件进行分析,不要想当然的认为箱子没动就是因为推力小于摩擦力.10.如图所示,放在水平桌面上的质量为1kg 的物体,通过水平轻绳a、b与水平轻弹簧甲、乙连接,物体静止时弹簧测力计甲和乙的读数分别为7N和3N,则剪断轻绳b瞬时,物体的加速度可能为A. 4B. 2C. 1D. 0【答案】BCD【解析】【分析】轻绳的弹力和接触的弹力可以突变,弹簧的弹力和橡皮筋的弹力不能突变;静摩擦力由外力产生的趋势决定,和滑动摩擦力的关系满足.【详解】由题知,物体静止时受静摩擦力大小为7N-3N=4N,物体与水平桌面间最大静摩擦力,所以剪断轻绳b瞬时,剩下的弹簧a的拉力为7N不变,和最大静摩擦力的合力,由牛顿第二定律,故选项B、C、D正确,A错误.故选BCD.【点睛】本题考查弹簧弹力的性质、最大静摩擦力及共点力的平衡条件、牛顿第二定律求瞬时加速度等问题,要注意正确分析问题,并能构建合理的物理模型.二、实验题(共3 小题,共15 分)11.关于“探究力的平行四边形定则”的实验,下列说法正确的是A.实验中,橡皮条、细绳必须与木板平行B.两弹簧测力计必须在与木板保持接触状况下读数C.两弹簧测力计的拉力一定比橡皮条的拉力小D.只用一个弹簧测力计也可完成本实验【答案】AD【解析】【分析】根据合力与分力的关系是等效的,分析橡皮筯的结点位置要求.按实验原理和方法分析实验要求.【详解】A、B、“探究力的平行四边形定则”的实验中,橡皮条、细绳必须与木板平行,否则读拉力产生误差,或接触产生摩擦不能达到拉力的作用效果相同的实验要求,选项A 正确;选项B 错误;C、根据三力平衡特点可知合力可以大于、小于或等于任意一个分力,则弹簧测力计的拉力可能比橡皮条的拉力大,选项C 错误;D、如果只有一个弹簧测力计,在节点位置相同,即合力大小、方向相同的情况下,另两细绳只要方向确定,则两细绳拉力大小唯一确定,可用一个弹簧秤分别测出其拉力大小,就可以完成本实验,选项D 正确.故选AD.【点睛】在“验证力的平行四边形定则”实验中,我们要知道分力和合力的效果是等同的,这要求同学们对于基础知识要熟练掌握并能正确应用,加强对基础实验理解.在解决设计性实验时,一定先要通过分析题意找出实验的原理,通过原理即可分析实验中的方法及误差分析.12.为了用弹簧测力计测定两木块A和B间的动摩擦因数,某同学设计了如图所示的实验方案。

2018-2019学年度高一年级下学期期末考试

2018-2019学年度高一年级下学期期末考试

2018-2019学年度高一年级下学期期末考试试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分。

考试时间120分钟第I卷(选择题,共60分)一.选择题:1.已知直线经过两点,则的斜率为()A. B. C. D.【答案】A【解析】【分析】直接代入两点的斜率公式,计算即可得出答案。

【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。

2.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C. 2 D. 3【答案】D【解析】【详解】由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!【此处有视频,请去附件查看】3.在正项等比数列中,,数列的前项之和为()A. B. C. D.【答案】B【解析】【分析】根据等比数列的性质,即可解出答案。

【详解】故选B【点睛】本题考查等比数列的性质,同底对数的运算,属于基础题。

4.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得,,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于A. B. C. D.【答案】D【解析】在中,由正弦定理得,解得在中,5.过点,且圆心在直线上的圆的方程是()A. B.C. D.【答案】C【解析】分析】直接根据所给信息,利用排除法解题。

【详解】本题作为选择题,可采用排除法,根据圆心在直线上,排除B、D,点在圆上,排除A故选C【点睛】本题考查利用排除法选出圆的标准方程,属于基础题。

6.已知,若,则下列不等式成立的是 ( )A. B. C. D.【答案】C【解析】【分析】根据不等式的性质对每一个选项进行证明,或找反例进行排除.详解】解:选项A:取,此时满足条件,则,显然,所以选项A错误;选项B:取,此时满足条件,则,显然,所以选项B错误;选项C:因为,所以,因为,所以,选项C正确;选项D:取,当,则,所以,所以选项D错误;故本题选C.【点睛】本题考查了不等式的性质,熟知不等式的性质是解题的关键.7.圆关于直线对称,则的值是()A. B. C. D.【答案】B【解析】圆关于直线对称,所以圆心(1,1)在直线上,得.故选B.8.已知直线,平面,给出下列命题:①若,且,则②若,且,则③若,且,则④若,且,则其中正确命题是()A. ①③B. ②④C. ③④D. ①②【答案】A【解析】【分析】根据面面垂直,面面平行的判定定理判断即可得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018—2019学年高一年级期末考试模拟试卷4一、单选题在浙江台州市分布着国内罕见的珊瑚岩景观,是典型的火山熔岩地貌造型的代表作(下面左图)。

下面右图为“地壳物质循环示意图”。

完成下面小题。

1.形成珊瑚岩的物质来自于( )A.地壳 B.地幔 C.地核 D.岩石圈2.该珊瑚岩形成的主要过程与右图中序号直接相关的是( )A.① B.② C.③ D.④“海绵城市”是指城市能够像海绵一样,在适应环境变化和应对自然灾害等方面具有良好的“弹性”,下雨时,吸水、蓄水、渗水、净水;需要时,将共为蓄存的水“释放”并加以利用。

读“海绵城市示意图”,完成下列问题。

3.建设“海绵城市”,主要目的是A.根治城市水污染 B.加速城市水循环 C.缓解城市用地紧张 D.提高水资源利用率4.下列城市中,最适宜建设海绵城市的是A.乌鲁木齐 B.呼和浩特 C.石家庄 D.拉萨5.图示地理事物,主要的作用是A.树木、草木大量吸收大气降水和地下水 B.城市小区、污水处理厂可以净化水质C.河流、湖泊可以调蓄多雨和少雨期降水量 D.湿地公转、拦水坝可以增加下渗水量6.菲律宾玛雅农场是世界生态农业的典范,20世纪70年代该农场还是一家面粉厂,经过十年的建设,形成了一个农、林、牧、副、渔良性循环的生态农场。

从经济效益考虑,该农业生产模式的最大好处是A.开展多种经营,增加农场收入 B.改善能源消费结构,利于植被保护C.减少了水土流失的发生频率 D.废弃物得到充分利用,减少了污染一般住宅特别是高层住宅的第一、第二层销售都较为困难,其价位也较其他层位低。

开发商通过将第一、第二层转为做底商,价格可以卖得更好,同时住宅小区的商业配套也得以解决。

据此完成下面小题。

7.有关底商,下列说法正确的是A.底商只为本小区的居民服务B.底商既可以销售商品,也可以提供其他服务C.因底商租金较高,一般都销售较高级的商品D.底商与大型超市没有竞争关系8.以下店铺最适合布局在底商的是A.鞋帽制造厂 B.水果店 C.大型家电专卖店 D.服装批发店阅读下列材料,回答下面小题。

材料一:全球气候变暖造成海水膨胀、极地冰盖和陆地冰川融化,是引起全球海平面上升的主要原因。

局地海平面变化,还受到地面沉降、季风和海流等局部因素变化的影响。

材料二:渤海常年、2009年和2010年6月水文、气象因子统计表材料三:不同年份渤海海平面月变化9.渤海海平面夏季高于冬季的主要影响因素是:A.径流、洋流 B.季风、温度 C.植被、二氧化碳浓度 D.降水、气压10.若常年2月渤海的水文、气象因子为:气温0℃,海温1.5℃,气压1018.5hpa,北向风风速4.2m/s,则2010年2月渤海的气象因子中的风向、风速可能为:A.北向风4.5m/s B.南向风3.8m/s C.南向风4.5m/s D.北向风3.8m/s11.阅读材料三.得出的结论正确的是:A.渤海海平面2009年较常年偏低 B.渤海海平面2010年较常年偏高C.海平面总体上没变 D.渤海地区气候冬季变冷,夏季变暖2014年1月7日,地球遭遇强太阳风暴袭击,其破坏力甚至超过超强台风。

读下图,回答下面小题。

12.这次到达地球的太阳风暴来自图中的A.A处 B.B处 C.C处 D.A处和C处13.剧烈太阳活动产生的太阳风暴吹袭地球,可能引起A.卫星导航失效 B.风力电厂增产 C.生活耗能降低 D.昼夜更替加快14.下列国家中最有可能欣赏到极光的是A.英国、墨西哥 B.挪威、芬兰 C.意大利、西班牙 D.印度、巴基斯坦读图,完成下列小题。

15.此时,太阳直射点的经度和纬度可能是()①北纬23°26′和东经120°②南纬23°26′和东经60°③北纬23°26′和西经120° ④南纬23°26′和西经60°A.①②B.②③C.①③D.②④16.如果A点的区时是某日12时,B点的区时是()A.9.23日18时 B.6.22日18时 C.12.22日6时D.3.21日6时读下图,完成下面小题。

17.导致2015年后我国流动人口规模下降的主要原因是A.人口出生率快速下降B.人口老龄化突出C.中西部地区经济水平提高D.农村实施土地流转政策18.我国流动人口增长规模下降带来的主要影响是A.优化区域间人力资本配置B.阻碍东部沿海地区产业转型C.城镇化水平快速下降D.农村空巢老人明显增多下图示意某跨国公司的制造企业和研发中心在中国的分布。

回答下列问题。

19.该公司在中国多地投资建制造企业主要是为了()A.利用廉价原料 B.分散投资风险 C.建立营销网络 D.扩大市场份额20.该公司研发中心选址考虑的首要因素是()A.交通B.市场C.人才D.资金几乎像永恒的约定,每当季节变换,生活在阿尔泰山、天山、帕米尔高原的农民便开始“搬家”:从山前平原搬到深山里,再从高山回到河谷低地或沙地。

他们敏锐地踩着季节的节奏,形成了新疆独特的行吟诗人般的生活。

阅读材料完成下列各题。

21.材料中所述的“搬家”在地理学中被称为()A.迁移农业 B.混合农业 C.游牧业 D.乳畜业22.下列地区与搬迁季节对应正确的一组是()A.山前平原—夏季 B.高山—春季 C.河谷低地—冬季 D.沙地—秋季23.上述现象的产生体现了()A.由赤道到两极的地域分异规律 B.非地带性现象C.从沿海向内陆的地域分异规律 D.山地的垂直地域分异规律冰岛位于大西洋东北部,它由沿裂谷溢出的上地幔物质堆积而成。

冰岛有“极圈火岛”之称。

结合冰岛活火山带分布图,回答下列问题。

24.组成冰岛的岩石主要是()A.花岗岩B.玄武岩C.石灰岩D.大理岩25.冰岛的活火山带东西两侧的板块名称及其边界类型分别是()A.美洲板块和亚欧板块生长边界 B.美洲板块和太平洋板块消亡边界C.亚欧板块和美洲板块消亡边界 D.亚欧板块和美洲板块生长边界二、综合题26.(12分)城市化是人类社会发展和进步的必然趋势,是实现社会现代化的客观要求和必由之路。

阅读图文资料,回答问题。

材料一:1996—2004年福州市非农业人口与耕地、建设用地变化图8分)(2)据材料分析该市城市化过程中土地利用存在的主要问题。

(4分)27.随着社会经济的发展,我国人口迁移日渐频繁,老龄化现象也日趋严重。

阅读图文材料,回答问题。

材料一2016年我国部分地区户籍人口与常住人口统计图。

材料二老龄化带来的巨大养老压力已经成为我国面临的重大问题。

上面表格是2014年我国部分省区常住人口老龄化数据。

党的十八大五中全会指出,为促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动。

(1)由于人口迁移导致常住人口与户籍人口不一致。

分析我国人口迁移的空间特点,并分析人口迁移对迁出地区造成的影响。

(2)据材料,分析我国人口老龄化的特点及其原因。

(3)比较四川省和广东省常住人口老龄化程度的差异,并分析其中的原因。

(4)有人认为,我国全面实施“二孩政策”,就是放弃坚持30多年的计划生育基本国策,鼓励多生多育,你是否认同这样的观点?请说明理由。

28.南昆铁路是1997年我国西南地区新开通的一条国内科技含量最高的现代化铁路,全长898.6千米,吸引范围共计29个县市。

请结合图完成:(10分)(1)该铁路起自广西_______,至云南________,经过______水系和______高原。

_____人口众多。

(2)从图上看,该铁路沿线有________等自然资源和_______地貌风景区,因此它的修建对区域经济开发意义重大。

(3)试分析该铁路建设的主要区位因素:社会经济因素_______________;自然因素_______________;先进的_______是保证。

参考答案1.B 2.A【解析】1.由材料可知珊瑚岩是典型的火山熔岩,是由岩浆喷出地表形成,岩浆来源于地幔,B正确。

2.由材料可知珊瑚岩是典型的火山熔岩,图中丙处有三个箭头指进,只有一个箭头指出,表示岩浆,岩浆喷出地表形成岩浆岩,图中①表示岩浆冷却凝固形成岩浆岩,甲是岩浆岩,A正确。

3.D 4.C 5.D【解析】3.建设“海绵城市”,主要目的是提高水资源利用率,缓解水资源紧张状况,D对。

不能治理城市水污染,A错。

减缓了城市水循环,B错。

可能加重城市用地紧张,C错。

4.最适宜建设海绵城市的地区,应是降水季节变化大,降水集中,且区域内水资源短缺的地区,是石家庄,B对。

乌鲁木齐、呼和浩特降水少,A、B错。

拉萨位于拉萨河沿岸,水资源较充足,D错。

5.图示地理事物,树木、草木涵养水源,不能吸收大气降水,可以增加下渗,A错。

城市小区不能净化水质,污水处理厂可以净化水质,B错。

河流、湖泊可以调蓄洪水,不能调蓄降水量,C错。

湿地公园、拦水坝可以增加下渗水量,D对。

6.A【解析】据材料可知,20世纪70年代该农场还是一家面粉厂,经过十年的建设,形成了一个农、林、牧、副、渔良性循环的生态农场,说明该农业生产模式的最大好处是开展多种经营,增加农场收入,A项正确。

7.B 8.B【解析】7.根据材料,底商是对外商业活动,同时也方便小区商业活动,底商与大型超市有竞争关系,因底商租金较高,一般都销售利润高的商品,靠近居民区,不一定是高级商品,底商既可以销售商品,也可以提供其它服务。

8.最适合布局在底商的店铺是水果店,靠近居民区,靠近市场,烧烤店污染小区的环境,金铺服务范畴大,不适宜在小区布局,服装批发店布局在交通便利处,不适宜靠近小区,人流混杂。

9.B 10.D 11.B【解析】9.根据材料一,渤海海平面夏季高于冬季的主要影响因素是全球变暖,气温高,海水受热膨胀,水位变高。

局地海平面变化,还受到地面沉降、季风和海流等因素影响,夏季东南风将海水吹向陆地,抬升了水位,B对。

没有径流、植被、二氧化碳浓度、降水、气压等影响,A、C、D错。

10.若常年2月渤海的水文、气象因子为:气温O℃,海温1.5℃,气压1018.5hpa,北向风风速4.2m/s。

2月份是冬季,风向为北向,B、C错。

由于全球变暖,海陆热力差异减小,2010年夏季气压较常年高,2月的气压应较常年低,风速应比常年小。

渤海的气象因子中的风向、风速可能为北向风3.8m/s,D对。

风4.5m/s比常年大,A错。

11.根据图示数值,渤海海平面2009年较常年偏高,A错。

渤海海平面2010年较常年偏高,B对。

海平面总体上升,C错。

渤海地区气候冬季变暖,夏季变凉,D错。

12. C 13.A 14.B【解析】12.太阳风是日冕层的主要太阳活动类型。

这次到达地球的太阳风暴来自图中的C处,日冕层,C对。

A 处是光球层,主要活动是黑子,A错。

相关文档
最新文档