2008—2012年五年高考数学试题及答案江苏省(word版)

合集下载

2005年江苏省高考数学试卷(含答案)

2005年江苏省高考数学试卷(含答案)

2005年高考数学江苏卷试题及答案一选择题:本大题共12小题,每小题5分,共60分项是符合题意要求的1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A =( ) A .{}3,2,1 B .{}4,2,1 C .{}4,3,2 D .{}4,3,2,1 2.函数)(321R x y x∈+=-的反函数的解析表达式为 ( )A .32log 2-=x y B .23log 2-=x y C .23log 2x y -= D .xy -=32log 2 3.在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则543a a a ++=( )A .33B .72C .84D .1894.在正三棱柱111C B A ABC -中,若AB=2,11AA =则点A 到平面BC A 1的距离为( )A .43 B .23 C .433 D .3 5.ABC ∆中,3π=A ,BC=3,则ABC ∆的周长为 ( )A .33sin 34+⎪⎭⎫⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB 6.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1617 B .1615 C .87 D .0 7.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:7.9,4.9,6.9,9.9,4.9,4.8,4.9,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )A .484.0,4.9B .016.0,4.9C .04.0,5.9D .016.0,5.9 8.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||; ③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则m ||其中真命题的个数是 ( )A .1B .2C .3D .4 9.设5,4,3,2,1=k ,则5)2(+x 的展开式中kx 的系数不可能是 ( ) A .10 B .40 C .50 D .80 10.若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫⎝⎛+απ232cos = ( ) A .97-B .31-C .31D .97 11.点)1,3(-P 在椭圆)0(12222>>=+b a by a x 的左准线上,过点P 且方向为)5,2(-=的光线经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A .33 B .31 C .22 D .2112.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①.②.③.④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .0 二.填写题:本大题共6小题,每小题4分,共24分把答案填在答题卡相应位置13.命题“若b a >,则122->ba ”的否命题为__________14.曲线13++=x x y 在点)3,1(处的切线方程是__________15.函数)34(log 25.0x x y -=的定义域为__________16.若[)1,,618.03+∈=k k a a,()k Z ∈,则k =__________17.已知b a ,为常数,若34)(2++=x x x f ,2410)(2++=+x x b ax f ,则b a -5=__________18.在ABC ∆中,O 为中线AM 上一个动点,若AM=2,则)(+∙的最小值是__________三.解答题:本大题共5小题,共66分解答应写出文字说明.证明过程或演算步骤19.(本小题满分12分)如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O .圆2O 的切线PM 、PN (M.N 分别为切点),使得PN PM 2=试建立适当的坐标系,并求动点P 的轨迹方程20.(本小题满分12分,每小问满分4分)甲.乙两人各射击一次,击中目标的概率分别是324假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击4次,至少1次未击中...目标的概率; ⑵求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; ⑶假设某人连续2次未击中...目标,则停止射击问:乙恰好射击5次后,被中止射击的概率是多少?21.(本小题满分14分,第一小问满分6分,第二.第三小问满分各4分)如图,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,3==DE BC ,=∠=∠=∠120CDE BCD BAE⑴求异面直线CD 与SB 所成的角(用反三角函数值表示); ⑵证明:BC ⊥平面SAB ;⑶用反三角函数值表示二面角B —SC —D 的大小不必写出解答过程)22.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知R a ∈,函数|)(2a x x x f -=⑴当2=a 时,求使x x f =)(成立的x 的集合; ⑵求函数)(x f y =在区间]2,1[上的最小值23.(本小题满分14分,第一小问满分2分,第二.第三小问满分各6分) 设数列{}n a 的前n 项和为n S ,已知11,6,1321===a a a ,且,3,2,1,)25()85(1=+=+--+n B An S n S n n n ,其中A.B 为常数⑴求A 与B 的值;⑵证明:数列{}n a 为等差数列;⑶证明:不等式15>-n m mn a a a 对任何正整数n m ,都成立2005年高考数学江苏卷试题及答案参考答案(1)D (2)A (3)C (4)B (5)D (6)B (7)D (8)B (9)C (10)A (11)A (12)B (13)若b a >,则122->b a (14)014=--y x (15)]1,43()0,41[ -(16)-1 (17)2 (18)-2 (19)以1O 2O 的中点O 为原点,1O 2O 所在的直线为x 轴,建立平面直角坐标系,则1O (-2,0),2O (2,0),由已知PN 2PM =,得22PN PM =因为两圆的半径均为1,所以)1(212221-=-PO PO设),(y x P ,则]1)2[(21)2(2222-+-=-++y x y x , 即33)6(22=+-y x ,所以所求轨迹方程为33)6(22=+-y x (或031222=+-+x y x )(20)(Ⅰ)记“甲连续射击4次,至少1次未击中目标”为事件A 1,由题意,射击4次,相当于4次独立重复试验,故P (A 1)=1- P (1A )=1-4)32(81答:甲射击4次,至少1次未击中目标的概率为8165; (Ⅱ) 记“甲射击4次,恰好击中目标2次”为事件A 2,“乙射击4次,恰好击中目标3次”为事件B 2,则278)321()32()(242242=-=-C A P ,6427)431()43()(143342=-=-C B P , 由于甲、乙设计相互独立,故86427278)()()(2222=⋅==B P A P B A P 答:两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率为81; (Ⅲ)记“乙恰好射击5次后,被中止射击”为事件A 3,“乙第i 次射击为击中” 为事件D i ,(i=1,2,3,4,5),则A 3=D 5D 4)(123D D D ,且P (D i )=41,由于各事件相互独立,故P (A 3)= P (D 5)P (D 4)P ()(123D D D )=41×41×43×(1-41×41)=102445,答:乙恰好射击51024(21)(Ⅰ)连结BE ,延长BC 、ED 交于点F ,则∠DCF=∠CDF=600,∴△CDF 为正三角形,∴CF=DF又BC=DE ,∴BF=EF 因此,△BFE 为正三角形,∴∠FBE=∠FCD=600,∴BE//CD所以∠SBE (或其补角)就是异面直线CD 与SB 所成的角 ∵SA ⊥底面ABCDE ,SA=AB=AE=2,∴SB=22,同理SE=22,又∠BAE=1200,所以BE=32,从而,cos ∠SBE=46, ∴∠46 所以异面直线CD 与SB 所成的角是46 (Ⅱ) 由题意,△ABE 为等腰三角形,∠BAE=1200,∴∠ABE=300,又∠FBE =600,∴∠ABC=900,∴BC ⊥BA∵SA ⊥底面ABCDE ,BC ⊂底面ABCDE , ∴SA ⊥BC ,又SA BA=A ,∴BC ⊥平面SAB(Ⅲ)二面角B-SC-D 的大小8282-π (22)(Ⅰ)由题意,|2|)(2-=x x x f当2<x 时,由x x x x f =-=)2()(2,解得0=x 或1=x ; 当2≥x 时,由x x x x f =-=)2()(2,解得1+=x 综上,所求解集为}21,1,0{+(Ⅱ)设此最小值为m①当1≤a 时,在区间[1,2]上,23)(ax x x f -=, 因为0)32(323)('2>-=-=a x x ax x x f ,)2,1(∈x , 则)(x f 是区间[1,2]上的增函数,所以f m -==1)1(②当21≤<a 时,在区间[1,2]上,0||)(2≥-=a x x x f ,由0)(=a f 知)(==a f m③当2>a 时,在区间[1,2]上,32)(x ax x f -=)32(332)('2x a x x ax x f -=-=若3≥a ,在区间(1,2)上,0)('>x f ,则)(x f 是区间[1,2]上的增函数, 所以)1(-==a f m 若32<<a ,则2321<<a 当a x 321<<时,0)('>x f ,则)(x f 是区间[1,a 32]上的增函数, 当232<<x a 时,0)('<x f ,则)(x f 是区间[a 32,2]上的减函数, 因此当32<<a 时,1)1(-==a f m 或2(4)2(-==a f m当372≤<a 时,1)2(4-≤-a a ,故)2(4)2(-==a f m , 当337<<a 时,1)2(4-<-a a ,故)1(-==a f m 总上所述,所求函数的最小值⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤<-≤<≤-=37172)2(421011a a a a a a a m(23)(Ⅰ)由已知,得111==a S ,7212=+=a a S ,183213=++=a a a S 由B An S n S n n n +=+--+)25()85(1,知⎩⎨⎧+=-+=--B A S S B A S S 2122732312,即⎩⎨⎧-+-=+48228B A B A 解得8,20-=-=B A .(Ⅱ) 由(Ⅰ)得820)25()85(1--=+--+n S n S n n n ①所以 2820)75()35(12--=+--++n S n S n n n ②②-①得 20)25()110()35(12-=++---++n n n S n S n S n ③ 所以 20)75()910()25(123-=+++-++++n n n S n S n S n ④ ④-③得 )25()615()615()25(123=+-+++-++++n n n n S n S n S n S n因为 n n n S S a -=++11所以 0)75()410()25(123=+++-++++n n n a n a n a n因为 0)25(≠+n所以 02123=+-+++n n n a a a所以 1223++++-=-n n n n a a a a ,1≥n又 51223=-=-a a a a 所以数列}{n a 为等差数列(Ⅲ)由(Ⅱ) 可知,45)1(51-=-+=n n a n ,要证15>-n m mn a a a只要证 n m n m mn a a a a a 215++>,因为 45-=mn a mn ,16)(2025)45)(45(++-=--=n m mn n m a a n m ,故只要证 >-)45(5mn n m a a n m mn 216)(20251+++-+, 即只要证 n m a a n m 2372020>-+,因为 372020)291515(8558552-+=-++-+<-+=+≤n m n m n m n m a a a a n m n m所以命题得证。

2012年全国高考数学试题及答案-江苏卷

2012年全国高考数学试题及答案-江苏卷

绝密★启用前2012年全国各地高考数学试题汇编汇总(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B = ▲ .解析:由已知,集合{124}A =,,,{246}B =,,,所以A B ={1,2,4,6}.答案:{1,2,4,6},2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 解析:由已知,高二人数占总人数的310,所以抽取人数为3501510⨯=. 答案:153.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 ▲ . 解析:由已知,2117i 117i i 2515i 2515ii ===53i 12i (12i)(12i 1-4i 5a b --+++==+--+()(1+2)). ∴538a b +=+=.答案:8.4.右图是一个算法流程图,则输出的k 的值是 ▲ . 解析:将1k =带入0=0不满足, 将2k =带入40-<不满足, 将3k =带入20-<不满足, 将4k =带入00=不满足, 将5k =带入40>满足, 所以5k =. 答案:5.5.函数()f x 的定义域为 ▲ . 解析:由题意6012log 0x x >⎧⎨-≥⎩,所以x ∈.答案:6.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ .解析:满足条件的数有1,-3,33-,53-,73-,93-;所以63105p ==. 答案:35.7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.解析:12632V =⨯=. 答案:6.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 ▲ .DA BC 1 1D 1A1B(第7题)解析:2245m memm⎧++==⎪⎨⎪>⎩,解得2m=.答案:2.9.如图,在矩形ABCD中,2AB BC==,点E为BC的中点,点F在边CD上,若2AB AF =,则AE BF的值是▲. 解析:以A为坐标原点,AB,AD所在直线分别为x轴和y轴建立平面直角坐标系,则由题意知:点B,点E),设点F(,)ab,所以AB=u u u r,(,)AF a b=u u u r;由条件解得点(1,2)F,所以AE=uu ur,()12BFuu ur;所以AE BF=uu u r uu u rg答案10.设()f x是定义在R上且周期为2的函数,在区间[11]-,上,111()21xxaxf x bxx<+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b∈R,.若1322f f⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则3a b+的值为▲.解析:因为2T=,所以(1)(1)f f-=,求得20a b+=.由13()()22f f=,2T=得11()()22f f=-,解得322a b+=-.联立20322a ba b+=⎧⎨+=-⎩,解得24ab=⎧⎨=-⎩所以310a b+=-.答案10-(第9题)11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .解析: Q α为锐角,2663πππα∴<+<,4cos 65απ⎛⎫+= ⎪⎝⎭Q ,3sin 65απ⎛⎫∴+= ⎪⎝⎭;12cos 66sin 22sin 253αααππ⎛π⎛⎫∴+= ⎫⎛⎫++= ⎪ ⎪⎭⎝⎭⎪⎝⎭⎝,sin 2sin 2sin 2cos cos 2sin 1234343450ααααπππππππ⎛⎫⎛⎫⎛⎫⎛⎫∴+=+-=+-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭答案:50.12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .解析:圆C 的圆心为(4,0),半径为1;由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点;故存在0x R ∈,使得11AC ≤+成立,即min 2AC ≤;而min AC 即为点C 到直线2y kx =-,2≤,解得403k ≤≤,即k 的最大值是43. 答案:4313.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .解析:由值域为[0)+∞,得240a b =-=V ,即24a b =;2222()42a a f x x ax b x ax x ⎛⎫∴=++=++=+ ⎪⎝⎭,2()2a f x x c ⎛⎫∴=+< ⎪⎝⎭解得2a x +<;Q 不等式()f x c <的解集为(6)m m +,,)()622a a∴-==,解得9c =. 答案:914.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .答案:[,7]e二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC ⋅=⋅. (1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 解析:16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .解析:17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.1A1C(第16题)FDCAB E1B解析:18.(本小题满分16分)若函数()y f x =在0x x =处取得极大值或极小值,则称0x 为函数()y f x =的极值点. 已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数. 解析:19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛⎝⎭都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线1AF与直线2BF 平行,2AF 与1BF 交于点P .(i)若12AF BF -,求直线1AF 的斜率; (ii)求证:12PF PF +是定值.解析:(第19题)20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n *+=∈N .(1)设11n n n b b n a *+=+∈N ,,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值. 解析:绝密★启用前2012年全国各地高考数学试题汇编汇总(江苏卷)数学Ⅱ(附加题)准考证号21.[选做题]本题包括A、B、C、D四小题,请选定其中两题.......,.并在相应的答题区域内作...........答...若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4 -1:几何证明选讲](本小题满分10分)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连结BD并延长至点C,使BD=DC,连结AC,AE,DE.求证:E C∠=∠.解析:B.[选修4 -2:矩阵与变换](本小题满分10分)已知矩阵A的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A,求矩阵A的特征值.解析:21-A题)C .[选修4 - 4:坐标系与参数方程](本小题满分10分)在极坐标中,已知圆C 经过点()4P π,,圆心为直线()sin 3ρθπ-=,求圆C 的极坐标方程. 解析:D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <. 解析:【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ. 解析:23.(本小题满分10分)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. (1)求(4)f ;(2)求()f n 的解析式(用n 表示). 解析:。

历年高考试题及答案word版

历年高考试题及答案word版

历年高考试题及答案word版2011年全国高考试题及答案word版蓝色表示只有试题没有答案,红色表示包括试题和答案。

语文英语数学(文) 数学(理) 文综理综新课标(宁、吉、本地下本地下本地下本地下本地下本地下黑、晋、豫、载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高新) 速下载速下载速下载速下载速下载速下载全国卷语文英语数学(文) 数学(理) 文综理综(冀、桂、本地下本地下本地下本地下本地下本地下云、贵、甘、载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高青、内蒙速下载速下载速下载速下载速下载速下载古、藏))语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下本地下本地下北京卷载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载语文英语数学(文) 数学(理) 理综文综本地下本地下本地下本地下载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载上海卷物理化学生物历史地理政治本地下本地下本地下本地下本地下载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载语文英语文科数学理科数学文综理综本地下本地下本地下本地下辽宁卷载迅雷高载迅雷高载迅雷高载迅雷高同新课标同新课标速下载速下载速下载速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下陕西卷同新课标载迅雷高载迅雷高载迅雷高同新课标同新课标速下载速下载速下载语文英语数学(文) 数学(理) 文综理综重庆卷本地下本地下本地下本地下本地下本地下载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下本地下本地下福建卷载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下湖南卷载迅雷高载迅雷高载迅雷高载迅雷高同新课标同新课标速下载速下载速下载速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下本地下本地下四川卷载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下本地下本地下广东卷载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下江西卷载迅雷高载迅雷高载迅雷高载迅雷高同新课标同新课标速下载速下载速下载速下载语文英语数学物理化学生物本地下本地下本地下本地下本地下本地下载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载江苏卷历史地理政治本地下本地下本地下载迅雷高载迅雷高载迅雷高速下载速下载速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下湖北卷载迅雷高载迅雷高载迅雷高载迅雷高同全国卷同全国卷速下载速下载速下载速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下本地下本地下浙江卷载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载自选模块本地下载迅雷高速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下本地下本地下载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载山东卷基本能力本地下载迅雷高速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下本地下本地下天津卷载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载语文英语数学(文) 数学(理) 文综理综本地下本地下本地下本地下本地下本地下安徽卷载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载速下载速下载语文英语数学(文) 数学(理) 物理化学本地下本地下同新课标同新课标同新课标同新课标载迅雷高载迅雷高速下载速下载海南卷生物历史地理政治本地下本地下本地下本地下载迅雷高载迅雷高载迅雷高载迅雷高速下载速下载速下载速下载2010年各地高考试题及答案(word版)2009年各地高考试题及答案(word版)2008年各地高考试题及答案(word版)2007年各地高考试题及答案(word版)2006年各地高考试题及答案(word版) 本地下载迅雷高速下载2005年各地高考试题及答案(word版) 本地下载迅雷高速下载 1990-2004年全国高考语文试题及答案(word版) 本地下载迅雷高速下载 1994-2004年全国高考英语试卷及答案(word版) 本地下载迅雷高速下载 1988-2004年全国高考数学试卷及答案(word版) 本地下载迅雷高速下载 1990-2004年全国高考化学试题及答案(word版) 本地下载迅雷高速下载 2002-2004年全国高考物理试题及答案(word版) 本地下载迅雷高速下载 1952-1999年全国高考试卷及答案-语文(pdf 版) 本地下载迅雷高速下载 1952-1999年全国高考试卷及答案-数学(pdf版) 本地下载迅雷高速下载 1952-1999年全国高考试卷及答案-物理(pdf版) 本地下载迅雷高速下载 1952-1999年全国高考试卷及答案-化学(pdf版) 本地下载迅雷高速下载 1950-1999年全国高考试卷及答案-英语(pdf版) 本地下载迅雷高速下载1952-1993年全国高考试卷及答案-生物(pdf版) 本地下载迅雷高速下载 1951-1999年全国高考试卷及答案-政治(pdf版) 本地下载迅雷高速下载 1952-1999年全国高考试卷及答案-历史(pdf版) 本地下载迅雷高速下载 1952-1993年全国高考试卷及答案-地理(pdf版) 本地下载迅雷高速下载更多教学资源请登陆中国校长网教学资源频道。

2012成人高考数学试题及答案

2012成人高考数学试题及答案

2012成人高考数学试题及答案【正文】2012成人高考数学试题及答案一、选择题1.某同学在一次单选题考试中,答对了80%的题目,而另一位同学在相同的考试中答对了75%的题目。

如果两位同学的试题都有30道,那么他们答对题目数相同的概率是多少?解析:设某人答对的题目数为X,每道题的答对概率为p。

根据题意可得:对于第一位同学,题目总数为30,答对的概率为P(X=24)=C(30,24) * p^24 * (1-p)^(30-24);对于第二位同学,题目总数为30,答对的概率为P(X=22)=C(30,22) * p^22 * (1-p)^(30-22)。

由于需要求解他们答对题目数相同的概率,即P(X=24) = P(X=22)。

解方程可得p≈0.856,故答案为0.856。

2.在平面直角坐标系中,过点A(4,2)和点B(-2,3)的直线l1与过点C(6,0)和点D(2,-3)的直线l2相交于点E。

则线段AE的中点坐标为__________。

解析:首先计算直线l1的斜率:k1 = (3-2)/(-2-4) = -1/6接着计算直线l2的斜率:k2 = (-3-0)/(2-6) = 3/4由于直线l1和l2的斜率不相等,则它们一定相交于某一点E。

求解得到E的坐标为(-1, 7/2)。

因此,线段AE的中点坐标为((4-1)/2, (2+7/2)/2),化简后得到答案:(3/2, 9/4)。

3.设函数f(x)=ax^2+bx+c,其中a,b,c为常数,且对于任意实数x,都有f(2x+3)=4f(x+1)+5,求函数f(x)的表达式。

解析:首先,将x+1替换为t,可以得到:f(2t+1) = 4f(t) + 5由此可以得到一个关系式:f(2(t+1)) = 4f(t+1) + 5进一步展开得到:f(2t+2) = 4f(t+1) + 5将f(2t+2)进行替换,可以得到:4f(t) + 4f(1) + 5 = 4f(t+1) + 5化简得到:4f(t) - 4f(t+1) = 4f(1)将t替换回x+1,得到:4f(x) - 4f(x+1) = 4f(1)整理得:f(x) - f(x+1) = f(1)移项得到:f(x) = f(x+1) + f(1)将x+1替换为x,得到:f(x-1) = f(x) + f(1)由题意可知f(x)为二次函数,设f(x) = ax^2 + bx + c。

2008年全国高考数学试题及答案—江苏卷

2008年全国高考数学试题及答案—江苏卷

页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。

——培根2008年普通高等学校招生全国统一考试(江苏卷)数 学一、填空题:本大题共1小题,每小题5分,共70分.1.()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= ▲ . 2.一个骰子连续投2 次,点数和为4 的概率 ▲ . 3.11i i+-表示为a bi +(),a b R ∈,则a b +== ▲ . 4.A={()}2137x x x -<-,则A Z 的元素的个数 ▲ .5.a ,b 的夹角为120︒,1a =,3b = 则5a b -= ▲ .6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ .7.算法与统计的题目8.直线12y x b =+是曲线()ln 0y x x =>的一条切线,则实数b = ▲ . 9在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P (0,p )在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE 的方程:11110x y c b p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,请你求OF 的方程: ( ▲ )110x y p a ⎛⎫+-= ⎪⎝⎭.10.将全体正整数排成一个三角形数阵:12 34 5 67 8 9 10. . . . . . .按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .11.已知,,x y z R +∈,230x y z -+=,则2y xz 的最小值 ▲ . 12.在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫ ⎪⎝⎭作圆的两切线互相垂直,则离心率e = ▲ .13.若BC ,则S 的最大值 ▲ .14.()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则a = ▲ .二、解答题:解答应写出文字说明,证明过程或演算步骤.15.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的. (Ⅰ)求tan(αβ+)的值;(Ⅱ)求2αβ+的值.16.在四面体ABCD 中,CB= CD, AD ⊥BD ,且E ,F 分别是AB,BD 的中点,求证:(Ⅰ)直线EF ∥面ACD ;(Ⅱ)面EFC ⊥面BCD .17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD 的中点P 处,已知AB=20km,CBP O A DCB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为y km .(Ⅰ)按下列要求写出函数关系式:①设∠BAO=θ(rad),将y 表示成θ的函数关系式;②设OP x =(km) ,将y 表示成x x 的函数关系式.(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.18.设平面直角坐标系xoy 中,设二次函数()()22f x x x b x R =++∈的图象与两坐标轴有三个交点,经过这三个交点的圆记为C .求:(Ⅰ)求实数b 的取值范围;(Ⅱ)求圆C 的方程;(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.19.(Ⅰ)设12,,,n a a a 是各项均不为零的等差数列(4n ≥),且公差0d ≠,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:①当n =4时,求1a d的数值;②求n 的所有可能值;(Ⅱ)求证:对于一个给定的正整数n(n ≥4),存在一个各项及公差都不为零的等差数列12,,,n b b b ,其中任意三项(按原来顺序)都不能组成等比数列.20.若()113x p f x -=,()2223x p f x -=,12,,x R p p ∈为常数,且()()()()()()()112212,,f x f x f x f x f x f x f x ≤⎧⎪=⎨>⎪⎩ (Ⅰ)求()()1f x f x =对所有实数成立的充要条件(用12,p p 表示);(Ⅱ)设,a b 为两实数,a b <且12,p p (),a b ,若()()f a f b =求证:()f x 在区间[],a b 上的单调增区间的长度和为2b a -(闭区间[],m n 的长度定义为n m -). 一、填空题:本大题共1小题,每小题5分,共70分.1. 【答案】10【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒= 2.【答案】112【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 3. 【答案】1 【解析】本小题考查复数的除法运算.∵()21112i i i i ++==- ,∴a =0,b =1,因此1a b += 4. 【答案】0【解析】本小题考查集合的运算和解一元二次不等式.由()}2137x x -<-得2580x x -+<,∵Δ<0,∴集合A 为∅ ,因此A Z 的元素不存在.5. 【答案】7 【解析】本小题考查向量的线性运算.()2222552510a b a ba ab b -=-=-+ =22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -=7 6. 【答案】16π 【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.214416P ππ⨯==⨯7.算法与统计的题目【解析】本小题考查导数的几何意义、切线的求法.'1y x = ,令112x =得2x =,故切点(2,ln2),代入直线方程,得,所以b =ln2-1.9【答案】11b c- 【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填11c b -.事实上,由截距式可得直线AB :1x y b a +=,直线CP :1x y c p += ,两式相减得11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.10.【答案】262n n -+ 【解析】本小题考查归纳推理和等差数列求和公式.前n -1 行共有正整数1+2+…+(n -1)个,即22n n -个,因此第n 行第3 个数是全体正整数中第22n n -+3个,即为262n n -+. 11. 【答案】3【解析】本小题考查二元基本不等式的运用.由230x y z -+=得32x z y +=,代入2y xz 得 229666344x z xz xz xz xz xz+++≥=,当且仅当x =3z 时取“=”.12. 【答案】2【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP 是等腰直角三角形,故2a c=,解得c e a ==.13.【答案】【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设BC =x ,则AC ,根据面积公式得ABC S ∆=1sin 2AB BC B = 2222242cos 24AB BC AC x x B AB BC x +-+-==244x x-=,代入上式得ABC S ∆==由三角形三边关系有22x x +>+>⎪⎩解得22x <<,故当x =ABCS ∆最大值14. 【答案】4【解析】本小题考查函数单调性的综合运用.若x =0,则不论a 取何值,()f x ≥0显然成立;当x >0 即[]1,1x ∈-时,()331f x ax x =-+≥0可化为,2331a x x ≥- 设()2331g x x x =-,则()()'4312x g x x -=, 所以()g x 在区间10,2⎛⎤ ⎥⎝⎦上单调递增,在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,因此()max 142g x g ⎛⎫== ⎪⎝⎭,从而a ≥4; 当x <0 即[)1,0-时,()331f x ax x =-+≥0可化为a ≤2331x x-,()()'4312x g x x -=0> ()g x 在区间[)1,0-上单调递增,因此()()ma 14n g x g =-=,从而a ≤4,综上a =4二、解答题:解答应写出文字说明,证明过程或演算步骤.15.【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.解:由条件的cos 105αβ==,因为α,β为锐角,所以sin α=105β= 因此1tan 7,tan 2αβ== (Ⅰ)tan(αβ+)= tan tan 31tan tan αβαβ+=-- (Ⅱ) 22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π 16.【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定.解:(Ⅰ)∵ E,F 分别是AB,BD 的中点,∴EF 是△ABD 的中位线,∴EF ∥AD ,∵EF ⊄面ACD ,AD ⊂ 面ACD ,∴直线EF ∥面ACD .(Ⅱ)∵ AD ⊥BD ,EF ∥AD ,∴ EF ⊥BD.∵CB=CD, F 是BD 的中点,∴CF ⊥BD.17.【解析】本小题主要考查函数最值的应用.解:(Ⅰ)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad) ,则10cos cos AQ OA θθ==, 故 10cos OB θ=,又OP =1010tan θ-10-10ta θ, 所以10101010tan cos cos y OA OB OP θθθ=++=++-, 所求函数关系式为2010sin 10cos y θθ-=+04πθ⎛⎫<< ⎪⎝⎭②若OP=x (km) ,则OQ =10-x ,所以=所求函数关系式为)010y x x =+<< (Ⅱ)选择函数模型①,()()()'2210cos cos 2010sin 102sin 1cos cos sin y θθθθθθθ-----== 令'y =0 得sin 12θ=,因为04πθ<<,所以θ=6π, 当0,6πθ⎛⎫∈ ⎪⎝⎭时,'0y < ,y 是θ的减函数;当,64ππθ⎛⎫∈ ⎪⎝⎭时,'0y > ,y 是θ的增函数,所以当θ=6π时,min 10y =+P 位于线段AB 的中垂线上,且距离AB 边km 处。

05年高考数学试题及答案全国卷

05年高考数学试题及答案全国卷

2005年普通高等学校招生全国统一考试理科数学(全国卷Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一 选择题(1)函数f (x) = | sin x +cos x |的最小正周期是 (A).4π (B)2π(C )π (D )2π(2) 正方体ABCD —A 1 B 1 C 1 D 1中,P 、Q 、R 、分别是AB 、AD 、B 1 C 1的中点。

那么正方体的过P 、Q 、R 的截面图形是(A )三角形 (B )四边形 (C )五边形 (D )六边形 (3)函数Y=32x -1(X≤0)的反函数是(A )Y=3)1(+x (X≥-1) (B)Y= -3)1(+x (X≥-1)(C) Y=3)1(+x (X≥0) (D)Y= -3)1(+x (X≥0)(4)已知函数Y=tan x ω 在(-2π,2π)内是减函数,则 (A )0 < ω ≤ 1 (B )-1 ≤ ω < 0 (C )ω≥ 1 (D )ω≤ -1(5)设a 、b 、c 、d ∈R,若dic bia ++为实数,则 (A )bc+ad ≠ 0 (B)bc-ad ≠ 0 (C) bc-ad = 0 (D)bc+ad = 0(6)已知双曲线 62x - 32y = 1的焦点为F 1、、F 2,点M 在双曲线上且MF 1 ⊥ x 轴,则F 1到直线F 2 M 的距离为 (A )563 (B )665 (C )56 (D )65(7)锐角三角形的内角A 、B 满足tan A -A2sin 1= tan B,则有(A )sin 2A –cos B = 0 (B)sin 2A + cos B = 0 (C)sin 2A – sin B = 0 (D) sin 2A+ sin B = 0(8)已知点A (3,1),B(0,0),C (3,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有λ= ,其中 λ 等于(A )2 (B )21 (C )-3 (D ) - 31(9)已知集合M={x∣2x -3x -28 ≤0},N = {x|2x -x-6>0},则M∩N 为(A ){x|- 4≤x< -2或3<x≤7} (B ){x|- 4<x≤ -2或 3≤x<7 }(C ){x|x≤ - 2或 x> 3 } (D ){x|x<- 2或x≥3} (10)点P 在平面上作匀数直线运动,速度向量v =(4,- 3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(- 10,10),则5秒后点P 的坐标为 (A )(- 2,4) (B )(- 30,25) (C )(10,- 5) (D )(5,- 10) (11)如果21,a a … ,8a 为各项都大于零的等差数列,公差d≠0,则(A>81,a a >54,a a (B) 81,a a < 54,a a (C> 5481a a a a +>+ (D) 81,a a = 54,a a(12)将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 (A )3623+ (B )2+362 (C )4+362 (D )36234+第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2005年江苏省高考数学试卷(含答案)

2005年江苏省高考数学试卷(含答案)

2005年高考数学江苏卷试题及答案一选择题:本大题共12小题,每小题5分,共60分项是符合题意要求的1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A =( ) A .{}3,2,1 B .{}4,2,1 C .{}4,3,2 D .{}4,3,2,12.函数)(321R x y x ∈+=-的反函数的解析表达式为 ( ) A .32log 2-=x y B .23log 2-=x y C .23log 2x y -= D .xy -=32log 2 3.在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则543a a a ++=( )A .33B .72C .84D .1894.在正三棱柱111C B A ABC -中,若AB=2,11AA =则点A 到平面BC A1的距离为( ) A .43 B .23 C .433 D .3 5.ABC ∆中,3π=A ,BC=3,则ABC ∆的周长为 ( )A .33sin 34+⎪⎭⎫⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB 6.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1617 B .1615 C .87 D .07.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:7.9,4.9,6.9,9.9,4.9,4.8,4.9,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )A .484.0,4.9B .016.0,4.9C .04.0,5.9D .016.0,5.9 8.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||; ③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则m ||其中真命题的个数是 ( )A .1B .2C .3D .4 9.设5,4,3,2,1=k ,则5)2(+x 的展开式中kx 的系数不可能是 ( ) A .10 B .40 C .50 D .80 10.若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos = ( )A .97-B .31-C .31D .9711.点)1,3(-P 在椭圆)0(12222>>=+b a by a x 的左准线上,过点P 且方向为)5,2(-=的光线经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A .33 B .31 C .22D .2112.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①.②.③.④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .0 二.填写题:本大题共6小题,每小题4分,共24分把答案填在答题卡相应位置13.命题“若b a >,则122->ba ”的否命题为__________14.曲线13++=x x y 在点)3,1(处的切线方程是__________15.函数)34(log 25.0x x y -=的定义域为__________16.若[)1,,618.03+∈=k k a a ,()k Z ∈,则k =__________17.已知b a ,为常数,若34)(2++=x x x f ,2410)(2++=+x x b ax f ,则b a -5=__________18.在ABC ∆中,O 为中线AM 上一个动点,若AM=2,则)(+∙的最小值是__________三.解答题:本大题共5小题,共66分解答应写出文字说明.证明过程或演算步骤19.(本小题满分12分)如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O .圆2O 的切线PM 、PN (M.N 分别为切点),使得PN PM 2=试建立适当的坐标系,并求动点P 的轨迹方程20.(本小题满分12分,每小问满分4分)甲.乙两人各射击一次,击中目标的概率分别是324假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击4次,至少1次未击中...目标的概率; ⑵求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; ⑶假设某人连续2次未击中...目标,则停止射击问:乙恰好射击5次后,被中止射击的概率是多少?21.(本小题满分14分,第一小问满分6分,第二.第三小问满分各4分)如图,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,3==DE BC ,=∠=∠=∠120CDE BCD BAE⑴求异面直线CD 与SB 所成的角(用反三角函数值表示); ⑵证明:BC ⊥平面SAB ;⑶用反三角函数值表示二面角B —SC —D 的大小不必写出解答过程)22.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知R a ∈,函数|)(2a x x x f -=⑴当2=a 时,求使x x f =)(成立的x 的集合; ⑵求函数)(x f y =在区间]2,1[上的最小值23.(本小题满分14分,第一小问满分2分,第二.第三小问满分各6分) 设数列{}n a 的前n 项和为n S ,已知11,6,1321===a a a ,且,3,2,1,)25()85(1=+=+--+n B An S n S n n n ,其中A.B 为常数⑴求A 与B 的值;⑵证明:数列{}n a 为等差数列;⑶证明:不等式15>-n m mn a a a 对任何正整数n m ,都成立2005年高考数学江苏卷试题及答案参考答案(1)D (2)A (3)C (4)B (5)D (6)B (7)D (8)B (9)C (10)A (11)A (12)B(13)若b a >,则122->ba (14)014=--y x(15)]1,43()0,41[ -(16)-1 (17)2 (18)-2 (19)以1O 2O 的中点O 为原点,1O 2O 所在的直线为x 轴,建立平面直角坐标系,则1O (-2,0),2O (2,0),由已知PN 2PM =,得222PN PM =因为两圆的半径均为1,所以1(212221-=-PO PO设),(y x P ,则]1)2[(21)2(2222-+-=-++y x y x , 即33)6(22=+-y x ,所以所求轨迹方程为)6(22=+-y x (或031222=+-+x y x )(20)(Ⅰ)记“甲连续射击4次,至少1次未击中目标”为事件A 1,由题意,射击4次,相当于4次独立重复试验,故P (A 1)=1- P (1A )=1-4)32(81答:甲射击4次,至少1次未击中目标的概率为8165; (Ⅱ) 记“甲射击4次,恰好击中目标2次”为事件A 2,“乙射击4次,恰好击中目标3次”为事件B 2,则278)321()32()(242242=-=-C A P ,6427)431()43()(143342=-=-C B P ,由于甲、乙设计相互独立,故86427278)()()(2222=⋅==B P A P B A P 答:两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率为81; (Ⅲ)记“乙恰好射击5次后,被中止射击”为事件A 3,“乙第i 次射击为击中” 为事件D i ,(i=1,2,3,4,5),则A 3=D 5D 4)(123D D D ,且P (D i )=41,由于各事件相互独立,故P (A 3)= P (D 5)P (D 4)P ()(123D D D )=41×41×43×(1-41×41)=102445,答:乙恰好射击51024(21)(Ⅰ)连结BE ,延长BC 、ED 交于点F ,则∠DCF=∠CDF=600,∴△CDF 为正三角形,∴CF=DF又BC=DE ,∴BF=EF 因此,△BFE 为正三角形,∴∠FBE=∠FCD=600,∴BE//CD所以∠SBE (或其补角)就是异面直线CD 与SB 所成的角 ∵SA ⊥底面ABCDE ,SA=AB=AE=2,∴SB=22,同理SE=22,又∠BAE=1200,所以BE=32,从而,cos ∠SBE=46, ∴∠46 所以异面直线CD 与SB 所成的角是46 (Ⅱ) 由题意,△ABE 为等腰三角形,∠BAE=1200,∴∠ABE=300,又∠FBE =600,∴∠ABC=900,∴BC ⊥BA∵SA ⊥底面ABCDE ,BC ⊂底面ABCDE , ∴SA ⊥BC ,又SA BA=A ,∴BC ⊥平面SAB(Ⅲ)二面角B-SC-D 的大小8282arccos-π(22)(Ⅰ)由题意,|2|)(2-=x x x f当2<x 时,由x x x x f =-=)2()(2,解得0=x 或1=x ;当2≥x 时,由x x x x f =-=)2()(2,解得1+=x 综上,所求解集为}21,1,0{+ (Ⅱ)设此最小值为①当1≤a 时,在区间[1,2]上,23)(ax x x f -=,因为0)32(323)('2>-=-=a x x ax x x f ,)2,1(∈x , 则)(x f 是区间[1,2]上的增函数,所以f m -==1)1(②当21≤<a 时,在区间[1,2]上,0||)(2≥-=a x x x f ,由0)(=a f 知)(==a f m③当2>a 时,在区间[1,2]上,32)(x ax x f -=)32(332)('2x a x x ax x f -=-=若3≥a ,在区间(1,2)上,0)('>x f ,则)(x f 是区间[1,2]上的增函数, 所以1)1(-==a f m 若32<<a ,则2321<<a 当a x 321<<时,0)('>x f ,则)(x f 是区间[1,a 32]上的增函数, 当232<<x a 时,0)('<x f ,则)(x f 是区间[a 32,2]上的减函数, 因此当32<<a 时,1)1(-==a f m 或)2(4)2(-==a f m当372≤<a 时,1)2(4-≤-a a ,故)2(4)2(-==a f m , 当337<<a 时,1)2(4-<-a a ,故1)1(-==a f m 总上所述,所求函数的最小值⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤<-≤<≤-=37172)2(421011a a a a a a a m(23)(Ⅰ)由已知,得111==a S ,7212=+=a a S ,183213=++=a a a S 由B An S n S n n n +=+--+)25()85(1,知⎩⎨⎧+=-+=--BA S SB A S S 2122732312,即⎩⎨⎧-+-=+48228B A B A 解得8,20-=-=B A .(Ⅱ) 由(Ⅰ)得820)25()85(1--=+--+n S n S n n n ① 所以 2820)75()35(12--=+--++n S n S n n n ②②-①得 20)25()110()35(12-=++---++n n n S n S n S n ③ 所以 20)75()910()25(123-=+++-++++n n n S n S n S n ④ ④-③得 )25()615()615()25(123=+-+++-++++n n n n S n S n S n S n因为 n n n S S a -=++11所以 0)75()410()25(123=+++-++++n n n a n a n a n 因为 0)25(≠+n所以 02123=+-+++n n n a a a所以 1223++++-=-n n n n a a a a ,1≥n 又 51223=-=-a a a a 所以数列}{n a 为等差数列(Ⅲ)由(Ⅱ) 可知,45)1(51-=-+=n n a n , 要证15>-n m mn a a a只要证 n m n m mn a a a a a 215++>, 因为 45-=mn a mn ,16)(2025)45)(45(++-=--=n m mn n m a a n m ,故只要证 >-)45(5mn n m a a n m mn 216)(20251+++-+, 即只要证 n m a a n m 2372020>-+,因为 372020)291515(8558552-+=-++-+<-+=+≤n m n m n m n m a a a a n m n m 所以命题得证。

(word完整版)高考数学中的内切球和外接球问题

(word完整版)高考数学中的内切球和外接球问题

高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为.例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24 ,则该球的体积为.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为.例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16B. 20C. 24D. 323.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形, 其侧棱垂直于底面,已知该 六棱柱的顶点都在同一个球面上,且该六棱柱的体积为9,底面周长 为3,则这个球的体积为.解设正六棱柱的底面边长为x ,高为h ,则有 6x 3 9 会 3 2.6 — x h 8 4的半径的常用公式二、构造法(补形法)1、构造正方体例5若三棱锥的三条侧棱两两垂直,且侧棱长均为 V 3 ,则其外 接球的表面积是.例3若三棱锥的三个侧面两两垂直,且侧棱长均为V 3 ,则其外 接球的表面积是.故其外接球的表面积S 4 r 2 9 .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分 别为a,b,c ,则就可以将这个三棱锥补成一个长方体, 于是长方体的体 对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则 有2R va 2 b 2 c 2.出现“墙角”结构利用补形知识,联系长方体。

[五年高考真题]2008-2012江苏省高考数学真题汇编(精品打印版)

[五年高考真题]2008-2012江苏省高考数学真题汇编(精品打印版)

15 .如图,在平面直角坐标系 xOy 中,以 Ox 轴为始边作两个锐角 , ,它们的终边分别交单位圆于
A,B 两点.已知 A,B 两点的横坐标分别是
(1)求 tan( ) 的值; (2)求 2 的值.
2 2 5 , . 10 5
y A B O x
16.如图,在四面体 ABCD 中, CB CD,AD BD ,点 E,F 分别是 AB,BD 的中点.求证: (1)直线 EF // 面 ACD ; (2)平面 EFC 面 BCD . B F E
2008-2012 年江苏省高考数学
试题汇编
版权归糖果工作室所有 未经同意禁止盗用
绝密★启用前
2008 年普通高等学校招生全国统一考试(江苏卷)

注 意

事 项
考生在答题前请认真阅读本注意事项及各题答题要求 、解答题(第 15 题~第 20 题)两部分。 1、本试卷共 4 页,包含填空题(第 1 题~第 14 题) 本试卷满分 160 分,考试时间为 120 分钟。考试结束后,请将本试卷和答题卡一并交回。 2、答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的 0.5 毫米签字笔填写在试 卷及答题卡上。 3、请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符。 4、作答非选择题必须用书写黑色字迹的 0.5 毫米签字笔写在答题卡上的指定位置,在其它 位置作答一律无效。作答选择题必须用 2B 铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,请用橡皮擦干净后,再选涂其它答案。 5、如有作图需要,可用 2B 铅笔作答,并请加黑加粗,描写清楚。 参考公式: 样本数据 x1 , x2 , , xn 的标准差 锥体体积公式
4 S 4 R 2 , V R 3 3

2012年江苏高考数学试题及答案

2012年江苏高考数学试题及答案

2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B =U ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +为 ▲ .4.右图是一个算法流程图,则输出的k 的值是 ▲ . 5.函数()f x =的定义域为 ▲ .6.现有10个数,它们能构成一个以1为首项,3-等比数列,若从这10个数中随机抽取一个数,则它小于的概率是 ▲ .7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率m 的值为 ▲ .9.如图,在矩形ABCD 中,2AB BC =,点E 为BC 的中点,点F 在边CD 上,若AB AF =u u u r u u u r g AE BF u u u r u u u rg 的值是 ▲ .10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,(第4题)DABC1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =u u u r u u u r u u u r u u u rg g .(1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C(第16题)FDCABE1B17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和2e ⎛ ⎝⎭,都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若12AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:1n a n *+=∈N .(1)设11n n nb b n a *+=+∈N ,,求证:数列2nn b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)准考证号21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作...................答...若多做,则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,D ,E 为圆上位于AB 异侧的两点,连结BD 并延长至点C ,使BD = DC ,连结AC ,AE ,DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分) 在极坐标中,已知圆C 经过点()4P π,,圆心为直线()sin 3ρθπ-=与极轴的交点,求圆C 的极坐标方程.D .[选修4 - 5:不等式选讲](本小题满分10分)(第21-A 题)已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. (1)求(4)f ;(2)求()f n 的解析式(用n 表示).2012年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则A∪B={1,2,4,6}.考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是5.考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为6cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为2.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10.考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx ﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9.考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题:导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e 可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.点评:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c 化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC 的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在y=kx﹣(1+k2)x2(k>0)中,令y=0,得kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由f(x)=x3+ax2+bx,得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:(i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5 个零点.(i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.点:圆锥曲线的定义、性质与方程.专题:分(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.析:(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.点评:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.考点:数列递推式;等差关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b 1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,从而求出随机变量的分布列与数学期望.解答:解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有8对相交棱,∴P(ξ=0)=.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴P(ξ=)=,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=)=.∴随机变量ξ的分布列是:ξ0 1P∴其数学期望E(ξ)=1×+=.点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,求概率是关键.23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).。

2012年高考数学试题(江苏卷)WORD版

2012年高考数学试题(江苏卷)WORD版

绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B = ▲2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲名学生.3.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +为 ▲ .4.右图是一个算法流程图,则输出的k 的值是 ▲ . 5.函数x x f 6log 21)(-=的定义域为 ▲ .6.现有10个数,它们能构成一个以1为首项,3-等比数列,若从这10个数中随机抽取一个数,则它小于的概率是 ▲ .7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率 m 的值为 ▲ .(第4题)DABC 11D1A1B(第7题)9.如图,在矩形ABCD中,2AB BC =,点E 为BC 的中点, 点F 在边CD 上,若2AB AF =,则AE BF 的值是 ▲ .10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上, 0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为 ▲ .12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ . 14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC =. (1)求证:tan 3tan B A =; (2)若cos C =求A 的值.16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. (第9题)1A 1C求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数)(x f y =在0x x =处取得极大值或极小值,则称0x 为函数)(x f y =的极值点。

2008高考数学试卷含答案(全word版)

2008高考数学试卷含答案(全word版)

2008年普通高等学校招生全国统一考试数学(文科)卷一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{|0}A x x =>,{|12}B x x =-≤≤,则A B =(A ){|1}x x ≥- (B ){|2}x x ≤ (C ){|02}x x <≤ (D ){|12}x x -≤≤ (2)函数2(sin cos )1y x x =++的最小正周期是 (A )2π(B )π (C )32π (D )2π(3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (4)已知{}n a 是等比数列,41252==a a ,,则公比q =(A )21-(B )2- (C )2 (D )21(5)0,0a b ≥≥,且2a b +=,则(A )12ab ≤(B )12ab ≥(C )222a b +≥ (D )223a b +≤(6)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是(A )-15 (B )85 (C )-120 (D )274(7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4 (8)若双曲线12222=-by ax 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (9)对两条不相交的空间直线a 和b ,必定存在平面α,使得(A ),a b αα⊂⊂ (B ),//a b αα⊂ (C ),a b αα⊥⊥ (D ),a b αα⊂⊥ABCD(10)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 (A )12(B )4π(C )1 (D )2π二.填空题:本大题共7小题,每小题4分,共28分。

2008年高考数学试题及答案

2008年高考数学试题及答案

2008年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A ·B)=P(A) ·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 V=43πR 3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )()(1)(012)k k n kn n P k C P p k n -=-= ,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N = ( )A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <2.若函数(1)()y x x a =+-为偶函数,则a =( )A .2-B .1-C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B . (k ∈C .()k ∈-+D .()k ∈-+4.已知01a <<,log log aa x =,1log 52a y =,log log a a z =则( ) A .x y z >>B .z y x >>C .y x z >>D .z x y >>5.已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =,则顶点D 的坐标为( )A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫-⎪⎝⎭, C .(32),D .(13),6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .348.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a 9.已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( )A .4B .2C .1D .4-10.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A .24种B .36种C .48种D .72种 11.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1B .2C .3D .412.在正方体1111ABCD A BC D -中,E F ,分别为棱1AA ,1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( )A .不存在B .有且只有两条C .有且只有三条D .有无数条第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.函数21()x y ex +=-<<+∞∞的反函数是 .14.在体积为的球的表面上有A 、B ,C 三点,AB =1,BCA ,C 两点的球面距,则球心到平面ABC 的距离为_________. 15.6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .16.设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △a b ,; (Ⅱ)若sin 2sin B A =,求ABC △的面积.18.(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:(Ⅰ (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率; (ⅱ)该种商品4周的销售量总和至少为15吨的概率.19.(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(Ⅲ)若12b =,求D E '与平面PQEF 所成角的正弦值.A B CDEFP Q H A ' B ' C ' D ' G20.(本小题满分12分)在数列||n a ,||n b 是各项均为正数的等比数列,设()nn nb c n a =∈*N . (Ⅰ)数列||n c 是否为等比数列?证明你的结论;(Ⅱ)设数列|ln |n a ,|ln |n b 的前n 项和分别为n S ,n T .若12a =,21n n S nT n =+,求数列||n c 的前n 项和. 21.(本小题满分12分)在平面直角坐标系xOy 中,点P到两点(0,(0的距离之和等于4,设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB的值是多少? 22.(本小题满分14分)设函数322()31()f x ax bx a x a b =+-+∈R ,在1x x =,2x x =处取得极值,且122x x -=.(Ⅰ)若1a =,求b 的值,并求()f x 的单调区间; (Ⅱ)若0a >,求b 的取值范围.2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)试题参考答案和评分参考一、选择题:本题考查基本知识和基本运算.每小题5分,共60分. 1.D 2.C 3.B 4.C 5.A 6.A 7.C 8.A 9.B 10.B 11.D 12.D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.1(ln 1)(0)2y x x =-> 14.3215.35 16三、解答题17.本小题主要考查三角形的边角关系等基础知识,考查综合计算能力.满分12分. 解:(Ⅰ)由余弦定理得,224a b ab +-=, 又因为ABC △1sin 2ab C =4ab =. ······························· 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ··························································· 6分(Ⅱ)由正弦定理,已知条件化为2b a =, ········································································ 8分联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得3a =,3b =.所以ABC △的面积1sin 23S ab C ==. ···································································· 12分 18.本小题主要考查频率、概率等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ···························· 4分 (Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,故所求的概率为(ⅰ)4110.70.7599P =-=. ···················································································· 8分 (ⅱ)334240.50.30.30.0621P C =⨯⨯+=. ···························································· 12分 19.本小题主要考查空间中的线面关系和面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力.满分12分. 解法一:(Ⅰ)证明:在正方体中,AD A D ''⊥,AD AB '⊥,又由已知可得PF A D '∥,PH AD '∥,PQ AB ∥,所以PH PF ⊥,PH PQ ⊥,所以PH ⊥平面PQEF .所以平面PQEF 和平面PQGH 互相垂直. ········································································ 4分 (Ⅱ)证明:由(Ⅰ)知PF PH '=,,又截面PQEF 和截面PQGH 都是矩形,且PQ =1,所以截面PQEF 和截面PQGH 面积之和是)PQ '⨯= ············································································ 8分 (Ⅲ)解:设AD '交PF 于点N ,连结EN , 因为AD '⊥平面PQEF ,所以D EN '∠为D E '与平面PQEF 所成的角. 因为12b =,所以P Q E F ,,,分别为AA ',BB ',BC ,AD 的中点.可知D N '=,32D E '=.所以4sin 322D EN '==∠. ······················································································· 12分解法二:以D 为原点,射线DA ,DC ,DD ′分别为x ,y ,z 轴的正半轴建立如图的空间直角坐标系D -xyz .由已知得1DF b =-,故(100)A ,,,(101)A ',,,(000)D ,,,(001)D ',,,(10)P b ,,,(11)Q b ,,,(110)E b -,,, (100)F b -,,,(11)G b ,,,(01)H b ,,.(Ⅰ)证明:在所建立的坐标系中,可得(010)(0)PQ PF b b ==-- ,,,,,, (101)PH b b =--,,,(101)(101)AD A D ''=-=-- ,,,,,.因为00AD PQ AD PF ''== ,,所以AD ' 是平面PQEF 的法向量. 因为00A D PQ A D PH ''==,,所以A D ' 是平面PQGH 的法向量.A BCDE FP Q HA 'B 'C 'D 'G N因为0AD A D ''= ,所以A D AD ''⊥ ,所以平面PQEF 和平面PQGH 互相垂直. ··········································································· 4分(Ⅱ)证明:因为(010)EF =- ,,,所以EF PQ EF PQ ∥,=,又P F P Q ⊥,所以PQEF为矩形,同理PQGH 为矩形.在所建立的坐标系中可求得)PH b =-,PF =,所以PH PF += ,又1PQ =,所以截面PQEF 和截面PQGH················································· 8分(Ⅲ)解:由(Ⅰ)知(101)AD '=-,,是平面PQEF 的法向量.由P 为AA '中点可知,Q E F ,,分别为BB ',BC ,AD 的中点.所以1102E ⎛⎫ ⎪⎝⎭,,,1112D E ⎛⎫'=- ⎪⎝⎭ ,,,因此D E '与平面PQEF 所成角的正弦值等于|cos |AD D E ''<>= , ·································································································· 12分 20.本小题主要考查等差数列,等比数列,对数等基础知识,考查综合运用数学知识解决问题的能力.满分12分.解:(Ⅰ)n c 是等比数列. ·································································································· 2分 证明:设n a 的公比为11(0)q q >,n b 的公比为22(0)q q >,则11121110n n n n n n n n n n c b a b a qc a b b a q +++++===≠ ,故n c 为等比数列. ··············································· 5分 (Ⅱ)数列ln n a 和ln n b 分别是公差为1ln q 和2ln q 的等差数列.由条件得1112(1)ln ln 22(1)21ln ln 2n n n a q n n n n b q -+=-++,即 11122ln (1)ln 2ln (1)ln 21a n q nb n q n +-=+-+. ···························································································· 7分故对1n =,2,…,212111211(2ln ln )(4ln ln 2ln ln )(2ln ln )0q q n a q b q n a q -+--++-=.于是121112112ln ln 04ln ln 2ln ln 02ln ln 0.q q a q b q a q -=⎧⎪--+=⎨⎪-=⎩,,将12a =代入得14q =,216q =,18b =. ······································································ 10分从而有11816424n nn n c --== . 所以数列n c 的前n 项和为24444(41)3n n+++=-…. ···························································································· 12分 21.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分. 解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0(0,为焦点,长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214y x +=. ·························································································· 4分 (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足2214 1.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=, 故1212222344k x x x x k k +=-=-++,.·············································································· 6分 OA OB ⊥,即12120x x y y +=.而2121212()1y y k x x k x x =+++,于是222121222223324114444k k k x x y y k k k k -++=---+=++++. 所以12k =±时,12120x x y y +=,故OA OB ⊥ . ····························································· 8分当12k =±时,12417x x += ,121217x x =-.AB ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=,所以AB = . ············································································································ 12分22.本小题主要考查函数的导数,单调性、极值,最值等基础知识,考查综合利用导数研究函数的有关性质的能力.满分14分解:22()323f x ax bx a '=+-.① ······················································································· 2分 (Ⅰ)当1a =时,2()323f x x bx '=+-;由题意知12x x ,为方程23230x bx +-=的两根,所以12x x -=. 由122x x -=,得0b =. ···································································································· 4分 从而2()31f x x x =-+,2()333(1)(1)f x x x x '=-=+-.当(11)x ∈-,时,()0f x '<;当(1)(1)x ∈--+ ∞,,∞时,()0f x '>. 故()f x 在(11)-,单调递减,在(1)--∞,,(1)+,∞单调递增. ······································· 6分(Ⅱ)由①式及题意知12x x ,为方程223230x bx a +-=的两根,所以12x x -=.从而221229(1)x x b a a -=⇔=-,由上式及题设知01a <≤. ································································································· 8分 考虑23()99g a a a =-,22()1827273g a a a a a ⎛⎫'=-=-- ⎪⎝⎭. ··············································································· 10分故()g a 在203⎛⎫ ⎪⎝⎭,单调递增,在213⎛⎫ ⎪⎝⎭,单调递减,从而()g a 在(]01,的极大值为2433g ⎛⎫=⎪⎝⎭.又()g a 在(]01,上只有一个极值,所以2433g ⎛⎫=⎪⎝⎭为()g a 在(]01,上的最大值,且最小值为(1)0g =.所以2403b ⎡⎤∈⎢⎥⎣⎦,,即b 的取值范围为33⎡-⎢⎣⎦,. ··················································· 14分。

2012年江苏高考数学信息卷一(南师大数学之友版)word版

2012年江苏高考数学信息卷一(南师大数学之友版)word版

2012 高考数学模拟题一一、填空题1.若,,x y z 为正实数,则222xy yz x y z+++2.提示:22221122x y y z +++≥+.2. 已知函数2(1)()1(1)x ax x f x ax x ⎧-+≤=⎨->⎩,若存在12,x x R ∈,12x x ≠,使12()()f x f x =成立,则实数a 的取值范围是2a ≤.3.已知A B O ∆三顶点的坐标为(1,0),(0,2),(0,0),(,)A B O P x y 是坐标平面内一点,且满足0,0AP O A BP O B ⋅≤⋅≥,则OP AB ⋅的最小值为 3 .提示:由已知得(1,)(1,0)10AP O A x y x ⋅=-⋅=-≤,且(,2)(0,2)2(2)0BP O B x y y ⋅=-⋅=-≥,即1x ≤,且2y ≥,所以(,)(1,2)2143O P AB x y x y ⋅=⋅-=-+≥-+=.4. 函数()f x 在定义域R 内可导,若()(2)f x f x =-,且当(,1)x ∈-∞时,(1)'()x f x -<,设1(0),(),(3)2a f b f c f ===,则,,a b c 的大小关系为c <a<b. 提示:依题意得,当1x <时,有'()0f x >,()f x 为增函数;又(3)(1)f f =-,且11012-<<<,因此有1(1)(0)()2f f f -<<, 即有1(3)(0)()2f f f <<,c a b <<.5. 等比数列{n a }的前n 项和为n S ,已知123,2,3S S S 成等差数列,则等比数列{n a }的公比为13.提示:设等比数列{n a }的公比为(0)q q ≠,由21343S S S =+,得21111114()3()a a q a a a q a q +=+++,即230q q -=,13q ∴=.6.在平面直角坐标系中,设直线:0l kx y -+=与圆C :224x y +=相交于A 、B 两点,.OM OA OB =+若点M 在圆C上,则实数k =1±.提示:OM OA OB =+,则四边形O A M B 是锐角为60︒的菱形,此时,点O 到A B 距离为1.1=,解出k =1±.7. 如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依此类推,则第63行从左至右的第5个数应是2012.提示:由每行的行号数和这一行的数字的个数相同可求出第63行最左边的数是63(631)20162⨯+=,所以,从左至右的第5个数应是2016-4=2012.136547891015141312112二、解答题 1.已知向量)1,(sin θ=a,)3,(cos θ=b ,且//a b,其中)2,0(πθ∈.(1)求θ的值;(2)若20,53)sin(πωθω<<=-,求cos ω的值.解:(1)(sin ,1)a θ=,(cos b θ= ,且//a b,cos 0θθ∴-=,即tan 3θ=,.30),2,0(=∴∈θπθ(2) ,6,20πθπω=<< .366ππωπ<-<-∴53)6sin(=-πω ,54)6(sin 1)6cos(2=--=-∴πωπω.)6sin(6sin )6cos(6cos )66cos cos πωππωπππωω---=⎥⎦⎤⎢⎣⎡+-=∴)(4133.252510=⨯-⨯=2.如图,在三棱柱111C B A ABC -中,侧面11ABB A 和侧面11AC C A 均为正方形, 90=∠BAC ,的中点为BC D .(1)求证:11//ADC B A 平面; (2)求证:C B A C 11⊥.证明:(1)连接OD O AC C A ,连接于点交11,.的中点为为正方形,所以四边形C A O A ACC 111 ,又D 为BC 的中点,BC A OD 1∆∴为的中位线,∴.OD //B A 11ADC OD 平面⊂ ,11ADC B A 平面⊄,∴11//ADCB A 平面.(2)由(1)可知,11CA A C ⊥.侧面11A ABB 为正方形,111AA B A ⊥,且 9011=∠=∠BAC C A B ,1111A ACC B A 平面⊥∴.又111A ACC A C 平面⊂ ,A CB A 111⊥∴.C B A A C 111平面⊥∴. C B A C B 111平面又⊂,∴C B A C 11⊥.3.某直角走廊的示意图如图所示,其两边走廊的宽度均为2m .(1)过点P 的一条直线与走廊的外侧两边交于,A B 两点,且与走廊的一边的夹角为(0)2πθθ<<,将线段A B的长度l 表示为θ的函数;(2)一根长度为5m 的铁棒能否水平(铁棒与地面平行)通过该直角走廊?请说明理由(铁棒的粗细忽略不计). 解:(1) 根据图得22(),(0,).sin cos 2l B P A P πθθθθ=+=+∈(2) 铁棒能水平通过该直角直廊,理由如下:22()()()sin cos l θθθ'''=+220sin 2cos 0cos 2sin sin cos θθθθθθ⋅-⋅⋅+⋅=+33222(sin cos ).sin cos θθθθ-=令()0l θ'=得,4πθ=.当04πθ<<时,()0,()l l θθ'<为减函数; 当42ππθ<<时,()0,()l l θθ'>为增函数;所以当4πθ=时,()l θ有最小值因为5>,所以铁棒能水平通过该直角走廊.4.椭圆C :)0(12222>>=+b a by ax两个焦点为12,F F ,点P 在椭圆C 上,且211F F PF ⊥,且211=PF ,3221=F F .(1)求椭圆C 的方程.(2)以此椭圆的上顶点B 为直角顶点作椭圆的内接等腰直角三角形ABC ,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由. 解:(1)3221=F F 3=∴c ,又211F F PF ⊥,∴,27,44922212122==+=PF F F PF PF∴1,2,4222221=-===+=c a ba PF PF a 则,∴所求椭圆C 的方程为1422=+yx.(2)假设能构成等腰直角三角形ABC ,其中)1,0(B ,由题意可知,直角边BCBA ,不可能垂直或平行于x 轴,故可设BA 边所在直线的方程为1+=kx y ,)0(<k 不妨设,则BC 边所在直线的方程为11-+=x k y .由221,44,y kx x y =+⎧⎨+=⎩得12280()14k x x k ==-+舍,,故)1418,418(222++-+-k kk k A , ∴,4118)418()418(2222222kkk kkkk AB ++=+-++-=用k1-代替上式中的k ,得22418kk BC ++=,由得,BC AB =,41)422k k k+=+( 即324410,k k k +++=即2(1)(31)0,k k k +++=,2531,0±-=-=∴<k k k 或解得故存在三个满足题设条件的内接等腰直角三角形.5.有n 个首项都是1的等差数列,设第m 个数列的第k 项为mk a (3,,,3,2,1,≥=n n k m ),公差为m d ,并且nn n n n a a a a ,,,,321 成等差数列. (1)证明的多项式)是m p p n m d p d p d m 212211,,3(≤≤+=,并求21p p +的值; (2)当3,121==d d 时,将数列{}m d 分组如下:)(1d ,),,(432d d d ,),,,,(98765d d d d d ,…(每组数的个数构成等差数列). 设前m 组中所有数之和为4)(m c (0>m c ),求数列{}m c d m2的前n 项和n S .(3)设N 是不超过20的正整数,当N n >时,对于(1)中的n S ,求使得不等式n n d S >-)6(501成立的所有N 的值.解:(1)由题意知m mn d n a )1(1-+=.[][]))(1()1(1)1(1121212d d n d n d n a a n n --=-+--+=-,同理,))(1(2323d d n a a n n --=-,))(1(3434d d n a a n n --=-,…,))(1(1)1(----=-n n n n nn d d n a a .又因为nn n n n a a a a ,,,,321 成等差数列,所以n n a a 12-=n n a a 23-=…=n n nn a a )1(-- 故,12312--==-=-n n d d d d d d 即{}n d 是公差为12d d -的等差数列. 所以21121)1()2())(1(d m d m d d m d d m -+-=--+=. 令,1,221-=-=m p m p 则2211d p d p d m +=此时21p p +=1.(2)当3,121==d d 时,)(12*N m m d m ∈-= 数列{}m d 分组如下:)(1d ,),,(432d d d ,),,,,(98765d d d d d ,… 按分组规律,第m 组中有12-m 个奇数,所以第1组到第m 组共有2)12(531m m =-++++ 个奇数. 注意到前k 个奇数的和为2)12(531k k =-++++ , 所以前2m 个奇数的和为422)(m m =.即前m 组中所有数之和为4m ,所以44)(m c m =.因为,0>m c 所以m c m =,从而).(2)12(2*N m m d m m c m∈⋅-=所以n n n n n S 2)12(2)32(272523211432⋅-+⋅-++⋅+⋅+⋅+⋅=- .154322)12(2)32(272523212+⋅-+⋅-++⋅+⋅+⋅+⋅=n nn n n S故14322)12(222222222+⋅--⋅++⋅+⋅+⋅+=-n n n n S 1322)12(2)2222(2+⋅---++++=n n n 12)12(212)12(22+⋅-----⨯=n nn 62)23(1--=+n n .所以62)32(1+-=+n n n S .(3)由(2)得)(12*N n n d n ∈-=, 62)32(1+-=+n n n S )(*N n ∈. 故不等式n n d S >-)6(501就是)12(502)32(1->-+n n n .考虑函数100)502)(32()12(502)32()(11---=---=++n n n n n x f . 当5,4,3,2,1=n 时,都有0)(<n f ,即)12(502)32(1-<-+n n n . 而0602100)50128(9)6(>=--=f ,注意到当6≥n 时,)(n f 单调递增,故有0)(>n f . 因此,当6≥n 时,)12(502)32(1->-+n n n 成立,即n n d S >-)6(501成立.所以,满足条件的所有正整数N=20,,7,6,5 . 6. 对任意x R ∈,给定区间11[,]()22k k k Z -+∈,设函数()f x 表示实数x与x 所属的给定区间内唯一整数之差的绝对值.(1)当11[,]22x ∈-时,求出()f x 的解析式;11[,]()22x k k k Z ∈-+∈时,写出绝对值符号表示的()f x 的解析式;(2)求44(),()33f f -,判断函数()()f x x R ∈的奇偶性,并证明你的结论;(3)当121ea -<<时,求方程()log 0af x -=的实根.( 要求说明理由,1212e ->).解:(1)当11[,]22x ∈-时,11[,]22-中唯一整数为0,由定义知:11(),[,].22f x x x =∈-当11[,]()22x k k k Z ∈-+∈时,在11[,]22k k -+中唯一整数为k ,由定义知:11(),[,]()22f x x k x k k k Z =-∈-+∈.(2) 411411[1,1],[1,1],322322∈-+-∈---+4141(),()3333f f ∴=-=,下判断()f x 是偶函数.对任何x R ∈,存在唯一k Z ∈,使得11,()22k x k f x x k-≤≤+=-则.由1122k x k -≤≤+可以得出11()22k x k k Z --≤-≤-+∈,即11[,]()22x k k k Z -∈---+-∈.由(1)的结论,()()(),f x x k k x x k f x -=---=-=-=即()f x 是偶函数.(3)()log 0af x -=,即1log 02a x k x --=,其中0x >;①当1x >时,10log 2a x k x-≥>,所以1log 02a x k x --=没有大于1的实根;②容易验证1x =为方程1log 02a x k x --=的实根;③当112x <<时,对应的1k =,方程1log 02a x k x --=变为11log 02a x x --=.设11()log (1)(1)22a H x x x x =--<<.则121111'()log 11110,22ln 2ln a H x e xx axx e-=+=+<+=-+<故当112x <<时,()H x 为减函数,()(1)0H x H >=,方程没有112x <<的实根; ④当102x <≤时,对应的0k =,方程1log 02a x k x --=变为1log 02a x x -=,设11()log (0)22a G x x x x =-<≤,明显()G x 为减函数.1()()()02G x G H x ≥=>,所以方程没有102x <≤的实根.综上,若121e a -<<时,方程()log 0af x -=有且仅有一个实根,实根为1.三、理科附加题1.在研究性学习小组的一次活动中,甲、乙、丙、丁、戊五位同学被随机地分配承担H 、I 、J 、K 四项不同的任务,每项任务至少安排一位同学承担. (1)求甲、乙两人不同时承担同一项任务的概率;(2)设这五位同学中承担H 任务的人数为随机变量ξ,求ξ的分布列及数学期望.ξE解:(1)设甲、乙两人同时承担同一项任务为事件B ,那么,101)(442544=A A =B P C所以甲、乙两人不同时承担同一项任务的概率是.109)(1)(=B P -=B P(2)随机变量ξ可能取的值为1,2.事件“2=ξ”是指有两人同时承担H 任务, 则41244253325=A A ==P C C )(ξ,.)()(43211==P -==P ξξ所以,ξ的分布列是所以.45412431=⨯+⨯=E ξ2. 已知2012(1)(1)(1)(1),(*).n n n x a a x a x a x n N +=+-+-++-∈(1) 求0a 及1nn ii S a ==∑;(2) 试比较n S 与2(2)22n n n -+的大小,并说明理由.解:(1) 令1x =,则02na =,令2x =,则03nn i i a ==∑,所以32n n n S =-.(2) 要比较n S 与2(2)22n n n -+的大小,即比较:3n 与2(1)22n n n -+的大小,当1n =时,3n >2(1)22n n n -+;当2,3n =时,3n <2(1)22n n n -+; 当4,5n =时,3n >2(1)22n n n -+;猜想:当4n ≥时,3n >2(1)22n n n -+,下面用数学归纳法证明: 由上述过程可知,4n =时结论成立,假设当(4)n k k =≥时结论成立,即3k >2(1)22k k k -+;两边同乘以3得:1212233[(1)22]22(1)[(3)2442]k k k kk kk k k k k ++>-+=+++-+--. 而22(3)2442(3)24(2)6(2)24(2)(1)60kkkk k k k k k k k k -+--=-+--+=-+-++>所以1123[(1)1]22(1)k k k k ++>+-++; 即1n k =+是结论也成立,所以,当4n ≥,3n >2(1)22n n n -+成立. 综上得,当1n =时,3n >2(1)22n n n -+; 当2,3n =时,3n <2(1)22n n n -+; 当4n ≥,*n N ∈时,3n >2(1)22n n n -+.。

【高考试卷】2005年高考数学(江苏卷)试题及答案

【高考试卷】2005年高考数学(江苏卷)试题及答案

【高考试卷】2005年高考数学江苏卷试题及答案 一选择题:本大题共12小题,每小题5分,共60分项是符合题意要求的1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A Y I =( ) A .{}3,2,1 B .{}4,2,1 C .{}4,3,2 D .{}4,3,2,1 2.函数)(321R x y x ∈+=-的反函数的解析表达式为 ( )A .32log 2-=x yB .23log 2-=x yC .23log 2x y -=D .xy -=32log 2 3.在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则543a a a ++=( )A .33B .72C .84D .1894.在正三棱柱111C B A ABC -中,若AB=2,11AA =则点A 到平面BC A 1的距离为( )A .43B .23C .433 D .3 5.ABC ∆中,3π=A ,BC=3,则ABC ∆的周长为 ( ) A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB 6.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1617B .1615C .87 D .0 7.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:7.9,4.9,6.9,9.9,4.9,4.8,4.9,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )A .484.0,4.9B .016.0,4.9C .04.0,5.9D .016.0,5.98.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||; ③若βα||,α⊂l ,则β||l ;④若l =βαI ,m =γβI ,n =αγI ,γ||l ,则m ||其中真命题的个数是 ( )A .1B .2C .3D .49.设5,4,3,2,1=k ,则5)2(+x 的展开式中k x 的系数不可能是 ( )A .10B .40C .50D .8010.若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos = ( ) A .97- B .31- C .31 D .97 11.点)1,3(-P 在椭圆)0(12222>>=+b a by a x 的左准线上,过点P 且方向为)5,2(-=a 的光线经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( ) A .33 B .31 C .22 D .21 12.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①.②.③.④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .0二.填写题:本大题共6小题,每小题4分,共24分把答案填在答题卡相应位置 13.命题“若b a >,则122->b a ”的否命题为__________ 14.曲线13++=x x y 在点)3,1(处的切线方程是__________ 15.函数)34(log 25.0x x y -=的定义域为__________ 16.若[)1,,618.03+∈=k k a a ,()k Z ∈,则k =__________17.已知b a ,为常数,若34)(2++=x x x f ,2410)(2++=+x x b ax f ,则b a -5=__________ 18.在ABC ∆中,O 为中线AM 上一个动点,若AM=2,则)(OC OB OA +•的最小值是__________三.解答题:本大题共5小题,共66分解答应写出文字说明.证明过程或演算步骤19.(本小题满分12分)如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O .圆2O 的切线PM 、PN (M.N 分别为切点),使得PN PM 2=试建立适当的坐标系,并求动点P 的轨迹方程20.(本小题满分12分,每小问满分4分)甲.乙两人各射击一次,击中目标的概率分别是324假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击4次,至少1次未击中...目标的概率; ⑵求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;⑶假设某人连续2次未击中...目标,则停止射击问:乙恰好射击5次后,被中止射击的概率是多少?21.(本小题满分14分,第一小问满分6分,第二.第三小问满分各4分)如图,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,3==DE BC ,=∠=∠=∠120CDE BCD BAE ⑴求异面直线CD 与SB 所成的角(用反三角函数值表示);⑵证明:BC ⊥平面SAB ;⑶用反三角函数值表示二面角B —SC —D 的大小不必写出解答过程)22.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知R a ∈,函数|)(2a x x x f -=⑴当2=a 时,求使x x f =)(成立的x 的集合;⑵求函数)(x f y =在区间]2,1[上的最小值23.(本小题满分14分,第一小问满分2分,第二.第三小问满分各6分) 设数列{}n a 的前n 项和为n S ,已知11,6,1321===a a a ,且 Λ,3,2,1,)25()85(1=+=+--+n B An S n S n n n ,其中A.B 为常数 ⑴求A 与B 的值;⑵证明:数列{}n a 为等差数列;⑶证明:不等式15>-n m mn a a a 对任何正整数n m ,都成立。

2008年高考数学(理)真题(Word版)——全国1卷(试题+答案解析)

2008年高考数学(理)真题(Word版)——全国1卷(试题+答案解析)

+ ), 即y=sin(2x+ )=sin2(x+ ). ∴只需将函数y=sin2x的图像向左平移 个单位长度即得函数y=cos(2x+ )的图像,选A. 9、答案: D 解析:∵f(x)为奇函数,∴f(-x)=-f(x), 且f(-1)=-f(1)=0. 又∵f(x)在(0,+∞)上为增函数, ∴当x<-1或0<x<1时,f(x)<0, 当-1<x<0或x>1时,f(x)>0. 又不等式 <0, ∴解集为(-1,0)∪(0,1). 10、答案: D 解析:动点M在以原点为圆心的单位圆上, 所以直线 + =1过点M,只需保证原点到直线的距离
B C A ∴O′E= a.∴sin∠O′AE= . 12、答案: B 解析:方法一:4种花都种有 =24种;只种其中3种花: · · · =48种;
只种其中2种花: · =12种. ∴共有种法24+48+12=84种. 方法二:A有4种选择,B有3种选择,C可与A相同,则D有3种选择,若C与A不 同,则C有2种选择,D也有2种选择. ∴共有4×3×(3+2×2)=84. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中 横线上. 13.答案: 9 解析:由题意得可行域如图中阴影部分所示,则由图可得目标函数z=2x-y 的最大值为y=2x-z,过点(3,-3)时,此时z=9.
2008年普通高等学校招生全国统一考试(全国Ⅰ 卷) 理科数学(必修+选修Ⅰ) 第Ⅰ卷
参考公式: 如果事件互斥,那么 球的表面积公式
如果事件相互独立,那么 其中表示球的半径 球的体积公式 如果事件在一次试验中发生的概率是,那么 次独立重复试验中恰好发生次的概率 其中表示球的半径 一、选择题 1.函数的定义域为( ) A. B. C. D. 2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这 一过程中汽车的行驶路程看作时间的函数,其图像可能是( ) s t O A. s t O s t O s t O B. C. D. 3.在中,,.若点满足,则( ) A. B. C. D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数学本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.参考公式:样本数据1x,2x, ,n x的标准差s=其中x为样本平均数柱体体积公式V Sh=其中S为底面积,h为高锥体体积公式13V Sh=其中S为底面积,h为高球的表面积、体积公式24S Rπ=,343V Rπ=其中R为球的半径一、填空题:本大题共1小题,每小题5分,共70分.1.()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= ▲ . 2.一个骰子连续投2 次,点数和为4 的概率 ▲ . 3.11ii+-表示为a bi +(),a b R ∈,则a b +== ▲ . 4.A={()}2137x x x -<-,则A Z 的元素的个数 ▲ .5.a ,b的夹角为120︒,1a = ,3b = 则5a b -= ▲ .6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 ▲ .7.某地区为了解70-80岁老人的日平均睡眠时间(单位:h ),随即选择了50为老人进行调查,下表是这50为老人日睡眠时间的频率分布表。

在上述统计数据的分析中,一部分计算见算法流程图,则输出的S 的值是 ▲ 。

8.设直线12y x b =+是曲线()ln 0y x x =>的一条切线,则实数b = ▲ .9在平面直角坐标系xOy 中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P (0,p )在线段AO 上的一点(异于端点),设a,b,c, p 均为非零实数,直线BP ,CP 分别与边AC , AB 交于点E 、F ,某同学已正确求得OE 的方程:11110x y b c p a⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,请你完成直线OF 的方程:( ▲ )110x y p a⎛⎫+-= ⎪⎝⎭.10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .17 .18 .19 .20 .21 . 22 .按照以上排列的规律,数阵中第n 行(n ≥3)从左向右的第3 个数为 ▲ .11.已知,,x y z R +∈,满足230x y z -+=,则2y xz的最小值是 ▲ .12.在平面直角坐标系xOy 中,设椭圆2222x y a b +=1( a b >>0)的焦距为2c ,以点O 为圆心,a 为半径作圆M ,若过点P 2,0a c ⎛⎫⎪⎝⎭所作圆M 的两条切线互相垂直,则该椭圆的离心率为e = ▲ .13.满足条件BC 的三角形ABC 的面积的最大值是 ▲ .14.设函数()331f x ax x =-+(x ∈R ),若对于任意[]1,1x ∈-,都有()f x ≥0 成立,则实数a = ▲ .二、解答题:本大题共6小题,共计90分。

请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐点,已知A 、B角α,β,它们的终边分别与单位圆相交于A 、B 两.的横坐标分别为105(Ⅰ)求tan(αβ+)的值;(Ⅱ)求2αβ+的值.16.如图,在四面体ABCD 中,CB= CD, AD⊥BD,点E 、F分别是AB、BD 的中点,求证:(Ⅰ)直线EF ∥平面ACD ;(Ⅱ)平面EFC⊥平面BCD .17.如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A、B 及CD的中点P 处,已知AB=20km, CB =10km ,为了处理三家工厂的污水,现要在该矩形ABCD 的区域上(含边界),且与A、B 等距离的一点O 处建造一个污水处理厂,并铺设三条排污管道AO,BO,OP ,设排污管道的总长为y km.(Ⅰ)按下列要求写出函数关系式:①设∠BAO=θ(rad),将y表示成θ的函数关系式;②设OP x=(km) ,将y表示成x的函数关系式.(Ⅱ)请你选用(Ⅰ)中的一个函数关系,确定污水处理厂的位置,使三条排污管道总长度最短.18.设平面直角坐标系xoy中,设二次函数()()22f x x x b x R=++∈的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.(Ⅰ)求实数b 的取值范围;(Ⅱ)求圆C 的方程;(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.19.(Ⅰ)设12,,,n a a a 是各项均不为零的等差数列(4n ≥),且公差0d ≠,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列: ①当n =4时,求1a d的数值;②求n 的所有可能值; (Ⅱ)求证:对于一个给定的正整数n(n ≥4),存在一个各项及公差都不为零的等差数列12,,,n b b b ,其中任意三项(按原来顺序)都不能组成等比数列.20.若()113x p f x -=,()2223x p f x -=∙,12,,x R p p ∈为常数,函数f (x)定义为:对每个给定的实数x ,()()()()()()()112212,,f x f x f x f x f x f x f x ≤⎧⎪=⎨>⎪⎩ (Ⅰ)求()()1f x f x =对所有实数x 成立的充要条件(用12,p p 表示);(Ⅱ)设,a b 为两实数,满足a b <,且12,p p ∈(),a b ,若()()f a f b =,求证:()f x 在区间[],a b 上的单调增区间的长度之和为2b a-(闭区间[],m n 的长度定义为n m -).2008年普通高等学校招生全国统一考试(江苏卷)数学参考答案一、填空题:本大题共1小题,每小题5分,共70分. 1. 【答案】10【解析】本小题考查三角函数的周期公式.2105T ππωω==⇒=2.【答案】112【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 3. 【答案】1【解析】本小题考查复数的除法运算.∵()21112i i i i ++==- ,∴a =0,b =1,因此1a b += 4. 【答案】0【解析】本小题考查集合的运算和解一元二次不等式.由2(1)37x x -<-得2580x x -+<,∵Δ<0,∴集合A 为∅ ,因此A Z 的元素不存在. 5. 【答案】7【解析】本小题考查向量的线性运算.()2222552510a b a ba ab b -=-=-+=22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -= 76. 【答案】16π 【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.214416P ππ⨯==⨯7. 【答案】6.42 8. 【答案】ln2-1【解析】本小题考查导数的几何意义、切线的求法.'1y x= ,令112x=得2x =,故切点(2,ln2),代入直线方程,得,所以b =ln2-1. 9【答案】11c b-【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填11c b-.事实上,由截距式可得直线AB :1xy ba+=,直线CP :1x y cp += ,两式相减得11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.10.【答案】262n n -+【解析】本小题考查归纳推理和等差数列求和公式.前n -1 行共有正整数1+2+…+(n -1)个,即22n n -个,因此第n 行第3 个数是全体正整数中第22n n-+3个,即为262n n -+.11. 【答案】3【解析】本小题考查二元基本不等式的运用.由230x y z -+=得32x zy +=,代入2y xz 得229666344x z xz xz xzxz xz+++≥=,当且仅当x =3z 时取“=”.12. 【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP 是等腰直角三角形,故2a c=,解得c e a ==13.【答案】【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设BC =x ,则AC ,根据面积公式得ABC S ∆=1sin 2AB BC B =2222242cos 24AB BC AC x x B AB BC x +-+-== 244x x-=,代入上式得ABC S ∆==由三角形三边关系有22x x +>+>⎪⎩解得22x <<,故当x =ABCS ∆最大值14. 【答案】4【解析】本小题考查函数单调性的综合运用.若x =0,则不论a 取何值,()f x ≥0显然成立;当x >0 即[]1,1x ∈-时,()331f x ax x =-+≥0可化为,2331a x x≥- 设()2331g x x x =-,则()()'4312x g x x -=, 所以()g x 在区间10,2⎛⎤ ⎥⎝⎦上单调递增,在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,因此()max 142g x g ⎛⎫== ⎪⎝⎭,从而a ≥4;当x <0 即[)1,0-时,()331f x ax x =-+≥0可化为a ≤2331x x-,()()'4312x g x x -=0> ()g x 在区间[)1,0-上单调递增,因此()()ma 14n g x g =-=,从而a ≤4,综上a =4二、解答题:解答应写出文字说明,证明过程或演算步骤.15.【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.解:由已知条件及三角函数的定义可知,cos 10αβ== 因为α,β为锐角,所以sinαβ=因此1tan 7,tan 2αβ== (Ⅰ)tan(αβ+)= tan tan 31tan tan αβαβ+=--(Ⅱ) 22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π16.【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定. 解:(Ⅰ)∵ E,F 分别是AB,BD 的中点,∴EF 是△ABD 的中位线,∴EF ∥AD ,∵EF ⊄面ACD ,AD ⊂ 面ACD ,∴直线EF ∥面ACD . (Ⅱ)∵ AD ⊥BD ,EF ∥AD ,∴ EF ⊥BD. ∵CB=CD, F 是BD 的中点,∴CF ⊥BD.又EF CF=F ,∴BD ⊥面EFC .∵BD ⊂面BCD ,∴面EFC ⊥面BCD .17.【解析】本小题主要考查函数最值的应用.解:(Ⅰ)①延长PO 交AB 于点Q ,由条件知PQ 垂直平分AB ,若∠BAO=θ(rad) ,则10cos cos AQ OA θθ==, 故 10cos OB θ=,又OP =1010tan θ-10-10ta θ, 所以10101010tan cos cos y OA OB OP θθθ=++=++-,所求函数关系式为2010sin 10cos y θθ-=+04πθ⎛⎫<< ⎪⎝⎭②若OP=x (km) ,则OQ =10-x ,所以=所求函数关系式为)010y x x =+<< (Ⅱ)选择函数模型①,()()()'2210cos cos 2010sin 102sin 1cos cos sin y θθθθθθθ-----==令'y =0 得sin 12θ=,因为04πθ<<,所以θ=6π,当0,6πθ⎛⎫∈ ⎪⎝⎭时,'0y < ,y 是θ的减函数;当,64ππθ⎛⎫∈ ⎪⎝⎭时,'0y > ,y 是θ的增函数,所以当θ=6π时,min 10y =+P 位于线段AB 的中垂线上,且距离AB 边km 处。

相关文档
最新文档