福建省福州市2019—2020学年度第一学期高三期末质量检测理科数学试卷 含答案
2019-2020年高三上学期期末学习质量检测英语含答案
2019-2020年高三上学期期末学习质量检测英语含答案说明:1.本试卷分第Ⅰ卷和第Ⅱ卷。
满分150分。
答题时间120分钟。
2.请将第Ⅰ卷题目的答案选出后用28铅笔涂在答题卡对应题目的代号上;第Ⅱ卷用黑色签字笔将正确答案写在答题纸对应的位置上,答在试卷上作废。
第Ⅰ卷(选择题,共105分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Who is in favor of municating on line?A.The man and the woman's friends.B.The woman and the man's friends.C.The man and the woman.2.How is the food at the restaurant?A.Very good.B.Not expensive.C.Not fast but cheap.3.Where does this conversation probably take place?A.In a theater.B.In a supermarket.C.At the Barber's.4.What does the woman suggest the man do?A.Refuse his brother.B.Live with a friend of his.C.Find another room for his brother.5.Why was the woman surprised?A.She had lost her job.B.She didn't know the mayor.C.She was mistaken.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
2019-2020学年福建省福州市九年级(上)期末数学试卷
2019-2020学年福建省福州市九年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)下列图标中,是中心对称图形的是()A.B.C.D.2.(4分)下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是180°”3.(4分)若关于x的方程x2﹣m=0有实数根,则m的取值范围是()A.m<0B.m≤0C.m>0D.m≥04.(4分)在平面直角坐标系中,点(a,b)关于原点对称的点的坐标是()A.(﹣a,﹣b)B.(﹣b,﹣a)C.(﹣a,b)D.(b,a)5.(4分)从1,2,3,5这四个数字中任取两个,其乘积为偶数的概率是()A.B.C.D.6.(4分)若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=57.(4分)如图,点D为线段AB与线段BC的垂直平分线的交点,∠A=35°,则∠D等于()A.50°B.65°C.55°D.70°8.(4分)为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为t(单位:h),温度为y(单位:℃).当4≤t≤8时,y与t的函数关系是y=﹣t2+10t+11,则4≤t≤8时该地区的最高温度是()A.11℃B.27℃C.35℃D.36℃9.(4分)如图,五边形ABCDE内接于⊙O,若∠CAD=35°,则∠B+∠E的度数是()A.210°B.215°C.235°D.250°10.(4分)对于反比例函数,如果当﹣2≤x≤﹣1时有最大值y=4,则当x≥8时,有()A.最小值y=B.最小值y=﹣1C.最大值y=D.最大值y=﹣1二、填空题(本题共6小题,每小题4分,共24分)11.(4分)如图,AB∥CD,AD与BC相交于点E,若AE=2,ED=3,则的值是.12.(4分)圆心角为120°,半径为2的扇形的弧长是.13.(4分)如图,E,F,G,H分别是正方形ABCD各边的中点,顺次连接E,F,G,H.向正方形ABCD 区域随机投掷一点,则该点落在阴影部分的概率是.14.(4分)如图,将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,直线BC与直线DE 所夹的锐角是.15.(4分)若a是方程x2+x﹣1=0的一个根,则的值是.16.(4分)如图,在直角三角形ABC中,∠C=90°,D是AC边上一点,以BD为边,在BD上方作等腰直角三角形BDE,使得∠BDE=90°,连接AE.若BC=4,AC=5,则AE的最小值是.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.(8分)解方程:x2﹣6x﹣1=0.18.(8分)在一个不透明的袋子中装有红、黄、蓝三个小球,除颜色外无其它差别.从袋子中随机摸球三次,每次摸出一个球,记下颜色后不放回.请用列举法列出三次摸球的结果,并求出第三次摸出的球是红球的概率.19.(8分)福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.20.(8分)如图,已知⊙O,A是的中点,过点A作AD∥BC.求证:AD与⊙O相切.21.(8分)如图,△ABC中,AB=AC>BC,将△ABC绕点C顺时针旋转得到△DEC,使得点B的对应点E 落在边AB上(点E不与点B重合),连接AD.(1)依题意补全图形;(2)求证:四边形ABCD是平行四边形.22.(10分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.23.(10分)如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.24.(12分)如图,△ABC内接于⊙O,BC是⊙O的直径,E是上一点,弦BE交AC于点F,弦AD⊥BE 于点G,连接CD,CG,且∠CBE=∠ACG.(1)求证:CG=CD;(2)若AB=4,BC=2,求CD的长.25.(14分)已知抛物线C:y=ax2﹣4(m﹣1)x+3m2﹣6m+2.(1)当a=1,m=0时,求抛物线C与x轴的交点个数;(2)当m=0时,判断抛物线C的顶点能否落在第四象限,并说明理由;(3)当m≠0时,过点(m,m2﹣2m+2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t+2,且点A在第三象限.以线段AB为直径作圆,设该圆的面积为S,求S的取值范围.2019-2020学年福建省福州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意.故选:C.2.【解答】解:A、可能性很大的事情也可能不会发生,故错误,不符合题意;B、可能性很小的事情是也可能发生的,故错误,不符合题意;C、掷一次骰子,向上一面的点数是6”是随机事件,故错误,不符合题意;D、“任意画一个三角形,其内角和是180°”,正确,符合题意,故选:D.3.【解答】解:∵x2﹣m=0,∴x2=m,由x2﹣m=0知m≥0,故选:D.4.【解答】解:点(a,b)关于原点对称的点的坐标是:(﹣a,﹣b).故选:A.5.【解答】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是=,故选:C.6.【解答】解:令y=0得:x2+bx=0.解得:x1=0,x2=﹣b.∵抛物线的对称轴为x=2,∴﹣b=4.解得:b=﹣4.将b=﹣4代入x2+bx=5得:x2﹣4x=5.整理得:x2﹣4x﹣5=0,即(x﹣5)(x+1)=0.解得:x1=5,x2=﹣1.故选:D.7.【解答】解:连DA,如图,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,即DA=DB=DC,∴点A、B、C三点在以D点圆心,DB为半径的圆上,∴∠BDC=2∠BAC=2×35°=70°.故选:D.8.【解答】解:∵y=﹣t2+10t+11=﹣(t﹣5)2+36,∴当t=5时有最大值36℃,∴4≤t≤8时该地区的最高温度是36℃,故选:D.9.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故选:B.10.【解答】解:由当﹣2≤x≤﹣1时有最大值y=4,得x=﹣1时,y=4.k=﹣1×4=﹣4,反比例函数解析式为y=﹣,当x≥8时,图象位于第四象限,y随x的增大而增大,当x=8时,y最小值=﹣,故选:A.二、填空题(本题共6小题,每小题4分,共24分)11.【解答】解:如图所示:∵AB∥CD,∴∠EAB=∠EDC,∠EBA=∠ECD,∴△EAB∽△EDC,∴,又∵AE=2,ED=3,∴,故答案为.12.【解答】解:l===π.故答案为:π.13.【解答】解:设AD=AB=BC=DC=2,则AH=GD=AE=BE=CF=BF=GC=DG=1,可得四边形HEFG是正方形,边长为:,故阴影部分面积为:2,∵正方形ABCD的面积为:4,∴该点落在阴影部分的概率是:.故答案为:.14.【解答】解:∵将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,∴直线BC与直线DE所夹的锐角=旋转角=55°,故答案为:55°.15.【解答】解:==,∵a是方程x2+x﹣1=0的一个根,∴a2+a﹣1=0,∴==1,故答案为1.16.【解答】解:如图,过点E作EH⊥AC于H,∵∠BDE=90°=∠C,∴∠EDA+∠BDC=90°,∠BDC+∠DBC=90°,∴∠DBC=∠EDA,且DE=BD,∠H=∠C=90°,∴△BDC≌△DEH(AAS)∴EH=CD,DH=BC=4,∴AH=DH﹣AD=CD﹣1,∵AE2=AH2+EH2=CD2+(CD﹣1)2=2(CD﹣)2+≥∴当CD=时,AE的最小值为,故答案为.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.【解答】解:x2﹣6x﹣1=0,移项得:x2﹣6x=1,配方得:x2﹣6x+9=10,即(x﹣3)2=10,开方得:x﹣3=±,则x1=3+,x2=3﹣.18.【解答】解:依题意得,共有6种结果,分别是(红,黄,蓝)(红,蓝,黄)(黄,红,蓝)(黄,蓝,红)(蓝,红,黄)(蓝,黄,红),所有结果发生的可能性都相等,其中第三次摸出的球是红球的结果又2种,则第三次摸出的球是红球的概率是=.19.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=0.9,BC=39.1,∴AC=16,∴=,∴CD=.∴白塔的高CD为米.20.【解答】证明:过点O作OF⊥BC于F,延长OF交⊙O于点E,如图所示:∴=,∠OFB=90°,∴E是的中点,∵A是的中点,∴点E与点A重合,∵AD∥BC,∴∠OAD=∠OFB=90°,∴OA⊥AD,∵点A为半径OA的外端点,∴AD与⊙O相切.21.【解答】解:(1)如图所示:(2)∵△ABC绕点C顺时针旋转得到△DEC,∴△ABC≌△DEC,DC=AC,EC=BC,∵AB=AC,∴DC=AB,∵△ABC≌△DEC,∴∠DCE=∠ACB,∵EC=BC,∴∠CEB=∠B,∵AB=AC,∴∠B=∠ACB,∴∠CEB=∠DCE,∴DC∥AB,又∵DC=AC,AB=AC,∴四边形ABCD是平行四边形.22.【解答】解:(1)∵50<60,∴120×50=6000元,答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗所需要支付的树苗款为120×60=7200元<8800元,∴该中学购买的树苗超过60棵,∴购买100棵树苗时每棵树苗的售价恰好将至100元,∵购买树苗超过100棵后,每棵树苗的售价为100元,此时所需支付的树苗款超过100000元,而100000>8800,∴该中学购买的树苗不过100棵,设购买了x(60<x≤100)棵,根据题意可知:x[20﹣0.5(x﹣60)]=8800,解得:x=220(舍去)或x=80,答:这所学校购买了80棵树苗23.【解答】解:(1)∵双曲线y=上的一点A(m,n),过点A作AB⊥x轴于点B,∴AB=n,OB=m,又∵△AOB的面积是3,∴mn=3,∴mn=6,∵点A在双曲线y=上,∴k=mn=6;(2)如图,延长DC交x轴于E,由旋转可得△AOB≌△ACD,∠BAD=90°,∴AD=AB=n,CD=OB=m,∠ADC=90°,∵AB⊥x轴,∴∠ABE=90°,∴四边形ABED是矩形,∴∠DEB=90°,∴DE=AB=n,CE=n﹣m,OE=m+n,∴C(m+n,n﹣m),∵点A,C都在双曲线上,∴mn=(m+n)(n﹣m),即m2+mn﹣n2=0,方程两边同时除以n2,得+﹣1=0,解得=,∵n>m>0,∴=.24.【解答】解:(1)如图,∵BC是⊙O的直径,∴∠1+∠2=90°∵AD⊥BE于点G,∴∠1+∠5=90°∴∠2=∠5∵∠CBE=∠ACG.即∠4=∠3∠DGC=∠2+∠3=∠5+∠4=∠ABC∵∠ABC=∠D∴∠DGC=∠D∴CG=CD;(2)如图.连接AE、CE,在Rt△ABC中,∠BAC=90°,AB=4,BC=2,根据勾股定理,得AC==6,∵BC是直径,∴∠BEC=90°,∴∠AGE=∠BEC,∴AD∥CE,∵∠CAE=∠4,∠3=∠4,∴∠CAE=∠3,∴AE∥CG,∴四边形AGCE是平行四边形,∴AF=FC=3,在Rt△ABF中,BF==5,∵S△ABF=BF•AG=AB•AF∴AG=.过点C作CI⊥AD于点I,得矩形GICE,∴EC=GI,∵CG=CD,∴GI=DI∵四边形AGCE是平行四边形,∴EC=AG=,∵∠D=∠ABC,∠CID=∠BAC=90°,∴△CID∽△CAB,∴=,即=,∴CD=.答:CD的长为.25.【解答】解:(1)当a=1,m=0时,抛物线的表达式为:y=x2﹣4x+2,△=8>0,故C与x轴的交点个数为2;(2)当m=0时,判断抛物线C的顶点为:(﹣,﹣+2),假设点C在第四象限,则﹣>0,且﹣+2<0,解得:0>且>0,故a无解,故顶点不能落在第四象限;(3)将点(m,m2﹣2m+2)代入抛物线表达式并整理得:(a﹣2)m2=0,∵m≠0,故a=2;则抛物线的表达式为:y=2x2﹣4(m﹣1)x+(3m2﹣6m+2),则顶点坐标为:(m﹣1,m2﹣2m),当m﹣1=t时,m=t+1,则点A(t,t2﹣1);当m﹣1=t+1时,m=t+3,点B(t+2,t2+4t+3);点A在第三象限,即t<0且t2﹣1<0,解得:﹣1<t<0;y B﹣y A=4t+4>0,故点B在点A的右上方,AB2=22+(4t+4)2=16(t+1)2+4,﹣1<t<0时,4<AB2<20;S=π()2=,故π<S<5π.。
福州市2019-2020学年度第二学期七年级期末质量检测-数学
B.
C.
D.
二、填空题:(本大题共 6 小题,每小题 4 分,共 24 分)
11.若 是方程 ax﹣y=3 的解,则 a=
.
12.如图,计划在河边建一水厂,可过 C 点作 CD⊥AB 于 D 点.在 D 点建水厂,可使水厂到村庄 C
的路程最短,这样设计的依据是
.
13.若 的整数部分为 a,小数部分为 b,则 a=
第 5页(共 9页)
20.解:
,
由①得:x>﹣ , 由②得:x≤4, ∴不等式组的解集为﹣ <x≤4,
21.解:(1)m=1﹣14%﹣40%﹣20%=26%, ∴m=26%.… 13÷26%=50… 50×20%=10 并补全条形图
(2)乘公交车人数最多. (3)6000×20%=1200(人). 故骑自行车上学的学生大约 1200 人.
(2)设该商店购进 A 种纪念品 x 个,则购进 B 种纪念品有个,
∴
,
解得:50≤x≤53, ∵x 为正整数,x=50,51,52,53 ∴共有 4 种进货方案, 分别为:方案 1:商店购进 A 种纪念品 50 个,则购进 B 种纪念品有 50 个; 方案 2:商店购进 A 种纪念品 51 个,则购进 B 种纪念品有 49 个; 方案 3:商店购进 A 种纪念品 52 个,则购进 B 种纪念品有 48 个; 方案 4:商店购进 A 种纪念品 53 个,则购进 B 种纪念品有 47 个.
22.解:∵c⊥a,c⊥b, ∴a∥b, ∵∠1=70° ∴∠1=∠2=70°, ∴∠2=∠3=70°.
第 6页(共 9页)
23.解:(1)△A′B′C′如图所示.
(2)A′(0,4),B′(3,1). (3)S△ABC= •4×3=6.
福建省福州市2014届高三质检数学理试题 Word版含解析
2014年福州市高中毕业班质量检测理科数学试卷第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)lg },{(,)}A x y y x B x y x a ====,若A B =∅,则是实数a 的取值范围是( )A. 1a <B. 1a ≤C. 0a <D. 0a≤2.“实数1a =”是“复数(1)ai i +(,a R i ∈”的 ( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不是充分条件又不是必要条件3.执行如图所示的程序框图,输出的M 值是 ( )A .2B .1-C .12D .2- 【答案】B4.命题“x R ∃∈,使得()f x x =”的否定是 ( ) A. x R ∀∈,都有()f x x = B.不存在x R ∈,使()f x x ≠ C. x R ∀∈都有()f x x ≠ D. x R ∃∈使()f x x ≠5.已知等比数列{}n a 的前n 项积记为n ∏,若3488a a a =,则 9∏= ( ) A.512 B.256 C.81 D.166.如图,设向量(3,1),(1,3)OA OB ==,若OC OA OB λμ=+,且1λμ≥≥,则用阴影表示C 点所有可能的位置区域正确的是 ( )BAxxx7.函数()f x 的部分图像如图所示,则()f x 的解析式可以是 ( ) A. ()sin f x x x =+ B. cos ()xf x x=C.()cosf x x x = D. 3()()()22f x x x x ππ=--x考点:1.函数的图像.2.分类讨论.3.列举排除的数学思想.4.归纳化归的数学思想.8.已知1F 、2F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若双曲线左支上存在一点一点P 与点2F 关于直线bxy a=对称,则该双曲线的离心率为 ( ) A.2B.C.D. 29.若定义在R 上的函数f (x )满足f (-x )=f (x ), f (2-x )=f (x ),且当x ∈[0,1]时,其图象是四分之一圆(如图所示),则函数H (x )= |x e x|-f (x )在区间[-3,1]上的零点个数为 ( )A.5B.4C.3D.2x【答案】B 【解析】试题分析:因为定义在R 上的函数f(x)满足f(-x)=f(x),所以函数()f x 为偶函数,又因为f(2-x)=f(x),所以函数()f x 关于直线1x =对称.因为函数H(x)= |xe x|-f(x)在区间[-3,1]上的零点即等价求方程()x f x xe =的解的个数.等价于函数x y xe =和函数()y f x =的图像的交点个数,由图象可得共有4个交点.故选B.考点:1.函数的性质.2.数形结合的思想.3.函数图像的正确表示及绘制.10.已知函数32()f x x bx cx d =+++(b 、c 、d 为常数),当(0,1)x ∈时取极大值,当(1,2)x ∈时取极小值,则221()(3)2b c ++-的取值范围是( ) A.(2B. C. 37(,25)4D. (5,25)第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题4分,共20分.11.5名同学站成一排,其中甲同学不站排头,则不同的排法种数是______________(用数字作答).12.如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率为________.14.已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为____________.俯视图侧视图正视图15.已知函数1(1)sin 2,[2,21)2(),()(1)sin 22,[21,22)2nn x n x n n f x n N x n x n n ππ+⎧-+∈+⎪⎪=∈⎨⎪-++∈++⎪⎩,若数列{}m a 满足*()()2m ma f m N =∈,且{}m a 的前m 项和为m S ,则20142006S S -=_____________. 【答案】8042 【解析】试题分析:20142006S S -=20072008200920102011201220132014a a a a a a a a +++++++.因为20072007()250122a f ==⨯+,2008(1004)2502a f ==⨯,20092009()250222a f ==+⨯,2010(1005)125022a f ==-+⨯+,2011250222a =-+⨯+,20122503a =⨯,201325032a =+⨯,2014125032a =-+⨯+.所以20142006S S -=8042.考点:1.分段函数的问题.2.数列的思想.3.三角函数的周期性.4.分类列举的数学思想.三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分13分)在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:21006542098874286438210乙地甲地规定:当产品中的此种元素含量15≥毫克时为优质品.(Ⅰ)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数); (Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望()E ξ.(II)ξ的取值为1,2,3. 12823101(1),15C C P C ξ⋅===21823107(2),15C C P C ξ⋅===157)3(3100238=⋅==C C C P ξ 所以ξ的分布列为故的数学期望为123.1515155E ξ=⨯+⨯+⨯=() 考点:1.茎叶图的知识.2.列举对比的数学思想.3.数学期望的计算.4.概率知识.17.(本小题满分13分)已知函数2()2cos cos ().f x x x x x R =+∈.(Ⅰ)当[0,]2x π∈时,求函数)(x f 的单调递增区间;(Ⅱ)设ABC ∆的内角C B A ,,的对应边分别为c b a ,,,且3,()2,c f C ==若向量)sin ,1(A m =与向量)sin ,2(B n =共线,求b a ,的值.令-222,262k x k k Z πππππ+≤+≤+∈,18.(本小题满分13分) 如图,直角梯形ABCD 中,090,24ABC AB BC AD ∠====,点,E F 分别是,AB CD 的中点,点G 在EF 上,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(Ⅰ)当AG GC +最小时,求证:BD CG ⊥;(Ⅱ)当2B ADGE D GBCF V V --=时,求二面角D BG C --平面角的余弦值.EB【答案】(Ⅰ)参考解析;(Ⅱ)6【解析】试题分析:(Ⅰ)因为当AG GC +最小时,及连结AC 与EF 的交点即为G 点,通过三角形的相似可得到EG 的长度.需要证明直线与直线垂直,根据题意建立空间直角坐标系,即可得到相关各点的坐标,从而写出相(Ⅱ)解法一:设EG=k ,AD ∥平面EFCB ,∴点D 到平面EFCB 的距离为即为点A 到平面EFCB 的距离.S 四形GBCF =12[(3- k )+4]×2=7-k D GBCF V S AE 四形GBCF -\=鬃13=2(7)3k -又B ADGE ADGE V S BE 四形-=?13=2(2)3k +,B ADGE D GBCF V V --=2,∴4(2)3k +=2(7)3k -,1k ∴=即EG =1设平面DBG 的法向量为1(,,)n x y z =,∵G (0,1,0),∴(2,1,0),BG =-BD =(-2,2,2),则 1100n BD n BG ⎧⋅=⎪⎨⋅=⎪⎩,即222020x y z x y -++=⎧⎨-+=⎩19.(本小题满分13分) 已知动圆C 过定点(1,0),且与直线1x =-相切. (Ⅰ)求动圆圆心C 的轨迹方程;(Ⅱ)设,A B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,①当2παβ+=时,求证直线AB 恒过一定点M ;②若αβ+为定值(0)θθπ<<,直线AB 是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.20.(本小题满分14分)已知函数1()ln()f x x axa=+-,其中a R∈且0a≠(Ⅰ)讨论()f x 的单调区间;(Ⅱ)若直线y ax =的图像恒在函数()f x 图像的上方,求a 的取值范围;(Ⅲ)若存在1210,0x x a-<<>,使得12()()0f x f x ==,求证:120x x +>. 【答案】(Ⅰ)参考解析;(Ⅱ)2ea >;(Ⅲ)参考解析【解析】()h x ∴的最小值为1()2h a -,所以只需1()02h a -> 即1112()ln()022a a a a ⋅---+>,1ln 12a ∴<-,2ea ∴>(Ⅲ)由于当0a <时函数在),1(+∞-a上是增函数,不满足题意,所以0a >21.本小题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则安所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应提好右边的方框涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换. 已知矩阵3A c ⎛= ⎝3d ⎫⎪⎭,若矩阵A 属于特征值6的一个特征向量为111α⎛⎫= ⎪⎭⎝,属于特征值1的一个特征向量232α⎛⎫= ⎪-⎭⎝.(Ⅰ)求矩阵A 的逆矩阵; (Ⅱ)计算314A ⎛-⎫⎪⎭⎝ 【答案】(Ⅰ)⎪⎪⎪⎪⎭⎫ ⎝⎛--=-213121321A;(Ⅱ)429434⎛⎫ ⎪⎝⎭【解析】试题分析:(Ⅰ)因为已知矩阵3A c ⎛= ⎝ 3d ⎫⎪⎭,若矩阵A 属于特征值6的一个特征向量为111α⎛⎫= ⎪⎭⎝,属于特征值1的一个特征向量232α⎛⎫= ⎪-⎭⎝.通过特征向量与特征值的关系,可求矩阵A 中的相应参数的值,再通过逆矩阵的含义可求出矩阵A 的逆矩阵.同样可以从通过特征根的方程方面入手,求的结论.(2)(本小题满分7分)选修4-4:坐标与参数方程.在平面直角坐标系xoy 中,以O 为极点,x 轴非负半轴为极轴建立坐标系,已知曲线C 的极坐标方程为2sin 4cos ρθθ=,直线l 的参数方程为:2242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),两曲线相交于,M N 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若(2,4)P --求PM PN +的值.(3)(本小题满分7分)选修4-5:不等式选讲 设函数()43f x x x =-+-, (Ⅰ)求()f x 的最小值m ;(Ⅱ)当23(,,)a b c m a b c R ++=∈时,求222a b c ++的最小值. 【答案】(Ⅰ)1;(Ⅱ)114【解析】试题分析:(Ⅰ)因为()43f x x x =-+-,所以通过绝对值的基本不等式a b a b +≥-,即可得到最小值.另外也可以通过分类关键是去绝对值,求出不同类的函数式的最小值,再根据这些最小值中的最小值确定所求的结论.亿折网一折网。
2019-2020学年度第一学期福建省福州市九年级期末质量抽测(无听力)
2019-2020学年度第一学期福州市九年级期末质量抽测英语试卷Ⅱ. 选择填空(共15小题;每小题1分,满分15分)从每小题所给的A、B、C三个选项中,选出可以填入空白处的正确答案。
21.- Have you finished your project?- Not yet. But we are making _______ .A.peaceB. noiseC. progress22. Don’t worry! If you can’t complete the work _______ your own, I will give you a hand.A. InB. onC. at23.- How much difficulty did you have solving this problem?- _______. It’s quite easy.A. NobodyB. NowhereC. None24.--Kate, don’t sing here! I'm busy preparing for tomorrows math test.-Sorry, I didn’t _______ it.A. mentionB. realizeC. manage25.-What a fine day today!Yes. It’s ______ to stay indoors. Why not go out for a picnic?A. sillyB. naturalC. excellent26. Thomas and Martin climbed the higher mountain, ____they enjoyed a better view1A. butB. soC. or27. The style of my dress ______ that of Mary’s, but hers is a little longer.A. is similar toB. is pleased withC. is short of28.-How’s Mrs. Black?-She ______ her medicine and is resting now.A. takesB. is takingC. has taken29.-_____ have you been in the sports club?- Since the first month I came to this school.A. How longB. How soonC. How often30. We ______ respect the disabled and be kind to them.A. dare toB. orC. have to31.- Why can’t Karl enter the bar?- Only those _____ are above eighteen years old are allowed to enter.A. whoB. whichC. when32. My cat was lying under the shelf on the wall. So when the shelf fell, she _____ right on the head.A. hitB. was hitC. was hitting33. Jane and her friends ______ themselves when they saw one another’s costumesA. laughed atB. turned toC. named after34. The doctor did what he could ______ the girl who was badly injured in the accident.2A. saveB. savingC. to save35. Steve is free tomorrow. Let's ask him ________ .A. where he has goneB. when did he go to the Great WallC. whether he wants to go to the ball game with usCBCBA BACAB ABACCⅢ. 完形填空(共10小题;每小题1.5分,满分15分)阅读下面短文,从每小题所给的A、B、C三个选项中,选出可以填入空白处的最佳答案。
2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案
2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 2. 已知集合,,则 .3. 已知等差数列的首项为3,公差为4,则该数列的前项和 .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式的解集是 .6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 .8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 .9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示).11. 若,是一二次方程的两根,则 .12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 13. 已知实数、满足,则的取值范围是 .14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D.16. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件17. 则表示复数的点是( )18. A. 1个 B. 4个三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2在锐角中,、、分别为内角、(1)求的大小;(2)若,的面积,求的值.B120.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由;(2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中)(1)求;(2)求数列的通项公式;(3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由.静安区xx第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) xx.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 解:.2. 已知集合,,则 . 解:.3. 已知等差数列的首项为3,公差为4,则该数列的前项和 . 解:.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45.5. 不等式的解集是 . 解:.6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 . 解:.8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 . 解:.9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 解:-2.10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示). 解:(或或).11. 若,是一二次方程的两根,则 . 解:-3.12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 解:或.13. 已知实数、满足,则的取值范围是 . 解:.14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 . 解:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D. 解:D.B 116. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件解:B.17. 则表示复数的点是( )解:D.18. A. 1个 B. 4个解:C.三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角中,、、分别为内角、、所对的边长,且满足. (1)求的大小;(2)若,的面积,求的值. 解:(1)由正弦定理:,得,∴ ,(4分) 又由为锐角,得.(6分)(2),又∵ ,∴ ,(8分)根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.解:(1)∵ 点为面的对角线的中点,且平面,∴ 为的中位线,得,又∵ ,∴ 22MN ND MD ===(2分) ∵ 在底面中,,,∴ ,又∵ ,为异面直线与所成角,(6分) 在中,为直角,,∴ .即异面直线与所成角的大小为.(8分) (2),(9分)1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由; (2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由. 解:(1)∵ ,∴ 函数的定义域为,(1分)又∵ ()()log )log )0a a f x f x x x +-=+=,∴ 函数是奇函数.(4分) (2)由,且当时,, 当时,,得的值域为实数集. 解得,.(8分)(3)在区间上恒成立,即, 即在区间上恒成立,(11分) 令,∵ ,∴ , 在上单调递增,∴ , 解得,∴ .(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中) (1)求;(2)求数列的通项公式; (3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由. 解:(1)∵ ,令,得,∴ ,(3分)或者令,得,∴ .(2)当时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n nn n n n a na a S S ++++=-=-,∴ , 推得,又∵ ,∴ ,∴ ,当时也成立,∴ ().(9分) (3)假设存在正整数、,使得、、成等比数列,则、、成等差数列,故(**)(11分) 由于右边大于,则,即, 考查数列的单调性,∵ ,∴ 数列为单调递减数列.(14分) 当时,,代入(**)式得,解得; 当时,(舍).综上得:满足条件的正整数组为.(16分)(说明:从不定方程以具体值代入求解也可参照上面步骤给分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。
福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理科)数学试题(带答案解析)
福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理科)数学试题1.已知集合{}012M =,,,{}2|20N x x x =∈+-≤Z ,则M N =I ( ) A .{}1,0,1- B .{}0,1 C .{}0,1,2 D .{}2,1,0,1-- 2.若x yi +(,)x y ∈R 与31i i +-互为共轭复数,则x y +=( ) A .0 B .3C .-1D .4 3.某旅行社调查了所在城市20户家庭2019年的旅行费用,汇总得到如下表格:则这20户家庭该年的旅行费用的众数和中位数分别是( )A .1.4,1.4B .1.4,1.5C .1.4,1.6D .1.62,1.6 4.记n S 为等差数列{}n a 的前n 项和.已知25a =-,416S =-,则6S =( ) A .-14 B .-12 C .-17 D .125.5(3)(2)x x +-的展开式中4x 的系数为( )A .10B .38C .70D .2406.已知函数41()2x x f x -=,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b << 7.松、竹、梅经冬不衰,因此有“岁寒三友”之称.在我国古代的诗词和典籍中有很多与松和竹相关的描述和记载,宋代刘学箕的《念奴娇·水轩沙岸》的“缀松黏竹,恍然如对三绝”描写了大雪后松竹并生相依的美景;宋元时期数学名著《算学启蒙》中亦有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.现欲知几日后,竹长超过松长一倍.为了解决这个新问题,设计下面的程序框图,若输入的5x =,2y =,则输出的n 的值为( )A .4B .5C .6D .78.若[]0,1x ∈时,|2|0x e x a --≥,则a 的取值范围为( )A .[]1,1-B .[]2,2e e --C .[]2e,1-D .[]2ln 22,1- 9.已知函数()sin 2cos 2f x a x b x =-,0ab ≠.当x ∈R 时()3f x f π⎛⎫≤⎪⎝⎭,则下列结论错误..的是( ) A.a B .012f π⎛⎫= ⎪⎝⎭C .2515f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭D .42155f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭10.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5n f ()*n N ∈的前2020项的和为( ) A .101051+ B .1010514- C .1010512- D .101051- 11.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则( )A .直线1//BC 平面1A BDB .11BC BD ⊥ C .三棱锥11C B CE -的体积为13 D .异面直线1B C 与BD 所成的角为60︒12.若双曲线C :221x y m n+=(0)mn <绕其对称中心旋转3π可得某一函数的图象,则C 的离心率可以是( )A .3B .43CD .213.已知向量(1,1)a =r ,(1,)b k =-r ,a b ⊥r r ,则a b +=r r _________.14.在数列{}n a 中,11a =,23a =,21n n a a +=,则20192020a a +=____________. 15.设F 是抛物线E :23y x =的焦点,点A 在E 上,光线AF 经x 轴反射后交E 于点B ,则点F 的坐标为___________,||4||AF BF +的最小值为__________.16.直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,1AA =点M 是侧面11BCC B 内的动点(不含边界),AM MC ⊥,则1A M 与平面111BCC B 所成角的正切值的取值范围为__________.17.在平面四边形ABCD 中,2ABC π∠=,2DAC ACB ∠=∠,3ADC π∠=.(1)若6ACB π∠=,BC =BD ;(2)若DC =,求cos ACB ∠.18.如图1,四边形ABCD 是边长为2的菱形,60BAD ∠=︒,E 为CD 的中点,以BE 为折痕将BCE ∆折起到PBE ∆的位置,使得平面PBE ⊥平面ABED ,如图2.(1)证明:平面PAB ⊥平面PBE ;(2)求二面角B PA E --的余弦值.19.已知(1,0)F 是椭圆C :22221x y a b+=(0)a b >>的焦点,点31,2P ⎛⎫ ⎪⎝⎭在C 上. (1)求C 的方程;(2)斜率为12的直线l 与C 交于()11,A x y ,()22,B x y 两点,当1212340x x y y +=时,求直线l 被圆224x y +=截得的弦长.20.冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现在有A 材料、B 材料供选择,研究人员对附着在A 材料、B 材料上再结晶各做了50次试验,得到如下等高条形图.(1)根据上面的等高条形图,填写如下列联表,判断是否有99%的把握认为试验成功与材料有关?(2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及UV 胶层;②石墨烯层;③表面封装层.第一、二环节生产合格的概率均为12,第三个环节生产合格的概率为23,且各生产环节相互独立.已知生产1吨的石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,第三个环节的修复费用为3000元,其余环节修复费用均为1000元.如何定价,才能实现每生产1吨石墨烯发热膜获利可达1万元以上的目标? 附:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.21.已知函数2()sin 2x f x e x ax x =+--.(1)当0a =时,求()f x 的单调区间;(2)若0x =为()f x 的极小值点,求a 的取值范围.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为,4x t y =⎧⎪⎨=-⎪⎩(t 为参数),圆C 的方程为22(1)1y x +-=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求l 和C 的极坐标方程;(2)过O 且倾斜角为α的直线与l 交于点A ,与C 交于另一点B ,若5612ππα≤≤,求||||OB OA 的取值范围. 23.记函数1()212f x x x =++-的最小值为m . (1)求m 的值;(2)若正数a ,b ,c 满足abc m =,证明:9ab bc ca a b c++≥++.参考答案1.B【解析】【分析】用列举法写出集合N ,再根据交集的定义写出M N ⋂.【详解】解:因为{}2|20N x x x =∈+-≤Z所以{}2,1,0,1N =--, 又{}012M =,, {}0,1M N ∴=I故选:B【点睛】本题考查了交集的运算问题,属于基础题.2.C【解析】【分析】 计算3121i i i+=+-,由共轭复数的概念解得,x y 即可. 【详解】3121i i i+=+-Q ,又由共轭复数概念得:x 1,y 2==-, 1x y ∴+=-.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.3.B【解析】【分析】根据众数和中位数的定义解答即可;【详解】解:依题意可得则组数据分别为:1.2,1.2,1.2,1.2,1.4,1.4,1.4,1.4,1.4,1.4,1.6,1.6,1.6,1.8,1.8,1.8,1.8,1.8,2,2;故众数为:1.4,中位数为:1.5,故选:B【点睛】本题考查求几个数的众数与中位数,属于基础题.4.B【解析】【分析】设等差数列{}n a 的公差为d ,依题意列出方程组,再根据前n 项和公式计算可得;【详解】解:设等差数列{}n a 的公差为d ,则()14154414162a d S a d +=-⎧⎪⎨⨯-=+=-⎪⎩解得172a d =-⎧⎨=⎩,所以()616616122S a d ⨯-=+=- 故选:B【点睛】本题考查等差数列的通项公式及求和公式的应用,属于基础题.5.A【解析】【分析】首先求出二项式5(2)x -展开式的通项为()5152rr r r T C x -+=-,再令53r -=,54-=r 分别求出系数,由555(3)(2)(2()3)2x x x x x +--=+-即可得到展开式中4x 的系数.【详解】解:因为555(3)(2)(2()3)2x x x x x +--=+-,而5(2)x -展开式的通项为()5152rr r r T C x -+=-,当54-=r 即1r =时,()114425210T C x x =-=-,当53r -=即2r =时,()223335240T C x x =-=故5(3)(2)x x +-的展开式中4x 的系数为()4031010+⨯-= 故选:A【点睛】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.6.A【解析】【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到0.321>,0.300.21<<,0.3log 20<,即可得解;【详解】 解:因为41()222x x x x f x --==-,定义域为R ,()()22x x f x f x --=-=- 故函数是奇函数,又2x y =在定义域上单调递增,2xy -=在定义域上单调递减,所以()22x x f x -=-在定义域上单调递增,由0.321>,0.300.21<<,0.3log 20<所以()()()0.30.30.320.2log 2f f f >> 即a b c >>故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.7.A【解析】【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量b 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:当1n =时,152x =,4y =,满足进行循环的条件,当2n =时,454x =,8y =满足进行循环的条件, 当3n =时,1358x =,16y =满足进行循环的条件, 当4n =时,40516x =,32y =不满足进行循环的条件, 故输出的n 值4.故选:A .【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.8.D【解析】【分析】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,x xf x x e x x e =-=+,然后分别求出()()max min ,f xg x 即可得a 的取值范围.【详解】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,x xf x x e x x e =-=+, ()2x f x e '=-Q 在[]0,1单调递减,且()ln 20f '=,()f x ∴在()0,ln 2上单调递增,在()ln 2,1上单调递减,()()max ln 22ln 22a f x f ∴≥==-,又()g 2xx x e =+在[]0,1单调递增,()()min 01a g x g ∴≤==, ∴a 的取值范围为[]2ln 22,1-.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.9.D 【解析】 【分析】依题意,利用辅助角公式得到()()2f x x ϕ=-,且3f π⎛⎫⎪⎝⎭是()f x 的最大值,从而sin 213πϕ⎛⎫⨯-= ⎪⎝⎭,取6π=ϕ,即可得到()2sin 26f x b x π⎛⎫=- ⎪⎝⎭,从而一一验证可得; 【详解】解:因为()()sin 2cos 22f x a x b x x ϕ=-=-,其中sin ϕ=,cos ϕ=0ab ≠.当x ∈R 时()3f x f π⎛⎫≤ ⎪⎝⎭,所以3x π=是图象的对称轴,此时,函数取得最大值sin 213πϕ⎛⎫⨯-= ⎪⎝⎭,取6π=ϕ;则1sin 2ϕ==,cos ϕ==,所以a ,故A 正确;()2sin 26f x b x π⎛⎫∴=- ⎪⎝⎭,则2sin 2012126f b πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,故B 正确; 17172sin 22sin 22sin 2sin 556563030f b b b b πππππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=⨯--=⨯--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,221317172sin 22sin 2sin 2sin 151********f b b b b πππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=⨯--=-=-+=- ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故2515f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即C 正确; 22192sin 22sin 55630f b b ππππ⎛⎫⎡⎤∴=⨯-=⎪⎢⎥⎝⎭⎣⎦4421332sin 22sin 2sin 2sin 151********f b b b b πππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=⨯--=-=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故42155f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,即D 错误; 故选:D 【点睛】本题考查辅助角公式及三角函数的性质的应用,属于中档题. 10.D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题. 11.ABD 【解析】 【分析】建立空间直角坐标系,利用空间向量法一一验证即可; 【详解】解:如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫ ⎪⎝⎭E ,()1B C 0,1,1=-u u u u r ,()11,1,1BD =-u u u u r ,()1,1,0BD =-u u u r ,()11,0,1BA =-u u u r所以()111011110B C BD =-⨯+⨯+-⨯=u u u r u u u r u g ,即11BC BD ⊥u u u r u u ur u ,所以11B C BD ⊥,故B 正确; ()11011101B C BD =-⨯+⨯+-⨯=u u u r u u u r g,1B C =u u u rBD =u u u r,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BD θ==u u u r u u u u ur g u u u r r g u ,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =r ,则1·0·0n BA n BD ⎧=⎨=⎩u u u v v u u u v v ,即00x y x z -+=⎧⎨-+=⎩,取()1,1,1n =r ,则()10111110n B C =⨯+⨯+⨯-=r u u u r g ,即1C n B ⊥r u u u r,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选:ABD【点睛】本题考查空间向量法在立体几何中的应用,属于中档题. 12.AD 【解析】 【分析】利用双曲线旋转后是函数的图象,求出渐近线的斜率,然后求解双曲线的离心率即可.【详解】解:当0m >,0n <时,由题意可知双曲线的渐近线的倾斜角为:6π,所以斜率为:3,可得:13m n =-,所以双曲线的离心率为:2e ==.当0m <,0n >时,由题意可知双曲线的渐近线的倾斜角为:6π,=3n m =-,所以双曲线的离心率为:e ==. 故选:AD . 【点睛】本题考查双曲线的简单性质的应用,属于中档题. 13.2 【解析】 【分析】由a b ⊥r r得0a b ⋅=r r ,算出1k=,再代入算出a b +r r即可.【详解】Q (1,1)a =r ,(1,)b k =-r ,a b ⊥r r,10a b k ∴⋅=-+=r r ,解得:1k =,()0,2a b ∴+=r r,则2a b +=r r .故答案为:2 【点睛】本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算. 14.43【解析】 【分析】由递推公式可以先计算出前几项,再找出规律,即可得解; 【详解】解:因为11a =,23a =,21n n a a +=,所以131a a =,即31a =,241a a =,所以413a =351a a =,所以51a =, 461a a =,所以63a =L L由此可得数列{}n a 的奇数项为1,偶数项为3、13、3、13L L 所以2019202014133a a +=+= 故答案为:43【点睛】本题考查由递推公式研究函数的性质,属于基础题. 15.3,04⎛⎫ ⎪⎝⎭ 274【解析】 【分析】首先由抛物线的解析式直接得到焦点坐标,设()11,A x y ,()122,B x y ,则()22,B x y -,当直线1AB 的斜率存在时,设直线1AB 的方程为34y k x ⎛⎫=- ⎪⎝⎭,联立直线与抛物线方程,可得根与系数的关系,利用1233||4||444AF BF x x ⎛⎫+=+++ ⎪⎝⎭以及基本不等式计算可得; 【详解】解:因为23y x =,23p =,所以32p =,故焦点F 的坐标为3,04⎛⎫⎪⎝⎭,根据抛物线的性质可得B 点关于x 轴对称的点1B 恰在直线AF 上,且1||||B F BF =,设()11,A x y ,()122,B x y ,则()22,B x y -,当直线1AB 的斜率存在时,设直线1AB 的方程为34y k x ⎛⎫=- ⎪⎝⎭,联立得2343y k x y x⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,化简的22223930216k x k x k ⎛⎫-++= ⎪⎝⎭, 所以12916x x =,所以121233151527||4||4444444AF BF x x x x ⎛⎫+=+++=++≥= ⎪⎝⎭ 当且仅当124x x =时取等号,当直线1AB 的斜率不存在时,A 点与B 点重合,15||4||52AF BF p +==,综上可得||4||AF BF +的最小值为274故答案为:3,04⎛⎫ ⎪⎝⎭;274. 【点睛】本题考查抛物线的定义标准方程及其性质,直线与抛物线相交问题,焦点弦的相关性质与基本不等式的应用,属于中档题.16.⎤⎥⎝⎦【解析】如图建立空间直角坐标系,(A ,()14,0,0A,(C ,设(),4,M x z,(0z <<,由AM MC ⊥,则0AM MC =u u u u r u u u u rg ,即可得到动点M 的轨迹方程,连接1A M ,1B M ,则11A MB Ð为1A M 与平面11BCC B 所成角,从而11111tan A B A MB MB ∠=,即可求出1A M 与平面111BCC B 所成角的正切值的取值范围;【详解】解:如图建立空间直角坐标系,(A ,()14,0,0A,(C ,设(),4,M x z,(0z <<则(4,4,AM x z =--u u u u r,(,0,CM x z =-u u u u r,因为AM MC ⊥,所以0AM MC =u u u u r u u u u rg ,()(240x x z -+-=,即()(2224x z -+-=,(0z <<,连接1A M ,1B M,则12B M ≤<以111142MB <≤, 依题意可得11A B ⊥面11BCC B ,则11A MB Ð为1A M 与平面11BCC B所成角,1111114tan 27A B A MB MB MB ⎛⎤∠==∈ ⎥ ⎝⎦故答案为:27⎛⎤⎥ ⎝⎦本题考查空间向量法解决立体几何问题,线面角的计算,属于中档题. 17.(1)BD =2)3cos 4ACB ∠=【解析】 【分析】(1)在Rt ABC ∆中,由已知条件求出相关的边与角,由倍角关系推导求出ADC ∆为等边三角形,再利用余弦定理即求出BD =.(2)由题目已知条件2DAC ACB ∠=∠,可将所要的角转化到ACD ∆中,再将AC 用Rt ABC ∆中边角来表示,利用正弦定理及三角恒等变换求解即可得.【详解】解:(1)在Rt ABC ∆中,由6ACB π∠=,BC =1AB =,3BAC π∠=,2AC =又23DAC ACB π∠=∠=,3ADC π∠=,所以ADC ∆为等边三角形,所以2AD =在ABD ∆中,由余弦定理得,2222cos BD AB AD AB AD BAD =+-⨯⨯∠, 即222212212cos73BD π=+-⨯⨯⨯=,解得BD =(2)设ACB θ∠=,AB x =, 则2DAC θ∠=,DC =,在Rt ABC ∆中,sin sin AB xAC θθ==, 在ACD ∆中,根据正弦定理得,sin sin ACDAC D A CC D =∠∠,sin sin 3xθπ=,sinsin 23sin x πθθ⋅=⋅2sin cos sin xθθθ=⋅解得3cos 4θ=,即3cos 4ACB ∠=【点睛】本小题主要考查解三角形、三角恒等变换等基础知识,考查推理论证能力和运算求解能力等,考查数形结合思想和化归与转化思想等,体现综合性与应用性,导向对发展直观想象、逻辑推理、数学运算及数学建模等核心素养的关注.18.(1)证明见解析(2)7【解析】 【分析】(1)依题意可得PE BE ⊥,由面面垂直的性质可得PE ⊥平面ABCD ,从而得到PE AB ⊥,再证AB BE ⊥,即可得到AB ⊥平面PBE ,从而得证;(2)以E 为原点,分别以ED u u u r ,EB u u u r ,EP u u u r的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系E xyz -,利用空间向量求二面角的余弦值; 【详解】解:(1)依题意知,因为CD BE ⊥,所以PE BE ⊥, 当平面PBE ⊥平面ABED 时,平面PBE ⋂平面ABCD BE =,PE ⊂平面PBE , 所以PE ⊥平面ABCD ,因为AB Ì平面ABCD ,所以PE AB ⊥,由已知,BCD ∆是等边三角形,且E 为CD 的中点, 所以BE CD ⊥,//AB CD ,所以AB BE ⊥,又PE BE E ⋂=,PE ⊂平面PBE ,BE ⊂平面PBE ,所以AB ⊥平面PBE ,又AB Ì平面PAB ,所以平面PAB ⊥平面PBE .(2)以E 为原点,分别以ED u u u r ,EB u u u r ,EP u u u r的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系E xyz -,则(0,0,0)E ,(0,0,1)P,B,A ,(0,0,1)EP =u u u r,EA =u u u r ,(2,0,0)BA =u u u r,1)PA =-u u u r,设平面PAB 的一个法向量()111,,m x y z =u r ,平面PAE 的一个法向量()222,,n x y z =r由00BA m PA m ⎧⋅=⎨⋅=⎩u u u v vu u u v v得11112020x x z =⎧⎪⎨+-=⎪⎩;令11y =,解得1z =10x =,所以m =u r,由00EP n EA n ⎧⋅=⎨⋅=⎩u u u v vu u u v v得222020z x =⎧⎪⎨+=⎪⎩;令22y =-,解得2x =,20z =,所以2,0)n =-r,cos ,7m n m n m n ⋅====-⋅u r ru r r u r r .. 【点睛】本小题考查线面垂直的判定与性质、二面角的求解及空间向量的坐标运算等基础知识,考查空间想象能力、推理论证及运算求解能力,考查化归与转化思想、数形结合思想等,体现基础性、综合性与应用性,导向对发展数学抽象、逻辑推理、直观想象等核心素养的关注.19.(1)22143x y +=(2【解析】 【分析】(1)由已知可得221a b -=,再点31,2P ⎛⎫⎪⎝⎭在椭圆上得到方程组,解得即可; (2)设直线l 的方程为12y x t =+,联立直线与椭圆,列出韦达定理,由1212340x x y y +=,解得22t =,再由点到线的距离公式及勾股定理计算可得; 【详解】解:(1)由己知得221a b -=, 因点31,2P ⎛⎫⎪⎝⎭在椭圆上,所以221914a b += 所以24a =,23b =所以椭圆C 的方程为:22143x y +=(2)设直线l 的方程为12yx t =+, 联立2212143y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y 得2230x tx t ++-=, ()222431230t t t ∆=--=->,解得24t <,12x x t +=-,2123x x t =-,由1212340x x y y +=,即12121134022x x x t x t ⎛⎫⎛⎫+++=⎪⎪⎝⎭⎝⎭, 所以()21212220x x t x x t +++=(*).将12x x t +=-,2123x x t =-代入(*)式,解得22t =,由于圆心O到直线l的距离为d==,所以直线l被圆O截得的弦长为5l===.【点睛】本小题主要考查椭圆的几何性质、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力等,考查化归与转化思想、数形结合思想、函数与方程思想等,体现基础性、综合性与创新性,导向对发展逻辑推理、直观想象、数学运算、数学建模等核心素养的关注. 20.(1)填表见解析;有99%的把握认为试验成功与材料有关(2)定价至少为2.2万元/吨【解析】【分析】(1)写出列联表,根据列联表求出2K的观测值,结合临界值表可得;(2)生产1吨的石墨烯发热膜,所需的修复费用为X万元,易知X可取0,0.1,0.2,0.3,0.4,0.5,然后根据独立重复事件的概率公式计算概率,写出分布列后求出期望即可.【详解】解:(1)根据所给等高条形图,得列联表:2K的观测值2100(4520530)1250507525k⨯⨯-⨯==⨯⨯⨯,由于12 6.635>,故有99%的把握认为试验成功与材料有关.(2)生产1吨的石墨烯发热膜,所需的修复费用为X 万元. 易知X 可取0,0.1,0.2,0.3,0.4,0.5.202122(0)2312P X C ⎛⎫==⨯= ⎪⎝⎭,212124(0.1)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 222122(0.2)2312P X C ⎛⎫==⨯= ⎪⎝⎭,202111(0.3)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 212112(0.4)2312P X C ⎛⎫==⨯= ⎪⎝⎭,222111(0.5)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 则X 的分布列为:修复费用的期望:111111()00.10.20.30.40.50.263612612E X =⨯+⨯+⨯+⨯+⨯+⨯=. 所以石墨烯发热膜的定价至少为0.211 2.2++=万元/吨,才能实现预期的利润目标. 【点睛】本小题主要考查等高条形图、独立性检验、分布列与期望等基础知识,考查数据处理能力、运算求解能力、应用意识等,考查统计与概率思想等,考查数学抽象、数学建模、数据分析等核心素养,体现基础性、综合性与应用性.21.(1)递增区间为(0,)+∞,递减区间为(0,)+∞(2)12a ≤ 【解析】 【分析】(1)首先求出函数的导函数()cos 2x f x e x '=+-,记()()g x f x '=,则()sin xg x e x '=-,分析()g x 的单调性,即可求出函数的单调性;(2)依题意可得(0)0f '=,记()()g x f x '=,则()sin 2xg x e x a '=--.再令()()h x g x '=,则()cos xh x e x '=-,利用导数分析()h x '的单调性,即可得到()cos x h x e x '=-在,02π⎛⎫- ⎪⎝⎭有零点,即()sin 2x g x e x a '=--在()0,0x 单调递减,在(0,)+∞单调递增,所以0()(0)sin 0212g x g e a a ''≥=--=-,再对a 分类讨论可得;【详解】解:(1)当0a =时,()cos 2xf x e x '=+-, 记()()g x f x '=,则()sin xg x e x '=-,当0x >时,e 1x >,1sin 1x -≤≤,所以()sin 0xg x e x '=->,()g x 在(0,)+∞单调递增,所以()(0)0g x g >=,因为()()0f x g x '=>,所以()f x 在(0,)+∞为增函数;当0x <时,1x e <,1cos 1x -≤≤,所以()cos 20xf x e x '=+-<, 所以()f x 在(0,)+∞为减函数.综上所述,()f x 的递增区间为(0,)+∞,递减区间为(0,)+∞.·(2)由题意可得()cos 22xf x e x ax '=+--,(0)0f '=. 记()()g x f x '=,则()sin 2xg x e x a '=--.再令()()h x g x '=,则()cos xh x e x '=-.下面证明()cos xh x e x '=-在,02π⎛⎫- ⎪⎝⎭有零点:令()()x h x ϕ'=,则()sin xx e x ϕ'=+在,02π⎛⎫- ⎪⎝⎭是增函数,所以()(0)2x πϕϕϕ⎛⎫'''-<< ⎪⎝⎭.又02πϕ⎛⎫'-< ⎪⎝⎭,(0)0ϕ'>, 所以存在1,02x π⎛⎫∈-⎪⎝⎭,()10x ϕ'=,且当1,2x x π⎛⎫∈- ⎪⎝⎭,()0x ϕ'<,()1,0x x ∈,()0x ϕ'>,所以()x ϕ,即()h x '在1,2x π⎛⎫- ⎪⎝⎭为减函数,在()1,0x 为增函数,又02h π⎛⎫'-> ⎪⎝⎭,(0)0h '=,所以()10h x '<, 根据零点存在性定理,存在01,2x x π⎛⎫∈- ⎪⎝⎭,()00h x '= 所以当()0,0x x ∈,()0h x '<,又0x >,()cos 0xh x e x '=->,所以()h x ,即()sin 2xg x e x a '=--在()0,0x 单调递减,在(0,)+∞单调递增,所以0()(0)sin 0212g x g e a a ''≥=--=-. ①当120a -≥,12a ≤,()0g x '≥恒成立,所以()g x ,即()f x '为增函数, 又(0)0f '=,所以当()0,0x x ∈,()0f x '<,()f x 为减函数,(0,)x ∈+∞,()0f x '>,()f x 为增函数,0x =是()f x 的极小值点,所以12a ≤满足题意. ②当12a >,(0)120g a '=-<,令()1xx e x =--,0x > 因为0x >,所以()10xu x e '=->,故()u x 在(0,)+∞单调递增,故()(0)0u x u >=,即有1x e x >+ 故2(2)sin 2221sin 220ag a ea a a a a '=-->+--≥,又()sin 2x g x e x a '=--在(0,)+∞单调递增,由零点存在性定理知,存在唯一实数(0,)m ∈+∞,()0g m '=,当(0,)x m ∈,()0g x '<,()g x 单调递减,即()f x '递减,所以()(0)0f x f ''<=,此时()f x 在(0,)m 为减函数,所以()(0)0f x f <=,不合题意,应舍去. 综上所述,a 的取值范围是12a ≤. 【点睛】本小题主要考查导数的综合应用,利用导数研究函数的单调性、最值和零点等问题,考查抽象概括、推理论证、运算求解能力,考查应用意识与创新意识,综合考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想、有限与无限思想以及特殊与一般思想,考查数学抽象、逻辑推理、直观想象、数学运算、数学建模等核心素养.22.(1cos sin 40θρθ+-=;2sin ρθ=(2)13,24⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)直接利用转换公式,把参数方程,直角坐标方程与极坐标方程进行转化; (2)利用极坐标方程将||||OB OA 转化为三角函数求解即可. 【详解】(1)因为,4x t y =⎧⎪⎨=-⎪⎩,所以l40y +-=,又cos x ρθ=,sin y ρθ=,222x y ρ+=,lcos sin 40θρθ+-=,C 的方程即为2220x y y +-=,对应极坐标方程为2sin ρθ=.(2)由己知设()1,A ρα,()2,B ρα,则1ρ=22sin ρα=,所以,)21||12sin sin ||4OB OA ραααρ==⨯+12cos 214αα⎤=-+⎦ 12sin 2146πα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦又5612ππα≤≤,22663πππα≤-≤, 当266ππα-=,即6πα=时,||||OB OA 取得最小值12; 当262ππα-=,即3πα=时,||||OB OA 取得最大值34.所以,||||OB OA 的取值范围为13,24⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力. 23.(1)1m =(2)证明见解析 【解析】 【分析】(1)将函数()f x 转化为分段函数或利用绝对值三角不等式进行求解; (2)利用基本不等式或柯西不等式证明即可. 【详解】解法一:(1)113,22311(),222113,22x x f x x x x x ⎧-+≤-⎪⎪⎪=-+-<≤⎨⎪⎪->⎪⎩当12x ≤-时,1()22f x f ⎛⎫≥-= ⎪⎝⎭, 当1122x -<≤,1()12f x f ⎛⎫≥= ⎪⎝⎭, 当12x >时,1()12f x f ⎛⎫>= ⎪⎝⎭, 所以min ()1m f x ==解法二:(1)113,22311(),222113,22x x f x x x x x ⎧-+≤-⎪⎪⎪=-+-<≤⎨⎪⎪->⎪⎩如图当12x =时,min ()1m f x == 解法三:(1)111()222f x x x x =++-+-111222x x x ⎛⎫⎛⎫≥+--+- ⎪ ⎪⎝⎭⎝⎭ 1112x =+-≥ 当且仅当11022102x x x ⎧⎛⎫⎛⎫+-≤ ⎪⎪⎪⎪⎝⎭⎝⎭⎨⎪-=⎪⎩即12x =时,等号成立.当12x =时min ()1m f x == 解法一:(2)由题意可知,111ab bc ca c a b++=++, 因为0a >,0b >,0c >,所以要证明不等式9ab bc ca a b c++≥++,只需证明111()9a b c c a b ⎛⎫++++≥⎪⎝⎭,因为111()9a b c c a b ⎛⎫++++≥=⎪⎝⎭成立,所以原不等式成立.解法二:(2)因为0a >,0b >,0c >,所以0ab bc ca ++≥>,0a b c ++≥>,又因为1abc =,所以()()9a b c ab bc ac ++++≥=,()()9ab bc ac a b c ++++≥所以9ab bc ca a b c++≥++,原不等式得证.补充:解法三:(2)由题意可知,111ab bc ca c a b++=++, 因为0a >,0b >,0c >,所以要证明不等式9ab bc ca a b c++≥++,只需证明111()9a b c a b c ⎛⎫++++≥⎪⎝⎭,由柯西不等式得:2111()9a b ca b c ⎛⎫++++≥= ⎪⎝⎭成立, 所以原不等式成立. 【点睛】本题主要考查了绝对值函数的最值求解,不等式的证明,绝对值三角不等式,基本不等式及柯西不等式的应用,考查了学生的逻辑推理和运算求解能力.。
2019-2020年高三上学期期末学习质量检测理综含答案
2019-2020年高三上学期期末学习质量检测理综含答案说明:1.本试卷分第I卷和第II卷。
满分240分。
答题时间1 50分钟。
2.请将第I卷题目的答案选出后用2B铅笔涂在答题卡对应题目的代号上;第II卷用黑色签字笔将正确答案写在答题纸对应的位置上,答在试卷上作废。
第I卷(必做,共87分)以下数据可供答题时参考:O16 Cu 64 C 12 H 1一、选择题(本题包括13小题,每小题4分。
,每小题只有一个选项符合题意。
)1.下列关于组成细胞的元素及化合物、细胞结构的说法正确的是A.蛋白质中的N主要存在于氨基中,核酸中的N主要存在于碱基中B.只有细胞内的核酸才是携带遗传信息的物质C.叶绿体中可发生CO2→C3→C6H l2O6,线粒体中则会发生C6H l2O6→丙酮酸→CO2D.细胞内外的液体环境和磷脂分子的性质决定了磷脂分子在细胞膜中呈双层排列2.粗糙型链孢霉是一种真核生物,繁殖过程中通常由单倍体菌丝杂交形成二倍体合子。
合子进行一次减数分裂后,再进行一次有丝分裂,最终形成8个孢子。
下图表示粗糙型链孢霉的一个合子形成孢子的过程,有关叙述错误的是A.图中a的核DNA数目与合子的相同。
B.图中c的染色体数目与合子相同。
C.图示整个过程中核DNA复制2次,细胞分裂3次。
D.①③过程中会发生DNA复制,①过程中可能发生基因重组。
3实验或探究活动的名称酒精的作用A 检测生物组织中的脂肪洗去花生子叶薄片上的浮色B 绿叶中色素的提取和分离提取绿叶中的色素C 低温诱导植物染色体数目的变化漂洗被解离后的根尖D 土壤小动物类群丰富度的研究对小动物进行固定和防腐4量变化如图所示。
以下分析不正确的是()A.1905年前,鹿的数量保持在4000头左右主要是有捕食者B.1925年前后,该区域内鹿种群的K值是保持在100000头C.1927年后,鹿的数量迅速减少的主要原因是草场被破坏D.鹿、美洲狮、狼等在该生态系统中相互依存、相互制约5.不同的植物生长调节剂处理番茄的植株.,下列对实验结果的叙述正确的A.播种前用一定浓度的脱落酸溶液浸泡种子可促进种子的萌发B.生长期施放适宜浓度的乙烯可促进种子的形成和果实的发育C.开花期喷洒适宜浓度的生长素溶液可以诱导无籽果实的形成D.成熟期喷洒一定浓度的细胞分裂素溶液会加速叶片黄化速度.6.下列有关生命系统中方向性的描述,合理的是()A.分泌蛋白合成时,遗传信息的传递是单向的B.发生渗透吸水时,水分子的扩散是单向的C.受到刺激是,兴奋在反射弧中的传导时双向的D.生物进化时,,变异和自然选择是定向的7.下列说法错误的是A.人们常采用牺牲阳极保护法防止通讯电缆发生腐蚀B.在日常生活中,化学腐蚀是造成钢铁腐蚀的主要原因C.在电镀槽中,镀件做阴极,阳极选用镀层金属D.用惰性电极电解某硫酸铜溶液一段时间后,要恢复溶液的成分和浓度,可向溶液中加入一定量的氧化铜8.下列说法正确的是()A.糖类、蛋白质、油脂属于天然高分子化合物B.等物质的量的乙醇和乙酸完全燃烧时所需氧气的质量相等C.实验室常用下图所示的装置制取少量的乙酸乙酯D.用点燃的方法鉴别甲烷和乙烯9.X、Y均为短周期元素,X位于IA族,X、Y能形成X2Y型化合物,。
2020年高考理科数学之高频考点解密17 直线与方程(解析版)
解密17直线与方程考点1 直线方程题组一直线的倾斜角与斜率调研1 已知直线3x−y+1=0的倾斜角为α,则1sin22α=A.310B.35C.−310D.110【答案】A【解析】直线3x -y +1=0的倾斜角为α,∴tan α=3, ∴22211sin cos tan 33sin22sin cos 22sin cos tan 19110a αααααααα=⋅====+++. 故选A .调研2 已知直线l 平分圆22:6620C x y x y +-++=的周长,且直线l 不经过第三象限,则直线l 的倾斜角θ的取值范围为A .90135⎡⎤⎣⎦o o, B .90120⎡⎤⎣⎦o o, C .60135⎡⎤⎣⎦o o ,D .90150⎡⎤⎣⎦o o ,【答案】A【解析】圆22:6620C x y x y +-++=的标准方程为()()223316x y -++=,故直线l 过圆C 的圆心()3,3-,因为直线l 不经过第三象限,结合图象可知,tan 1θ≤-,90,135θ⎡⎤∈⎣⎦o o.故选A .调研3 若点A(2,2√2)在抛物线C:y 2=2px 上,记抛物线C 的焦点为F ,则直线AF 的斜率为A .4B .3C .D 【答案】C【解析】将A 坐标代入抛物线方程得(2√2)2=2p ⋅2,p =2,故焦点坐标F(1,0),直线AF 的斜率为2√2−02−1=2√2,故选C . 题组二 直线的方程调研4 数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知ABC △的顶点()2,0A ,()0,4B ,AC BC =,则ABC △的欧拉线方程为A .230x y +-=B .230x y -+=C .230x y --=D .230x y -+=【答案】D【解析】线段AB 的中点为M (1,2),k AB =﹣2,∴线段AB 的垂直平分线为:y ﹣2=12(x ﹣1),即x ﹣2y +3=0. ∵AC =BC ,∴ABC △的外心、重心、垂心都位于线段AB 的垂直平分线上,因此ABC △的欧拉线的方程为:x ﹣2y +3=0. 故选D .【名师点睛】本题考查了欧拉线方程的概念,等腰三角形的性质,三角形的外心、重心、垂心的性质,考查了推理能力与计算能力,本题解题的关键是利用好欧拉线的几何性质实现几何问题的代数化.调研5 若直线ax +by =ab(a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为 A .1 B .4 C .2 D .8【答案】B【解析】因为直线ax +by =ab 过点(1,1),所以a +b =ab ,1a +1b =1,因为直线在x 轴的截距为b ,在y 轴上的截距为a ,所以直线在x 轴、y 轴上的截距之和的最小值为a +b ,a +b =(a +b )(1a +1b )=2+ba +ab ≥2+2√b a ∙ab =4,所以当a =b =2时取最小值,最小值为4,故选B .调研6 已知实数m ,n 满足2m −n =1,则直线mx −3y +n =0必过定点________________. 【答案】(−2,−13)【解析】由已知得n =2m −1,代入直线mx −3y +n =0得mx −3y +2m −1=0, 即(x +2)m +(−3y −1)=0,由{x +2=0−3y −1=0 ,解得{x =−2y =−13,∴直线必过定点(−2,−13).☆技巧点拨☆1.解决直线方程问题,要充分利用数形结合思想,养成边读题边画图分析的习惯. 2.求解直线方程时要考虑斜率不存在的情况.考点2 直线的位置关系题组一 垂直与平行的判定调研1 已知直线l 的倾斜角为2π3,直线1l 经过(P -,(),0Q m 两点,且直线l 与1l 垂直,则实数m 的值为 A .─2B .─3C .─4D .─5【答案】D【解析】∵11l l k k ⋅==-,∴5m =-,故选D .调研2 过点(2,1)且与直线3x −2y =0垂直的直线方程为 A .2x −3y −1=0 B .2x +3y −7=0 C .3x −2y −4=0 D .3x +2y −8=0【答案】B【解析】设要求的直线方程为2x +3y +m =0,把点(2,1)代入可得4+3+m =0,解得m =-7. 可得要求的直线方程为2x +3y −7=0. 故选B .调研3 m =4是直线mx +(3m −4)y +3=0与直线2x +my +3=0平行的 A .充分而不必要 B .必要而不充分 C .充要条件 D .既不充分也不必要【答案】C【解析】当m =4时,两直线方程分别为:4x +8y +3=0,2x +4y+3=0,满足直线平行; 当m =0时,直线方程分别为:y =34,x =−32,两直线不平行;当3m -4=0,即m =43时,直线方程分别为x =−94,2x +43y +3=0,两直线不平行; 由直线mx +(3m −4)y +3=0与直线2x +my +3=0平行,可知两直线斜率相等, 即−m 3m−4=−2m ,解得m =2或m =4;当m =2时,两直线重合,故“m =4”是“直线mx +(3m −4)y +3=0与直线2x +my +3=0平行”的充要条件. 故选C .调研4 已知0b >,直线2(1)20b x ay +++=与直线210x b y --=互相垂直,则ab 的最小值为 A .1 B .2C .D .【答案】B【解析】由题知,b >0,且两条直线的斜率存在,因为直线2(1)20b x ay +++=与直线210x b y --=互相垂直,所以2210b ab ()+-=,当且仅当b =1时取等号. 故选B.☆技巧点拨☆由两直线平行或垂直求参数的值在解这类问题时,一定要“前思后想”.“前思”就是在解题前考虑斜率不存在的可能性,是否需要分情况讨论;“后想”就是在解题后,检验答案的正确性,看是否出现增解或漏解.题组二 距离问题调研5 当点()3,2P 到直线120mx y m -+-=的距离最大时,m 的值为A B .0 C .1- D .1【答案】C【解析】直线120mx y m -+-=过定点Q (2,1),所以点()3,2P 到直线120mx y m -+-=的距离最大时,PQ C . 调研6 若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为 A .3 2 B .2 2 C .3 3D .4 2【答案】A【解析】依题意知AB 的中点M 的集合是与直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线, 则M 到原点的距离的最小值为原点到该直线的距离, 设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0, 根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.调研7 若直线1:240l x y -+=与2:430l mx y -+=平行,则两平行直线1l ,2l 间的距离为______.【解析】若直线l 1:x ﹣2y +4=0与l 2:mx ﹣4y +3=0平行,则有43124m -=≠-,求得m =2, 两直线即 l 1:2x ﹣4y +8=0与l 2:2x ﹣4y +3=0, 则两平行直线l 1,l 22=,☆技巧点拨☆在运用两平行直线间的距离公式:d =一定要注意将两方程中x ,y 的系数化为相同的形式.题组三 对称问题调研8 已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为 A .x -y +1=0 B .x -y =0 C .x +y +1=0 D .x +y =0【答案】A【解析】由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1, 所以直线l 的斜率k =1PQk -=1. 又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0. 故选A.调研9 若直线1:(4)l y k x =-与直线l 2关于点(2,1)对称,则直线l 2过定点 A .(0,4) B .(0,2) C .(2,4)- D .(4,2)-【答案】B【解析】直线1:(4)l y k x =-恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线1:(4)l y k x =-与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).☆技巧点拨☆对于对称问题,要分清是轴对称还是中心对称,解决的根本办法是转化为点与点之间的对称,利用坐标转移法.题组四 直线方程与线性规划问题调研10 设点()()1,0,2,1A B ,若直线10ax by +-=与线段AB 有一个公共点,则22a b +的最小值为________________. 【答案】15【解析】因为直线1ax by +=与线段AB 有一个公共点,所以点()()1,0,2,1A B 在直线1ax by +=的两侧,所以()()1210a a b -+-≤,即10210a a b -≤⎧⎨+-≥⎩或10210a a b -≥⎧⎨+-≤⎩,画出它们表示的平面区域,如图所示,22a b +表示原点到区域内的点的距离的平方,由图可知,当原点O 到直线210a b +-=的距离即原点O 到区域内的点的距离的最小值,因为d ==22a b +的最小值为215d =.调研11 已知实数x 、y 满足{2x +y −2≥0x −2y +4≥03x −y −3≤0 ,若y ≥k(x +1)−1恒成立,那么k 的取值范围是A .[12,3] B .(−∞,43] C .[3,+∞) D .(−∞,12]【答案】D【解析】作出不等式组对应的平面区域如图,则由图象知x ≥0,由不等式≥k(x +1)−1恒成立, 得k (x +1)≤1+y ,即k ≤y+1x+1,设z =y+1x+1,则z 的几何意义是区域内的点到定点A (﹣1,﹣1)的斜率, 由图象知AN 的斜率最小,此时z 的最小值为z =0+11+1=12,即k ≤12, 即实数k 的取值范围是(﹣∞,12],故选D .☆技巧点拨☆本题考查了简单的线性规划的应用,其中解答中涉及二元一次不等式组所表示的平面区域,函数的最值及其几何意义等知识点,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,其中准确把握点与直线的位置关系,找到平面区域内的“界”是解答此类问题的关键.1.(福建省南安市侨光中学2020届高三上学期第一次阶段考)直线210x ay +-=与(1)10a x ay --+=平行,则a 的值为 A .12B .12或0 C .0D .-2或0【答案】A【解析】若直线210x ay +-=与(1)10a x ay --+=平行,则1()2(1)0a a a ⨯---=,解得0a =或12a =, 又0a =Q 时,直线10x -=与10x -+=表示同一条直线,故12a =.故选A .2.(辽宁省葫芦岛市普通高中2019届高三第二次模拟考试数学)当点(3,2)P 到直线120mx y m -+-=的距离最大时,m 的值为 A .3 B .0 C .1-D .1【答案】C【解析】直线120mx y m -+-=可化为()21y m x =-+,故直线过定点()2,1Q ,当PQ 和直线垂直时,距离取得最大值,故2111,132PQ m k m m m -⋅=⋅=⋅=-=--,故选C . 3.(浙江省金华十校2019届第二学期高考模拟考试)过点(1,0)且与直线x -2y -2=0平行的直线方程是 A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0【答案】A 【解析】设与直线平行的直线方程为20(2)x y c c -+=≠-,将点代入直线方程,可得,解得.则所求直线方程为.故A 正确.4.(福建省福州市师范大学附中2019-2020学年高三上学期期中数学)“1a =”是“直线()2110a x ay +++=和直线330ax y -+=垂直”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】当1a =时,直线(21)10a x ay +++=的斜率为3-,直线330ax y -+=的斜率为13, 两直线垂直;当0a =时,两直线也垂直,所以“1a =”是“直线()2110a x ay +++=和直线330ax y -+=垂直”的充分不必要的条件,故选A . 5.(辽宁省沈阳市东北育才学校2019-2020学年高三上学期第三次模拟数学)已知圆C 的方程为226290x y x y +-++=,点M 在直线10x y +-=上,则圆心C 到点M 的最小距离为A.2 B.2C.2D .12【答案】C【解析】因为圆C 的方程为226290x y x y +-++=,所以其圆心坐标为(3,1)C -, 又M 在直线10x y +-=上,所以求圆心C 到点M 的最小距离,即是求圆心C 到直线10x y +-=的距离d ,由点到直线的距离公式可得2d ==故选C. 6.(广东省广东实验中学2019-2020学年高三上学期10月月考数学)已知变量x ,y 满足220,1,10,x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩则21x y x +++的取值范围是A .1,22⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .19,24⎡⎤⎢⎥⎣⎦D .1,32⎡⎤⎢⎥⎣⎦【答案】B【解析】由题得不等式组对应的可行域如图所示,211(1)111(1)x y x y y x x x +++++--==+++--,(1)(1)y x ----表示可行域内的点(x ,y )和点D (-1,-1)的连线的斜率,由图可知,max min 1(1)0(1)12,0(1)1(1)2BD CD k k k k ----======----,所以21x y x +++的取值范围是3,32⎡⎤⎢⎥⎣⎦,故答案为B.7.(甘肃省兰州市第一中学2019-2020学年高三上学期9月月考数学)已知三条直线2310x y -+=,4350x y ++=,10mx y --=不能构成三角形,则实数m 的取值集合为A .42,33⎧⎫-⎨⎬⎩⎭B .42,33⎧⎫-⎨⎬⎩⎭C .424,,333⎧⎫-⎨⎬⎩⎭ D .422,,333⎧⎫--⎨⎬⎩⎭ 【答案】D【解析】因为三条直线2310x y -+=,4350x y ++=,10mx y --=不能构成三角形,所以直线10mx y --=与2310x y -+=或4350x y ++=平行,或者直线10mx y --=过2310x y -+=与4350x y ++=的交点,直线10mx y --=与2310x y -+=,4350x y ++=分别平行时,23m =,或43-,直线10mx y --=过2310x y -+=与4350x y ++=的交点时,23m =-,所以实数m 的取值集合为422,,333⎧⎫--⎨⎬⎩⎭,故选D . 8.(江西省名师联盟2019届高三5月内部特供卷)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点(2,0)A 处出发,河岸线所在直线方程为3x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为A 1-B .1C .D【答案】A【解析】设点A 关于直线3x y +=的对称点(,)A a b ',AA '的中点为2(,)22a b +,AA bk a 2'=-, 故•(1)122322ba ab ⎧-=-⎪⎪-⎨+⎪+=⎪⎩解得31a b =⎧⎨=⎩,要使从点A 到军营总路程最短,即为点A '到军营最短的距离, 则“将军饮马”11-=-,故选A .9.(广西柳州市高级中学2019-2020学年高三上学期第二次统测数学)设,x y 满足约束条件2103230360x y x y x y -+≤⎧⎪-+≥⎨⎪+-≤⎩,则z =的最小值为A .1B.5CD【答案】D【解析】作出约束条件2103230360x y x y x y -+≤⎧⎪-+≥⎨⎪+-≤⎩表示的平面区域,如图所示,由图知z =的最小值为原点(0,0)到直线210x y -+=的距离,5=.故选D.10.(湖北省武汉市部分学校2020届高三上学期起点质量监测数学)已知P是椭圆22:14x yEm+=上任意一点,M,N是椭圆上关于坐标原点对称的两点,且直线PM,PN的斜率分别为1k,()212k k k≠,若12k k+的最小值为1,则实数m的值为A.1B.2C.1或16D.2或8【答案】A【解析】设''0000(,),(,),(,)M x y N x y P x y--,''00'0012',y y ykx x xkyx-+==-+,则''00''21y y y yx x x xk k+=+-+-+≥===,1m∴=,故选A.11.(湖北省武汉市武昌区2019届高三五月调研考试数学)已知点(3,3)P-,过点(3,0)M作直线,与抛物线24y x=相交于A,B两点,设直线PA,PB的斜率分别为1k,2k,则12k k+=_________.【答案】-1【解析】设直线x=my+3,联立抛物线方程可得y2﹣4my﹣12=0,设A(214y,y1),B(224y,y2),可得y1+y2=4m,y1y2=﹣12,则121212222212123341241212123344y y y yk ky y y y----+=+=+++++11212148124121441212y y y y ---=+++=2111221141241212y y y y y ---+=-++1. 故答案为﹣1.12.(四川省南充高中高2019-2020学年高三上学期第四次月考数学)已知动点M 到定点(1,0)F 的距离比M 到定直线2x =-的距离小1.(1)求点M 的轨迹C 的方程;(2)过点F 任意作互相垂直的两条直线12l l 和,分别交曲线C 于点,A B 和,K N .设线段AB ,KN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【解析】(1)由题意可知:动点M 到定点()1,0F 的距离等于M 到定直线1x =-的距离. 根据抛物线的定义可知,点M 的轨迹C 是抛物线.∵2p =,∴抛物线方程为:24y x =.(2)设,A B 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭. 由题意可设直线1l 的方程为()()10y k x k =-≠.由()241y x y k x ⎧=⎪⎨=-⎪⎩,得()2222240k x k x k -++=. ()24224416160k k k ∆=+-=+>.因为直线1l 与曲线C 交于,A B 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k +≠+,此时直线PQ 的斜率2222221112PQ kk k k kk k+==-+--. 所以,直线PQ 的方程为()222121ky k x k k+=---,整理得()230yk x k y +--=.于是,直线PQ 恒过定点()3,0E ;当1k =±时,直线PQ 的方程为3x =,也过点()3,0E . 综上所述,直线PQ 恒过定点()3,0E .13.(宁夏石嘴山市第三中学2019-2020学年高三第四次高考适应性考试数学)已知椭圆22221x y a b+=(0a b >>)的焦距为2,右顶点为A . (1)求该椭圆的方程;(2)过点D 作直线PQ 交椭圆于两个不同点P Q 、,求证:直线AP ,AQ 的斜率之和为定值.【解析】(1)由题意可知22c =,故1c =, 又ce a=,∴a =1b =, ∴椭圆方程为2212x y +=.(2)由题意得,当直线PQ 的斜率不存在时,不符合题意;当直线PQ 的斜率存在时,设直线PQ的方程为(y k x =,即y kx =--由2212y kx x y ⎧=-⎪⎨+=⎪⎩消去y 整理得())2222124820k x k k x k k +-++++=,∵直线与椭圆交于两点,∴()4810k ∆=-+>,解得18k <-. 设()11,P x y ,()22,Q x y ,则)212212k k x x k++=+,2122482·12k k x xk++=+,又)A,∴12421AP AQ k x k x x x k k k +-+====.即直线AP ,AQ 的斜率之和为定值.14.(广东省百校联考2019届高三高考模拟)已知F 为椭圆2222:1(0)x y C a b a b+=>>的右焦点,点()23P ,在椭圆C 上,且PF x ⊥轴. (1)求椭圆C 的方程;(2)过F 的直线l 交C 于A B ,两点,交直线8x =于点M .判定直线PA PM PB ,,的斜率是否依次构成等差数列?请说明理由.【解析】(1)因为点()23P ,在椭圆C 上,且PF x ⊥轴,所以2c =, 由22224914a b a b +=-⎧⎪⎨⎪⎩=,得221612a b ==⎧⎪⎨⎪⎩,故椭圆C 的方程为2211612x y +=.(2)由题意可知直线l 的斜率存在,设直线l 的的方程为()2y k x =-,令8x =,得M 的坐标为()86k ,. 由()22116122x y y k x +==-⎧⎪⎨⎪⎩,得()()222243161630k x k x k +-+-=. 设()()1122A x y B x y ,,,,则()22121222163164343k k x x x x k k -+==++,.① 设直线PA PM PB ,,的斜率分别为123k k k ,,, 从而12123123363122822y y k k k k k x x ---====----,,. 因为直线AB 的方程为()2y k x =-,所以()()112222y k x y k x =-=-,, 所以()1212121212121212123341132322222224y y y y x x k k k x x x x x x x x x x ⎛⎫--+-+=+=+-+=-⨯ ⎪-------++⎝⎭.② 把①代入②,得()221222221644323211633244343k k k k k k k kk k -++=-⨯=---+++. 又312k k =-,所以1232k k k +=, 故直线PA PM PB ,,的斜率成等差数列.1.(2018新课标全国Ⅰ理科)设抛物线2:4C y x =的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=u u u u v u u u vA .5B .6C .7D .8【答案】D【解析】根据题意,过点(2,0)-且斜率为23的直线方程为2(2)3y x =+,与抛物线2:4C y x =联立,消去x 可得2680y y -+=,解得(1,2)M ,(4,4)N ,又(1,0)F ,所以(0,2)FM =u u u u v ,(3,4)FN =u u u v ,从而可以求得03248FM FN ⋅=⨯+⨯=u u u u v u u u v,故选D .2.(2019年高考全国Ⅲ卷理数)已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.3.(2017新课标全国Ⅰ理科)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12D .10【答案】A【解析】设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 的方程为1(1)y k x =-,联立方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=-212124k k +=,同理直线2l 与抛物线的交点满足22342224k x x k ++=,由抛物线定义可知2112342124||||2k AB DE x x x x p k ++=++++=+22222212244448816k k k k ++=++≥=,当且仅当121k k =-=(或1-)时,取等号.故选A . 4.(2019年高考全国Ⅰ卷理数)曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,xxxy x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.5.(2018新课标全国Ⅰ理科)若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为________________. 【答案】6【解析】作出不等式组表示的平面区域如下图中阴影部分所示,由32z x y =+可得3122y x z =-+,画出直线32y x =-,将其上下移动,结合2z的几何意义,可知当直线过点B 时,z 取得最大值,由220x y y --=⎧⎨=⎩,解得(2,0)B ,此时max 3206z =⨯+=.6.(2017新课标全国Ⅰ理科)设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为________________. 【答案】5-【解析】不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小, 所以,当直线32z x y =-过点A 时,z 取得最小值,所以z 的最小值为3(1)215⨯--⨯=-. 7.(2019年高考全国Ⅰ卷理数)已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |. 【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.323AP PB =u u u r u u u r由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =u u u r u u u r可得123y y =-. 由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.8.(2019年高考全国Ⅲ卷理数)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx xy ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E到直线AB的距离,则12d d ==. 因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±. 当t =0时,S =3;当1t=±时,S =因此,四边形ADBE的面积为3或【名师点睛】此题第一问是圆锥曲线中的定点问题,第二问是求面积类型,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.9.(2017新课标全国Ⅰ理科)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,,P 4(1C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1)2214x y +=;(2)见解析. 【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上. 因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=. (2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t),(t,).则121k k +=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=. 由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=. 即222448(21)(1)04141m km k m k k --+⋅+-⋅=++,解得12m k +=-. 当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).10.(2018新课标全国Ⅰ理科)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)2y x =-或2y x =;(2)证明见解析. 【解析】(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-,所以AM 的方程为2y x =-2y x =-. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y y k k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x k k k -+++=--. 将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=. 所以21221222422,2121x x x k k k x k -+==++, 则3131322244128423()4021k k k k k k k k k x x x x --++-++==+, 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.11.(2018新课标全国Ⅲ理科)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.【答案】(1)证明见解析;(2. 【解析】(1)设1221(,),(,)A y x y x B , 则222212121,14343y x y x +=+=. 上述两式相减,并由1221y x y k x -=-可得1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=. 由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<. 又点P 在C 上,所以34m =, 从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r , 同理2||22x FB =-u u u r ,所以121||||4()32FA FB x x +=-+=u u u r u u u r , 故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r 成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .① 将34m =代入34k m =-得1k =-,所以l 的方程为74y x =-+, 代入C 的方程,并整理得2171404x x -+=,故121212,28x x x x +==,代入①解得||d =.。
第四关 以立体几何为背景的新颖问题为背景的填空题-(原卷版)
压轴填空题第四关 以立体几何为背景的新颖问题为背景的填空题【名师综述】以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维” 的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型.类型一 几何体在变化过程中体积的最值问题典例1.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,三棱锥E BCD -体积的取值范围是___________.【来源】山东省菏泽市2021-2022学年高三上学期期末数学试题【举一反三】如果一个棱锥底面为正多边形,且顶点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P ABCD -内接于半径为1的球,则当此正四棱锥的体积最大时,其高为_____类型二 几何体的外接球或者内切球问题典例2.已知正三棱锥S ABC -的底面边长为32P ,Q ,R 分别是棱SA ,AB ,AC 的中点,若PQR 是等腰直角三角形,则该三棱锥的外接球的表面积为______.【来源】陕西省宝鸡市2022届高三上学期高考模拟检测(一)文科数学试题【举一反三】已知菱形ABCD 中,对角线23BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC 33= ,则三棱锥A BCD -的外接球的表面积为________. 【来源】江西宜春市2021届高三上学期数学(理)期末试题类型三 立体几何与函数的结合典例3. 已知正方体1111ABCD A B C D -的棱长为1,E 为线段11A D 上的点,过点E 作垂直于1B D 的平面截正方体,其截面图形为M ,下列命题中正确的是______. ①M 在平面ABCD 上投影的面积取值范围是17,28⎡⎤⎢⎥⎣⎦;②M 的面积最大值为334; ③M 的周长为定值.【来源】江西省九江市2022届高三第一次高考模拟统一考试数学(理)试题【举一反三】如图,点C 在以AB 为直径的圆周上运动(C 点与A ,B 不重合),P 是平面ABC 外一点,且PA ⊥平面ABC ,2PA AB ==,过C 点分别作直线AB ,PB 的垂线,垂足分别为M ,N ,则三棱锥B CMN -体积的最大值为______.【来源】百校联盟2020-2021学年高三教育教学质量监测考试12月全国卷(新高考)数学试题类型四 立体几何中的轨迹问题典例4. 已知P 为正方体1111ABCD A B C D -表面上的一动点,且满足2,2PA PB AB ==,则动点P 运动轨迹的周长为__________.【来源】福建省莆田市2022届高三第一次教学质量检测数学试题【举一反三】在棱长为2的正方体1111ABCD A B C D -中,棱1BB ,11B C 的中点分别为E ,F ,点P 在平面11BCC B 内,作PQ ⊥平面1ACD ,垂足为Q .当点P 在1EFB △内(包含边界)运动时,点Q 的轨迹所组成的图形的面积等于_____________.【来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测数学试题【精选名校模拟】1.已知在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线12O O 的平面截圆柱得到四边形ABCD ,其面积为8.若P 为圆柱底面圆弧CD 的中点,则平面PAB 与球O 的交线长为___________. 【来源】江苏省南通市2020-2021高三下学期一模试卷2.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.【来源】山东省枣庄市滕州市2020-2021学年高三上学期期中数学试题3.四面体A BCD -中,AB BC ⊥,CD BC ⊥,2BC =,且异面直线AB 和CD 所成的角为60︒,若四面体ABCD 的外接球半径为5,则四面体A BCD -的体积的最大值为_________. 【来源】浙江省宁波市镇海中学2020-2021学年高三上学期11月期中数学试题4.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童,如图的刍童ABCD EFGH -有外接球,且43,4,26,62AB AD EH EF ====,点E 到平面ABCD 距离为4,则该刍童外接球的表面积为__________.【来源】江苏省苏州市张家港市2020-2021学年高三上学期12月阶段性调研测试数学试题5.已知正三棱柱111ABC A B C -的外接球表面积为40π,则正三棱柱111ABC A B C -的所有棱长之和的最大值为______.【来源】河南省中原名校2020-2021学年高三第一学期数学理科质量考评二6.已知体积为72的长方体1111ABCD A B C D -的底面ABCD 为正方形,且13BC BB =,点M 是线段BC 的中点,点N 在矩形11DCC D 内运动(含边界),且满足AND CNM ∠=∠,则点N 的轨迹的长度为______. 【来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)文科数学试卷7.矩形ABCD 中,3,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的表面积为______;若翻折过程中BD 的长度在710,22⎡⎤⎢⎥⎣⎦范围内变化,则点D 的运动轨迹的长度是______.【来源】江苏省无锡市江阴市青阳中学2020-2021学年高三上学期1月阶段检测数学试题8.如图,在四面体ABCD 中,AB ⊥BC ,CD ⊥BC ,BC =2,AB =CD =23,且异面直线AB 与CD 所成的角为60,则四面体ABCD 的外接球的表面积为_________.【来源】山东省新高考2020-2021学年高三上学期联考数学试题9.已知三棱锥P ABC -外接球的表面积为100π,PB ⊥平面ABC ,8PB =,120BAC ∠=︒,则三棱锥体积的最大值为________.【来源】江苏省徐州市三校联考2020-2021学年高三上学期期末数学试题10.已知直三棱柱111ABC A B C -的底面为直角三角形,且内接于球O ,若此三棱柱111ABC A B C -的高为2,体积是1,则球O 的半径的最小值为___________.【来源】广西普通高中2021届高三高考精准备考原创模拟卷(一)数学(理)试题11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为______.【来源】2021年届国著名重点中学新高考冲刺数学试题(7)12.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.【来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考数学(理)试题13.在三棱锥P ABC -中,平面PAB 垂直平面ABC ,23PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.【来源】福建省福州市八县(市)一中2021届高三上学期期中联考数学试题14.已知A ,B ,C ,D 205的球体表面上四点,若4AB =,2AC =,23BC =且三棱维A BCD -的体积为23CD 长度的最大值为________.【来源】福建省四地市2022届高三第一次质量检测数学试题15.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,//AB CD ,AB ⊥AD ,22CD AD AB ===,3PA =,若动点Q 在PAD △内及边上运动,使得CQD BQA ∠=∠,则三棱锥Q ABC -的体积最大值为______.【来源】八省市2021届高三新高考统一适应性考试江苏省无锡市天一中学考前热身模拟数学试题16.已知正三棱锥A BCD -的底面是边长为23其内切球的表面积为π,且和各侧面分别相切于点F 、M 、N 三点,则FMN 的周长为______.【来源】湖南省常德市2021-2022学年高三上学期期末数学试题17.在三棱锥P ABC -中,PA ⊥平面ABC ,AC CB ⊥,4===PA AC BC .以A 为球心,表面积为36π的球面与侧面PBC 的交线长为______.【来源】山东省威海市2021-2022学年高三上学期期末数学试题18.在棱长为1的正方体1111ABCD A B C D -中,过点A 的平面α分别与棱1BB ,1CC ,1DD 交于点E ,F ,G ,记四边形AEFG 在平面11BCC B 上的正投影的面积为1S ,四边形AEFG 在平面11ABB A 上的正投影的面积为2S .给出下面四个结论:①四边形AEFG 是平行四边形; ②12S S +的最大值为2; ③12S S 的最大值为14;④四边形AEFG 6则其中所有正确结论的序号是___________.【来源】北京西城区2022届高三上学期期末数学试题196,在该圆柱内放置一个棱长为a 的正四面体,并且正四面体在该圆柱内可以任意转动,则a 的最大值为__________.【来源】河南省郑州市2021-2022学年高三上学期高中毕业班第一次质量预测数学(文)试题20.在三棱锥P -ABC 中,P A =PB =PC =2,二面角A -PB -C 为直二面角,∠APB =2∠BPC (∠BPC <4π),M ,N 分别为侧棱P A ,PC 上的动点,设直线MN 与平面P AB 所成的角为α.当tan α的最大值为2532时,则三棱锥P -ABC 的体积为__________.【来源】湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底考试数学试题21.体积为8的四棱锥P ABCD -的底面是边长为22底面ABCD 的中心为1O ,四棱锥P ABCD -的外接球球心O 到底面ABCD 的距离为1,则点P 的轨迹长度为_______________________.22.如图,在ABC 中,2BC AC =,120ACB ∠=︒,CD 是ACB ∠的角平分线,沿CD 将ACD △折起到A CD'△的位置,使得平面A CD '⊥平面BCD .若63A B '=,则三棱锥A BCD '-外接球的表面积是________.【来源】河南省2021-2022学年高三下学期开学考试数学理科试题23.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线P A ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.【来源】辽宁省营口市2021-2022学年高三上学期期末数学试题24.在棱长为2的正方体1111ABCD A B C D -中,E 是CD 的中点,F 是1CC 上的动点,则三棱锥A DEF -外接球表面积的最小值为_______.【来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试理科数学试题25.如图,在正方体1111ABCD A B C D -中,点M ,N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是___________.①当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC ⊥;②当M ,N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行;③当M ,N 分别为棱11,B C CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形; ④直线MN 与平面ABCD 2;⑤若正方体的棱长为2,点1D 到平面1A MN 2.【来源】四川省成都市第七中学2021-2022学年高三上学期1月阶段性考试理科数学试题11。
福建省福州市2019-2020年度高一上学期期中数学试卷(II)卷
福建省福州市 2019-2020 年度高一上学期期中数学试卷(II)卷姓名:________班级:________成绩:________一、 选择题 (共 12 题;共 24 分)1. (2 分) (2019 高一上·上海月考) 若集合 P 是集合 Q 的子集,则下列结论中正确的是( )A.B.C.D.2. (2 分) 设集合,则()A.B.C.D.3. (2 分) 对于任意,,A.B.C.D.,函数满足则 a,b,c 大小关系是,且当时,函数4. (2 分) 若,则( ),若第 1 页 共 10 页A. B. C. D. 5. (2 分) (2018 高一上·黑龙江期末) 已知 A. B. C. D. 6. (2 分) (2019 高二下·宜春期中) 已知函数 A. B.,且,则 等于( )有两个零点,则 的取值范围是( )C.D.7. (2 分) 已知 是函数A.B.C.D.的符号不确定的零点,若,则的值满足( )第 2 页 共 10 页8. (2 分) (2016 高一下·临川期中) 函数 f(x)=ax2+ax﹣1 在 R 上满足 f(x)<0,则 a 的取值范围是( ) A . (﹣4,0] B . (﹣∞,﹣4) C . (﹣4,0) D . (﹣∞,0] 9. (2 分) 下列函数中,在(0,+∞)上是增函数的是( )A . f(x)= B . f(x)=lg(x-1) C . f(x)=2x2-1D . f(x)=x+ 10. (2 分) (2016 高三上·朝阳期中) 若 a=log2.10.6,b=2.10.6 , c=log0.50.6,则 a,b,c 的大小关系 是( ) A . a>b>c B . b>c>a C . c>b>a D . b>a>c11. (2 分) (2016 高一上·包头期中) 定义在实数集 R 上的函数 y=f(x)满足 若 f(5)=﹣1,f(7)=0,那么 f(﹣3)的值可以为( )A.5B . ﹣5C.0D . ﹣1第 3 页 共 10 页>0(x1≠x2),12. (2 分) 已知 f(x)是定义在 R 上的偶函数,且在(0,+∞)上是增函数,设 a=f(﹣ ),b=f(log3 ), c=f( ) ,则 a、b、c 的大小关系是( )A . a<c<b B . b<a<c C . b<c<a D . c<b<a二、 填空题 (共 4 题;共 4 分)13. (1 分) (2019 高一上·吴起期中) 函数的定义域________14. (1 分) (2016 高一上·徐州期中) 计算:=________.15. (1 分) (2016 高一上·武侯期中) 设 M={2,4},N={a,b},若 M=N,则 logab=________16.(1 分)(2019 高一上·盘山期中) 已知函数三、 解答题 (共 6 题;共 70 分)(且)恒过定点________.17. (5 分) (2019 高一下·深圳期中) 已知,.,求及18. (15 分) 已知函数 f(x)=logax+b,f(x)恒过点(1,1),且 f(e)=2.(1) 求 f(x)的解析式;(2) 若 f(x)≤kx 对∀ x>0 都成立,求实数 k 的取值范围;(3) 当 x2>x1>1 时,证明:x2(x1﹣1)lnx2>x1(x2﹣1)lnx1 .19. ( 15 分 ) (2019 高 一 上 · 菏 泽 月 考 ) 已 知 定 义 在 区 间上的函数满足,且当时,(1) 求的值;第 4 页 共 10 页(2) 证明: (3) 若为 ,求上的单调减函数;在上的最小值;20. (15 分) (2019 高一上·辽源期中) 已知函数 .(1) 求 的值;(2) 判断函数的奇偶性;,其中 为常数,且函数的图象过点(3) 证明:函数在上是单调递减函数.21. (10 分) (2017 高一上·大庆月考) 某服装厂生产一种服装,每件服装成本为 40 元,出厂单价定为 60 元,该厂为鼓励销售商订购,规定当一次订购量超过 100 件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过 600 件.(1) 设一次订购 件,服装的实际出厂单价为 元,写出函数的表达式;(2) 当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 22. (10 分) 函数 f(x)是定义在(0,+∞)上的减函数,对任意的 x,y∈(0,+∞),都有 f(x+y)=f(x) +f(y)﹣1,且 f(4)=5. (1) 求 f(1)的值; (2) 解不等式 f(m﹣2)≥2.第 5 页 共 10 页一、 选择题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 6 页 共 10 页16-1、三、 解答题 (共 6 题;共 70 分)17-1、 18-1、18-2、18-3、 19-1、第 7 页 共 10 页19-2、 19-3、 20-1、 20-2、第 8 页 共 10 页20-3、 21-1、 21-2、 22-1、 22-2、第 9 页 共 10 页第 10 页 共 10 页。
《高等数学》 2019-2020学年第一学期期末试卷C卷
河海大学2019—2020学年第一学期《高等数学》 期末试卷(C )一.(每小题6分,共12分)求下列极限:⒈2lim 1;x x x e →∞⎛⎫- ⎪⎝⎭⒉210sin lim .x x x x →⎛⎫ ⎪⎝⎭二.(每小题6分,共24分)完成如下各题 ⒈22221;(1)x dx x x ++⎰⒉dx ⎰⒊40;⎰ ⒋求证:2010201022201020102010201000sin cos ,sin cos sin cos x x dx dx x x x x ππ=++⎰⎰并求此积分.三.(每小题7分,共21分)完成如下各题:⒈设(1,2)(,)ln .u x y du =求⒉已知2(,,)2f x y z xy z =-及点(2,1,1),(3,1,1),A B --求函数(,,)f x y z 在点A 处沿由A 到B 方向的方向导数,并求此函数在点A 处方向导数的最大值.⒊设函数(,)z z x y =由方程331z xyz -=给出,求22,.z z z x y x∂∂∂∂∂∂及 四.(第一小题4分,第二小题6分,共10分)⒈已知点(2,2,2),(4,4,2),(4,2,4),,.A B C AB AC u u u r u u u r 求向量的夹角⒉求经过直线10,:20,x y L x y z +=⎧⎨---=⎩且平行于直线2:L x y z ==的平面方程.五.(7分)求函数20()(1)(2)xf x t t dt =--⎰的极值. 六.(12分)设函数32(),2(1)x f x x =+求⑴函数的单调区间于极值点;⑵函数的凹凸区间与拐点;⑶函数的渐近线.七.(每小题7分,共14分)⒈求证:(1ln .x x x R ++≥∈ ⒉设函数()f x 在闭区间[0,1]上连续,在开区间(0,1)内可导,且(0)0,(1)1,f f ==求证:⑴存在(0,1),()1;f ααα∈=-使得⑵存在两个不同的点(0,1),(0,1),()() 1.f f ξηξη''∈∈=满足。
福建省福州市师范大学附中2019-2020学年高三上学期期中数学(理)试卷及解析
福建省福州市师范大学附中2019-2020学年高三上学期期中数学(理)试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1.已知集合}110A x x =-≤<,集合{}lg 1B x x =≤,则A B =( )A.{}110x x -≤< B.{}110x x -≤≤ C.{}010x x << D.{}010x x <≤2.已知a=21.2,b =(12)−0.2,c =2log 52,则a ,b ,c 的大小关系是( ).A. c <a <bB. c <b <aC. b <a <cD. b <c <a3.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则芒种日影长为( ) A. 1.5尺B. 2.5尺C. 3.5尺D. 4.5尺4.设{}n a 是首项为正数的等比数列,公比为,q 则“0q <”是“对任意的正整数212,n n n a a -+< 0”的A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件5.若1sin 42a π⎛⎫-= ⎪⎝⎭,则cos 22a π⎛⎫+= ⎪⎝⎭()A. 34-B. 23-C. 12-D. 13-6.己知某函数图象如图所示,则此函数的解析式可能是()A.1()sin 1x x e f x x e -=⋅+B.1()sin 1xx e f x x e -=⋅+C.1()cos 1x x e f x x e -=⋅+D.1()cos 1xxe f x x e -=⋅+7.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC ∆中,BC AC =根据这些信息,可得sin 234︒=( )A.14-B. 38+-C. 14-D. 48+-8.若x ,y 满足约束条件220330240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,目标函数z ax y =+仅在点(2,0)处取得最小值,则实数a 的取值范围是 () A. 1(2,)2-B. 1100,32(-,)()C. 1(0,)2D. 11(,)32-9.已知平面向量,PA PB 满足11,2PA PB PA PB ==⋅=-,若1BC =,则AC 的最大值为( )11-11 10.已知函数()231cos(0,R)22xf x x x ωωω=+->∈.若函数 ()f x 在区间(),2ππ内没有零点 , 则ω的取值范围是( )A. 50,12⎛⎤ ⎥⎝⎦B. ][55110,,12612⎛⎫⋃ ⎪⎝⎭ C. 50,6⎛⎤⎥⎝⎦D. ][55110,,12612⎛⎤⋃ ⎥⎝⎦11.设函数()2e +xf x ax =(a R ∈)有且仅有两个极值点12x x ,(12x x <),则实数a 的取值范围是( )A.e e,2⎛⎫-- ⎪⎝⎭B.e ,2⎛⎫-∞- ⎪⎝⎭C.()e,-+∞D.e e,2⎡⎤--⎢⎥⎣⎦第II 卷(非选择题)二、填空题(题型注释)12.边界在直线,x e y x ==及曲线1y x=上的封闭的图形的面积为_______ 13.16/17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰•纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即b a N = ⇔ log a b N =. 现在已知23a =, 34b =,则ab =__________.14.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD=80,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点的距离为___.15.已知数列{}n a 的前n 项和为n S (*n N ∈),且满足212n n S S n n ++=+,若对*1,n n n N a a +∀∈<恒成立,则首项1a 的取值范围是__________.三、解答题(题型注释)16.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,满足a c -=,sin B C =.(1)求cos A 的值;(2)求πsin 26A ⎛⎫+ ⎪⎝⎭的值。
2014-2015年福州市第一学期高三期末理科数学质量检查(word版)
福州市2014-2015学年度第一学期高三质量检查理科数学试卷(满分:150分;完卷时间:120分钟)注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中有且只有一个选项是正确的.把正确选项涂在答题卡的相应位置上.) 1. 如图,复平面上的点1234,,,Z Z Z Z 到原点的距离都相等.若复数z所对应的点为1Z ,则复数z 的共轭复数所对应的点为( ). A .1Z B .2Z C .3ZD .4Z2. 已知πtan()34+=α,则tan α的值是( ).A .2B .12C .1-D .3-3. 已知A ⊂≠B ,则“x A ∈”是“x B ∈”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a 为座位号),并以输出的值作为下一个输入的值. 若第一次输入的值为8,则第三次输出的值为( ). A .8 B .15 C .29D .365. 如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( ). A .1π B .2π C .3πD .12第4题图第5题图6. 已知函数()lg(1)=-f x x 的值域为(,1]-∞,则函数()f x 的定义域为( ).A .[9,)-+∞B .[0,)+∞C .(9,1)-D .[9,1)-7. 已知抛掷一枚质地均匀的硬币,正面朝上的概率为0.5.现采用随机模拟试验的方法估计抛掷这枚硬币三次恰有两次正面朝上的概率:先由计算器产生0或1的随机数,用0表示正面朝上,用1表示反面朝上;再以每三个随机数做为一组,代表这三次投掷的结果.经随机模拟试验产生了如下20组随机数:101 111 010 101 010 100 100 011 111 110 000 011 010 001 111 011 100 000 101 101 据此估计,抛掷这枚硬币三次恰有两次正面朝上的概率为( ). A .0.30B .0.35C .0.40D .0.658. ABC △的三个内角,,A B C 所对的边分别为,,a b c .若cos cos A bB a==C 的大小为( ). A .60︒B . 75︒C .90︒D .120︒9. 若双曲线2222:1x y a bΓ-=(0,0a b >>)的右焦点()4,0到其渐近线的距离为,则双曲线Γ的离心率为( ). ABC .2D .410.定义运算“*”为:,0,2,0a b ab a a b a +<⎧⎪*=⎨⎪⎩≥.若函数()(1)f x x x =+*,则该函数的图象大致是( ).AC11.已知ABC ∆的三个顶点,,A B C 的坐标分别为())()0,1,,0,2-,O 为坐标原点,动点P 满足1CP =,则OA OB OP ++的最小值是( ).A .4-B 1C 1D 12.已知直线:l y ax b =+与曲线:Γ1x y y=+没有公共点.若平行于l 的直线与曲线Γ有且只有一个公共点,则符合条件的直线l ( ). A .不存在B .恰有一条C .恰有两条D .有无数条第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置上.) 13.若变量,x y 满足约束条件0,0,2x y y x ⎧⎪⎨⎪-⎩≤≥≤,则z x y =+的最小值为 ★★★ .14.已知6234560123456(1)x a a x a x a x a x a x a x +=++++++,则016,,,a a a ⋅⋅⋅中的所有偶数..的和等于 ★★★ .15.已知椭圆2239x y +=的左焦点为1F ,点P 是椭圆上异于顶点的任意一点,O 为坐标原点.若点D 是线段1PF 的中点,则1FOD ∆的周长为 ★★★ . 16. 若数列{}n a 满足112n n n a a a +-+≥(2n ≥),则称数列{}n a 为凹数列.已知等差数 列{}n b 的公差为d ,12b =,且数列n b n ⎧⎫⎨⎬⎩⎭是凹数列,则d 的取值范围为 ★★★ .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知等比数列{}n a 的公比1q >,1a ,2a 是方程2320x x -+=的两根. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}2n n a ⋅的前n 项和n S .18.(本小题满分12分)“ALS 冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)假定(Ⅰ)中被邀请到的3个人中恰有两人接受挑战.根据活动规定,现记X 为接下来被邀请到的6个人中接受挑战的人数,求X 的分布列和均值(数学期望).19.(本小题满分12分)已知函数()4f x x π⎛⎫= ⎪⎝⎭在同一半周期内的图象过点,,O P Q ,其中O 为坐标原点,P 为函数()f x 图象的最高点,Q 为函数()f x 的图象与x的正半轴的交点.(Ⅰ)试判断OPQ ∆的形状,并说明理由.(Ⅱ)若将O P Q ∆绕原点O 按逆时针方向旋转02ααπ⎛⎫<< ⎪⎝⎭时,顶点,P Q ''恰好同时落在曲线k y x =()0x >(如图所示),求实数k 的值.20.(本小题满分12分)一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用m (14m ≤≤且m ∈R )个单位的药剂,药剂在血液中的含量y (克)随着时间x (小时)变化的函数关系式近似为)(x f m y ⋅=,其中()10,06,4.4,682x xf x x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤(Ⅰ)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时?(Ⅱ)若病人第一次服用2个单位的药剂,6个小时后再服用m 个单位的药剂,要使接下来的2小时中能够持续有效治疗,试求m 的最小值.21.(本小题满分12分)已知抛物线Γ的顶点为坐标原点,焦点为(0,1)F . (Ⅰ)求抛物线Γ的方程;(Ⅱ)若点P 为抛物线Γ的准线上的任意一点,过点P 作抛物线Γ的切线PA 与PB ,切点分别为,A B ,求证:直线AB 恒过某一定点;(Ⅲ)分析(Ⅱ)的条件和结论,反思其解题过程,再对命题(Ⅱ)进行变式和推广.请写出一个你发现的真命题...,不要求证明(说明:本小题将根据所给出的命题的正确性和一般性酌情给分). 22.(本小题满分14分)已知函数()()e sin cos ,cos x x f x x x g x x x =-=,其中e 是自然对数的底数.(Ⅰ)判断函数()y f x =在π(0,)2内的零点的个数,并说明理由;(Ⅱ)12ππ0,,0,22x x ⎡⎤⎡⎤∀∈∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x g x m +≥成立,试求实数m 的取值范围;(Ⅲ)若1x >-,求证:()()0f x g x ->.第19题图福州市2014-2015学年度第一学期高三质量检查理科数学试卷参考答案及评分细则一、选择题:本大题共12小题,每小题5分,共60分. 1.C 2.B 3.A 4.A 5.B 6.D 7.B 8.C 9.C 10.D 11.B 12.C二、填空题:本大题共4小题,每小题4分,共16分,13.2- 14.32 15.316.(,2]-∞ 三、解答题:本大题共6小题,共74分.17. 本题主要考查一元二次方程的根、等比数列的通项公式、错位相减法求数列的和等基础知识,考查应用能力、运算求解能力,考查函数与方程思想. 解:(Ⅰ)方程2320x x -+=的两根分别为1,2, ·························································· 1分 依题意得11a =,22a =. ································································································ 2分 所以2q =,······················································································································· 3分 所以数列{}n a 的通项公式为12n n a -=. ·········································································· 4分 (Ⅱ)由(Ⅰ)知22n n n a n ⋅=⋅, ··················································································· 5分 所以212222n n S n =⨯+⨯+⋅⋅⋅+⨯, ············································ ①23121222(1)22n n n S n n +⋅=⨯+⨯+⋅⋅⋅+-⋅+⨯, ························· ② 由①-②得23222n S -=+++⋅⋅⋅122n n n ++-⨯, ··············································································· 8分 即 1222212nn n S n +-⋅-=-⨯-, ······················································································· 11分 所以12(1)2n n S n +=+-⋅. ····························································································· 12分 18.本题主要考查离散型随机变量的概率、分布列、数学期望等基础知识,考查运算求解能力以及应用意识,考查必然与或然思想等.解法一:(Ⅰ)这3个人接受挑战分别记为A 、B 、C ,则,,A B C 分别表示这3个人不接受挑战.这3个人参与该项活动的可能结果为:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C .共有8种; ································································ 2分 其中,至少有2个人接受挑战的可能结果有:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,共有4种. ······················································································································ 3分根据古典概型的概率公式,所求的概率为4182P ==. ·················································· 4分(说明:若学生先设“用(),,x y z 中的,,x y z 依次表示甲、乙、丙三人接受或不接受挑战的情况”,再将所有结果写成(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,不扣分.) (Ⅱ)因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ···································· 5分所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()6661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭······················································································· 9分 故X10分所以()1315515310123456364326416643264E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.故所求的期望为3. ········································································································ 12分 解法二:因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ···································· 1分 (Ⅰ)设事件M 为“这3个人中至少有2个人接受挑战”,则2323331111()2222P M C C ⎛⎫⎛⎫⎛⎫=⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ·········································································· 4分 (Ⅱ)因为X 为接下来被邀请的6个人中接受挑战的人数,所以1~6,2X B ⎛⎫⎪⎝⎭.··········································································································· 5分 所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()6661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭······················································································· 9分故X10分所以()1632E X =⨯=.故所求的期望为3. ······································································································ 12分 19.本题主要考查反比例函数、三角函数的图象与性质、三角函数的定义、同角三角函数的基本关系式、二倍角公式、两角和的正弦公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想. 解法一:(Ⅰ)OPQ ∆为等边三角形. ············································································ 1分 理由如下:因为函数()4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==π,所以函数()f x 的半周期为4, 所以4OQ =. ·················································································································· 2分 又因为P 为函数()f x 图象的最高点,所以点P坐标为(2,,所以4OP =, ···································································· 4分 又因为Q 坐标为(4,0),所以4PQ =,所以OPQ ∆为等边三角形. ··························································································· 6分 (Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,, ················ 7分代入k y x =,得216cos sin 8sin(2π)333k αααππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,且16sin cos 8sin 2k ααα==, ························································································· 9分所以2sin 2sin(2π)3αα=+,结合22sin (2)cos (2)1αα+=,02απ<<,解得1sin 22α=,············································································································· 11分所以4k =,所以所求的实数k 的值为4. ····································································· 12分 解法二:(Ⅰ)OPQ ∆为等边三角形. ·········································································· 1分 理由如下:因为函数()4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==,所以函数()f x 的半周期为4,所以4OQ =, ··································· 2分 因为P 为函数()f x 的图象的最高点,所以点P坐标为(2,,所以4OP =,所以OP OQ =. ······································ 4分 又因为直线OP的斜率k ==60POQ ∠=︒, 所以OPQ ∆为等边三角形. ··························································································· 6分(Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,, ·················· 7分 因为点P ',Q '在函数(0)ky x x=>的图象上,所以16cos sin ,3316sin cos k k ⎧ππ⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪=⎩αααα, ················································································ 8分 所以28sin(2π),38sin 2k k ⎧=+⎪⎨⎪=⎩αα, ·································································································· 9分 消去k 得, 2sin 2sin(2π)3αα=+,所以22sin 2sin 2cos πcos2sin π33ααα=+,所以3sin 222αα=,所以tan 2α=,····························································· 10分又因为 02απ<<,所以26απ=,所以1sin 22α=, ···················································· 11分所以4k =.所以所求的实数k 的值为4. ····································································· 12分 解法三:(Ⅰ)同解法一或同解法二;(Ⅱ)由(Ⅰ)知,OPQ ∆为等边三角形.因为函数(0)ky x x=>的图象关于直线y x =对称, ························································ 8分由图象可知,当12απ=时,点P ',Q '恰在函数(0)ky x x =>的图象上. ······················ 10分此时点Q '的坐标为(4cos 4sin )1212ππ,, ········································································· 11分 所以16sin cos 8sin 412126k πππ===,所以所求的实数k 的值为4. ···························· 12分20. 本题主要考查分段函数模型的应用问题、一元二次函数的最值、解不等式等基础知识,考查应用意识、运算求解能力,考查化归与转化思想、分类讨论思想等.解:(I )因为3m =,所以30,06,4312,682x xy x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤. ······················································ 1分当06x <≤时,由3024x+≥,解得x ≤11,此时06x <≤; ······································· 3分 当68x ≤≤时,由31222x -≥,解得203x ≤,此时2063x ≤≤. ····························· 5分综上所述,2003x ≤≤.故若一次服用3个单位的药剂,则有效治疗的时间可达203小时. ······························ 6分 (Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ······················· 8分因为10822mx x -+-≥对6x ≤≤8恒成立,即281210x x m -+≥对6x ≤≤8恒成立,等价于2max 812)10x x m -+≥(,6x ≤≤8.······································································ 9分 令2812()10x x g x -+=,则函数2(4)4()10x g x --=在[6,8]是单调递增函数, ·············· 10分当x =8时,函数2812()10x x g x -+=取得最大值为65, ················································ 11分所以65m ≥,所以所求的m 的最小值为65. ································································ 12分解法二:(Ⅰ)同解法一;(Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ······················· 8分注意到18y x =-及2102my x =-(14m ≤≤且m ∈R )均关于x 在[6,8]上单调递减,则1082my x x =-+-关于x 在[6,8]上单调递减, ····························································· 10分故10588823m m y -+=-≥,由523m≥,得65m ≥, ······················································· 11分 所以所求的m 的最小值为65. ······················································································· 12分21. 本题主要考查抛物线的标准方程与性质、直线与抛物线的位置关系、归纳推理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想、特殊与一般思想等. 解:(Ⅰ)依题意可设抛物线Γ的方程为:22x py =(0p >). ··································· 1分由焦点为(0,1)F 可知12p=,所以2p =.······································································· 2分所以所求的抛物线方程为24x y =. ················································································ 3分 (Ⅱ)方法一:设切点A 、B 坐标分别为221212,,,44x x x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由(Ⅰ)知,12y x '=.则切线PA PB 、的斜率分别为12112211,22x x x x k y x k y x ==''====, 故切线PA PB 、的方程分别为211111()42y x x x x -=-,222211()42y x x x x -=-, ············· 4分。
2019-2020学年度第一学期教学期末试卷(含答案)
2019-2020学年度第一学期教学期末试卷三年级英语(听力部分65分,笔试部分30分,卷面整洁5分)(考试时间:50分钟满分:100分)听力部分(65分)一、Listen and circle.(听录音,圈出正确图片所对应的字母编号)Sarah的生日就要到了,她邀请了几个好朋友和她一起庆祝生日,听听她的朋友为她准备了哪些礼物,请圈出来。
(每小题2分,共10分)1. 2.A B A B3. 4.A B A B5.A B二、Listen and judge.(听录音,判断对错)听一听朋友们在谈论什么,谈论的内容是否与图片内容相符合,符合的打“√”,不符合的打“×”。
(每小题1分,共5分)1. 2. 3.()()()4. 5.()()sarah妈妈为孩子们准备了丰富的食物,让我们听听孩子们都选了哪些食物。
请把你听到的食物在图中圈出来。
(每小题2分,共10分)四、Listen and write.(听录音,写数字)小朋友们都吃好了,现在是套圈圈游戏,请听听孩子们套了多少只小动物,并把它们的数量用阿拉伯数字写在相应的图片下。
(每小题2分,共10分)五、Listen and fill.(听录音,写上单词所缺字母)填字母游戏:请根据录音内容填上单词所缺的字母。
(每空格1分,共10分)1. ose2. o3. i er4. ack5.two oo连连看游戏:听听他们得到Sarah妈妈给的什么礼物,请分别把人物、颜色和物品连起来。
(每小题2分,共10分)1. blue2. green3. red4. white5. yellow七、Listen and number.(听录音,在相应的方框内标序号)拼一拼游戏:听一听他们如何把puppet拼起来,用阿拉伯数字排列出他们拼图的顺序。
(每空2分,共10分)笔试部分(30分)八、Read and write.(读读写写)找规律。
请和孩子们一起找出字母排列的规律,并填写所缺的字母,注意大小写哦!(每空1分,共10分)1.Aa Cc Ee Ff Gg2.m n o q s u3.b d f h4.Z Y W U T5.F L M S X Z九、Read and write.(读图,填上单词所缺字母)孩子们,挑战来了!请根据图片提示,把单词所缺字母补充完整,看看谁的观察力强。
排行榜 - 2019---2020学年度第一学期期中质量检测
341
126
胡芷若 119070028 119070028 1
339.5
127
杨少聪 119070024 119070024 1
339
128
杨康 119070157 119070157 4
339
128
杨甜甜 119070029 119070029 1
337.5
130
陈旖凡 119070128 119070128 3
分数 683.5 665 656 646.5 638.5 626 619 619 618.5 618.5 613.5 598 586 586 585.5 585 567 554 550.5 550.5 549.5 548.5 541.5 539.5 536.5 536.5 535.5 531.5 529.5 528 527 527 521.5 520.5
336.5
131
张运哲 119070066 119070066 2
335.5
132
叶治国 119070200 119070200 5
334.5
133
王莫 119070117 119070117 3
333.5
134
赵家辉 119070109 119070109 3
330
135
周心雨 119070134 119070134 3
94
20
91
24
74
21
90
13
96
14
96
15
82
16
103
19
97
17
74
22
95
18
97
20
95
21
67
福州市2019届高三普通高中毕业班第一次质量检测理科数学试题(独家有答案)
福州市2019届高三普通高中毕业班第一次调研理科数学(满分:150分 时间:120分钟) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)温馨提示:1.答题前,考生先将自己的姓名、班级、座号填写在答题卡上。
2.考生作答时,将答案写在答题卡上。
请按照题号在各题的答题区域内作答.在草稿纸、试题卷上答题无效。
3.考生不能使用计算器答题第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 把答案填写在答题卷相应位置上. 1.已知集合{|A x y ==,A B ⋂=∅,则集合B 不可能是A .{|1}x x <-B .{(,)|1}x y y x =-C .2{|}y y x =- D .{|1}x x ≥- 2.已知tan 43α=,则sin2α的值为 A. 2425- B. 2425 C. 725- D. 7253.下列判断错误的是A .“||||am bm <”是“||||a b <”的充分不必要条件B .命题“,0x R ax b ∀∈+≤”的否定是“00,0x R ax b ∃∈+>”C .若()p q ⌝∧为真命题,则,p q 均为假命题D .命题“若p ,则q ⌝”为真命题,则“若q ,则p ⌝”也为真命题4. 在平面直角坐标系xOy 中,四边形ABCD 是平行四边形,()2,1-=AB ,()1,2=AD , 则AC AD ⋅等于A. 5B. 4C. 3D. 2 5.已知函数()x f ax =的图像过点()2,4,令()()n f n f a n ++=11,*∈N n 。
记数列{}n a 的前n 项和为n S ,则2017S 等于A.12016-B.12017-C.12018-D.12018+6.若直线y x =上存在点(,)x y 满足约束条件40230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩, 则实数m 的最大值 A.-1 B .1 C .32D .27.将函数x x f 2sin )(=的图像保持纵坐标不变,先将横坐标缩短为原来的21,再向右平移6π个单位长度后得到)(x g ,则)(x g 的解析式为A.)6sin()(π-=x x g B.)6sin()(π+=x x g C.)324sin()(π-=x x g D.)64sin()(π-=x x g 8. 已知,,A B C 三点都在以O 为球心的球面上, ,,OA OB OC 两两垂直,三棱锥O ABC -的体积为43,则球O 的表面积为 A.316π B.16π C.323π D.32π9.在△ABC 中,内角C B A ,,所对的边分别为c b a ,,,满足bc a c b =-+222,0>⋅BC AB ,23=a ,则cb +的取值范围是 A.⎪⎭⎫ ⎝⎛23,1 B.⎪⎪⎭⎫ ⎝⎛23,23 C.⎪⎭⎫ ⎝⎛23,21 D.⎥⎦⎤ ⎝⎛23,21 10. 某四面体的三视图如图所示,正视图、俯视图都是腰长为2的 等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四 个面中最大面积为A. 32B. 4C. 22D. 6211.已知()3f x x =,若[]1,2x ∈时,()()210f x ax f x -+-≤,则a 的取值范围是A.1a ≤B.1a ≥C.32a ≥D.32a ≤ 12.ABC ∆中,32AB AC =,点G 是ABC ∆的重心,若BG CG λ=,则λ的取值范围是A.1(4B.2(3C.27(,)38D.17(,)48第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卷相应位置上 13.直线10x -=的倾斜角为 .14.设函数()f x x ax m=+的导函数'()21f x x =+,则21()f x dx -⎰的值等于 .15.如图,在四棱柱1111D C B A ABCD -中,底面ABCD 是正方形,侧棱1AA ⊥底面ABCD . 已知3,11==AA AB ,E 为AB 上一个动点,则CE E D +1的最小值为 .16.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2; ②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1.其中所有正确命题的序号是____ ____.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知1cos 23A =-,3c =,sin 6sin A C =.(Ⅰ)求a 的值;(Ⅱ)若角A 为锐角,求b 的值及△ABC 的面积.18.(本小题满分12分)已知等比数列{}n a 是递增数列,它的前n 项和为n S ,38a =,且10是24,a a 的等差中项. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列1{}nn a +的前n 项和n T . 19.(本小题满分13分)如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,3PA =,4AD =,23AC =,60ADC ∠=,E 为线段PC 上一点,且PE PC λ=.(Ⅰ)求证:CD AE ⊥;(Ⅱ)若平面PAB ⊥平面PAD ,直线AE 与平面PBC 33,求λ的值.EDCBAP20.(本小题满分12分)已知圆M 过两点(1,1),(1,1)C D --,且圆心M 在20x y +-=上. (Ⅰ) 求圆M 的方程;(Ⅱ) 设P 是直线3480x y ++=上的动点,,PA PB 是圆M 的两条切线,,A B 为切点,求四边形PAMB 面积的最小值. 21.(本小题满分12分)已知函数()ln ,f x x mx m m R =-+∈. (Ⅰ)求函数()f x 的单调区间.(Ⅱ)若()0f x ≤在(0,)x ∈+∞上恒成立,求实数m 的取值范围. (Ⅲ)在(Ⅱ)的条件下,任意的0a b <<,求证:()()1(1)f b f a b a a a -<-+.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的方程为41,532,5x t y t ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线G 的方程为)4sin(22πθρ+=,正方形OABC 内接于曲线G ,且C B A O ,,,依逆时针方向排列,A 在极轴上.(Ⅰ)将直线l 和曲线G 的方程分别化为普通方程和直角坐标方程;(Ⅱ)若点P 为直线l 上任意一点,求2222PC PB PA PO +++的最小值.23.(本小题满分10分)选修4-5:不等式选讲已知函数122121)(++-=x x x f . (Ⅰ)求函数)(x f 的最小值m ;(Ⅱ)若正实数b a ,满足m ba =+21,且b a x f 2)(+≤对任意的正实数b a ,恒成立,求x 的取值范围.福州市2019届高三普通高中毕业班第一次调研理科数学参考答案1-5 DBCAC 6-10 DCBBA 11-12 CD 13.6π 14. 5615.10 16. ①②③ 12.选D ;设()2,30AB t AC t t ==>。
福建省福州市2019-2020学年度第一学期期末质量抽测九年级英语及参考答案
2019-2020学年度第一学期福州市九年级期末质量抽测英语试题参考答案及评分标准I.听力(共三节,满分30分)第一节听句子选图(7.5分)1-5C A C B B第二节对话理解(15分)6-10C B A B C11-15A A B A C第三节听对话填表(7.5分)16.slow17.groups18.understand19.sentences20.something II.选择填空(15分)21-25C B C B A26-30B A C A B31-35A B A C CIII.完形填空(15分)36-40B A C A C41-45A B B C AIV.阅读理解(共两节,满分45分)第一节(40分)46-50D C B D A51-55C D B A A56-60D A B C B61-65B D A C C 第二节(5分)66-70B C E A DV.情景交际(10分)71.Can I help you1分1分72.I see1分1分73.What’s up1分1分74.Hurry up;you’ll be late(for school)1分1分75.I can’t wait to meet(m y good friend)Peter1分1分评分标准:每小题能按要求写出正确的内容,得2分;能写出主要句子结构的得1-1.5分;能传递个别信息的得0.5分。
VI.看图写话(10分)76.He has done housework for two hours.0.5分1分0.5分77.The boy is weak in history.0.5分1分0.5分78.The woman is teaching the boy how to ride(a bike).1分1分79.Mary is invited to Jim’s birthday party on January21st.0.5分0.5分0.5分0.5分80.There is no doubt that the moon is the satellite of the earth.1分1分评分标准:每小题能写出一个符合图意的完整、正确的句子,得2分;能基本说明图意,写出主要句子结构的得1-1.5分;能传递个别信息的得0.5分。
截面问题(含详细解析)
几何体截面问题①定义:一个几何体和一个平面相交所得到的平面图形(包含它的内部)叫做这个几何体的截面. 截面不唯一,好的截面应包含几何体的主要元素!②画法:常通过“作平行线”或“延长直线找交点”作出完整的截面,作截面是立体几何非常重要的研究课题.③思想:作截面是研究空间几何体的重要方法,它将陌生空问题转化为熟悉的平面问题!技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
1.【云南省昆明市2019-2020学年高三下学期1月月考数学】某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为为4π,则该球的半径是( )A .2B .4C .D .【答案】B【解析】设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半即截面圆的周长可得42r ππ=,得2r =,故由题意知(222R r =+,即(222216R=+=,所以4R =,故选:B .2.如图,已知三棱锥V ABC -,点P 是VA 的中点,且2AC =,4VB =,过点P 作一个截面,使截面平行于VB 和AC ,则截面的周长为( )A .12B .10C .8D .6【答案】D 【解析】如图所示,设AB 、BC 、VC 的中点分别为D,E,F ,连接PD,DE,EF,PF. 由题得PD||VB,DE||AC,因为,PD DE ⊆平面DEFP,VB,AC 不在平面DEFP 内, 所以VB||平面DEFP,AC||平面DEFP, 所以截面DEFP 就是所作的平面.由于11||,||,,22PD VB EF VB PD VB EF VB ===, 所以四边形DEFP 是平行四边形, 因为VB=4,AC=2,所以PD=FE=2,DE=PF=1, 所以截面DEFP 的周长为2+2+1+1=6. 故选:D3.【2020届广东省东莞市高三期末调研测试理科数学试题】已知球O 是正四面体A BCD -的外接球,2BC =,点E 在线段BD 上,且3BD BE =,过点E 作球O 的截面,则所得截面圆面积的最小值是( ) A .89π B .1118πC .512π D .49π 【答案】A【解析】由题,设平面α为过E 的球O 的截面,则当OE ⊥平面α时,截面积最小, 设截面半径为r ,球的半径为R ,则222r R d =-,因为正四面体棱长为a ,设过点A 垂直于平面BCD 的直线交平面BCD 于点M ,则DM =,令AM h =,OM x =,则x h R =-,在Rt AMD V 中,222AM DM AD +=,即222h a ⎫+=⎪⎪⎝⎭,则3h a =,在Rt OMD V 中,222DM OM R +=,即222x R ⎫+=⎪⎪⎝⎭,则22213a R R ⎫+-=⎪⎪⎝⎭,解得R =,则x ==, 在Rt OED △中,222OE OM EM =+,因为点E 在线段BD 上,3BD BE =,设BC 中点为N ,则2DM MN =, 所以211333EM BN BC a ===,在Rt OED △中,222OE OM EM =+,即2222111372d a a ⎫⎛⎫=+=⎪ ⎪⎪⎝⎭⎝⎭,所以22221124729r a a a ⎛⎫=-= ⎪ ⎪⎝⎭,因为2a BC ==, 所以289r =,所以截面面积为289S r ππ==, 故选:A4.【2020届福建省福州市高三适应性练习卷数学理科试题】在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的面积的最大值与最小值之差为16π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π【答案】C【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O , 记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =, 则球心O 到平面ABC 的距离为x ,即1OO x =, 连接1O A ,则15O A =,∴2225R x =+.在ABC V 中,取AC 的中点为E ,连接11,O D O E , 则1132O E AB ==,124DE AC ==,所以1O D =在1Rt OO D V 中,OD = 由题意得到当截面与直线OD 垂直时,截面面积最小, 设此时截面圆的半径为r ,则()22222251312r R OD x x =-=+-+=,所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2R π, 所以21216R π-π=π,228R =, 球的表面积为2112R 4π=π. 故选:C.5.【2020届重庆南开中学高三第五次教学质量检测考试数学文科试题】正三棱锥P ABC -,Q 为BC 中点, PA =,2AB =,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为( )A .13,45ππ⎡⎤⎢⎥⎣⎦B .12,23ππ⎡⎤⎢⎥⎣⎦C .[],2ππD .3,2ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】因为正三棱锥P ABC -,PB PC PA ===2AC BC AB ===,所以222PB PA AB +=,即PB PA ⊥,同理PB PC ⊥,PC PA ⊥, 因此正三棱锥P ABC -可看作正方体的一角,如图,记正方体的体对角线的中点为O ,由正方体结构特征可得,O 点即是正方体的外接球球心,所以点O 也是正三棱锥P ABC -外接球的球心,记外接球半径为R ,则2R ==,因为球的最大截面圆为过球心的圆, 所以过Q 的平面截三棱锥P ABC -的外接球所得截面的面积最大为2max 32S R ππ==;又Q 为BC 中点,由正方体结构特征可得122OQ PA ==;由球的结构特征可知,当OQ 垂直于过Q 的截面时,截面圆半径最小为1r ==,所以2min S r ππ==.因此,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为3,2ππ⎡⎤⎢⎥⎣⎦.故选:D.6.【2020届湖北省部分重点中学高三第二次联考数学试卷理科试题】如图,已知四面体ABCD 的各条棱长均等于4,E ,F 分别是棱AD 、BC 的中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .B .4C .D .6【答案】B【解析】将正四面体补成正方体如图,可得EF ⊥平面CHBG ,且正方形边长为由于EF α⊥,故截面为平行四边形MNKL ,且4KL KN +=, 又//KL BC ,//KN AD ,且AD BC ⊥, ∴KN KL ⊥, ∴MNKLS KN KL =⋅Y 242KN KL +⎛⎫≤= ⎪⎝⎭,当且仅当2KL KN ==时取等号, 故选:B .7.已知正方体1111ABCD A B C D -的边长为2,边AB 的中点为M ,过M 且垂直1BD 的平面被正方体所截的截面面积为( )A .2B C .D .【答案】A【解析】如图,连结111,,,AC CB AB BC ,易知11CB BC ⊥,111CB D C ⊥,又1111BC D C C ⋂=,则1CB ⊥平面11BC D ,故11CB BD ⊥,同理可证明CA ⊥平面1BDD ,则1CA BD ⊥,又1CA CB C =I ,故1BD ⊥平面1ACB .取BC 的中点E ,1BB 的中点F ,易知平面//MEF 平面1ACB , 所以1BD ⊥平面MEF ,即MEF V 为所求截面.易知MEF V 为正三角形,边长ME ==故12MEF S ==V 故选:A.8.在棱长为2的正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,设过P ,Q ,R 的截面与面11ADD A ,以及面11ABB A 的交线分别为l ,m ,则l ,m 所成的角为( )A .90︒B .30°C .45︒D .60︒【答案】D【解析】因为,在正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,取11C D ,1DD ,1BB 的中点分别为G ,F ,E ,连接FG , FQ ,QP ,PE ,ER ,RG ,根据正方体的特征,易知,若连接PG ,EF ,RQ ,则这三条线必相交于正方体的中心,又////GR EF QP ,所以P ,Q ,R ,G ,F ,E 六点必共面,即为过P ,Q ,R 的截面;所以EP 即为直线m ,FQ 即为直线l ;连接1AB ,1AD ,11B D ,因为1//EP AB ,1//FQ AD ,所以11B AD ∠即为异面直线EP 与FQ 所成的角,又因为正方体的各面对角线都相等,所以11AB D V 为等边三角形, 因此1160B AD ∠=︒.故选:D.9.【2020届山西省吕梁市高三上学期第一次模拟考试数学(理)试题】如图四面体A BCD -中,2,AD BC AD BC ==⊥,截面四边形EFGH 满足//EF BC ;//FG AD ,则下列结论正确的个数为( ) ①四边形EFGH 的周长为定值 ②四边形EFGH 的面积为定值 ③四边形EFGH 为矩形④四边形EFGH 的面积有最大值1A .0B .1C .2D .3【答案】D【解析】因为//EF BC EF ⊄,平面BCD ,所以//EF 平面BCD ,又平面EFGH I 平面BDC GH =,所以//EF GH .同理//FG EH ,所以四边形EFGH 为平行四边形, 又AD BC ⊥,所以四边形EFGH 为矩形.所以③是正确的;由相似三角形的性质得EF AF FC FGBC AC AC AD==,, 所以EF FG AF FCBC AD AC AC+=+,2BC AD ==,所以2EF FG +=, 所以四边形EFGH 的周长为定值4,所以①是正确的;212EFGHEF FG S EF FG ⨯⎛⎫=⨯≤= ⎪⎝⎭,所以四边形EFGH 的面积有最大值1,所以④是正确的.因为①③④正确.故选:D10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A .4B C .4D 【答案】A【解析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26S ==,故选A. 11.【云南省曲靖市2019-2020学年高三第一次教学质量检测数学文科试题】在四面体ABCD 中,3AB BD AD CD ====,4AC BC ==,用平行于AB ,CD 的平面截此四面体,得到截面四边形EFGH ,则四边形EFGH 面积的最大值为( ) A .43B .94C .92D .3【答案】B【解析】设截面分别与棱,,,AD BD BC AC 交于点,,,E F G H .由直线//AB 平面EFGH , 且平面ABC I 平面EFGH GH =,平面ABD ⋂平面EFGH EF = 得//GH AB ,//EF AB ,所以//GH EF ,同理可证//EH FG ,所以四边形EFGH 为平行四边形, 又3AB BD AD CD ====,4AC BC ==, 可证得AB CD ⊥,四边形EFGH 为矩形.设:::BF BD BG BC FG CD x ===,01x <<, 则3FG x =,()31HG x =-,于是2199(1)9,0124EFGH S FG HG x x x x ⎛⎫=⋅=-=--+<< ⎪⎝⎭当12x =时,四边形EFGH 的面积有最大值94. 故选:B. 二、填空题12.【新疆维吾尔自治区乌鲁木齐市2019-2020学年高三第一次诊断性测试数学文试题】 如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 、G 分别为11,,AB AD B C 的中点,给出下列命题:①异面直线EF 与AG 所成的角的余弦值为6;②过点E 、F 、G 作正方体的截面,所得的截面的面积是③1A C ⊥平面EFG④三棱锥C EFG -的体积为1其中正确的命题是_____________(填写所有正确的序号)【答案】①③④【解析】取11C D 的中点为点H ,连接GH 、AH ,如图1所示,因为//EF GH ,所以AGH ∠就是异面直线EF 与AG 所成的角易知在AGH V 中,3,AG AH GH ===2cos 36AGH ∠==,①正确;图1 图2 图3矩形EFGH 即为过点E 、F 、G 所得正方体的截面,如图2所示,易知EF EG ==所以EFGH S ==分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立如图3所示直角坐标系,则(2,0,2),(2,1,0),A E(1,0,0),(1,2,2)F G ,1(2,2,2),(1,1,0),(1,1,2)AC FE EG =--==-u u u r u u u r u u u r , 因为110,0AC FE AC EG ⋅=⋅=u u u r u u u r u u u r u u u r ,所以11,A C EF A C EG ⊥⊥,又EF ⊂平面EFG , EG ⊂平面EFG 且EF EG E =I ,所以1A C ⊥平面EFG ,故③正确134(111212)22EFC S =-⨯⨯+⨯+⨯=V ,1113G ECF EFC V S C C -=⋅=V ,④正确. 故答案为:①③④13.如图所示,在长方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,若平面1BED 交棱1AA 于点F ,给出下列命题:①四棱锥11B BED F -的体积恒为定值;②对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得//CG 平面1EBD ; ③O 为底面ABCD 对角线AC 和BD 的交点,在棱1DD 上存在点H ,使//OH 平面1EBD ; ④存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值.其中为真命题的是____________________.(填写所有正确答案的序号)【答案】①③④【解析】①111111112B BED F B BED B BFD B BED V V V V ----=+=,又三棱锥11B BED -为三棱锥11E BB D -,则底面11BB D 不变,且因为1//CC 平面11BB D ,故点E 到底面11BB D 的距离即三棱锥11E BB D -底面的高不变,故三棱锥11E BB D -的体积不变,所以四棱锥11B BED F -的体积不变,恒为定值,故①正确;②当点E 在点C 处时,总有CG 与平面1EBD 相交,故②错误;③由O 为底面ABCD 对角线AC 和BD 的交点,则12DO DB =,设H 为1DD 的中点,则在1D DB V 中1//OH D B ,所以//OH 平面1EBD ,故③正确;④四边形1BED F 的周长为()012C BE ED =+,则分析1BE ED +即可,将矩形11BCC B 沿着1CC 展开使得B 在DC 延长线上时,此时B 的位置设为P ,则线段1D P 与1CC 的交点即为截面平行四边形1BED F 的周长取得最小值时唯一点E ,故④正确;故答案为:①③④14.【2020届河南省驻马店市高三上学期期末数学(文科)试题】 在棱长为2的正方体1111ABCD A B C D -中,E 是正方形11BB C C 的中心,M 为11C D 的中点,过1A M 的平面α与直线DE 垂直,则平面α截正方体1111ABCD A B C D -所得的截面面积为______.【答案】【解析】如图,在正方体1111ABCD A B C D -中,记AB 的中点为N ,连接1,,MC CN NA , 则平面1A MCN 即为平面α.证明如下:由正方体的性质可知,1A M NC P ,则1A ,,,M CN N 四点共面, 记1CC 的中点为F ,连接DF ,易证DF MC ⊥.连接EF ,则EF MC ⊥, 所以MC ⊥平面DEF ,则DE MC ⊥.同理可证,DE NC ⊥,NC MC C =I ,则DE ⊥平面1A MCN , 所以平面1A MCN 即平面α,且四边形1A MCN 即平面α截正方体1111ABCD A B C D -所得的截面. 因为正方体的棱长为2,易知四边形1A MCN 是菱形,其对角线1AC =,MN =12S =⨯=故答案为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度第一学期福州市高三期末质量检测数学(理科)参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数。
除第16题外,选择题和填空题不给中间分。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.B 2.D 3.C 4.A 5.D 6.B 7.C8.C9.A10.B11.B12.A二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.2e 2-14.315.8316三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.【命题意图】本题主要考查利用正弦定理和余弦定理解三角形,任意三角形的面积,考查学生的逻辑推理能力与数学运算能力,考查的核心素养是逻辑推理、直观想象、数学运算.【解析】解法一:(1)在ABC △中,由正弦定理及题设得sin sin AC BC B A=,故1sin B =, ································································ 3分解得sin B =····················································································· 4分又030B ︒︒<<,所以cos B ==······················································ 6分(2)设AD CD x ==,则2BD x =. 在ABC △中,由余弦定理得, 2`222cos BC AB AC AB AC A =+-⋅,即27916cos x x A =+-,① ··········································································· 7分在等腰ACD △中,有112cos 2ACA AD x ==,② ···················································· 8分联立①②,解得1x =或1x =-(舍去). ························································· 9分 所以ACD △为等边三角形,所以60A =︒,···················································· 11分所以11sin 31sin 6022ABC S AB AC A =⨯⨯=⨯⨯⨯︒=△. ··································· 12分解法二:(1)同解法一. ············································································· 6分(2)设AD x =,则,2,CD x BD x == 因为ADC BDC ∠=π-∠,所以BDC ADC ∠-=∠cos cos , ·········································································· 7分由余弦定理得,得22222472142x x x x x +--=-, ·········································································· 8分所以21x =,解得1x =或1x =-(舍去).······················································ 9分 所以ACD △为等边三角形,所以60A =︒,···················································· 11分所以11sin 31sin 6022ABC S AB AC A =⨯⨯=⨯⨯⨯︒=△. ··································· 12分18.【命题意图】本题考查等差数列和等比数列的通项公式、性质,错位相减法求和,考查学生的逻辑推理能力,化归与转化能力及综合运用数学知识解决问题的能力.考查的核心素养是逻辑推理与数学运算. 【解答】(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ , ·································································· 1分所以22111112361628,a a a a ++=++解得1 2.a = ································································································ 2分 2.n a n ∴= ································································································· 3分 设等比数列{}n b 的公比为q ,所以342282,4b a q b a ==== ········································ 4分 又2224,422.n n n b a b -==∴=⨯= ····································································· 5分 (2)由(1)知,2,2.n n n a n b == 因为11121212n n n n nc c c c a a a a +--++⋅⋅⋅⋅++= ① 当2n ≥时,1121212n n n c c c a a a --++⋅⋅⋅+= ② ···························································· 6分 由①-②得,2n n nc a =,即12n n c n +=⋅, ································································ 7分 又当1n =时,31122c a b ==不满足上式,18,1,2, 2.n n n c n n +=⎧∴=⎨⋅≥⎩···················································································· 8分 数列{}n c 的前2020项的和34202120208223220202S =+⨯+⨯+⋅⋅⋅+⨯2342021412223220202=+⨯+⨯+⨯+⋅⋅⋅+⨯ ·············· 9分设2342020202120201222322019220202T =⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ③, 则34520212022202021222322019220202T =⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ④,由③-④得:234202120222020222220202T -=+++⋅⋅⋅+-⨯ ··································· 10分2202020222(12)2020212-=-⨯-2022420192=--⨯ ································································· 11分 所以20222020201924T =⨯+,所以2020S = 202220204201928T +=⨯+. ··························································· 12分19.【命题意图】本题考查空间直线和直线、直线和平面、平面和平面的垂直的证明,二面角等基础知识,考查学生的逻辑推理能力,化归与转化能力和空间想象能力.考查的核心素养是直观想象、逻辑推理与数学运算.【解析】解法一:(1)因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥. ··························································································· 1分 因为ABCD 为正方形,所以AB BC ⊥, 又因为PAAB A =,所以BC ⊥平面PAB . ····················································· 2分 因为AE ⊂平面PAB ,所以AE BC ⊥. ··························································································· 3分 因为PA AB =,E 为线段PB 的中点,所以AE PB ⊥, ························································································· 4分 又因为PBBC B =,所以AE ⊥平面.PBC ··················································································· 5分 又因为AE ⊂平面AEF ,所以平面AEF ⊥平面PBC . ·········································································· 6分 (2)因为PA ⊥底面ABCD ,AB AD ⊥,以A 为坐标原点,分别以,,AB AD AP 的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系A xyz -,设正方形ABCD 的边长为2,则()()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,0,2,1,0,1A B C D P E ,······································································································· 7分 所以()()()1,0,1,2,2,2,0,2,2.AE PC PD ==-=- 设点F 的坐标为()()2,,002,λλ≤≤所以()2,,0.AF λ= 设()111,,x y z =n 为平面AEF 的法向量, 则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 所以11110,20,x z x y λ+=⎧⎨+=⎩ 取12y =,则(),2,λλ=-n .……………………8分 设()222,,x y z =m 为平面PCD 的法向量, 则0,0,PC PD ⎧⋅=⎪⎨⋅=⎪⎩m m 所以222220,0,x y z y z +-=⎧⎨-=⎩取21y =,则()0,1,1=m . ········································································· 10分 因为平面AEF 与平面PCD 所成的锐二面角为30︒,所以cos30⋅︒===⋅m n m n, ·········································· 11分 解得1λ=,故当点F 为BC 中点时,平面AEF 与平面PCD 所成的锐二面角为30. ········ 12分 解法二:(1)因为PA ⊥底面ABCD ,PA ⊂平面PAB ,所以平面PAB ⊥底面ABCD ·································································· 1分 又平面PAB 底面ABCD AB =,BC AB ⊥,BC ⊂平面ABCD ,所以BC ⊥平面.PAB ··········································································· 2分 因为AE ⊂平面PAB ,所以.AE BC ⊥ ····················································· 3分 因为PA AB =,E 为线段PB 的中点,所以.AE PB ⊥·································· 4分 因为PBBC B =,所以AE ⊥平面.PBC ················································· 5分 又因为AE ⊂平面AEF ,所以平面AEF ⊥平面PBC ···································································· 6分 (2)同解法一. ·············································································· 12分 20. 【命题意图】本题考查直线和圆的相切,椭圆的图象和性质,直线和椭圆的位置有关系,考查学生的逻辑推理能力,化归与转化能力及综合运用数学知识解决问题的能力.考查的核心素养是直观想象、逻辑推理与数学运算.【解析】(1)因为圆O所以2222:1(0)x y C a b a b +=>>= ··························· 1分所以2b =b ································································ 2分因为C ,所以c a = ①, ·············································· 3分又因为222a c b -=,所以222a c -= ②,联立①② ,解得24a =, ······································································ 4分所以所求C 的方程为221.42x y += ····························································· 5分(2)证明:证法一:①当直线l 斜率不存在时, 直线l 的方程为x =.当x =A B 所以440.33OA OB ⋅=-=········································································· 6分当x =((A B 所以44033OA OB ⋅=-=, 综上,.OA OB ⊥所以AOB △为直角三角形. ·································································· 7分 ②当直线l 斜率存在时,设其方程为1122,(,),(,),y kx m A x y B x y =+ 直线l 与圆相切,= 即223440m k --=, ·············································································· 8分 由22,142y kx m x y =+⎧⎪⎨+=⎪⎩得,222(12)4240k x kmx m +++-=,所以2121222424,.1212km m x x x x k k -+=-=++ ······················································· 9分 所以1212OA OB x x y y ⋅=+1212()()x x kx m kx m =+++221212(1)()k x x km x x m =++++ ·············································· 10分2222222(1)(24)4(12)12k m k m m k k +--++=+ 2223440,12m k k--==+ ···························································· 11分 所以.OA OB ⊥综上所述:.OA OB ⊥ 所以AOB △为直角三角形. ······································ 12分 证法二:①当直线方程为y =时,44(0,33A B OA OB ∴⋅=-+= 所以.OA OB ⊥所以AOB △为直角三角形. ······················································ 6分②当直线方程为y =时, 44(0,33A B OA OB ∴⋅=-+= 所以.OA OB ⊥所以AOB △为直角三角形. ······················································ 7分 ③当直线l 不与x 轴平行时,设其方程为1122,(,),(,),x ty m A x y B x y =+ 因为直线l,即223440.m t --= ······························· 8分由22,142x ty m x y =+⎧⎪⎨+=⎪⎩得,222(2)240.t y tmy m +++-=所以212122224,.22tm m y y y y t t -+=-=++ ································································ 9分 1212OA OB y y x x ⋅=+1212()()y y ty m ty m =+++221212(1)()t y y tm y y m =++++ ··························································· 10分2222222(1)(4)2(2)2t m t m m t t +--++=+ 2223440,2m t t --==+ ········································································· 11分 所以,OA OB ⊥所以AOB △为直角三角形.综上所述: AOB △为直角三角形. ······························································· 12分 21. 【命题意图】本题考查函数和导数的应用,利用导数判断函数的单调性,证明不等式,函数零点个数等基础知识,考查学生的逻辑推理能力,化归与转化能力.考查的核心素养是直观想象、逻辑推理与数学运算.【解答】(1)当12a =时,()21cos 12f x x x =+-,所以()f x 的定义域为R ,且()(),f x f x -=故()f x 为偶函数. ································ 1分当0x …时,()sin f x x x '=-+,。