重庆市璧山县大路中学2013年中考第二次模拟考试数学试题
2013年重庆市数学中考真题(word版含答案)
重庆市2013年初中毕业暨高中招生考试【数学试题】 【选择题】【1】.在3,0,6,2-这四个数中,最大的数是(A )0 (B )6 (C )2- (D )3 【2】.计算()232x y 的结果是(A )624xy (B )628x y (C )524x y (D ) 528x y【3】.已知65A ∠=,则A ∠的补角等于(A )125 (B )105 (C )115 (D )95【4】.分式方程2102x x-=-的根是 (A )1x = (B )1x =- (C )2x = (D )2x =-【5】.如图,AB CD ∥,AD 平分BAC ∠,若70BAD ∠=,那么ACD ∠的度数为(A )40 (B )35 (C )50 (D )45【6】.计算6tan 452cos60-的结果是(A )(B )4 (C ) (D )5【7】.某特警部队为了选拔“神枪手”,举行了1 000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是 (A )甲的成绩比乙的成绩稳定 (B )乙的成绩比甲的成绩稳定 (C )甲、乙两人成绩的稳定性相同 (D )无法确定谁的成绩更稳定【8】.如图,P 是O ⊙外一点,PA 是O ⊙的切线,26cm PO =,24cm PA =,则O ⊙的周长为(A )18πcm (B )16πcm (C )20πcm (D )24πcm【9】.如图,在平行四边形ABCD 中,点E 在AD 上,连接CE 并延长与BA 的延长线交于点F ,若2AE ED =,3cm CD =,则AF 的长为(A )5cm (B )6cm (C )7cm (D )8cm【10】.下列图形都是由同样大小的矩形按一定规律组成,其中第(1)个图形的面积为2cm 2,第(2)个图形的面积为8cm 2,第(3)个图形的面积为18cm 2,……,则第(10)个图形的面积为(A )196cm 2(B )200cm 2(C )216cm 2(D )256cm 2【11】.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州,若该轮船从万州出发后所用的时间为x (小时),轮船距万州的距离为y (千米),则下列各图中,能够反映y 与x 之间函数关系的大致图象是【12】.(第三单元第四章第七节二次函数与一次函数、反比例函数的综合题)一次函数()0y ax b a =+≠、二次函数2y ax bx =+和反比例函数()0ky k x=≠在同一直角坐标系中的图象如图所示,A 点的坐标为(20)-,,.则下列结论中,正确的是(A )2b a k =+ (B )a b k =+ (C )0a b >> (D )0a k >> 【填空题】【13】.实数6的相反数是____________.【14】.不等式23x x -≥的解集是____________.【15】.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:则这10名学生周末利用网络进行学习的平均时间是____________小时.【16】.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为____________.(结果保留π)【17】.从3,0,1-,2-,3-这五个数中,随机抽取一个数,作为函数2(5)y m x =-和关于x 的方程2(1)10m xmx +++=中m 的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为____________.【18】.如图,菱形OABC的顶点O 是坐标原点,顶点A 在x 轴的正半轴上,顶点B 、C 均在第一象限,260OA AOC =∠=,°.点D 在边AB 上,将四边形ODBC 沿直线OD 翻折,使点B 和点C 分别落在这个坐标平面内的点B '和点C '处,且60C DB ''∠=°.若某反比例函数的图象经过点B ',则这个反比例函数的解析式为____________.【计算题】 【19】.计算:20201313)(1)23-⎛⎫---+- ⎪⎝⎭.【20】.作图题:(不要求写作法)如图,ABC △在平面直角坐标系中,其中,点A 、B 、C 的坐标分别为(21)(45)(52)A B C ---,,,,,. (1)作ABC △关于直线l :1x =-对称的111A B C △,其中,点A 、B 、C 的对应点分别为点1A 、1B 、1C ;(2)写出点1A 、1B 、1C 的坐标.【解答题】【21】.先化简,再求值:22226951222a ab b b a b a aba b a⎛⎫-+÷--- ⎪--⎝⎭,其中a ,b 满足42.a b a b +=⎧⎨-=⎩,【22】.减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D 表示,根据调查结果绘成了如图所示的两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)求出的x值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2个去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.【23】.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程.其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1 500万元?(甲、乙两队的施工时间按月取整数)【24】.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE CF =,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE BF =,2BEF BAC ∠=∠. (1)求证:OE OF =;(2)若BC=AB 的长.【解答题】【25】.如图,对称轴为直线1x =-的抛物线2(0)y ax bx c a =++≠与x 轴相交于A 、B 两点,其中点A 的坐标为(30)-,. (1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点. ①若点P 在抛物线上,且4POCBOC S S =△△,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD x ⊥轴交抛物线于点D ,求线段QD 长度的最大值.【26】.已知:如图,在平行四边形ABCD 中,126AB BC AD BD ==⊥,,.以AD 为斜边在平行四边形ABCD 的内部作Rt AED △,3090EAD AED ∠=∠=°,°.(1)求AED △的周长;(2)若AED △以每秒2个单位长度的速度沿DC 向右平行移动,得到000A E D △,当00A D 与BC 重合时停止移动.设移动时间为t 秒,000A E D △与BDC △重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出t 的取值范围;(3)如图,在(2)中,当AED △停止移动后得到BEC △,将BEC △绕点C 按顺时针方向旋转()α0<α<180°°,在旋转过程中,B 的对应点为1B ,E 的对应点为1E ,设直线11B E 与直线BE 交于点P 、与直线BC 交于点Q .是否存在这样的α,使BPQ △为等腰三角形?若存在,求出 的度数;若不存在,请说明理由.参考答案1. B2. A3. C4. D5. A6. D7. B8. C9. B 10. B 11. C 12. D 13. 6- 14. 3x ≥ 15. 2.5 16. 10-π 17.2518. y x=-19. 解:原式=13129-+-+ =6.20. 解:(1)如图1,画111A B C △,标出字母;(2)()101A ,、()125B ,、()132C ,.21. 解:原式=22(3)5(2)(2)1(2)22a b b a b a b a a b a b a b a⎡⎤--+÷--⎢⎥---⎣⎦=222(3)91(2)2a b b a a a b a b a --÷--- =2(3)21(2)(3)(3)a b a b a a b b a b a a-----+· =(3)1(3)a b a b a a---+=(3)322(3)(3)(3)3a b b a a a b a a b a a a b a b--+--==-++++ 42a b a b +=⎧⎨-=⎩,, 31.a b =⎧∴⎨=⎩,∴当31a b =⎧⎨=⎩,时,原式=213313-=-+⨯.22. 解:(1)由题意:x %+10%+15%+45%=1,解得:30x =.调查总人数为18045%400÷=. B 的人数为40030%120⨯=. C 的人数为40010%40⨯=. 补图(图2中的B 、C ).(2)分别用1P 、2P ;1Q 、2Q 表示两个小组的4个同学,画树状图(或列表)如下:共有12种情况,2人来自不同小组有8种情况,∴所求的概率为82123=.23. 解:(1)设甲队单独完成这项工程需要x 个月,则乙队单独完成这项工程需要(5)x -个月,由题意得(5)6(5)x x x x -=+-,整理,得217300x x -+=.解得12215x x ==,,12x =不合题意,舍去,故15510x x =-=,.答:甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月。
2013重庆中考数学试题及答案(09修订版).
数学中考 第1页(共16页) 数学中考 第2页(共16页)重庆市2013年初中毕业暨高中招生考试(模拟)数 学 试 卷(本卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,,对称轴公式为2b x a=-.一、选择题:(本大题10个小题,每小题4分,共40分)1.5-的相反数是( ) A .5B .5-C .15D .15-2.计算322x x ÷的结果是( ) A .xB .2xC .52xD .62x3.函数13y x =+的自变量x 的取值范围是( )A .3x >-B .3x <-C .3x ≠-D .3x -≥4.如图,直线A B C D 、相交于点E ,D F AB ∥.若100A E C ∠=°,则D ∠等于( ) A .70° B .80° C .90° D .100° 5.下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查一批新型节能灯泡的使用寿命 B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如图,O ⊙是A B C △的外接圆,AB 是直径.若80B O C ∠=°, 则A ∠等于( )A .60°B .50°C .40°D .30°7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是( )A .B .C .D .8.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n9.如图,在矩形A B C D 中,2A B =,1B C =,动点P 从点B 出发, 沿路线B C D →→作匀速运动,那么A B P △的面积S 与点P 运动 的路程x 之间的函数图象大致是( )10.如图是二次函数y=ax 2+bx+c 的图象,下列结论中:①abc >0;②b=2a ;③a+b+c <0;④a-b+c >0; ⑤4a+2b+c <0.正确的个数是( ) A .4个 B .3个 C .2个 D .5个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元.那么7840000万元用科学记数法表示为 万元. 12.分式方程1211x x =+-的解为 .13.已知A B C △与D EF △相似且面积比为4∶25,则A B C △与D EF △的相似比为 .14.已知1O ⊙的半径为3cm ,2O ⊙的半径为4cm ,两圆的圆心距12O O 为7cm ,则1O ⊙与2O ⊙的位置关系是 .15.在平面直角坐标系xOy 中,直线3y x =-+与两坐标轴围成一个AO B △.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在AO B △内的概率为 .16.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %.A .B .C .D .CAE BFD 4题图……第1个第2个第3个6题图D C PBA题图三、解答题:(本大题4个小题,每小题6分,共24分)17.计算:1021|2|(π(1)3-⎛⎫-+⨯---⎪⎝⎭.18.解不等式组:303(1)21xx x+>⎧⎨--⎩,①≤.②19.如图所示,为求出河对岸两棵树A、B间的距离,小坤在河岸上选取一点C,然后沿垂直于A C 的直线前进了12米到达点D,测得90CDB=∠.取C D的中点E,测得56AEC=∠,67BED=∠,求河对岸两树间的距离(提示:过点A作AF BD⊥于点F).(参考数据:4sin565≈,tan56 ≈23,sin67 ≈1514,tan67 ≈37.)20.为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月该班同学的植树情况的部分统计如下图所示:(1)请你根据以上统计图中的信息,填写下表:四、解答题:(本大题4个小题,每小题10分,共40分)21.先化简,再求值:22121124x xx x++⎛⎫-÷⎪+-⎝⎭,其中3x=-.(株)20题图植树2株的人数占32%数学中考第3页(共16页)数学中考第4页(共16页)数学中考 第5页(共16页) 数学中考 第6页(共16页)22.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,C E x ⊥轴于点E ,1tan 422A B O O B O E ∠===,,.(1)求该反比例函数的解析式; (2)求直线AB 的解析式.23.有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.24.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且A E A C =. (1)求证:B G F G =;(2)若2AD D C ==,求AB 的长.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)25.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.9166.083 6.164)DC EB GA24题图 F x23题图26.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE ⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG理由.26题图x数学中考第7页(共16页)数学中考第8页(共16页)数学中考 第9页(共16页) 数学中考 第10页(共16页)(第23题)FAC数学试题参考答案及评分意见一、选择题1.A 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.B 10.A 二、填空题11.67.8410⨯ 12.3x =- 13.2:5 14.外切 15.3516.30三、解答题17.解:原式23131=+⨯-+ ···············································································(5分) 3=. ································································································(6分) 18.解:由①,得3x >-.····················································································(2分)由②,得2x ≤.·····················································································(4分) 所以,原不等式组的解集为32x -<≤.·················································(6分)19.解:∵E 为CD 中点,CD =12,∴CE =DE =6. 在Rt △ACE 中∵tan56°=CEAC ,∴AC =CE ·tan56°≈6×23=9.在Rt △BDE 中, ∵tan67°= BDDE, ∴BD =DE ·tan67°≈6×37=14 .∵AF ⊥BD ,∴AC =DF =9,AF =CD =12, ∴BF =BD -DF =14-9=5.在Rt △AFB 中,AF =12,BF =5, ∴135122222=+=+=BFAFAB .∴两树间距离为13米.20················(4分)(2)补图如下:····························(6分)四、解答题: 21.解:原式221(1)2(2)(2)x x x x x +-+=÷++- ·······························································(4分)21(2)(2)2(1)x x x x x ++-=++ ···························································································(6分) 21x x -=+. ··············································································································(8分)当3x =-时,原式325312--==-+. ······································································· (10分)22.解:(1)42O B O E == ,,246B E ∴=+=.C E x ⊥轴于点E .1tan 2C E A B O B E∴∠==,3C E ∴=. ···································································(1分)∴点C 的坐标为()23C -,. ···················································································(2分) 设反比例函数的解析式为(0)m y m x=≠.将点C 的坐标代入,得32m=-,············································································(3分)6m ∴=-. ···········································································································(4分)∴该反比例函数的解析式为6y x=-.····································································(5分) (2)4O B = ,(40)B ∴,. ················································································(6分) 1tan 2O A A B O O B∠== ,2O A ∴=,(02)A ∴,.·························································································(7分) (株)数学中考 第11页(共16页) 数学中考 第12页(共16页)设直线AB 的解析式为(0)y kx b k =+≠.将点A B 、的坐标分别代入,得240.b k b =⎧⎨+=⎩, ··························································(8分)解得122.k b ⎧=-⎪⎨⎪=⎩, ·······································································································(9分) ∴直线AB 的解析式为122y x =-+. ································································· (10分) 23.解:(1)画树状图如下: ·······················(4分)或列表如下:由图(表)知,所有等可能的结果有12种,其中积为0的有4种, 所以,积为0的概率为41123P ==.······································································(6分)(2)不公平.········································································································(7分) 因为由图(表)知,积为奇数的有4种,积为偶数的有8种. 所以,积为奇数的概率为141123P ==, ·································································(8分)积为偶数的概率为282123P ==. ···········································································(9分)因为1233≠,所以,该游戏不公平.游戏规则可修改为:若这两个数的积为0,则小亮赢;积为奇数,则小红赢.······································ (10分) (只要正确即可)24.(1)证明:90ABC D E AC ∠= °,⊥于点F , ABC AFE ∴∠=∠. ······································(1分)A C A E E A F C AB =∠=∠ ,,A B C A F E ∴△≌△········································(2分)AB AF ∴=.·················································(3分) 连接A G , ······················································(4分) A G A G A B A F == ,,R t R t ABG AFG ∴△≌△. ··························(5分) B G F G ∴=. ················································(6分)(2)解:AD D C D F AC = ,⊥,1122A F A C A E ∴==.························································································(7分) 30E ∴∠=°. 30FAD E ∴∠=∠=°,·························································································(8分)AF ∴= ········································································································(9分)AB AF ∴==····························································································· (10分)五、解答题:25.解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得3.954.3.k b k b +=⎧⎨+=⎩,········································································································(1分) 解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. ···································································(2分)设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+. ·······················(3分) 化简,得25709800w x x =-++,所以,25(7)10125w x =--+.当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. ····(4分) (2)去年12月份每台的售价为501226002000-⨯+=(元),去年12月份的销售量为0.112 3.85⨯+=(万台), ···············································(5分) 根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. ····················(8分)令%m t =,原方程可化为27.514 5.30t t -+=.D CEB GA F 0 1 3 0 1 3 0 1 3 0 1 3 2 3 4 1 幸运数 吉祥数 积数学中考 第13页(共16页) 数学中考 第14页(共16页)27.515t ∴==⨯.10.528t ∴≈,2 1.339t ≈(舍去)答:m 的值约为52.8.························································································· (10分) 26.解:(1)由已知,得(30)C ,,(22)D ,,90AD E C D B BC D ∠=-∠=∠ °, 1tan 2tan 212A E A D A D E B C D ∴=∠=⨯∠=⨯= .∴(01)E ,. ············································································································(1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,····································································································(2分) 解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ···························································(3分) (2)2E F G O =成立. ·························································································(4分)点M 在该抛物线上,且它的横坐标为65,∴点M 的纵坐标为125.························································································(5分)设D M 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴D M 的解析式为132y x =-+.·········································································(6分) ∴(03)F ,,2E F =. ···························································································(7分) 过点D 作D K O C ⊥于点K ,则D A D K =.90A D K F D G ∠=∠= °, F D A G D K ∴∠=∠.又90F A D G K D ∠=∠= °,D AF D K G ∴△≌△. 1K G A F ∴==.1G O ∴=.············································································································(8分) 2E F G O ∴=.(3) 点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,.∴222(1)2PG t =-+,222(3)2PC t =-+,2G C =.①若P G P C =,则2222(1)2(3)2t t -+=-+, 解得2t =.∴(22)P ,,此时点Q 与点P 重合.∴(22)Q ,. ···········································································································(9分) ②若PG G C =,则22(1)22t 2-+=,解得 1t =,(12)P ∴,,此时G P x ⊥轴.G P 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73.∴713Q ⎛⎫⎪⎝⎭,. ······································································································· (10分)x。
高要2013中考二模数学考试试题
2013年中考数学模拟试题(二)一、选择题(每题3分,共30分) 1.9的算术平方根是 A .3 B .–3 C .±3 D .6 2.下列所给图形中,3.环境监测中PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000001米,那么数据0.0000025用科学记数法可以表示为 A .6105.2⨯ B .5105.2-⨯ C .6105.2-⨯ D .7105.2-⨯ 4.一组数据3,x ,4,5,8的平均数为5,则这组数据的众数、中位数分别是 A .4,5 B .5,5 C .5,6 D .5,85.某商场在“庆五一”促销中推出“1元换2.5倍”活动,小红妈妈买一件标价为600元的衣服,她实际需要付款A .240元B .280元C .480元D .540元 6.下列运算正确的是A .532532a a a =+B .236a a a =÷C .623)(a a =- D .222)(y x y x +=+ 7.下列命题中错误..的是 A .等腰三角形的两个底角相等 B .对角线互相垂直的四边形是菱形 C .矩形的对角线相等 D .圆的切线垂直于过切点的直径8.九(1)班班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图所示的折线统计图,阅读数量变化率最大的两个月是A .1月与2月B .4月与5月C .5月与6月D .6月与7月9.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴相切于点Q ,与y 轴交于M (0,2)、N (0,8)两点,则点P 的坐标是 A .(5,3) B .(3,5) C .(5,4) D .(4,5) 10.已知:如图,∠MON=45º,OA 1=1,作正方形A 1B 1C 1A 2,面积记作S 1;再作第二个正方形A 2B 2C 2A 3,面积记作S 2;继续作第三个正方形A 3B 3C 3A 4,面积记作S 3;点A 1、A 2、A 3、A 4……在射线ON 上,点B 1、B 2、B 3、B 4……在射线OM 上,……依此类推,则第6个正方形的面积S 6是 A .4096 B .1024 C . 900 D . 256M A . B . C .D . N 12345第10题 第8题二、填空题(每题4分,共24分) 11.分解因式:m 2-1= ▲ .12. 二次函数y =ax 2+bx +c 的部分图象如图所示,由图象可知该二次函数的图象的对称轴是直线x = ▲ .13.如图AB ∥CD ,CE 交AB 于点A ,AD ⊥AC 于点A ,若∠1=48°,则∠2= ▲ 度. 14.如图,在△ABC 中,∠ACB =90°,∠A =30°,点D 是AB 的中点,连结CD .若AC,则图中长度等于1cm 的线段有 ▲ 条.15.如图所示,一个直角三角形纸片,剪去直角后,得到一个四边形,则12∠+∠=__▲_度. 16.当22x -<<时,下列函数中,函数值y 随自变量x 增大而增大的是 ▲ (只填写序号)①2y x =;②2y x =-;③xy 2=;④268y x x =++. 三、解答题(每题5分,共15分)17、计算:32145sin 82-+⎪⎭⎫⎝⎛-︒⨯-18 、一副直角三角板叠放如图所示,现将含45°角的三角板ADE 固定不动,把含30°角的三角板ABC 绕顶点A 顺时针旋转角α (α =∠BAD 且0°<α<180°),使两块三角板至少有一组边平行.(1)如图①,α =__▲__°时,BC ∥DE ;(2)请你在图②中,另画一种符合要求的图形,并指出α= ▲ °时,有 ▲ ∥ ▲ ;五(第14题图)(第13题图) (第12题图)21第15题19、在一个黑色的布口袋里装着白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中 白球2只、红球1只、黑球1只. 袋中的球已经搅匀. (1)随机地从袋中摸出1只球,则摸出白球的概率是多少?(2)随机地从袋中摸出1只球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率.四、解答题(每题8分,共24分)20、如图,一次函数y kx b =+的图象与坐标轴分别交于A (0,-1),B (-2,0)两点,与反比例函数n y x=的图象在第二象限的交点为C ,CD⊥x 轴,垂足为D (-4,0). (1)求一次函数的解析式; (2)求反比例函数的解析式.21、某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的73倍,求手工每小时加工产品的数量.22、已知:如图,在平行四边形ABCD 中,连接对角线BD ,作AE ⊥BD 于E ,CF ⊥BD 于F 。
2013年重庆市中考数学模拟试卷及答案(word解析版)
重庆市2013年中考数学模拟试卷一、选择题(40分)1.(4分)(2013•重庆模拟)在三个数0.5,,|﹣|中,最大的数是()D.不能确定A.0.5 B.C.|﹣|考点:实数大小比较.分析:先把这三个数化成同分母的分数,再比较大小即可求解.解答:解:∵|﹣|==,=,=,2<3<2≈4.4,∴这三个数中最大.故选B.点评:此题主要考查了实数的大小的比较,解题时首先化简绝对值,在比较分数的时候,一般可以变成分母相同的分数,比较分子的大小即可.2.(4分)(2013•重庆模拟)下列各图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.解答:解:由正多边形的性质知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选B.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形3.(4分)(2013•重庆模拟)计算2x4÷x2的结果正确的是()A.x2B.2x2C.2x6D.2x8考点:同底数幂的除法.分析:根据同底数幂的除法法则进行计算即可.解答:解:2x4÷x2=2x2.故选B.点评:本题考查的知识点为:同底数幂的除法,底数不变,指数相减.4.(4分)(2013•重庆模拟)如图,直线AB∥CD,∠1=60°,∠2=50°,则∠E=()A.80°B.60°C.70°D.50°考点:平行线的性质;三角形内角和定理.专题:计算题.分析:由AB∥CD,根据两直线平行,同位角相等,可得∠2=∠3,又因为对顶角相等,可得∠3=∠4;再根据三角形的内角和为180°,可得∠E的度数.解答:解:∵AB∥CD,∴∠3=∠2=50°,∴∠4=∠3=50°,∵∠1+∠2+∠E=180°,∴∠E=180°﹣∠1﹣∠4=180°﹣60°﹣50°=70°.故选C.点评:此题考查了平行线的性质:两直线平行,同位角相等.还考查了三角形内角和定理.比较简单,解题要细心.5.(4分(2013•重庆模拟))下列说法中不正确的是()A.要反映我市一周内每天的最低气温的变化情况宜采用折线统计图B.方差反映了一组数据与其平均数的偏离程度C.打开电视正在播放上海世博会的新闻是必然事件D.为了解一种灯泡的使用寿命,应采用抽样调查的办法考点:随机事件;全面调查与抽样调查;统计图的选择;方差.分析:根据折线图表示的意义,方差的意义,必然事件的定义,调查方式的选择即可进行判断.解答:解:A、B、D正确,不符合题意;C、打开电视正在播放上海世博会的新闻,可能发生,也可能不发生,是随机事件,错误,符合题意.故选C.点评:用到的知识点为:折线图可反映数据的变化情况;方差反映了一组数据与其平均数的偏离程度;可能发生,也可能不发生的事件叫随机事件;破坏性较强的调查应采用抽样调查的方式.6.(4分)(2013•重庆模拟)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.考点:由实际问题抽象出一元一次方程.专题:探究型.分析:先设他家到学校的路程是xkm,再把10分钟、5分钟化为小时的形式,根据题意列出方程,选出符合条件的正确选项即可.解答:解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选A.点评:本题考查的是由实际问题抽象出一元一次方程,解答此题的关键是把10分钟、5分钟化为小时的形式,这是此题的易错点.7.(4分)(2013•重庆模拟)若关于y的一元二次方程ky2﹣4y﹣3=3y+4有实根,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0C.k≤﹣D.k>﹣且k≠0考点:根的判别式;一元二次方程的定义.分析:方程有实数根,用一元二次方程的根的判别式大于0,建立关于k的不等式,求出k 的取值范围.解答:解:整理方程得:ky2﹣7y﹣7=0由题意知k≠0,方程有实数根.∴△=b2﹣4ac=49+28k≥0∴k≥﹣且k≠0.故选B点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.(4分)(2013•重庆模拟)用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是()A.n2+4n+2 B.6n+1 C.n2+3n+3 D.2n+4考点:平面镶嵌(密铺).专题:规律型.分析:观察图形可知图形①的黑色正三角形=4×1=4,白色正六边形的个数=3个,图形②的黑色正三角形=4×2=8,白色正六边形的个数=5个,…图形n的黑色正三角形=4n,白色正六边形的个数=2n+1(个),依此类推.解答:解:由图形可知图形①的黑色正三角形和白色正六边形的个数总和=4×1+3=7个,图形②的黑色正三角形和白色正六边形的个数总和=4×2+5=13个…依此类推,图形n的黑色正三角形和白色正六边形的个数总和=4n+2n+1=6n+1个.故选B.点评:本题是寻找规律的题型,根据图形找到其中变化的部分和不变的部分是解题的关键.9.(4分)(2013•重庆模拟)一列货运火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况的是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:由于图象是速度随时间变换的图象,而火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,注意分析其中的“关键点”,由此得到答案.解答:解:抓住关键词语:“匀加速行驶一段时间﹣﹣﹣匀速行驶﹣﹣﹣停下(速度为0)﹣﹣﹣匀加速﹣﹣﹣匀速”.故选B.点评:此题首先正确理解题意,然后根据题意把握好函数图象的特点,并且善于分析各图象的变化趋势.10.(4分)(2013•重庆模拟)如图,在矩形ABCD中,AB=1,BC=2,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为()A.B.C.D.考点:一元二次方程的应用;勾股定理;相似三角形的判定与性质.专题:几何图形问题;压轴题.分析:根据对称性可知:BE=FE,∠AFE=∠ABE=90°,又∠C=∠C,所以△CEF∽△CAB,根据相似的性质可得出:=,BE=EF=×AB,在△ABC中,由勾股定理可求得AC的值,AB=1,CE=2﹣BE,将这些值代入该式求出BE的值.解答:解:设BE的长为x,则BE=FE=x、CE=2﹣x在Rt△ABC中,AC==∵∠C=∠C,∠AFE=∠ABE=90°∴△CEF∽△CAB(两对对应角相等的两三角形相似)∴∴FE=x=×AB=×1,x=,∴BE=x=,故选:C.点评:本题主要考查一元二次方程的应用,关键在于找出等式列出方程求解,同时也用到勾股定理和相似三角形的性质.二、填空题(24分)11.(4分)(2013•重庆模拟)今年我国西南五省市发生旱灾,尤其以云南省受灾最为严重,云南的经济损失已经超过170亿元,那么170亿元用科学记数法表示为 1.7×1010元.考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解,一亿为108,则170亿用科学记数法表示为1.7×1010元.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(2013•重庆模拟)我国青海玉树发生地震后,我校学生纷纷献出爱心为灾区捐款,其中初三年级的六个班捐款数如下表:班级1班2班3班4班5班6班捐款数(元)1110 2220 680 960 1000 900则这六个班级捐款数的中位数为980元.考点:中位数.专题:阅读型.分析:把数据从小到大排列,中间两个数的平均数即为中位数.解答:解:从小到大排列为:680,900,960,1000,1110,2220,则中位数=(960+1000)÷2=980(元).故填980.点评:本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.(4分)(2013•重庆模拟)若m<0,则=﹣m.考点:二次根式的性质与化简.分析:当m<0时,去绝对值和二次根式开方的结果都是正数﹣m,而=m.解答:解:∵m<0,∴=﹣m﹣m+m=﹣m.点评:本题考查了去绝对值,二次根式,三次根式的化简方法,应明确去绝对值,开方结果的符号.14.(4分)(2013•重庆模拟)已知x1,x2是方程x2+3x﹣4=0的两个根,那么:x21+x22=17.考点:根与系数的关系.分析:利用根与系数的关系得出x1+x2=﹣=﹣3,x1x2==﹣4,再将x21+x22配方,再代入求出即可.解答:解:∵x1,x2是方程x2+3x﹣4=0的两个根∴x1+x2=﹣=﹣3,x1x2==﹣4,∵x21+x22=x21+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2=(﹣3)2﹣2×(﹣4)=9+8=17.故答案为:17.点评:此题主要考查了根与系数的关系和配方法的应用,根与系数的关系是中考中考查重点题型同学们应熟练掌握,此题进行配方是解决问题的关键.15.(4分)(2013•重庆模拟)在直角坐标系中,点A()关于原点对称的点的坐标是(,﹣).考点:关于原点对称的点的坐标.分析:根据平面直角坐标系内点P(a,b)关于原点对称点的坐标为(﹣a,﹣b)即可得到答案.解答:解:点A()关于原点对称的点的坐标是(,﹣).故答案为:(,﹣).点评:本题考查了关于原点对称点的坐标:平面直角坐标系内点P(a,b)关于原点对称点的坐标为(﹣a,﹣b).16.(4分)(2013•重庆模拟)某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋房的销售金额占总销售金额的35%.由于两会召开国家对房价实施调控,今年电梯公寓和别墅的销售金额都将比去年减少15%,因而房地产商决定加大花园洋房的销售力度.若要使今年的总销售金额比去年增长5%,那么今年花园洋房销售金额应比去年增加42.1%.(结果保留3个有效数字)考点:一元一次方程的应用.专题:销售问题;压轴题.分析:本题中的相等关系是:今年花园洋房的销售金额增长的百分数﹣今年电梯公寓和别墅的销售金额减少的百分数=今年的总销售金额比去年增长的5%,设今年花园洋房销售金额应比去年增加x,根据上面的相等关系列方程求解.解答:解:设今年花园洋房销售金额应比去年增加x,根据题意得35%x﹣(1﹣35%)×15%=5%,解得:x≈42.1%即今年花园洋房销售金额应比去年增加42.1%.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(24分)17.(6分)(2013•重庆模拟)计算:.考点:实数的运算.分析:本题涉及零指数幂、乘方、绝对值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3﹣8×1﹣4+4=﹣5.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2013•重庆模拟)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:∠B=∠E.考点:全等三角形的判定与性质.专题:证明题.分析:根据已知条件得出△ACB≌△DEF,即可得出∠B=∠E.解答:证明:∵AF=DC,∵AC=AF+CF,DF=DC+CF,∴AC=DF,∴在△ACB和△DEF中,,∴△ACB≌△DEF(SAS),∴∠B=∠E(全等三角形的对应角相等).点评:本题考查了全等三角形的判断和全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(6分)(2013•重庆模拟)解不等式:≥,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:首先两边同时乘以6去分母,再去括号、移项、合并同类项,即可得到答案,然后把解集表示到数轴上即可.解答:解:去分母得:2(2x﹣1)≥6﹣3(5﹣x),去括号得:4x﹣2≥6﹣15+3x,移项得:4x﹣3x≥6﹣15+2,合并同类项得:x≥﹣7,在数轴上表示如图所示.点评:此题主要考查了解一元一次不等式,关键是注意去分母是不要漏乘没有分母的项,在注意去括号是符号的变化即可.20.(6分)(2013•重庆模拟)解方程:2x2﹣3x﹣1=0.考点:解一元二次方程-公式法.专题:计算题;压轴题.分析:利用公式法解方程即可求解.解答:解:2x2﹣3x﹣1=0,a=2,b=﹣3,c=﹣1,∴△=9+8=17,∴x=,x1=,x2=.点评:此题这样考查了利用公式法解一元二次方程,解题的关键是熟练掌握求根公式即可解决问题.四、解答题(40分)21.(10分)(2013•重庆模拟)先化简,再求值:,其中a是方程x2+3x+1=0的根.考点:一元二次方程的解;分式的化简求值.分析:利用方程解的定义找到相等关系a2+3a=﹣1,再把所求的代数式化简后整理成a2+3a 的形式,整体代入a2+3a=﹣1,即可求解.解答:解:原式=(3分)=(4分)==;(5分)∵a是方程x2+3x+1=0的根,∴a2+3a+1=0,(6分)∴a2+3a=﹣1,(8分)∴原式=.(9分)点评:主要考查了方程解的定义和分式的运算.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.22.(10分)(2013•重庆模拟)如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y 轴的对称点P′在反比例函数y2=(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.考点:待定系数法求反比例函数解析式;一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.分析:(1)把P的坐标代入直线的解析式,即可求得P的坐标,然后根据关于y轴对称的两个点之间的关系,即可求得P′的坐标;(2)利用待定系数法即可求得反比例函数的解析式,然后根据反比例函数的增减性即可求得x的范围.解答:解:(1)把P(﹣2,a)代入直线的解析式得:a=﹣2×(﹣2)=4,则P的坐标是(﹣2,4),点P关于y轴的对称点P′的坐标是:(2,4);(2)把P′的坐标(2,4)代入反比例函数y2=(k≠0)的解析式得:4=,解得:k=8,则函数的解析式是:y2=;在解析式中,当y=2时,x=4,则当y2<2时自变量x的取值范围是:x>4或x<0.点评:本题考查了待定系数法求函数的解析式,以及反比例函数的性质,容易出现的错误是在求x的范围时忽视x≠0这一条件.23.(10分)(2013•重庆模拟)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数)频率武术类0.25书画类20 0.20棋牌类15 b器乐类合计 a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:。
重庆市2013年中考数学试卷(解析版)
∴反比例函数解析式为 y= ,
将 A(2,m)代入 y= 中,得 m=5,∴A(2,5),
∴三角形的相似比是 3:1,
∴△ABC 与△DEF 的面积之比为 9:1.
故答案为:9:1.
-5-
13.(2013 重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报
销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是
.
考点:中位数。
解答:解:把这一组数据从小到大依次排列为 20,24,27,28,31,34,38,
科学记数法表示为
.
考点:科学记数法—表示较大的数。
解答:解:380 000=3.8×105.
故答案为:3.8×105.
12.(2013 重庆)已知△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,则 ABC
与△DEF 的面积之比为
.
考点:相似三角形的性质。
解答:解:∵△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,
-7-
即:∠EAD=∠BAC,
在△EAD 和△BAC 中 ∴BC=ED.
19.(2013 重庆)解方程: 2 1 . x 1 x 2
考点:解分式方程。 解答:解:方程两边都乘以(x-1)(x-2)得, 2(x-2)=x-1, 2x-4=x-1, x=3, 经检验,x=3 是原方程的解, 所以,原分式方程的解是 x=3. 20.(2013 重庆)如图,在 Rt△ABC 中,∠BAC=90°,点 D 在 BC 边上,且△ABD 是等 边三角形.若 AB=2,求△ABC 的周长.(结果保留根号)
10.(2013 重庆)已知二次函数 y ax 2 bx c(a 0) 的图象如图所示对称轴为 x 1 .下列结论中,正确的是( ) 2
2013级重庆名校中考数学模拟试卷二拉分题部分(含答案)
2013级重庆名校中考数学模拟试卷二拉分题部分一、选择题(本大题共10小题,每小题4分,共40分。
)8、某厂的矩形蓄水池有A 、B 、C 三种水管,已知A 为进水管,B C 和均为出水管,且流量为A B C V V V >>,在0~2分钟时,打开A 、C 两管,关闭B 管。
在2~4分钟时,打开A 、B 两管,关闭C 管。
在4~6分钟时,打开B 、C 两管,关闭A 管。
若矩形蓄水池在第0分钟和第6分钟时均没有水,则下面能大致表示蓄水池中水的高度h (米)与时间t (分)的函数关系图象是( )9、下列图形都是由同样大小的正方形和正三角形按一定的规律组成,其中,第①个图形中一共有5个正多边形,第②个图形中一共有13个正多边形,第③个图形中一共有26个正多边形,……,则第⑥个图形中正多边形的个数为( )A 、90B 、91C 、115D 、116 10、已知二次函数()20y ax bx ca =++≠的图象如图,则下列结论中正确的是( ) A 、0abc > B 、240b ac -<C 、930a b c ++>D 、80c a +<二、填空题(本大题共6小题,每小题4分,共24分。
请将答案写在答卷上。
)15、在一个不透明的盒子里装有5个分别标有数字1,2,3,4,5的小球,它们除数字外其余全部相同。
现从中任取一球,将小球上的数字记为a ,则以1,1,2,a 为边的四边形是等腰梯形的概率是 。
16、某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵 。
四、解答题(本大题共4小题,每小题10分,共40分。
请将解答过程写在答卷上。
)21、先化简,再求值:222141121424a a a a a a ⎛⎫+⎛⎫-÷- ⎪ ⎪++⎝⎭⎝⎭,其中a 是不等式4113x x -->的最大整数解。
2013年重庆市中考数学模拟试卷
2013年重庆市中考数学模拟试卷(1)一、选择题:1.(3分)计算:﹣22+(﹣2)3=( )A . 12B . ﹣12C . ﹣10D . ﹣42.(3分)计算(4a2)3的结果是( )A . 64a6B . 12a5C . 64a5D . 12a63、不等式042≥-x 的解集在数轴上表示正确的是( )A B C D4、二元一次方程组的解是( )A .B .C .D .5、如图,已知直线AB ∥CD ,∠DCF=110°且AE=AF ,则∠A 等于( )A . 30°B . 40°C . 50°D . 70°6.下列调查中,适合用普查的是( )①要了解某厂生产的一批灯泡的使用寿命; ②要了解某个球队的队员的身高;③要了解某班学生在半期考试中的数学成绩; ④要了解某市市民收看某频道的电视节目的情况.A . ①②B . ③④C . ①④D .②③ 7、计算28-的结果是( )A 、6B 、6 C 、2 D 、2 8.如图,A 、C 、B 是⊙O 上三点,若∠AOC=40°,则∠ABC 的度数是( ) 0-220A.10°B.20°C.40°D.80°9、某班九名同学在篮球场进行定点投篮测试,每人投篮五次,投中的次数统计如下:4,3,2,4,4,1,5,0,3,则这组数据的中位数、众数分别为()A.3. 4B.4. 3C.3. 3D.4. 410、已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个不相等的实数根,那么k的最大整数值是()A.﹣2B.﹣1C.0D.111.一艘轮船在一笔直的航线上往返于甲、乙两地.轮船先从甲地顺流而下航行到乙地,在乙地停留一段时间后,又从乙地逆流而上航行返回到甲地(轮船在静水中的航行速度始终保持不变).设轮船从甲地出发后所用时间为t(h),轮船离甲地的距离为s(km),则s与t的函数图象大致是()A.B.C.D.12.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a c<0B.a b>0C.4a+b=0D.a﹣b+c>0二、填空题:13、将抛物线y=﹣(x﹣1)2﹣2向左平移1个单位,再向上平移1个单位,则平移后抛物线的表达式6 2817题14、若单项式3x2yn 与-2xmy3是同类项,则m+n=??.在平面内,⊙O 的半径为??cm ,点P 到圆心O 的距离为??cm ,则点P 与⊙O 的位置关系是??????????????????????如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如( ,),( ,),( , ),( , ),( , ),( , )…根据这个规律,第 个点的横坐标为??????????????????????.把一个转盘平均分成三等份,依次标上数字 、??、??.用力转动转盘两次,将第一次转动停止后指针指向的数字记作x ,第二次转动停止后指针指向的数字的一半记作y 以长度为x 、y 、4的三条线段为边长能构成三角形的概率为_____________.18某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为_____ ____.(利润率=利润÷成本)三、解答题:17.计算:2sin45_18.如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=√2BE=√2求CD 的长和四边形ABCD 的面积21、化简,再求值:.先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a .22.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?23.某公司组织部分员工到一博览会的A 、B 、C 、D 、E 五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若B 馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.24.已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.25如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.26.已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E 重合,点B、C(E)、F在同一条直线上,并按如下方式运动.运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为,当QC⊥DF 时暂停旋转;运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.设运动时间为t(s),中间的暂停不计时,解答下列问题(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时_________ s;(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.。
2013年重庆市中考数学试卷
2013年重庆市中考数学试卷一、选择题:(本大题共12个小题,每小题4分共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的。
1.(4分)(2013•重庆)在3,0,6,﹣2这四个数中,最大的数是( ) A . 0 B . 6 C . ﹣2 D . 3 2.(4分)(2013•重庆)计算(2x 3y )2的结果是( )A . 4x 6y 2B . 8x 6y 2C . 4x 5y 2D . 8x 5y 23.(4分)(2013•重庆)已知∠A=65°,则∠A 的补角等于( ) A . 125° B . 105° C . 115° D . 95°4.(4分)(2013•重庆)分式方程﹣=0的根是( ) A . x =1 B . x =﹣1 C . x =2 D . x =﹣25.(4分)(2013•重庆) 如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( )A . 40°B . 35°C . 50°D . 45°6.(4分)(2013•重庆)计算6tan45°﹣2cos60°的结果是( )A . 4B . 4C . 5D . 57.(4分)(2013•重庆)某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( ) A . 甲的成绩比乙的成绩稳定 B . 乙的成绩比甲的成绩稳定C . 甲、乙两人成绩的稳定性相同D . 无法确定谁的成绩更稳定8.(4分)(2013•重庆) 如图,P 是⊙O 外一点,PA 是⊙O 的切线,PO=26cm ,PA=24cm ,则⊙O 的周长为( )A . 18πcmB . 16πcmC . 20πcmD . 24πcm9.(4分)(2013•重庆)如图,在平行四边形ABCD 中,点E 在AD 上,连接CE 并延长与BA 的延长线交于点F ,若AE=2ED ,CD=3cm ,则AF 的长为( )A . 5cmB . 6cmC . 7cmD . 8cm10.(4分)(2013•重庆)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm 2,第(2)个图形的面积为8cm 2,第(3)个图形的面积为18cm 2,…,则第(10)个图形的面积为( )A . 196cm 2B . 200cm 2C . 216cm 2D . 256cm 211.(4分)(2013•重庆)万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州.若该轮船从万州出发后所用的时间为x (小时),轮船距万州的距离为y (千米),则下列各图形中,能够反映y 与x 之间函数关系的大致图象是( )A .B .C .D .12.(4分)(2013•重庆)一次函数y=ax+b (a≠0)、二次函数y=ax 2+bx 和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A 点的坐标为(﹣2,0),则下列结论中,正确的是( )A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题:(本大题共6个小题,每小题4分共24分)13.(4分)(2013•重庆)实数6的相反数是_________.14.(4分)(2013•重庆)不等式2x﹣3≥x的解集是_________.15.(4分)(2013•重庆)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:小时) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是_________小时.16.(4分)(2013•重庆)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为_________.(结果保留π)17.(4分)(2013•重庆)从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为_________.18.(4分)(2013•重庆)如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一象限,OA=2,∠AOC=60°.点D在边AB上,将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为_________.三、解答题:(本大题共2个小题,每小题7分,共14分)19.(7分)(2013•重庆)计算:(﹣3)0﹣﹣(﹣1)2013﹣|﹣2|+(﹣)﹣2.20.(7分)(2013•重庆)作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A、B、C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)作△ABC关于直线l:x=﹣1对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.四、解答题:(本大题共4个小题,每小题10分,共40分)21.(10分)(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.22.(10分)(2013•重庆)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制了如图所示的统计图,由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.23.(10分)(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)24.(10分)(2013•重庆)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.五、解答题:(本大题共2个小题,每小题12分共24分)25.(12分)(2013•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.26.(12分)(2013•重庆)已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.2013年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的。
2013年重庆市中考数学试卷-答案
重庆市2013年初中毕业暨高中招生考试数学答案解析一、选择题 1.【答案】B【解析】3,0,6,2-这四个数中,最大的数是6. 故选B .【提示】根据有理数的大小比较法则: ①正数都大于0; ②负数都小于0; ③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可得出答案. 【考点】有理数大小比较 2.【答案】A【解析】326(2)4x y x =. 故选A .【提示】根据积的乘方的知识求解即可求得答案. 【考点】幂的乘方与积的乘方 3.【答案】C【解析】65A ∠=︒Q ,A ∴∠的补角18065115=︒-︒=︒. 故选C .【提示】根据互补两角之和为180︒求解即可. 【考点】余角和补角 4.【答案】D【解析】去分母得220x x -+=,解得2x =-,经检验2x =-是分式方程的解. 故选D .【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【考点】解分式方程 5.【答案】A【解析】AD 平分BAC ∠,70BAD ∠=︒,2140BAC BAD ∴∠=∠=︒,【解析】如图,连接OA,【解析】设AB的中点是O,连接OE,1111x20.【答案】(1)111A B C △如图所示:(2)设两组分别为A,B,其中4个人分别为:1A,2A,1B,2B,根据题意画树状图得出:8224(Ⅰ)当0 1.5t≤≤时,如图1所示,(Ⅱ)当1.5 4.5t<≤时,如图2所示,此时重叠部分为四边形00D E KN,1(Ⅲ)当4.56t<≤时,如图3所示,1(Ⅰ)当QB QP=时(如图4),(Ⅱ)当BQ BP=时,则11B Q B C=,若点Q在线段11B E的延长线上时(如图5),若点Q在线段11E B的延长线上时(如图6),1CB CB =Q ,1CQ CB CB ∴==,又Q 点Q 在直线CB 上,0180α︒<︒<,∴点Q 与点B 重合,此时B 、P 、Q 三点不能构成三角形.综上所述,存在30α=︒,75︒或165︒,使BPQ △为等腰三角形.【提示】(1)在Rt ADE △中,解直角三角形即可;(2)在AED △向右平移的过程中,(Ⅰ)当0 1.5t ≤≤时,如图1所示,此时重叠部分为一个三角形; (Ⅱ)当1.5 4.5t <≤时,如图2所示,此时重叠部分为一个四边形;(Ⅲ)当4.56t <≤时,如图3所示,此时重叠部分为一个五边形;(3)根据旋转和等腰三角形的性质进行探究,结论是:存在α使BPQ △为等腰三角形,如图4、图5所示.【考点】几何变换。
2013年重庆市中考数学试卷
C. a>b>0
D. a>k>0 数学试卷 第 2 页(共 6 页)
二、填空题:(本大题共 6 个小题,每小题 4 分,共 24 分)请将每小题的答案直接填在答. 题.卡.(卷.)中对应的横线上.
13.实数 6 的相反数是
.
14.不等式 2x 3≥x 的解集是
.
15.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了 10 名
学生,其统计数据如下表:
时间(单位:小时)
4
3
2
10人数2 Nhomakorabea4
2
1
1
则这 10 名学生周末利用网络进行学习的平均时间是
小时.
16.如图,在边长为 4 的正方形 ABCD 中,以 AB 为直径的半圆与
对 角 线 AC 交 于 点 E , 则 图 中 阴 影 部 分 的 面 积
为
.(结果保留 π )
17.从 3 , 0 , 1, 2 , 3 这五个数中,随机抽取一个数,作为函数
是 99.68 环,甲的方差是 0.28 ,乙的方差是 0.21,则下列说法中,正确的是
(
)
A.甲的成绩比乙的成绩稳定
B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩的稳定性相同
D.无法确定谁的成绩更稳定
效
数学试卷 第 1 页(共 6 页)
8.如图, P 是 O 外一点, PA 是 O 的切线, PO 26 cm , PA 24 cm ,则 O 的周长为
10. 下 列 图 形 都 是 由 同 样 大 小 的 矩 形 按 一 定 的 规 律 组 成 , 其 中 第 (1) 个 图 形 的 面 积 为 2 cm2 ,第(2)个图形的面积为 8 cm2 ,第(3)个图形的面积为18 cm2 ,……,则(10)第
重庆市2013年初中毕业暨高中招生考试(模拟
重庆市2013年初中毕业暨高中招生考试(模拟)数 学 试 题(本卷共五个大题 满分:150分 考试时间:120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a--,对称轴公式为2b x a =-.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.-4的绝对值是( )A .4B .-4C .±4D .41 2.计算()23y x 的结果是( )A .29y x B .25y x C .26y x D .y x 53.正六边形的内角和为( )度A .1080°B .900°C .720°D .540° 4.中招体育测试后,学校从九年级(3)班50名同学中随机抽取6名学生的体育成绩,分别如下:50,50,48,50,48,42,关于这组数据,下列说法不正确的是( )A .极差是8B .众数是50C .平均数是48D .中位数是49°5.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,则∠CDA 的度数为( )A .22.5°B .67.5°C .70°D .75°A .2B .1C .3D .07.如图,AB 为⊙O 的直径,C 、D 为⊙O 上两点,∠ABC=60,则∠D 的度数为( ) A .60° B .30° C .45° D .75°8.如图,一次函数y=ax+b 和y=mx+n 交于点(-2,1),则当y1>y2时,x 的范围是( ) A .x>-2 B .x<-2 C .x<1 D .x>19.已知△ABC 的三边长分别为1、5、x ,周长为整数,则△ABC 形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.如图,①图由1张小正方形纸片组成,由6张同样大小的小正方形纸片可以组成②图,由15张同样大小的小正方形纸片可以组成图③,……,以此规律组成第⑤图需要的同样大小的小正方形纸片张数( )A.28B.36C.45D.6611. 4月20日,雅安芦山发生地震,某武警部队接到命令后,立即乘汽车以最快的速度赶往雅安芦山县,到芦山县城后,按指挥部统一部署立即前往重灾区龙门乡,部队在进行途中遇山体滑坡,道路阻断,部队疏通道路后又以原来的速度赶往龙门乡,在规定时间内到达了目的地,设部队接到命令后出发所用时间为t 小时,部队离开芦山县城的距离为S 千米,下列图象能大致反应S 与t 的函数关系的是( )12.二次函数)0(2≠++=a c bx ax y 的图象如图所示,且经过点(-1,0),则下列结论中,正确的是( )c18.甲乙丙三人进行智力抢答活动,规定:在抢答过程中甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答。
2013年中考数学试题及答案
2013年中考数学试题及答案一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 已知一个长方体的长、宽、高分别为10cm、8cm和6cm,其体积是多少立方厘米?A. 480B. 240C. 360D. 320答案:A3. 下列哪个表达式等价于 \( a^2 - b^2 \)?A. \( (a + b)(a - b) \)B. \( (a - b)(a + b) \)C. \( (a + b)^2 \)D. \( (a - b)^2 \)答案:B4. 一个数的75%是150,那么这个数是多少?A. 200B. 300C. 400D. 100答案:B5. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 20答案:D6. 下列哪个数是无理数?A. 3.14B. 2.71828C. \( \sqrt{2} \)D. 1/3答案:C7. 一个数的3/4加上它的1/2等于21,这个数是多少?A. 12B. 16C. 24D. 8答案:B8. 一个圆的直径是14cm,那么它的半径是多少厘米?A. 7B. 14C. 28D. 21答案:A9. 一个数的1/3与它的1/4的和是10,这个数是多少?A. 24B. 30C. 40D. 60答案:B10. 下列哪个数是最小的负整数?A. -1B. -2C. -3D. -4答案:A11. 一个数的2倍加上3等于这个数的3倍减去5,求这个数。
A. 8B. 5C. 10D. 6答案:B12. 一个等腰三角形的两个底角相等,顶角是80度,那么底角是多少度?A. 50B. 60C. 70D. 80答案:A二、填空题(每题4分,共24分)13. 一个数的1/2加上它的1/3等于22,这个数是________。
答案:3614. 一本书的价格是36元,打8折后的价格是________元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市璧山县大路中学2013年中考第二次模拟考试数学试题(全卷共四个大题,满分150分,考试时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2ab ac a b --,对称轴公式为ab x 2-=.一、选择题 (本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1.5-的倒数是( )A .5B .5-C .15D .15-2.计算422x x ÷的结果正确的是( ) A .2xB .22xC .62xD .82x3.不等式组⎩⎨⎧<->,0122x x 的解是( )A .2>xB .5.0<xC .25.0<<xD .无解4.如图,直线AB CD ∥,∠1=60°,∠2=50°,则E ∠=( ) A .80° B .60° C .70° D .50° 5.下列说法中不正确...的是( ) A .要反映我市一周内每天的最低气温的变化情况宜采用折线统计图 B .方差反映了一组数据与其平均数的偏离程度 C .打开电视正在播放上海世博会的新闻是必然事件 D .为了解一种灯泡的使用寿命,应采用抽样调查的办法6.如图,A D 、是O ⊙上的两个点,BC 是直径,若D 35∠=°, 则OAC ∠等于( )A .65°B .35°C .70°D .55° 7.如图所示的由小立方体组成的几何体的俯视图是( )A .随机事件发生的可能性是50%B .一组数据2, 2,3,6的众数和中位数都是2C .为了解某市5万名学生中考数学成绩,可以从中抽取10名学生作为样本D .若甲组数据的方差20.31S =甲,乙组数据的方差20.02S =乙, 则乙组数据比甲组数据稳定6题图2 A CDB14题图E8.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数是( )A.70° B.65° C.60° D.50°9、如图,⊙O 是ABC ∆的外接圆,AB 是直径,若︒=∠50B ,则A ∠ 等于( ) A .60º B .50º C .40º D .30º10、如图,在平行四边形ABCD 中,∠A=60°,AB=6厘米,BC=12厘米,点P 、Q 同时从 顶点A 出发,点P 沿A→B→C→D 方向以2厘米/秒的速度前进,点Q 沿A→D 方向以1厘米/秒的速度前进,当Q 到达点D 时,两个点随之停止运动.设运动时间为x 秒,P 、Q2B11、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有( )个.A 145B 146C 180D 18112、如图,矩形OABC 在平面直角坐标系中的位置如图所示,3OA =,2AB =.抛物线2y ax bx c =++(0a ≠)经过点A 和点B ,与x 轴分别交于点D 、E (点D 在点E 左侧),且1OE =,则下列结论:①0>a ;②3c >;③20a b -=;④423a b c -+=;⑤连接AE 、BD ,则=9ABDE S 梯形,其中正确结论的个数为 ( ) A .1个 B .2个 C .3个 D .4个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将正确答案直接填在题后的横线上.13.全国两会期间, “十二五”期间,将新建保障性住房36 000000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把O CB A A E BC FG D 1 2 第10题图第9题图115233(第15题)36000000用科学记数法表示应是 .14.两个相似多边形的面积比是9:16,其中较小多边形周长为36cm ,则较大多边形周长为cm .15.某校九年级二班50名学生的年龄情况如下表所示:则该班学生年龄的中位数为 .16.已知扇形的圆心角为120°,半径为6,则扇形面积是 .17.标有1,1,2,3,3, 5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x ,朝下一面的数为y ,得到平面直角坐标系中的一个点(x ,y ).已知小华前二次掷得的两个点所确定的直线经过点P(4,7),则他第三次掷得的点也在这条直线上的概率为 .18、甲、乙、丙三人在A 、B 两块地植树,其中甲在A 地植树,丙在B 地植树,乙先在A 地植树,然后转到B 地.已知甲、乙、丙每小时分别能植树8棵,6棵,10棵.若乙在A 地植树10小时后立即转到B 地,则两块地同时开始同时结束;若要两块地同时开始,但A 地比B 地早9小时完成,则乙应在A 地植树 小时后立即转到B 地.三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:()0213()56sin 452π--+----20.解方程:25231x x x x +=++四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演 算过程或推理步骤.21.先化简,再求值: 221241442a a a a a a a -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭,其中a 是满足不等组⎩⎨⎧>>-3227a a的整数解.22.作图:请你作出一个以线段a 为腰,12α∠为顶角的等腰三角形. (要求:用尺规作图,并写出已知、求作,保留作图痕迹,不写作法和结论). 已知:求作:23. 重庆国际车展依托中国西部汽车工业的个性与特色,围绕"发现汽车时尚之美"的展会主题,已成功举办了十三届。
在第十三届汽车展期间,某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销.C 型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D 型号轿车有多少辆?请你将两幅统计图补充完整;(2)A 型车的颜色有红、白、黑、蓝四种,红色的特别畅销,当只剩两辆红色时,有四名顾客都想要红色的,经理决定用抽签的方式决定红色车的归属,请用列表法或画树状图的方法,求顾客甲、乙都抽到红色的概率.24、如图,在正方形ABCD 中,点E 是AB 中点,点F 是AD 上一点,且DE =CF ,ED 、FC 交于点G ,连接BG ,BH 平分∠GBC 交FC 于H ,连接DH 。
(1)若DE =10,求线段AB 的长;(2)求证:DE -HG =EG 。
αaC 20%B20%A 35%D各型号参展轿车数的百分比 GHF E DCBA25.如图,已知抛物线与x 轴交于A B 、两点,A 在B 的左侧,A 坐标为(1,0),- 与y 轴交于点(0,3),C ABC ∆的面积为6. (1)求抛物线的解析式;(2)抛物线的对称轴与直线BC 相交于点,M 点N 为x 轴上一点,当以,,M N B 为顶点的三角形与ABC ∆相似时,请你求出BN 的长度;(3)设抛物线的顶点为,D 在线段BC 上方的抛物线上是否存在点,P 使得PDC ∆是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.26.如图,已知△ABC是等边三角形,点O为是AC的中点,OB=12,动点P在线段AB上从点A向点B设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在直线OB上, 取OB的中点D,以OD为边在△AOB内部作如图所示的矩形ODEF,点E 在线段AB上.(1)求当等边△PMN 的顶点M 运动到与点O重合时t的值;(2)求等边PMN △ 的边长(用t的代数式表示);(3)设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并写出相应的自变量t的取值范围;(4) 点P在运动过程中,是否存在点M ,使得△EFM是等腰三角形? 若存在,求出对应的t的值;若不存在,请说明理由.AF ED C BO AF EDCBOAF EDCBO参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBDCCDDBCBDC二、填空题:13.3.6×107; 14.48; 15.15岁; 16.π12; 17.2/3; 18.18.三、19.解:原式145=+--…………5分 0= …………1分20.解:解得:1x =- …………4分经检验,1x =-是原方程的增根 …………1分 ∴原方程无解 …………1分四.21.解:原式=()aaa a a a a -÷⎥⎦⎤⎢⎣⎡-+---4)2(2212(2分) ()()()()aaa a a a a a -⋅--+--=422212(3分) ()a a a a a -⋅--=4242()221-=a (6分) 解不等式组得523<<a ,∴ a =2,3,4, (8分) ∵ 原式中a ≠0,2,4, ∴ a =3, (9分) ∴ 当a =3时,原式=1. (10分)22. 已知:线段a 和角α∠ ……………………………………………1分求作:,ABC ∆ 使得:,AB AC a ==12BAC α∠=∠ ………3分 作图(略) ……………………………………………………………6分23.(1)参加展销的D 型号轿车有 1000×(1-35%-20%-20%)=250(辆) (2分)补图:D :25%, C :100. (6分) (2)列表或画树状图. (略) (8分)共有12种等可能的结果,其中甲乙都抽得红色结果有2种, ∴ 甲乙都抽得红色的概率61122==P . (10分) 24.(1)AB=45(2)证明在正方形ABCD中易证RT△CDF≅RT△DAE∴∠DGE=∠DAE=RT∠∴∠EGC=∠EBC=RT∠∴∠EGC+∠EBC=180°∴B、C、G、E四点共圆∠AED=∠BCG连EC,∴∠BGC=∠BEC因为BE=EA BC=AD∴RT△BCE≅RT△ADE∴∠AED=∠BEC∴∠BGC=∠AED∴∠BGC=∠BCG∴BG=BC又因为BH平分∠GBC∴BG是GC的中垂线∴GH=HC=GC/2=4√(5)/5/2=2√(5)/5∴GH=DG∴△DGH是等腰直角三角形即:DE-HG=EG。