七年级下数学第九周练习

合集下载

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典练习题(含答案解析)

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典练习题(含答案解析)

一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤2.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <- 3.若a b >,则下列结论不一定成立的是( )A .a c b c ->-B .22ac ab >C .c a c b -<-D .a c b c +>+4.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤5.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .26.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >0 7.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( ) A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a8.下列变形中,不正确的是( )A .若a>b ,则a+3>b+3B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.9.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( ) A .a >1B .a≤2C .1<a≤2D .1≤a≤210.若a b <,则下列不等式中不正确的是( ) A .11+<+a b B .a b ->-C .22a b --<--D .44a b < 11.不等式325132x x ++≤-的解集表示在数轴上是( ) A .B .C .D .12.关于x 的不等式620x x a-≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >3 13.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤214.若线段4、4、m 能构成三角形,且使关于x 的不等式组23834x m x m >-⎧⎨-+≥-⎩有解的所有整数m 的和为( ) A .6 B .1C .2D .315.不等式1322x x -+>的解在数轴上表示正确的是( ) A . B .C .D .二、填空题16.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.17.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.18.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.19.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________. 20.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______.21.不等式12x -<的正整数解是_______________.22.若关于x 的不等式组13420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.23.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.24.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____ 25.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.26.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.三、解答题27.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .28.解下列不等式组: (1)3(1)51124x x x x -<+⎧⎨-≥-⎩(2)3(2)421152x x x x --≥⎧⎪-+⎨>⎪⎩29.解不等式组2536x x +<⎧⎨-<⎩,并把解集在数轴上表示出来.30.若关于x 的方程23244x m m x -=-+的解不小于7183m --,求m 的取值范围.。

苏科版七年级下数学九周周末练习题

苏科版七年级下数学九周周末练习题

七年级数学第九周练习题一、选择题1.下列计算中,运算正确的有几个( )(1) a 5+a 5=a 10 (2) (a +b )3=a 3+b 3 (3) (-a +b )(-a -b )=a 2-b 2 (4) (a -b )3= -(b -a )3A 、0个B 、1个C 、2个D 、3个 2.下列各式的计算中,正确的是( ) A 、(a 5÷a 3)÷a 2=1 B 、(-2a 2)3= -6a 6 C 、-(-a 2)4=a 8 D 、(a 2)3=a 53.计算()()533522aa -÷-的结果是( )A 、—2 B 、2 C 、4 D 、—44.下列各式中,计算错误的是( )A 、(x +1)(x +2)=x 2+3x +2B 、(x -2)(x +3)=x 2+x -6C 、(x +4)(x -2)=x 2+2x -8D 、(x +y -1)(x +y -2)=(x +y )2-3(x +y )-25.若))(3(152n x x mx x ++=-+,则m 的值为 ( )A .5- B .5 C .2- D .2 6.已知(a +b )2=m ,(a —b )2=n ,则ab 等于( )A 、()n m -21B 、()n m --21C 、()n m -41D 、()n m --41 7.若x 2+mx +1是完全平方式,则m =( )。

A2 B-2 C ±2 D ±48.)12)(12(+-+x x 的计算结果是 ( )A.142+x B. 241x - C. 241x + D. 142--x 9.已知2249x mxy y -+是关于,x y 的完全平方式,则m 的值为( )A.6 B.6± C.12 D.12±10如图,在长为a 的正方形中挖掉一个边长为b 图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .a 2-b 2=(a +b )(a -b )B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .(a +2b )(a -b )=a 2+ab -2b 2 11.如图,一块四边形绿化园地,四角都做有半径为R 的圆形喷水池,则这四个喷水池占去的绿化园地的面积为( ) A 、22R π B 、24R π C 、2R π D 、不能确定12.已知:有理数满足0|4|)4(22=-++n n m ,则22n m 的值为( )A.±1 B.1 C. ±2 D.2 13.若N b a b a ++=-22)32()32(,则N 的代数式是( )A. -24ab B.12ab C.24ab D.-12ab14.下列运算中,正确的是( )(A )()222a b a b +=+ (B )()2222x y x xy y --=++(C )()()2326x x x +-=- (D )()()22a b a b a b --+=-15.如果一个单项式与3ab -的积为234a bc -,则这个单项式为( )A.214a c B.14ac C.294a c D.94ac 16.为了应用平方差公式计算()()c b a c b a -++-,必须先适当变形,下列各变形中,正确的是( )A.()[]()[]b c a b c a +--+B.()[]()[]c b a c b a -++-C.()[]()[]a c b a c b +--+D.()[]()[]c b a c b a -+--17.在①x 2-(-2)2=(x +2)(x -2);②(2a +b )2=4a 2+b 2;③(81×10)0=1;④(m +2)(m -4)=m 2-8中正确的算式( ) A . 1个 B .2个 C .3个 D . 4个18.若,09612=+-x x那么x 2等于 ( )A .2 B .3 C .6 D .-619.如果(x -2)(x +3) = x 2+px +q ,那么p 、q 的值为 ( )A .p =5,q =6B .p =1,q =-6C .p =1,q =6D .p =5,q =-6 20.下列各式中,可以作为因式分解的最后结果的是 ( )A.+(2m -n )][m -(2m -n )] B .a (x 2+y 2)+2axyC .(x 2+y 2+xy )(x 2+y 2-xy )D .a 2(3-a1) 21.)12)(12(+-+x x 的计算结果是 ( )A.142+x B. 241x - C. 241x + D. 142--x 22.已知M =8x 2-y 2+6x -2,N =9x 2+4y +13,则M -N 的值 ( )A .为正数B .为负数C .为非正数D .不能确定23.若二项式4m 2+9加上一个单项式后是一含m 的完全平方式,则这样的单项式的个数有( ) A .4个 B .3个 C .2个 D .1个24.)12()12)(12)(12(242+⋅⋅⋅+++n 的值是 ( )A. 12-nB. 122-nC. 142-nD. 1222-n25.规定一种运算:a *b =ab +a +b ,则a *(-b )+ a *b 计算结果为( )A. 0B. 2aC. 2bD.2a b26.已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别是( )A. 4,1 B. 2,23 C.5,1 D. 10,23 27.(-x -y )2 展开后的结果是( ) A .-x 2-2xy -y 2 B .x 2+2xy +y 2 C .-x 2-2xy +y 2 D .x 2-2xy +y 2 二、填空题1.若4a 2+ma +9是完全平方式,则m 的值为 .2.若多项式m xy 12x 92+-是完全平方式,则m = . 3.若x 2+kx +25是一个完全平方式,则k = .4.若m 2+n 2=6n -4m -13,则m 2-n 2 =_________. 5.单项式36a b 与229a b c 的公因式为 .6.若1,2=-=-c a b a ,则=-+--22)()2(a c c b a .7.若3,2a b ab +=-=,则22a b += ,()2a b -= ]8.已知a -a 1 =3,则a 2+a12 的值等于 · 9.如果x 2-kx +9y 2是一个完全平方式,则常数k =________________;10.若a —b =2,3a +2b =3,则3a (a —b )+2b (a —b )= .11.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y =________________; 三、解答题1.计算:①=+-22)2()2(y x y x _______。

沪科版数学七年级下册 第九章 分式应用题专项练习(举一反三) (PDF版)

沪科版数学七年级下册 第九章 分式应用题专项练习(举一反三) (PDF版)

专项练习1分式应用题专项练习(沪科版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.近年来,雾霾天气给人们的生活带来很大的影响,空气质量问题也受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备,每台B种设备价格比每台A种设备价格多0.2万元,花2万元购买A种设备和花3万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据单位实际情况,需购进A、B两种设备共18台,总费用不高于10万元,求A 种设备至少要购买多少台?2.我国的农作物主要以水稻、玉米和小麦为主,种植太单调不利于土壤环境的维护,而且对农业的发展也没有促进作用,为了鼓励大豆的种植,国家对种植大豆的农民给予补贴,调动农民种植大豆的积极性.我市乃大豆之乡,今年很多合作社调整种植结构,把种植玉米改成种植大豆,今年我市某合作社共收获大豆200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出14吨,由于今年我市小型大豆深加工企业的增多,预计能提前完成销售任务,在平均每天批发量不变的情况下,实际平均每天的零售量比原计划的2倍还多14吨,结果提前5天完成销售任务。

那么原计划零售平均每天售出多少吨?3.科技创新加速中国高铁技术发展,某建筑集团承担一座高架桥的铺设任务,在合同期内高效完成了任务,这是记者与该集团工程师的一段对话:记者:你们是用9天完成4800米长的高架桥铺设任务的?工程师:是的,我们铺设600米后,采用新的铺设技术,这样每天铺设长度是原来的2倍.通过这段对话,请你求出该建筑集团原来每天铺设高架桥的长度.4.小丽妈妈开了一家淘宝店,专门销售女士鞋子.小丽在销售单上记录了这两天的数据如下表:日期A款女鞋销量B款女鞋销量销售总额4月20日12双6双960元4月21日8双10双1000元(1)请问A,B两种鞋的销售价分别是多少?(2)小丽发现一个进货单上的一个信息:B款鞋的进价比A款鞋进价多20%,同样花费420元,进A款鞋的数量比进B款鞋的数量多2双.①请问两种鞋子的进价分别是多少?②小丽妈妈告诉小丽:今天利润达到了390元,其中B款鞋的销售量不少于7双,且不多于17双.那么小丽妈妈今天卖出A、B两种鞋共__________双.5.某商品经销店欲购进两种纪念品,用160元购进的种纪念品与用240元购进的种纪念品的数量相同,每件种纪念品的进价比种纪念品的进价贵10元.(1)求两种纪念品每件的进价分别为多少元?(2)若该商店种纪念品每件售价24元,种纪念品每件售价35元,这两种纪念品共购进1000件,这两种纪念品全部售出后总获利不低于4900元,问种纪念品最多购进多少件?6.某服装厂“双十一”前接到一份加工4500件服装的订单,应客户要求,需提前供货.该服装厂决定提高工作效率,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.求原计划每天加工服装的件数.7.一项工程,乙队单独完成比甲队单独完成需多用16天,甲队单独做3天的工作量乙队单独做需要5天才能完成.(1)甲,乙两队单独完成此项工程各需几天?(2)该项工程先由甲,乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.10.甲、乙两地相距120千米,一辆大巴车从甲地出发,行驶1小时后,一辆小汽车从甲地出发,小汽车和大巴车同时到达到乙地,已知小汽车的速度是大巴车的2倍,求大巴车和小汽车的速度.11.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.2倍,两人各加工600个这种零件,甲比乙少用4天.求乙每天加工零件的个数.12.某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B 种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;(1)求A,B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?13.我市为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作8天后,余下的工程由甲工程队单独来做还需3天完成.(1)问我市要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资2万元.两个工程队在完成这项工程后,共获得工程工资款总额65万元,请问该工程甲、乙两工程队各做了多少天?14.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.15.2020年新冠病毒在全球蔓延,口罩成为抗击病毒传播的有效物资,某厂需要生产一批口罩,该厂有甲、乙两种型号的生产机器,若用甲机器单独完成这批订单需要消耗原料费76万元,若用乙机器单独完成需要消耗原料费26万元,已知每生产一个口罩,甲机器消耗原料费比乙机器消耗原料费多用0.5元.(1)求乙机器生产一个口罩需要消耗多少原料费?(2)为了尽快完成这批订单,该厂决定使用甲、乙机器一起完成这批订单,消耗原料费合计不超过39万元,则乙机器至少生产多少口罩?16.一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.17.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?18.某玩具店用2000元购进一批玩具,面市后,供不应求,于是店主又购进同样的玩具,所购的数量是第一批数量的3倍,但每件进价贵了4元,结果购进第二批玩具共用了6300元.若两批玩具的售价都是每件120元,且两批玩具全部售完.(1)第一次购进了多少件玩具?(2)求该玩具店销售这两批玩具共盈利多少元?19.某店准备购进A,B两种口罩,A种口罩毎盒的进价比B种口罩每盒的进价多10元,用2000元购进A种口罩和用1500元购进B种口罩的数量相同.(1)A种口罩每盒的进价和B种口罩每盒的进价各是多少元?(2)商店计划用不超过1770元的资金购进A,B两种口罩共50盒,其中A种口罩的数量应多于B种口罩数量,该商店有几种进货方案?20.从青岛到济南有南线和北线两条高速公路:南线全长400千米,北线全长320千米.甲、乙两辆客车分别由南线和北线从青岛驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南,求两辆客车从青岛到济南所用的时间是多少小时?21.某商场购进甲、乙两种商品,甲种商品共用了元,乙种商品共用了元.已知乙种商品每件进价比甲种商品每件进价多元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;22.列方程解应用题.2019年9月25日,被誉为“世界新七大奇迹”之首的北京大兴国际机场正式投运.某校组织初二年级同学到距学校30公里的北京大兴国际机场进行参观.同学们乘坐大巴车前往,张老师因学校有事晚出发了5分钟,开私家车沿相同路线行进,结果和同学们同时到达.已知私家车的速度是大巴车速度的1.2倍.求大巴车的速度是多少?23.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?24.某地在城区美化工程招标时,有甲、乙两个工程队投标.经测算,获得以下信息:信息1:乙队单独完成这项工程需要60天;信息2:若先由甲、乙两队合做16天,剩下的工程再由乙队单独做20天可以完成;信息3:甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.根据以上信息,解答下列问题:(1)甲队单独完成这项工程需要多少天?(2)若该工程计划在50天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?25.八年级为筹备红色研学旅行活动,王老师开车前往距学校180的研学训练营地考察,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前了40到达研学训练营地.求王老师前一小时行驶速度.参考答案1.(1)A种设备每台万元,则B种设备每台万元;(2)A种设备至少要购买4台【来源】【新东方】2020年1月江西南昌育华初二上学期期末数学试卷2.6吨【来源】黑龙江省黑河市三县区(嫩江县、逊克县、爱辉区)2019-2020学年八年级上学期期末数学试题3.该建筑集团原来每天铺设高架桥300米.【来源】云南省昆明市官渡区2019-2020学年八年级上学期期末数学试题4.(1)A,B两种鞋的销售价分别是50元/双和60元/双;(2)①35元和42元;②23或24.【来源】浙江省温州市瑞安市西部联考2019-2020学年七年级下学期数学试题5.(1)纪念品每件进价20元;纪念品每件进价30元;(2)最多购进纪念品100件.【来源】黑龙江省哈尔滨市虹桥中学2019-2020学年九年级下学期阶段检测数学试题6.原计划每天加工服装150件.【来源】河南省洛阳市洛宁县2019-2020学年八年级下学期期中数学试题7.(1)甲队单独完成此项工程需24天,乙队单独完成此项工程需40天;(2)甲,乙两队至少合作10天.【来源】黑龙江省哈尔滨市道里区2019-2020学年八年级上学期期末数学试题8.(1)甲队单独完成此项任务需45天,乙队单独完成此项任务需30天;(2)4天【来源】广西壮族自治区北海市2019-2020学年八年级上学期期末数学试题9.(1)原计划每天生产的零件2400个,规定的天数是10天;(2)原计划安排的工人人数480人.【来源】山东省禹城市2019-2020学年八年级上学期期末数学试题10.大巴车的速度为60千米/小时,则小汽车的速度为120千米/小时【来源】海南省保亭县2019-2020学年八年级上学期期末数学试题11.25个【来源】吉林省长春市东北师大附中新城校区2019-2020学年八年级下学期期中数学试题12.(1)种口罩单价为3元,种口罩单价为2.5元;(2)种口罩最多能购进1000个.【来源】黑龙江省哈尔滨市第十七中学2019-2020学年九年级下学期3月检测数学试题13.(1)15天;(2)甲工程队做了5天,乙工程队做了20天本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

第九周周末作业

第九周周末作业

七年级下第九周数学周末作业班级:姓名:座号:一、精心选一选:(本题共12小题,每小题3分,共36分)1. (3x2y)·(-43x4y)的结果是【】A.x6y2 B.-4x6y C.-4x6y2 D.x8y2. 同一平面内的三条直线a,b,c,若a⊥b,b∥c,则a与c【】A.平行 B.垂直C.相交 D.重合3. 下列等式恒成立的是【】A.(m+n)2=m2+n2 B.(2a-b)2=4a2-2ab+b2C.(4x+1)2=16x2+8x+1 D.(x-3)2=x2-94. 以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是【】A.1个 B.2个 C.3个 D.4个5. 若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是【】A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定6. 一辆汽车由深圳匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s(千米)和行驶时间t(小时)的关系的是【】.7. 如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()A.相等B.互补C.相等或互补D.相等且互补8. 如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是【】A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时9. 下面是一名学生所做的4道练习题:①(-3)0=1;②b a ab b a 222253-=-③44144m m-=;④94)32)(32(2-=---a a a ,⑤100÷10-1=10。

对的个数是【 】 A .4 B .1 C . 2 D .310. 如图,把矩形ABCD 沿EF 对折,若∠1 = 500,则∠AEF 等于【 】 A .1500 B .800 C .1000 D .1150 第12题图11. 如图,在折纸活动中,小明制作了一张△ABC 纸片,点D,E 分别在AB,AC 上,将△ABC 沿着DE 分别 折叠压平,A 与A ′重合,若∠A=75°,则∠1+∠2=【 】 A.150° B.210° C.105° D.75° 12. 如图,ADE ABC ∆≅∆,B ∠和D ∠对应,C ∠和E ∠对应,且 25=∠B ,105=∠E , 10=∠DAC ,则_____DFB ∠=【 】A.60°B.55°C.65°D.50° 二、认真填一填(每小题3分,共12分)13. 生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为______cm 14. 如图,AD ∥BC ,∠A 是∠ABC 的2倍,若BD 平 分∠ABC ,则∠ADB =____。

惠州市七年级数学下册第九单元《不等式与不等式组》经典练习题(培优专题)(1)

惠州市七年级数学下册第九单元《不等式与不等式组》经典练习题(培优专题)(1)

一、选择题1.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下2.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .103.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 4.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥5.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .26.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .7.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解8.已知01m <<,则m 、2m 、1m( ) A .21m m m >>B .21m m m >>C .21m m m>>D .21m m m>> 9.若|65|56x x -=-,则x 的取值范围是( )A .56x >B .56x <C .56x ≥D .56x ≤10.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A .B .C .D .11.若a b <,则下列不等式中不正确的是( ) A .11+<+a bB .a b ->-C .22a b --<--D .44a b< 12.关于x 的不等式620x x a -≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >313.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .14.若01x <<,则下列选项正确的是( )A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 15.下列是一元一次不等式的是( ) A .21x > B .22x y -<-C .23<D .29x <二、填空题16.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 17.如果点P (3m +6,1+m )在第四象限,那么m 的取值范围是_____. 18.不等式组63024x x x -⎧⎨<+⎩的解集是__.19.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 20.不等式组2x ax >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 21.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶. 22.若不等式a x cx c b +>⎧⎨≥-⎩的解为x≥-b+c ,则a ,b 的大小关系一定满足:a___b .23.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限 24.若不等式组30x ax >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________.25.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.26.关于x 的不等式组460930x x ->⎧⎨-≥⎩的所有整数解的积是__________.三、解答题27.某电器超市销售A 、B 两种型号的电风扇,表中是近两周的销售情况:(2)若A 、B 两种型号的电风扇每台进价分别为200元,170元,该超市准备采购这两种型号的电风扇共30台,且费用不多于5400元. ①最多能采购A 种型号的电风扇多少台?②设超市销售完这30台电风扇所获得的利润为W 元,试问利润能否达到1400元?若能,请给出相应的采购方案;若不能,请说明理由.28.入汛以来,我国南方地区发生多轮降雨,造成的多地发生较重洪涝灾害.某爱心机构将为一受灾严重地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元? 29.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围; (2)试化简1a a 2-++. 30.解下列不等式(组) (1)22143x x +-≥ (2)2731205x x x +>-⎧⎪-⎨≥⎪⎩。

七年级数学下册周周练九作业新版新人教版

七年级数学下册周周练九作业新版新人教版

12.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于 28” 为一次运算.若运算进行了 3 次才停止,则 x 的取值范围是____2_<__x_≤_4_______.
13.(2022·山西)某品牌护眼灯的进价为 240 元,商店以 320 元的价格出售.五 一节期间,商店为让利于顾客,计划以利润率不低于 20%的价格降价出售,则该护 眼灯最多可降价____3_2___元.
二、填空题(每小题 4 分,共 20 分)
2x+4≥0 9.(2022·青海)不等式组 6-x>3 的所有整数解的和为___0_____.
2x-1<3
10.(丹东中考)不等式组 x>m
无解,则 m 的取值范围___m__≥_2______.
x<1, 11.(永州中考改编)若不等式组 x>m-1 恰有两个整数解,则 m 的取值范围 是____-__1_≤_m_<__0_______.
(2)当 y 为非负数时,求 x 的取值范围;
(3)当-1<y≤2 时,求 x 的取值范围.
1 解:(1)y=1-4x (2)∵y≥0,∴1-4x≥0,解得 x≤ (3)由(1)知 y=
4
1
1
1-4x,又∵-1<y≤2,∴-1<1-4x≤2,解得- ≤x< ,∴当-1<y
4
2
1
1
≤2 时,x 的取值范围是- ≤x<
解:设最多安排 a 名教师参加这次观影活动,则安排(100-a)名学生参加 20
这次观影活动,根据题意,得 24(100-a)+30a≤2440,解得 a≤ ,因为 3
a 为整数,所以 a 的最大整数值为 6,答:最多安排 6 名教师参加这次观影活动
16.(12 分)已知 4x+y=1.

人教版七年级数学下册第九单元测试题及答案

人教版七年级数学下册第九单元测试题及答案

七年级数学下册第九单元测试题及答案The document was prepared on January 2, 2021(第1题)甲乙(40千克)甲丙(50千克)(第8题)七年级数学第九章不等式与不等式组单元测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题每小题3分,共30分1、不等式的解集在数轴上表示如下,则其解集是A、x≥2B、x>-2C、x≥-2D、x≤-22、若0<x<1,则x、x2、x3的大小关系是A、x<x2<x3B、x<x3<x2C、x3<x2<xD、x2<x3<x3、不等式8-x>2的正整数解的个数是A、4B、1C、2D、34、若a为实数,且a≠0,则下列各式中,一定成立的是A、a2+1>1B、1-a2<0C、1+a1>1 D、1-a1>15、如果不等式⎩⎨⎧-byx<>2无解,则b的取值范围是A、b>-2B、b<-2C、b≥-2D、b≤-26、不等式组⎩⎨⎧++≥--8321)23(3xxx<的整数解的个数为A、3B、4C、5D、67、把不等式⎩⎨⎧-≥-3642>xx的解集表示在数轴上,正确的是A、C、8支点在中点处则甲的体重x的取值范围是A、x<40B、x>50C、40<x<50D、40≤x≤509、若a<b,则ac>bc成立,那么c应该满足的条件是A、c>0B、c<0C、c≥0D、c≤010、某人从一鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条2ba+元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是A、a>bB、a<bC、a=bD、与ab大小无关二、填空题每小题3分,共18分11、用不等式表示:x的3倍大于4__________________________.12、若a>b,则a-3______b-3 -4a______-4b填“>”、“<”或“=”.13、当x ______时,代数式213-x -2x 的值是非负数. 14、不等式-3≤5-2x <3的正整数解是_________________.15、某射击运动员在一次训练中,打靶10次的成绩为89环,已知前6次射击的成绩为50环,则他第七次射击时,击中的环数至少是______环.16、某县出租车的计费规则是:2公里以内3元,超过2公里部分另按每公里元收费,李立同学从家出发坐出租车到新华书店购书,下车时付车费9元,那么李立家距新华书店最少有______公里.三、解下列等式组,并将解集在数轴上表示出来.每题5分,共15分 17、21-x +1≥x 18、⎩⎨⎧-++-148112x x x x >< 19、3≤37x -6≤6四、解答题每题6分,共18分20、求不等式组 ⎪⎩⎪⎨⎧+≤-4210112x x x > 的整数解. 21、当a 在什么范围取值时,方程组 ⎩⎨⎧--=+123232a y x a y x >的解都是正数22、若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a -3|+b -4=0,c 是不等式组⎪⎪⎩⎪⎪⎨⎧++--21632433x x x x <> 的最大整数解,求△ABC 的周长. 五、第23题9分,第24题10分,共19分23、足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.一支足球队在某个赛季共需比赛14场,现已比赛了8场,输了一场,得17分,请问: 1前8场比赛中,这支球队共胜了多少场2这支球队打满14场,最高能得多少分3通过对比赛形势的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标24、双蓉服装店老板到厂家购A 、B 两种型号的服装,若购A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元.1求A 、B 两种型号的服装每件分别为多少元2若销售一件A 型服装可获利18元,销售一件B 型服装可获利30元,根据市场需要,服装店老板决定:购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后可使总的获利不少于699元,问有几种进货方案如何进货参考答案一、1、C ;2、C ;3、D ;4、A ;5、D ;6、B ;7、A ;8、C ;9、B ;10、A 二、11、3x >4; 12、>,<;13、x ≤-1;14、2,3,4;15、9环;16、8. 三、17、 x ≤1;18、x <2;19、1≤x ≤2四、20、6,7,8;21、a >73;22、3,4,4. 五、23、解:1设球队在前8场比赛中胜x 场,则平8-1-x =7-x 场,由题意得3x +7-x =17,解得x =52最后得分n 满足n ≤17+3×14-8=35.3球队要想达到预期目标,必须在余下14-8场比赛中得到29-17=12分,显然,胜4场比赛可积12分,从而实现目标,而6场比赛胜3场可积9分,余下3场每场均得1分,同样可得12分实现目标,所以球队要想实现目标,至少胜3场.24、解:1设A 种型号的服装每件x 元,B 种型号的服装每件y 元.依题意得:⎩⎨⎧=+=+18808121810109y x y x 解得:⎩⎨⎧==10090y x 2设B 型服装购进m 件,则A 型服装购进2m +4件,依题意得:⎩⎨⎧≤+≥+2842699)42(18m m 解得:219≤x ≤12.因为m 为正整数,所以m =10、11、12,2m +4=24、26、28.所以有三种进货方案:第一种:B 型服装购进10件,A 型服装购进24件;第二种:B 型服装购进11件,A 型服装购进26件;第三种:B 型服装购进12件,A 型服装购进28件;。

华师大版数学七年级下册第9章多边形 达标测试卷(含答案)

华师大版数学七年级下册第9章多边形 达标测试卷(含答案)

第9章多边形达标测试卷一、选择题(每题3分,共24分)1.下列图形中,具有稳定性的是()2.如图所示,∠B=35°,∠C=y°,∠BAD=x°,y与x的关系式为() A.y=145-x B.y=x-35C.y=x+55 D.y=x+35(第2题)(第4题)(第5题)3.下列长度的三条线段,能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.6,6,13 4.如图,在六边形ABCDEF中,若∠1+∠2=90°,则∠3+∠4+∠5+∠6=() A.180°B.240°C.270°D.360°5.如图,BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=()A.30°B.40°C.50°D.60°6.如图所示,图中共有三角形()A.5个B.6个C.7个D.8个(第6题)(第7题)7.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积为6 cm2,则阴影部分的面积为()A.1 cm2 B.32cm2C.2 cm2 D.52cm28.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉他,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种地砖的形状是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题(每题3分,共18分)9.如果一个三角形的一个内角等于相邻的外角,这个三角形是________三角形.10.△ABC中,∠A比∠B大10°,∠C=50°,则∠A=________.11.一个多边形外角和是内角和的29,则这个多边形的边数为________.12.△ABC中,∠A=x,∠B、∠C的角平分线的夹角为y,则y与x之间的关系可以表示为________.13.如图,直线AB∥CD,∠B=70°,∠D=30°,则∠E的度数是________.(第13题)14.在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC=________°.三、解答题(共58分)15.(8分)如图,试说明“三角形的外角和等于360°”.(第15题)16.(9分)已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a-b)2+(b-c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.17.(9分)看对话答题:小梅:“这个多边形的内角和等于1125°.”小红:“不对,你少加了一个角.”问题:她们在求几边形的内角和?少加的那个内角是多少度?18.(9分)如图,△ABC中,AE,CD是△ABC的两条高,AB=4,CD=2.(第18题)3(1)请画出AE,CD;(2)求△ABC的面积;(3)若AE=3,求BC的长.19.(11分)如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E,∠ABC=∠ACE.(第19题)(1)试说明:AB∥CE;(2)若∠A=50°,求∠E的度数.20.(12分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下空隙,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格.正多边形边数3456…n正多边形每个内角的度数…(2)如图所示,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)不能用正五边形的材料铺满地面的理由是什么?(4)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.(第20题)5答案一、1.D 2.B 3.A 4.C 5.A 6.A7.B8.B二、9.直角10.70°11.1112.y=90°+12x13.40°14.80或40点拨:当△ABC为锐角三角形时,如图①,(第14题)∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC为钝角三角形时,如图②,∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°,∠BAC=∠BAD-∠CAD=60°-20°=40°.综上所述,∠BAC=80°或40°.三、15.解:∵∠BAE+∠1=180°,∠CBF+∠2=180°,∠ACD+∠3=180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°.∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3),∵在△ABC中,∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.16.解:(1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形.(2)∵a=5,b=2,且c为整数,∴5-2<c<5+2,即3<c<7,∴c=4,5,6,∴△ABC周长的最小值为5+2+4=11;△ABC周长的最大值为5+2+6=13.17.解:设少加的那个内角为x°,多边形的边数为n,则1125+x=(n-2)180,x=(n-2)180-1 125,7 ∵0<x <180,∴0<(n -2)180-1 125<180, 解得8.25<n <9.25,∵n 为整数,∴n =9, 所以x =(9-2)×180-1 125=135,∴她们在求九边形的内角和,少加的那个内角为135度. 18.解:(1)如图.(第18题)(2)∵AB =4,CD =2,∴S △ABC =12 AB ·CD =12×4×2=4; (3)∵S △ABC =12AB ·CD =12 BC ·AE , ∴12BC ×3=4,∴BC =83.19.解:(1)∵CE 平分∠ACD ,∴∠ECD =∠ACE ,∵∠ABC =∠ACE ,∴∠ABC =∠ECD ,∴AB ∥CE . (2)∵∠ACD 是△ABC 的一个外角, ∴∠ACD =∠ABC +∠A ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠E =∠ECD -∠EBC =12∠ACD -12∠ABC =12∠A =25°. 20.解:(1)60°;90°;108°;120°;(n -2)·180°n(2)设这个正多边形的边数为n , 当360°÷(n -2)·180°n为正整数时,求出的n 值符合题意.360°÷(n -2)·180°n =2n n -2=2+4n -2,要使2+4n -2为正整数,则4为n -2的倍数 因此,n -2=1或2或4,即n =3或4或6.故如果限于用一种正多边形镶嵌,正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形.(3)由(2)知,当n =5时,360°÷(5-2)×180°5=103不为整数,故不能用正五边形的材料铺满地面.(4)(答案不唯一)选正方形和正八边形,画图结果如下所示:(第20题)设在一个顶点周围有m 个正方形,n 个正八边形,则m ,n 应是方程m ·90+n ·135=360即2m +3n =8的正整数解,解只有⎩⎨⎧m =1,n =2一组,故符合条件的图形只有一种.。

初一数学第9周周末练习

初一数学第9周周末练习

初一数学第九周周末练习丁其军一、细心选一选(每小题3分,计30分)1、-3的绝对值是 ( )A.-13B.3±C. 3D. 13 2、一个数的平方是49,这个数是 ( )A.7B.-7C.7±D. 以上都对3、两数相加和是负数,他们的积是正数,则这两个数 ( )A.都是正数B.都是负数C.一正一负D.负数和04、绝对值小于8的所有整数的积是 ( )A.负数B.正数C. 0D. 非负数5、在代数式:①2x 2 ②-3 ③ x-2y ④ t 中,单项式个数是 ( )A.4 个B.3个C.2个D. 1个6、多项式a 3b-2ab+b 5的次数是 ( )A.5B.6C.10D. 137、若-4s x t 与3s 3t y 是同类项,则 ( )A.x=3,y=0B. x=1,y=3C. x=3,y=1D.无法求解8、数列:2,3,5,8,13,a,b ……中a 、b 值是 ( )A.a=15,b=17;B.a=21,b=34C.a=21,b=37D.a=19,b=349、下列运算结果中,最大的是 ( )A.-3+7B.-6-22C.0-1D.-1610、若()2320x y -++=,则单项式:-xy 2的值是 ( )A.12B.-12C.36D.-36二、耐心填一填(空2分,计16分)11、任写一个与325y x -是同类项的单项式 ;12、(-6)+(-6)=___________ , (-6)×(-6)=___________;13、(-6)-(-6)=___________, (-6)÷(-6)=___________;14、-3x+7x=____________;22122a b a b --=______________;15、若x 与y 互为相反数,则x+y= ;三、专心算一算16、计算:(本题16分)(1).2-(-8)+(-5) (2).137()(8)248--⨯-(3). 8169-÷(-8) (4) -14+(-3)3÷(-3)2.17、化简:(本题16分)(1) x x x x -+-632 (2).22223y y x y y x -++-(3).5()4(32)x y x y +-- 22(4).(331)(568)a a a a ---+-四、静心做一做(每空3分,共12分)18、观察下列排列规律,再填空(1) 第4幅图有_______个圆圈,第99幅图有_______个圆圈;(2) 第n 幅图有__________________个圆圈19、“算24”规则:只能用+-×÷和括号将-4,5,-5,1连接起来, 使得结果等于24. (本题10分)(3)(2)(1)……。

第九周圆周角练习题

第九周圆周角练习题

第九周圆周角【要点整理】1.圆周角的概念:____________________________ __ __叫做圆周角.如图,判别图形中的角哪些是圆周角____________.2.圆周角定理及推论(1) 圆周角定理:圆周角的度数等于 .(2)推论:①在同圆或等圆中,同弧或等弧所对的圆周角,都等于____________;②半圆(或直径)所对的圆周角是______;____________所对的弦是直径.3.确定圆的条件(1) 确定圆的两个要素: 和 .(2) 的三点确定一个圆.(3)三角形的外心是三角形的交点,它到三角形的距离相等.考点1:圆周角定理及其推论【例1】如图,把一个量角器放置在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是()A 30°B 60°C 15°D 20°举一反三:1.如图,C是⊙O上一点,O是圆心,若∠C=35°,则∠AOB的度数为()A. 35°B. 70°C. 105°D. 150°【例2】已知AB为⊙O的直径,AC和AD为弦,AB=2,AC=2,AD=1,求∠CAD的度数.考点3:三角形的外接圆的半径求法【例3】已知:如图,在△ABC 中,AB=7,AC=6,AD⊥BC,且AD=5,求△ABC外接圆⊙O 的半径r.举一反三:3.已知:在△ABC 中,AB=AC=10,BC=12,求△ABC外接圆⊙O的半径r.OCA BCEAODB【基础演练】1.如图所示,已知AB 是半圆O 的直径,∠BAC=32°,D 是AC 的中点,那么∠DAC 的度数是( )A 25°B 29°C 30°D 32°2.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA ,OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE =8个单位,OF =6个单位,则圆的直径为( ) 个单位 A .12 B .10 C .4 D .153.如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A 、B 两点)上移动时,点P ( )A 、到CD 的距离保持不变B 、位置不变C 、等分⋂DB D 、随C 点移动而移动4. 已知:在△ABC 中,AB =13,BC =12,AC =5,则△ABC 的外接圆的半径r=5.一条弦分圆周为1:2, 则这条弦所对的圆周角的度数为 .6.如图,AB 为⊙O 的直径,弦AC ,BD 交于点P ,若3AB =,1CD =,则 sin APD ∠= .7.如图,已知△ABC 中,AB=AC,以AB 为直径的圆交BC 于D,交AC 于E. (1)求证BD=DC=DE(2)若∠A=40°, 求弧BD,弧DE,弧EA 的度数.8.⊙O 的直径长为5cm ,弦AB ∥弦CD,AB=3cm ,CD=4cm ,求梯形ABCD 的面积。

难点详解华东师大版七年级数学下册第9章多边形定向练习试题(含解析)

难点详解华东师大版七年级数学下册第9章多边形定向练习试题(含解析)

七年级数学下册第9章多边形定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的( )A .连接两点的线段叫做两点之间的距离B .过七边形的一个顶点有5条对角线C .若AC =BC ,则C 是线段AB 的中点D .用一个平面去截三棱柱,截面可能是四边形2、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°3、如图,四边形ABCD 是梯形,AD BC ∥,DAB ∠与ABC ∠的角平分线交于点E ,CDA ∠与BCD ∠的角平分线交于点F ,则1∠与2∠的大小关系为( )A .12∠>∠B .12∠=∠C .12∠∠<D .无法确定4、一个多边形的每个内角均为150°,则这个多边形是( )A .九边形B .十边形C .十一边形D .十二边形5、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6、三个等边三角形的摆放位置如图所示,若12100∠+∠=°,则3∠的度数为( )A .80︒B .70︒C .45︒D .307、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )A .7B .8C .9D .108、下列长度的三条线段能组成三角形的是( )A .2,3,6B .2,4,7C .3,3,5D .3,3,79、下列长度的三条线段能组成三角形的是( )A .3,4,7B .3,4,8C .3,4,5D .3,3,710、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根B.1根C.2根D.3根第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个多边形的内角和是外角和的2倍,则它的边数是_______.2、在ABC中,已知∠A=60°,∠B=80°,则∠C是_____°.3、一个五边形共有__________条对角线.4、若正多边形的一个外角为40°,则这个正多边形是_____边形.5、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,90∠=︒,AD BCBAC⊥于点D,点E是AD上一点,连接BE.求证:∠>∠.BED C2、如图,已知:DE//BC,CD是∠ACB的平分线,∠B=80°,∠A=50°,求:∠EDC与∠BDC的度数.3、如图,∠O =30°,任意裁剪的直角三角形纸板ABC 的两条直角边所在直线与∠O 的两边分别交于D ,E 两点.(1)如图1,若直角顶点C 在∠O 的边上,则∠ADO +∠OEB = 度;(2)如图2,若直角顶点C 在∠O 的内部,求∠ADO +∠OEB 的度数;(3)如图3,若直角顶点C 在∠O 的外部,求∠ADO +∠OEB 的度数.4、如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.5、已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.-参考答案-一、单选题1、D【解析】【分析】根据两点之间的距离、多边形的对角线、线段中点的定义以及截几何体进行判断即可.【详解】解:A、连接两点的线段的长度叫做两点间的距离,故原说法错误,该选项不符合题意;B、过七边形的一个顶点有4条对角线,故原说法错误,该选项不符合题意;C、当点C在线段AB上时,若AC=BC,则C是线段AB的中点,故原说法错误,该选项不符合题意;D、用垂直于底面的平面去截三棱柱,可得到长方形的的截面,故原说法正确,该选项符合题意;故选:D.【点睛】本题考查了两点之间的距离、多边形的对角线、截一个几何体以及线段中点的定义,掌握相关定义是正确判断的前提.2、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.3、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE=12∠BAD,∠ABE=12∠ABC,∠CDF=12∠ADC,∠DCF=12∠BCD,∴∠BAE+∠ABE=12(∠BAD+∠ABC)=90°,∠CDF+∠DCF=12(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.4、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,故选:D.【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.5、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.6、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个60 的角即可.解:3180540⨯︒=︒,360180⨯︒=︒,540180180180∴︒-︒-︒=︒,123180∴∠+∠+∠=︒,12100∠+∠=︒,380∴∠=︒,故选:A.【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.7、D【解析】【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数=36036=10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.8、C【解析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.9、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.10、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.二、填空题1、6【解析】【分析】根据多边形的内角和公式(n−2)•180°以及外角和定理列出方程,然后求解即可.【详解】解:设这个多边形的边数是n,根据题意得,(n−2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.2、40【解析】【分析】根据三角形内角和定理计算即可.【详解】解:∵∠A=60°,∠B=80°,∴∠C=180°﹣60°﹣80°=40°,故答案为:40.【点睛】本题考查三角形内角和定理,三角形内角和是180°.3、5【解析】【分析】由n边形的对角线有:()32n n-条,再把5n=代入计算即可得.【详解】解:n边形共有()23n n-条对角线,∴五边形共有()55352-=条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.4、九【解析】【分析】利用任意凸多边形的外角和均为360︒,正多边形的每个外角相等即可求出答案.【详解】解:多边形的每个外角相等,且其和为360︒,据此可得36040n=,解得9n=.故答案为:九.【点睛】本题主要考查了正多边形外角和的知识,解题的关键是掌握正多边形的每个外角相等,且其和为360︒,比较简单.5、144°##144度【解析】【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.【详解】解:∵四边形的四个外角的度数之比为1:2:3:4, ∴四个外角的度数分别为:360°×1361234=︒+++; 360°×2721234=︒+++; 360°×31081234=︒+++; 360°×41441234=︒+++; ∴它最大的内角度数为:18036144︒-︒=︒.故答案为:144°.【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.三、解答题1、见详解【解析】【分析】根据等角的余角性质得出∠BAD =∠C ,再根据∠BED 是△ABE 的外角,得出∠BED >∠BAD =∠C 即可.【详解】证明:∵90BAC ∠=︒,∴∠BAD +∠DAC =90°,∵AD BC ⊥,∴∠DAC +∠C =90°,∴∠BAD =∠C ,∵∠BED是△ABE的外角,∴∠BED>∠BAD=∠C,∴∠BED>∠C.【点睛】本题考查直角三角形两锐角互余,等角的余角性质,三角形外角性质,掌握直角三角形两锐角互余,等角的余角性质,三角形外角性质,在证明不等关系中经常利用等量转化方法是解题关键.2、∠BDC=75°,∠EDC=25°【解析】【分析】先根据三角形内角和定理求出∠ACB=50°,再由角平分线的定义求出1===252BCD ACD ACB∠∠∠,则由三角形内角和定理可求出∠BDC=180°-∠B-∠BCD=75°,再由平行线的性质即可得到∠EDC=∠BCD=25°.【详解】解:∵∠A=50°,∠B=80°,∴∠ACB=180°-∠A-∠B=50°,∵CD平分∠ACB,∴1===252BCD ACD ACB∠∠∠,∴∠BDC=180°-∠B-∠BCD=75°,∵DE∥BC,∴∠EDC=∠BCD=25°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)120;(2)120°;(3)120°【解析】【分析】(1)由三角形外角性质可知OEB ECO O ∠=∠+∠,即可得出ADO OEB ACB O ∠+∠=∠+∠,即可求出答案;(2)连接OC ,由三角形外角性质可知ADO ACO DOC ∠=∠+∠,OEB EOC ECO ∠=∠+∠,即可得出ADO OEB ACO DOC EOC ECO ACE DOE ∠+∠=∠+∠+∠+∠=∠+∠, 即得出答案;(3)连接OC ,由三角形外角性质可知ADO ACO DOC OEB EOC ECO ∠=∠-∠∠=∠+∠,,即可得出ADO OEB ACO DOC EOC ECO ACE DOE ∠+∠=∠-∠+∠+∠=∠+∠,即得出答案.【详解】解:(1)∵OEB ECO O ∠=∠+∠,∴9030120ADO OEB ACO ECO O ACB O ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒.故答案为:120.(2)如图,连接OC ,∵ADO ACO DOC ∠=∠+∠,OEB EOC ECO ∠=∠+∠,9030ACE DOE ∠=︒∠=︒,,∴ADO OEB ACO DOC EOC ECO ∠+∠=∠+∠+∠+∠()()ACO ECO EOC DOC =∠+∠+∠+∠ACE DOE =∠+∠9030=︒+︒120=︒(3)如图,连接OC∵9030ADO ACO DOC OEB EOC ECO ACE DOE ∠=∠-∠∠=∠+∠∠=︒∠=︒,,,∴ADO OEB ACO DOC EOC ECO ∠+∠=∠-∠+∠+∠()()ACO ECO EOC DOC =∠+∠+∠-∠ACE DOE =∠+∠9030=︒+︒120=︒【点睛】本题主要考查三角形外角的性质,正确的连接辅助线并利用数形结合的思想是解答本题的关键. 4、48AC =,28AB =【解析】【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =.【详解】由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=∵2AC BC =,D 为BC 中点∴244AC BC CD BD === ∴156044AC CD AC AC AC +=+== 即460485AC =⨯=则BC =24,CD =BD =12则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.5、ABC 的形状是等边三角形.【解析】【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .【详解】解:∵22()()0a b b c -+-=,∴0a b -=,0b c -=∴a =b =c ,∴ ABC∆是等边三角形.【点睛】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.。

七年级数学(下)第八周周练试卷

七年级数学(下)第八周周练试卷

七年级数学(下)第九周周练试卷一、选择题:1、下列方程是二元一次方程的是……………….( ) A 、12-=+yx B 、12-=+yx C 、032=-y x D 、4=xy2、下列各对数值,不是二元一次方程62=+y x 的解的是……( ) A 、⎩⎨⎧==6y xB 、⎪⎩⎪⎨⎧==521y xC 、⎩⎨⎧-=-=102y xD 、⎩⎨⎧==03y x3、下列方程组是二元一次方程组的是……………….( )A 、⎩⎨⎧=+=-12302y x y xB 、⎩⎨⎧=+-=-13332y z y xC 、⎩⎨⎧=-=-12422y x y xD 、⎪⎩⎪⎨⎧=+=-41102y x y x4、已知二元一次方程组⎩⎨⎧=+=+30ny x y mx 的解是⎩⎨⎧-==21y x ,则n m 2+的值是………( )A 、1B 、2C 、3D 、0 5、用代入法解方程组⎩⎨⎧=-=+)2......(..........52)1....(..........243y x y x 使得代入后化简比较容易的变形是..( )A 、由①得342y x -= B 、由①得432x y -=C 、由②得25+=y x D 、由②得52-=x y6、用加减法解方程组⎩⎨⎧=-=+)2...(..........823)1....(..........132y x y x时,要使其中一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形中;① ⎩⎨⎧=-=+869164y x y x②⎩⎨⎧=-=+846196y x y x③⎩⎨⎧-=+-=+1646396y x y x ④ ⎩⎨⎧=-=+2469264y x y x正确的是………………………( )A 、① ②B 、③ ④C 、① ③D 、④ 7、若5x -6y =0,且xy ≠0,则yx y x 3545--的值等于( )A 、32 B 、23C 、1D 、-18、任何一个正整数n 都可以进行这样的分解:n s t =⨯(s t ,是正整数,且s t ≤),如果p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()pF n q =.例如18可以分解成118⨯,29⨯,36⨯这三种,这时就有31(18)62F ==.给出下列关于()F n 的说法:(1)1(2)2F =;(2)3(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则()1F n =.其中正确说法的个数是( )A .1B .2C .3D .4二、填空题:9、已知方程6312423=+-+nm yx是二元一次方程,则m= .n= .10、已知方程523=-y x ,用含有X 的代数式表示Y 是 用含有Y 的代数式表示X 是11、若⎩⎨⎧-==12y x是二元一次方程53=+my x 的解,则m= .12、对于二元一次方程组⎩⎨⎧=-=+)2....(..........2)1....(..........4y x y x ,在⎩⎨⎧=-=51y x ,⎩⎨⎧==13y x ,⎩⎨⎧==46y x 这3对数值中, 是方程① 的解. 是方程②的解. 13、如果0)523(12=-++-+y x y x ,那么=+2005)(y x . 14、若mnnm baba4223542-+-与是同类项,则m= .n= .15、请你任意写一个以⎩⎨⎧=-=31y x 为解的二元一次方程组是 .16、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数=⋅b a . 17、请你写出二元一次方程x + 3y =10的非负..整数解... . 18、如果⎩⎨⎧=+=-12232n m n m ,那么=+-35n m .19、解方程组时,一学生把看错而得,而正确的解是,则222c b a++ 的值为 .20x 值为1时,输出值为1,当输入的x 值为-1时,输出的值为-3,则当输入的值为0.5时,输出的值为 . 三、解答题: 21、计算 (1) (π-3)0-(12)-1+ ()200820092 1.53⎛⎫⨯- ⎪⎝⎭(2) (2))2)(2(282-+-x x x —8(3)3105322334)()2()(2a a a a a a ÷+-⋅-+ (4)(2x-3y )2(2x+3y)212034311236x y x y -+⎧-=⎪⎪⎨--⎪-=⎪⎩22、将下列各式因式分解(1)4x 2-16 (2)223363xy y x x -+- (3))x y ()y x (x 2-+-(4)222x 16)4x (-+ (5)9(x+y)2-16(x-y)2 (6)16)5(8)5(222+-+-x x23、先化简,再求值2(21)(21)(2)a a a +-+-4(1)a -+(2)a -,其中2=a .24、解方程组:(1)⎩⎨⎧=+=+24651534y x y x (2)⎩⎨⎧=++=+-06023y x y x(3)⎩⎨⎧=⋅+⋅=⋅+⋅8835741127435y x y x (4)25、现有三个多项式①m mm mm m-++-+222214521421,③,②请你选择其中两个进行加(或减)法计算,并把结果因式分解。

2024年北师大版七年级下册数学周周测试题及答案(九)(考查范围:4.3-4.5)

2024年北师大版七年级下册数学周周测试题及答案(九)(考查范围:4.3-4.5)

周周测(九)______月______日建议用时:45分钟(考查范围:4.3-4.5)1.卞师傅用角尺平分一个角,如图,先在∠AOB两边上分别取OM=ON,然后使角尺两边相同刻度分别与M,N重合,角尺顶点为点P,则射线OP平分∠AOB,可由△OMP≌△ONP得知,其依据是(A)A.SSSB.SASC.ASAD.AAS2.如图,用纸板挡住了三角形的一部分,小明根据所学知识很快就重新画出了一个与原来完全一样的三角形,他的依据是(D)A.SSSB.SASC.AASD.ASA3.(2023·长春中考)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA',BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是(A)A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两条直线被一组平行线所截,所得的对应线段成比例D.两点之间线段最短⏜,交射线OB 4.如图,已知锐角∠AOB,在射线OA上取一点C,以点O为圆心、OC长为半径作MN于点D,连接CD;分别以点C,D为圆心、CD长为半径作弧,两弧交于点P,连接CP,DP;作射线OP.若∠AOP=20°,则∠ODP的度数是(C)A.110°B.120°C.130°D.140°5.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是(C)6.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE,AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为(C)A.2B.5C.8D.117.如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是OA=OC(答案不唯一).(只写一个)8.在△ABC中,AC=4,AB=6,则中线AD的取值范围是1<AD<5.9.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠APB的度数为50°.10.(2022·铜仁中考)如图,点C 在BD 上,AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,AB =CD.求证:△ABC ≌△CDE.【证明】因为AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,所以∠B =∠D =∠ACE =90°,所以∠DCE +∠DEC =90°,∠BCA +∠DCE =90°, 所以∠BCA =∠DEC ,在△ABC 和△CDE 中,{∠BCA =∠DEC ∠B =∠D AB =CD,所以△ABC ≌△CDE (AAS).11.如图,已知△ABC 与线段DE ,AC =DE.利用尺规,运用“SAS ”作△DEF ≌△ACB. (保留作图痕迹,不写作法)【解析】如图,△DEF 为所作.12.小明利用一根长2 m 的竹竿来测量垂直于地面的路灯AB 的高度.他的方法如下:如图,在路灯前选一点P ,使BP =2 m,并测得∠APB =77°,然后把竖直的竹竿CD (CD =2m)在BP 的延长线上左右移动,使∠CPD =13°,此时测得BD =8.5 m .请根据这些数据,计算出路灯AB 的高度.【解析】因为∠CPD =13°,∠APB =77°, ∠CDP =∠ABP =90°,所以∠DCP =∠APB =77°.在△CPD 和△PAB 中,{∠CDP =∠PBACD =PB ∠DCP =∠BPA ,所以△CPD ≌△PAB (ASA). 所以DP =BA.因为BD =8.5 m,BP =2 m,所以DP =BD -BP =6.5 m,即AB =6.5 m . 答:路灯AB 的高度是6.5 m .13.如图,在四边形ABCD 中,AD =BC =4,AB =CD ,BD =6,点E 从D 点出发,以每秒1个单位的速度沿DA 向点A 匀速运动,点F 从点C 出发,以每秒3个单位的速度沿C →B →C 作匀速运动,点G 从点B 出发沿BD 向点D 匀速运动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD ∥BC ;(2)在运动过程中,小明发现当点G 的运动速度取某个值时,有△DEG 与△BFG 全等的情况出现,请你探究当点G 的运动速度取哪些值时,△DEG 与△BFG 全等. 【解析】(1)在△ABD 和△CDB 中,{AD =BC ,AB =CD ,BD =DB ,所以△ABD ≌△CDB (SSS), 所以∠ADB =∠CBD ,所以AD ∥BC ;。

华师大版七年级下册数学第九周测试卷

华师大版七年级下册数学第九周测试卷

周测数学试卷9班次 姓名一、填空题(每题4分,共40分) 1.若2110=--x,则=x . 2.方程452=-x 的解是 .3.一种商品的标价为220元,为减少库存打九折出售,仍获利10%,该商品进价是 元.4.方程431252yy ---=去分母后所得方程是 . 5.一个底面直径为8厘米的圆柱形的桶内装有水,然后放进去一个能被桶内水完全淹没的底面直径为4厘米、高为10厘米的圆柱体石头,那么桶内水面上升了 厘米. 6.方程04321212343=-xx 解是 . 7.周长为24厘米的长方形的长减少2厘米,宽增加3厘米,就可以成为一个正方形,若设长方形的长为x 厘米,则可列出的方程是 .8.2081年3月有5个星期日,这五个星期日的日期总和为80,这五天分别是 、 、 、 、 .9.已知23x --与35-x 互为相反数,则=x .10.比一个数的32小2的数的相反数是3,则这个数是 .二、解方程题(每题6分,共30分) 1.)5()12(242x x x +--=+2.)3(41)3(2121-=⎥⎦⎤⎢⎣⎡---x x x x 3.3121=-x4.25.4537.2-=-x x 5.13221+-+=-y yy三、列方程解应用题(用算术方法求解不给分,每题6分,共30分.)1.甲数、乙数、丙数三数的比是2:3:4,并且这三个数的和是45,求甲数、乙数和丙数.2.一池塘内有甲乙两个进水管,单独开放甲管5小时可以注满池塘,单独开放乙管3小时可以注满池塘.问同时开放甲乙两管几小时可以注满池塘?3.某旅客携带了40千克的行李从长治乘飞机去上海,且买了300元的行李票.民航规定旅客最多可以免费携带20千克的行李,超过的部分每千克按飞机票价的1.5%购买行李票.这个旅客的机票价格是多少?4.一个角的补角的31比这个角的余角少27°,求这个角的度数.5.m 取何值时,代数式31m +的值比代数式213-m 的值大1?。

清江外国语学校七年级下册期中模拟试卷-第九周

清江外国语学校七年级下册期中模拟试卷-第九周

清江外国语学校七年级下册期中模拟试卷数 学班级: 姓名: 时间:120分钟 总分:120分 分数:一、选择题。

(每小题3分,共36分)1、和数轴上的点一一对应的是( )A .整数B .有理数C .无理数D .实数2、如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB 、AC 、AE 、ED 、EC 中,相互平行的线段有( )A .4组,B .3组,C .2组,D .1组 3、如图,四个图形中的∠1和∠2,不是同位角的是( )A .B .C .D .4、下列句子中不是命题的是( ) A .两直线平行,同位角相等。

B .直线AB 垂直于CD 吗?C .若b a =,则22b a =。

D .同角的补角相等。

5、在平面直角坐标系中点P (一1,4m +1)一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限6、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变所得图形与原图形相比( )A .向右平移了3个单位B .向左平移了3个单位C .向上平移了3个单位D .向下平移了3个单位7、-π,-3,,的大小顺序是( )A .B .C .D .8、x 2的算术平方根是( )。

A .xB .C .±D .|x |9、在3.14,38,2,3,722,4π-中,无理数有( )个。

A .1个B .2个C .3个D .4个10、如图所示,PO ⊥OR ,垂足为点O ,OQ ⊥PR ,垂足为点Q ,则点P 到OQ 所在直线的距离是线段( )A .POB .ROC .OQD .PQ11、如图,直线BD ∥EF ,AE 与BD 交于点C ,若∠ABC =30°,∠BAC =75°,则∠CEF 的大小为( )A . 60°B . 75°C . 90°D . 105°12、已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( ) A . 30° B . 35° C . 40° D . 45°二、填空题。

七年级数学(下)第9章《不等式与不等式组》综合测试题含答案

七年级数学(下)第9章《不等式与不等式组》综合测试题含答案

A CDB 七年级数学(下)第9章《不等式与不等式组》综合测试题一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( ) A. “x 的3倍与1的和是正数”,表示为3x+1>0.B. “m 的15与n 的13的差是非负数”,表示为15m-13n ≥0. C. “x 与y 的和不大于a 的12”,表示为x+y ≤12a.D. “a 、b 两数的和的3倍不小于这两数的积”,表示为3a+b ≥ab. 2.给出下列命题:①若a>b,则ac 2>bc 2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④ 3.解不等式3x-32<2x-2中,出现错误的一步是( ) A.6x-3<4x-4 B.6x-4x<-4+3 C.2x<-1 D.x>-124.不等式12,39x x -<⎧⎨-≤⎩ 的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a 中,正确的是( ) A.①② B.①③ C.②③ D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( ) A.2场 B.3场 C.4场 D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( ) A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( ) A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( ) A.m>9 B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5. 12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔. 17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2)273125y yy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型盆乙种花卉搭配A B需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A 二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<3 20.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14 即7915<x ≤8370,又7915<x-300≤8370 ∴8215<x ≤8670, 故8215<x ≤8370,CB 为2x ,且4107.5<2x≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5,∴n=5代入y=2.8+0.5×5=5.3(元) ∴从C 到B 需支付车费5.3元. 22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q; 由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q, 同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元. 所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元。

人教版数学七年级下册知识重点与单元测-第九章9-4一元一次不等式组(基础巩固)

人教版数学七年级下册知识重点与单元测-第九章9-4一元一次不等式组(基础巩固)

第九章不等式与不等式(组)9.4 一元一次不等式组(基础巩固)【要点梳理】知识点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念例1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式.【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组例2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①② (2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2, ∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用例3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.举一反三: 【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.例4.“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数, 所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.【巩固练习】一、选择题1.下列选项中是一元一次不等式组的是( )A .B .C .D .2.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为 ( ).3.解集如图所示的不等式组为( ).A .12x x >-⎧⎨≤⎩B .12x x ≥-⎧⎨>⎩C .12x x ≤-⎧⎨<⎩D .12x x >-⎧⎨<⎩4.不等式32015x -<≤的整数解有( ). A .4个 B .3个 C .2个 D .1个5.现用甲、乙两种运输车将46t 抗旱物资运往灾区,甲种运输车载重5t ,乙种运输车载重4t ,安排车辆不超过10辆,则甲种运输车至少应安排( ).A .4辆B .5辆C .6辆D .7辆6.如果|x+1|=1+x ,|3x+2|=-3x-2,那么x 的取值范围是( ).A .213x -≤≤-B .1x ≥-C .23x ≤-D .213x -≤≤-二、填空题7.如果a <2,那么不等式组2x a x >⎧⎨>⎩的解集为_______,2x a x <⎧⎨>⎩的解集为_______. 8.不等式组的解集是 .9.不等式组34125x +-≤<的所有整数解的和是______. 10. 如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围为 .11.从彬彬家步行到学校的路程是2400米,如果彬彬7时离家,要在7时30分至40分间到达学校,那么步行的速度x (米/分)的范围是________.12. 在△ABC 中,三边为a 、b 、c ,如果a 3x =,b 4x =,c 28=,那么x 的取值范围是 .三、解答题13.解下列不等式组,并将其解集在数轴上表示出来.(1)2(1)31134x x x x +≤-⎧⎪+⎨<⎪⎩;(2)1<3x-2<4;14.若关于x 、y 的二元一次方程组中,x 的值为负数,y 的值为正数,求m 的取值范围.15.郑老师想为希望小学四年级(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?答案与解析一、选择题1. 【答案】D;【解析】解:A、含有两个未知数,错误;B、未知数的次数是2,错误;C、含有两个未知数,错误;D、符合一元一次不等式组的定义,正确;故选D.2. 【答案】A ;【解析】解不等式组可得:1,2x x >≥且.3. 【答案】A ;4. 【答案】B ;【解析】32053215x x -⎧<⎪⎪⎨-⎪≤⎪⎩,解得:312x -≤<,所以整数解:-1,0,1. 5. 【答案】C ;【解析】设甲种运输车安排x 辆,5x+4(10-x )≥46,x≥6,故至少要甲种运输车6辆.6. 【答案】A ;【解析】由10320x x +≥⎧⎨--≥⎩,解得213x -≤≤-. 二、填空题7. 【答案】x >2,无解;8. 【答案】﹣1≤x<3;【解析】解:, 解不等式①得:x≥﹣1,解不等式②得:x <3,所以不等式组的解集是:﹣1≤x<3,故答案为:﹣1≤x<3.9. 【答案】-5;【解析】所有整数解:-3,-2,-1,0,1,所以和为-5.10.【答案】1<m <2;【解析】由第一幅图得m >1,由第二幅图得m <2,故1<m <211.【答案】60<x <80;【解析】设步行速度为x米/分,依题意可得:3240042400xx<⎧⎨>⎩,得60<x<8012.【答案】4<x<28;【解析】4x-3x<28<4x+3x,即4<x<28.三、解答题13.【解析】解:(1)由①得解集为x≥3,由②得解集为x<3,在数轴上表示①、②的解集,如图,所以不等式组无解.(2)不等式组的解集为1<x<2,表示在数轴上如图:14.【解析】解:,①+②得2x=4m﹣2,解得x=2m﹣1,②﹣①得2y=2m+8,解得y=m+4,∵x的值为负数,y的值为正数,∴,∴﹣4<m<.15.【解析】解:(1)设每个书包的价格为x元,则每本词典的价格为(x-8)元.根据题意得:3x+2(x-8)=124解得:x=28.∴ x-8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设购买书包y 个,则购买词典(40-y)本.根据题意得: 1000[2820(40)]1001000[2820(40)]120y y y y -+-≥⎧⎨-+-≤⎩, 解得:10≤y ≤12.5.因为y 取整数,所以y 的值为10或11或12.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下数学 第九周练习
姓名 班级 座号
一.填空题:
1.三角形的三个内角的度数之比为1:3:4,则三角形的三内角度数是 。

2.∠A=2
1∠B=3
1∠C ,则△ABC 是 三角形.
3.如图,若∠1=270,∠2=950,∠3=380,则∠4= .
4.△ABC 中,若∠A=800,I 为三条角平分线交点,则∠BIC= . 5.已知一个三角形的三边长为6、8、x,则x 的取值范围是 。

6.已知一个三角形的两边长为6、8,则它的周长的范围是 。

7.等腰三角形的一边长是5,另一边长是8,则它的周长是 。

8.若三角形的三边长分别为x-1,x,x+1,则x 的取值范围是 . 9.AD 是△ABC 的中线,△ABC 的面积为50平方厘米,则△ABD 的面积是 。

10.如果一个三角形中任意两个内角的和都大于第三个角,则这个三角形 是 三角形。

11.直角三角形两个锐角的平分线所构成的钝角是______度。

12. 一个等腰三角形的两边长分别是3 cm 和6 cm ,则它的周长 是____ _cm.
13. 在一个直角三角形中,如果两个锐角的比为2:3,那么 两个锐角中,较大锐角的度数是 。

14.如图,在△ABC 中,CE 、BF 是两条高,若∠A=。

50,∠BCE=。

30, 则∠EBF= ,∠FBC= 。

二.选择题:
1.在下列长度的名组线段中,能组成三角形的是 ( )
A 、3,3,6
B 、3,5,9
C 、3,4,5
D 、2,3,5 2. 锐角三角形中任意两个锐角的和必大于 ( )。

A 120°
B 110°
C 100°
D 90°
3. 如图,⊿ABC 中,CD ⊥BC 于C ,D 点在AB 的延长线上,则CD 是⊿ABC ( ) A 、BC 边上的高 B 、AB 边上的高 C 、AC 边上的高 D 、以上都不对
4. 锐角△ABC 中,∠A >∠B >∠C ,下列错误的是( ) A 、∠A >60°B 、∠B >45°C 、∠C <60°D 、∠B +∠C <90°
D
三.解答题: 1. 如图,在△ABC 中,BAC 是钝角,画出:⑴BAC 的平分线;⑵AC 边上的中
线;⑶AC 边上的高;⑷AB 边上的高.
2.已知:如图,在△ABC 中,∠BAC=900,AD ⊥BC 于D ,AE 平分∠DAC ,∠B=500,
求∠AEC 的度数.
3.已知:如图,在△ABC 中,AD ⊥BC ,∠1=∠B ,△ABC 为直角三角形吗?
9、
C
B
A
B D
吗?为什么?
,那么、,已知CD AE AB DB BE BC ===∠=∠21
一、填空: (1)()()=
-⨯-6
5
33;(2)=
⋅+12m m b b
(3)()
2
32= ; (5)()=-3
12n x (6)()=2
3x
(9) =÷47a a (10)()()=-÷-36x x (11)()()=
÷xy xy 4
(12) ()=⎪⎭⎫
⎝⎛-xy z xy 3122 (13) ()()=
-+y x y x 22
(14)()b a ab ab 2
2324+= (15) ()()=-+x x 8585
(16)()=
+242x (17)()=
-2
2a mn (18)()()
=÷b a c b a 334510(19)()
()=
÷xy y x 233
(20)()
()=-÷+-b b b a 2101822
二、计算:
(1)()(
)
3
223332a a a a -+-+⋅ (2)()()()1122
+--+x x x
(3)()()z y x z y x -+++ (4)()()()2
12113+---+-a a a
(5)()
()
223423
2-+--x x x x (6)()()2
2
22b a b a ---+。

相关文档
最新文档