铝电解电容的寿命

合集下载

铝电解电容寿命计算

铝电解电容寿命计算

铝电解电容寿命计算
一、老化速率的估算:
1.上电老化法:
将电容器以额定电压上电,根据老化加速现象,可以通过一定时间的
上电老化来模拟长时间的使用情况,然后通过测量电容值和电阻值的变化
来估算老化速率。

2.高温老化法:
将电容器置于高温环境下,在一定时间内观察电容值和电阻值的变化
情况,通过测量结果推算老化速率。

二、寿命预测的评估:
寿命预测是指根据老化速率估算结果,结合已知的老化模型和工作条件,来评估电容的使用寿命。

寿命预测主要包括以下几个方面:
1.应力与老化模型分析:
分析电容在不同工作条件下所受的应力,包括电压应力、温度应力、
电流应力等,通过建立老化模型,估算电容的老化速率。

2.寿命试验与寿命模型:
进行一系列的寿命试验,通过测量电容值和电阻值的变化来评估电容
器的寿命。

同时,根据试验数据建立寿命模型,并根据模型进行寿命预测。

3.可靠性评估:
通过对电容器寿命的评估来评估电路的可靠性,从而预测系统的可靠性。

可靠性评估一般包括寿命试验、故障数据分析、可靠度预测等。

总结起来,铝电解电容寿命计算主要包括老化速率的估算和寿命预测的评估。

通过对电容的老化机制、应力分析和寿命模型的建立,可以对电容器的使用寿命进行估算和预测。

这对于电子设备的可靠性设计和电路寿命评估具有重要意义。

铝电解电容可靠性--寿命估算

铝电解电容可靠性--寿命估算

铝电解电容寿命的简单推算1) 不含有纹波电流工作状态的铝电解电容器的推算。

基本依据为“10℃法则”,即环境温度每上升10℃寿命减半,反之亦然。

这个10℃法则只在零纹波电流条件下适用,在铝点解电容流过比较大的纹波电流时不一定适用。

2) 公式推算。

在额定电压下,铝电解电容器的寿命可以由下式计算:)10(200TT L L -⨯= 式中,L 和0L 分别为实际环境温度T 时的寿命和额定最高温度0T 时的寿命。

上面的推算方法仅适用于存储状态和无纹波电流(很小纹波电流)的工作状态,对于明显含有纹波电流的场合上述方法不一定适用,这时候应该将纹波电流的效应考虑在应用条件中。

铝电解电容寿命估算 环境因子 包括环境温度,应用电压,纹波电流voltage tem p K K Lr Lx ⨯⨯=Lx 估算的寿命 Lr 寿命基数temp K 温度系数 voltage K 电压系数环境温度系数铝电解电容器是一种电化学元件,化学反应速度遵循Arrhenius 方程10)(0002r T T tem p L K L Lr -⨯=⨯= 10)(02r T T tem p K -=Lr 估算寿命0L 寿命基数 0T 最高额定温度 r T 实际环境温度电压系数voltage K =1纹波电流的影响DC AC W W W +=D C D C e AC I V R I W ⨯+⨯=2W 内部功率损耗AC W 电源纹波电流造成的功率损耗 DC W 直流电源造成的功率损耗 AC I 纹波电流e R 纹波频率下的ESRDC V DC 电压 DC I 漏电流如果DC 电压在额定电压下,漏电流远远小于纹波电流,纹波功率损耗远大于直流功率损耗。

功率损耗计算公式:e AC A R I W W ⨯==2电容温度提到到一定程度,内部产生的热量与热辐射平衡。

平衡的温度计算公式。

T A R I e AC ∆⨯⨯=⨯β2 所以AR I T eAC ⨯⨯=∆β2=β热辐射常数W⨯3-10℃2cm=A 表面面积)(2Cm 、对L D ⨯ψ电容)4()4/(L D D A +=πT ∆由于纹波电流导致的核心温度上升使用条件与铝电解电容寿命的关系在很多应用中 铝电解电容器中将流过纹波电流,甚至是非常高的纹波电流。

铝电解电容寿命

铝电解电容寿命

铝电解电容寿命
铝电解电容的寿命通常是以工作时间来衡量的,而不是以具体的年限。

铝电解电容的寿命取决于其使用环境、工作温度、工作电压、电容负载情况等因素。

一般而言,铝电解电容的寿命在几千至数万个工作小时之间。

高品质的铝电解电容可以达到更长的寿命,而低质量或过度负载的情况下则可能寿命较短。

另外,铝电解电容的寿命也与其使用情况和维护有关。

例如,如果电容器操作在额定电压和温度范围内,并且受到适当的保护和使用,那么它的寿命将更长。

总之,铝电解电容的寿命是多方面因素综合影响的结果,具体的寿命需要根据实际情况进行评估,无法给出具体的数字。

电解电容寿命计算公式 说明(1)

电解电容寿命计算公式 说明(1)
△T=(IX÷I0)2×△T0
代号
I0 IX
4、关于其他的寿命原因:
代号表示内容说明 最高使用温度下正常周波数的额定纹波电流(Arms)
实际使用中的纹波电流(Arms)
铝电解电容由于电解液通过封口部扩散到外部而导致磨耗故障,加速其现象的要因除上述周围温度与
纹波电流外有以下要因:
●过电压的情况
连续印加定格电压的过电压时,急速增大制品的漏电流量,这种漏电流引起发热产生气体,并导致内压
铝电解电容器的使用寿命计算公式
1、周围温度与寿命
温度对寿命的影响有静电容量的减少,损失角正接的增大,导致电解液通过封口部扩散到外部,电气
特性随时间的变化值与周围温度间成立试验公式,其关系式类似于温度增加,化学反应速度成指数倍 增加之化学反应规律式,称之为温度与铝电解电容寿命10℃法则。
LX=L0×B
W=IR2×R+VIL
代号
代号表示内容说明
W
内部的消费电力
IR
直流电流
R
内部阻抗等效串联电阻 ESR
V
印加电压
IL
漏电流
漏电流 LC最高使用温度增加到20℃的 5-10倍程度,由于 I R远大于IL,可成立如下公式:
W=IR2×R
◆ 内部发热与放热达到平衡温度的条件公式如下:
IR2×R=βA△T
代号
T0 - TX 10
代号
代号表示内容说明
L0
最高温度条件下,印加定格电压或重迭额定纹波电流时的保证寿命(hrs)
LX
实际使用中的寿命(hrs)
T0
制品的最高使用温度(℃)
Tx
实际使用时的周围温度(℃)
B:温度加速系数 温度加速系数 B,如果是最高使用温度以下时,可以用 B≈2来计算,升温 10℃,约 2倍的加速率; 设定较低的使用时的周围温度 T X,能保证长期的寿命。 2、印加电压与寿命 使用在线路板上的 RADIAL型、SNAP-IN型铝电解电容,若在最高使用温度及额定工作电压以下的情况 使用时,印加电压的影响比周围温度及直流电流的影响小,对于铝电解电容来说,实际计算可以不考虑 降压使用对寿命计算之影响。 3、纹波电流重迭时的寿命 铝电解电容比其他类的电容损失角大,会因纹波电流而内部发出热量。由于施加的纹波电压发出的热量 会导致温度上升,对寿命有很大影响,印加电流电压时的发热情况如下公式来计算:

铝电解电容寿命试验规律

铝电解电容寿命试验规律

铝电解电容寿命试验规律
电容c的计算公式:c=εs/4πkd 。

其中,ε是一个常数,s为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。

在电容元件两端电压u的参考方向给定时,若
以q表示参考正电位极板上的电荷量,则电容元件的电荷量与电压之间满足q=cu。

定义式: c=q/u。

电容器的电势能计算公式:e=cu^2/2=qu/2=q^2/2c。

多电容器并联计算公式:c=c1+c2+c3+…+cn。

多电容器串联计算公式:1/c=1/c1+1/c2+…+1/cn。

三电容器串联:c=(c1*c2*c3)/(c1*c2+c2*c3+c1*c3)。

电容优点:
1、高稳定性
液态铝电解电容可以持续在高温环境中平衡工作,采用固态铝电解电容可以轻易提高
主板性能。

同时,由于其阔温度范围的平衡电阻,适合电源滤波。

它可以有效地提供更多
平衡丰沛的电源,在超频中尤为重要。

2、寿命长
固态铝电解电容具备极长的使用寿命(使用寿命少于50年)。

与液态铝电解电容较之,可以算是“长命百岁”了。

它不能被打穿,也不必害怕液态电解质干枯以及泄漏影响主板
稳定性。

由于没液态电解质诸多问题的所苦,固态铝电解电容并使主板更加平衡可信。

3、低esr和高额定纹波电流
esr(equivalentseriesresistance)指串联耦合电阻,就是电容非常关键的指标。

esr
越高,电容充放电的速度越慢,这个性能直接影响至微处理器供电电路的脱藕性能,在高
频电路中固态电解电容的高esr特性的优势更加显著。

铝电解电容器的寿命

铝电解电容器的寿命

铝电解电容器的寿命1、忽略纹波电流时的寿命推算一般而言,铝电解电容器的寿命与周围的环境温度有很大的关系,其寿命可以由以下公式计算。

其中,L:温度T时的寿命L0:温度T0时的寿命与温度比较,降压使用对电容器的寿命影响很小,可忽略不计。

2、考虑纹波电流时寿命的推算叠加纹波电流,由于内部等效串连电阻(ESR)引起发热,从而影响电容器的使用寿命,产生的热量可由下式计算P=I2R (2)I:纹波电流(Arms)R:等效串联电阻(Ω)由于发热引起的温升其中,△T: 电容器中心的温升(℃)I: 纹波电流 (Arms)R: ESR (Ω)A: 电容器的表面积(cm2)H: 散热系数( 1.5~2.0x10-3W/cm2x℃)上面公式(3)显示电容器的温度上升与纹波电流的平方以及等效串联电阻ESR成正比,与电容器的表面积成反比,因此,纹波电流的大小决定着产生热量的大小,且影响其使用寿命,电容器的类型以及使用条件影响着△T值的大小,般情况下,△T<5℃。

下图表示纹波电流引起的温升的测量处测试结果:(1).考虑到环境温度和纹波电流时的寿命公式其中,Ld:直流工作电压下的使用寿命(K=2,纹波电流允许的范围内)(K=4,超过纹波电流范围时)T0:最高使用温度T :工作温度△T:中心温升(2)电容器工作在额定的纹波电流和上限温度时,电容器的寿命可通过转化(4)式得到,如下:其中,Lr:工作在额定纹波电流和最高工作温度下的寿命(h)△T0:最高工作温度下的电容器中心容许温升。

(3)考虑纹波电流,环境温度时可由(5)式得到下式:其中,I0:最高工作温度下的额定纹波电流(Arms)I:叠加的纹波电流(Arms)由于直接测量电容器的内部温升存在着困难,下表列出了表面温度和内部核心温度的换算关系。

图表1寿命的推算公式,原则上适用于周围环境温度为+40℃到最高工作温度范围内,但由于封口材料的老化等因素,实际的推算寿命时间一般最大为15年。

铝电解电容寿命计算方法

铝电解电容寿命计算方法

2013年11月日本贵弥功株式会社香港嘉美工有限公司UC343011铝电解电容器寿命计算说明资料【目次】1.关于铝电解电容器的经时恶化2.铝电解电容器寿命计算公式3.纹波电流发热取得办法4.周围温度取得办法5.纹波电流计算办法6.寿命计算例7.参考资料(关于补正系数)关于铝电解电容器的经时恶化2阳极箔阴极箔R AL KL A封口橡胶电解液在铝电解电容器的电气特性上起着至关重要的作用。

温度特性的概念静电容量变化率(%)温度E S R (Ω)温度特性图表流动容易高低电解液的状态UPUP流动不容易箔厚100μm箔断面图蚀刻部扩大照片电解纸扩大图像DownDown离子电解纸纤维4寿命(特性恶化)的概念静电容量变化率(%)初期电解液沸腾电解液减少时间加快电解液减少E S R (Ω)电解电容器的断面图耐久性图表UP素子封口橡胶Down6铝电解电容器寿命计算公式9L;复合条件的推定寿命纹波电流发热温度取得办法182225.4 1.35 1.4 1003.1周围温度取得办法24纹波电流计算办法(带Active-PFC电路)26取得示波器读出的电流RMS作为后续公式中的In计算使用,此处的In为混合频率信号,计算纹波电流发热部分时需要将混合频率结果为电源实测数据由该公式可计算出在高频部分的电流值I High,继而可以得到在低频时的电流值I Low =I high x K T(NCC调查结果如上表, K T=0.2~0.3,实际状况下K T会随着拓扑方式的不同而改变) *我们将继续研究PFC电路的纹波电流。

寿命计算例31参考资料关于补正系数34。

铝电解电容寿命的计算

铝电解电容寿命的计算

铝电解电容寿命的计算每个厂商都有自己的计算方法,但都遵循一定的原则:温度极大的影响铝电解电容内的电解液的扩散速度。

根据Arrhenius 的物理定律,温度每升高10 度,电解液的扩散速度加倍;换句话说,铝电解电容的寿命缩短一倍。

A physic law (According the Arrhenius law) teaches us that increasing the temperature 10 °C will double the diffusion of e lectrolyte.为了便于计算和理解,将其分成三部分:(1)基本寿命Lo :由外壳体积,热辐射性能,制造工艺等决定。

最大环境温度及最大纹波电流下的寿命就是基本寿命。

厂商都会提供或在产品说明书中注明。

(2)环境温度函数f(T) :电解液的扩散(3)纹波电流函数f(I) :ESR 引起的热损耗后两者导致铝电解电容核心温度上升,电解液的扩散速度加快。

根据Arrhenius 定律:L 与成反比,Tj : 电解电容的核心温度热阻定律:;Ta:电解电容周围的温度,即环境温度;Tc: 电解电容外壳的温度因为Ta 不易测出,但Tc 很好测量;可以根据Tc 算出Ta;环境温度函数f(T) :2.2 以下均为个人观点,不能100% 正确。

在厂商提供的数据中一般包含:后缀为0 ,则认为是厂商提供的极限值最高(环境)温度Ta 0 :一般选用105 度的电解电容最大环境温度下最大允许的纹波电流Ip 0 , 它的校正系数为 1 ;120Hz 或100kHz ,不同的厂家有不同的表示方法校正系数Correction coefficient :不同频率纹波电流之间的关系在Ta 0 和Ip 0 条件下所产生的温升:D Tj 0 ;本人认为是核心与外壳之间的温差,也可能是核心与Ta 0 之间的温差下表是Rubycon BXA 系列电容不同频率纹波电流之间的关系series frequency correction factor tableFrequency [ Hz ] 120 1k 10k 100k =<Correction coefficient 0.50 定义为C LF0.8 0.91.00 定义为C HF注意:有的厂家定义120Hz 时校正系数为 1 ,有的厂家定义100kHz 时校正系数为1 。

铝电解电容器寿命的计算方法

铝电解电容器寿命的计算方法

铝电解电容器寿命的计算方法LIFETIME CALCULATION FORMULA OF ALUMINUM ELECTROLYTIC CAPACITORS铝电解电容的寿命的计算公式1. Lifetime Calculation Formula 寿命计算公式L : Life expectancy at the time of actual use. 实际使用平均寿命Lb : Basic life at maximum operating temperature 最大工作温度下的基本寿命Tmax : Maximum operating temperature 最大工作温度Ta : Actual ambient temperature 实际环境温度ΔTjo : Internal temperature rise when maximum rated ripple current is R, USC, USG : 10℃VXP : 3.5℃Other type : 5℃ 加上最大额定波纹电流后,电容器的内部温升USR, USC, USG ::10℃VXP : 3.5℃其它类型:5℃ΔTj : Internal temperature rise when actual ripple current is applied. 加入实际波纹电流后,电容内部的温升F : Frequency coefficient 频率系数[这个不李理解]Io : Rated ripple current at maximum operating temperature 最高工作温度时的额定波纹电流I : Actual ripple current 实际波纹电流2. Ambient Temperature Calculation Formula 环境温度计算公式If measuring ambient temperature (Ta) is difficult, Ta can be calculated from surface temperature of the capacitor as follows. .Ta = Tc –ΔTj/α 如果测量环境温度Ta有困难,Ta可以根据电容器的表面温度按下式计算:Ta = Tc –ΔTj/αTa : Calculated ambient Temperature 计算所使用的环境温度Tc : Surface Temperature of capacitor 电容器的表面温度α : Ratio of case top and core of capacitor element [此处不太理解]CaseφD ≤ 8 10,12.5 16, 18 20, 22 25 30 35α 1.0 1.1 1.2 1.3 1.4 1.5 1.63. Ripple Current Multiplier 额定电流系数(1) Temperature coefficient 温度系数Temperature coefficients are shown as below. 温度系数选取如下:USR, USC, USG:Ambient Temp.(℃)环境温度85 ≤65Coefficien 系数 1.0 1.3Other 85°C type:Ambient Temp.(℃)环境温度85 70 ≤50Coefficien 系数 1.0 1.6 2.0105°C type:Ambient Temp.(℃)环境温度105 85 ≤65Coefficien 系数 1.0 1.7 2.1Note: Where the temperature coefficient is used, life extension cannot be expected any more because the temperature coefficient is set up on condition of the same life time at maximum operating temperature. 注意:使用温度系数,不可指望寿命延长,因为温度系数是建立在最高工作温度下的相同寿命条件下的。

铝电解寿命推算方法

铝电解寿命推算方法
• ΔT0:额定温度下,铝电解电容器中心允
许温升
二、 温升测试法
通过测试电容器中心或表面温升来推算产品 寿命。具体公式如下:
LX=L0·2(T1-T2)/10 ·KV
0.6W.V.≤V’≤ W.V. 2:实际使用时中心温度 L0:额定使用寿命 LX:推算使用寿命
则电容器底部温升=(65-50)=15 ℃, 电容器中心温升=15*1.6=24 ℃, 因此就能推算出电容器中心温度=50+24=74 ℃, 用一个公式表示即为: 电容器中心温度=环境温度+表面温升*系数
=50+15*1.6 =50+24 =74 ℃
图二
三、两种方法相互推导
我们设定L0:电容器在额定条件下的寿命 LX:电容器实际使用寿命 T1:电容器中中心允许承受的最高温度
又因为电容器的发热温升与纹波电流有如下 关系:
ΔT=ΔT0(I/I0)2
其中: I:额定纹波电流(同频率) I0:实际 纹波电流(同频率)
代入上式
=L1·2(T0- T)/10 ·2(ΔT0-ΔT0(I/I0)2)/10·KV =L1·2(T0- T)/10 ·2(1-(I/I0)2)ΔT0/10·KV
• LX=L0·KT·KV·KR • 其中LX:电容器推算的使用寿命 • L0:电容器在额定条件下的寿命 • KT:电容器温度系数 • KV:电容器电压系数 • KR:电容器纹波电流系数
• KT 铝电解电容器的使用遵循10℃原则,
即使用温度每降低10℃,寿命延长一倍。 KT的计算如下:
• KT=2(T0-T)/10 • 其中T0:额定温度 • T:电容器实际工作温度
1、中心温升测试法 对电容器施加直流和纹波电压,电容器
处于工作状态,利用热电偶温度计直接插入 电容器芯包卷绕针孔内测中心最高温度。 (见示意图一)

铝电解电容寿命计算

铝电解电容寿命计算

最近在网上寻找资料,获益非浅。

不能光索取而不奉献,花了一周的时间,牺牲了晚上和周末,得罪了夫人。

当然了,整理过程中,自己也有所提高。

同时也呼吁大家行动起来,多总结经验形成文字。

当然了,年轻人有所保留是可以理解的,毕竟为了减少竞争者;但是有些人说自己是退休者,为啥如此吝啬或障碍重重?网络是一个虚拟世界,现实生活已经有如此众多的虚伪,面子,为啥还要将其带入网络中呢?多么希望技术栏目中能恢复人与人间的真诚与无私奉献,体现出知识分子.学者.工程师的风范。

当然,许多人不错,但是更多的人让我感觉差劲。

我很少上网,也不愿与人争吵,只是提出个人的感受而已。

铝电解电容的寿命电源产品中经常用到铝电解电容,他的寿命往往决定了整个产品的寿命。

因此,了解如何计算铝电解电容的寿命很有必要。

下面将我的一些心得整理出来,供大家参考。

希望有助于提高国人的知识水平。

说白了很简单,只不过很多人找不到相关的资料而已。

同时也希望学校的教材中能够近早讲解相关知识。

我尽量少翻译,因为我的语言能力及相关的专业术语还不行。

仅供参考。

Chapter 1铝电解电容的特性1.1 Circuit model (等效模型)The following c ircuit models the aluminium electrolytic capacitor’s normal operation as well as the over voltage and reverse voltage behavior. (此模型包含正常运行,过压,反压时的特性)C AC cR P ESR LD = Anode capacitance (阳极电容)= Cathode capacitance(阴极电容)= Parallel resistance, due to dielectric (并联电阻)= Series resistance, as a result of connections, paper, electrolyte, ect. 等效串联电阻= Winding inductance and connections 等效串联电感= Over and reverse voltage 等效稳压管The capacitance Ca and Cc are the capacitance of the capacitor and is frequency and temperature depended. (Ca and Cc,它的容量是频率及温度的函数)The resistance ESR is the equivalent series resistance which is frequency and temperature depended. It also increases with the rated voltage. (ESR是频率及温度的函数,随着额定电压的增加而增加)The inductanc e L is the equivalent series inductance, and it’s independent for both frequency and temperature. It increases with terminal spacing. (L是频率及温度的函数)The resistance Rp is the equivalent parallel resistance and accounts for leakage current in the capacitor. It decreases with increasing the capacitance, temperature and voltage and it increases with time. (Rp的大小决定了漏电流的大小,随着容量温度电压的增加而降低,随着使用时间的延长而增加)The zener diode D models the over voltage and reverse voltage behavior. Application of over voltage on the order of 50 V beyond the capacitor’s surge voltage rating causes high。

铝电解电容寿命计算

铝电解电容寿命计算

铝电解电容寿命计算铝电解电容寿命很大程度上取决于环境因子与电性因子。

环境因子包括温度,湿度,大气压力和振动。

电性因子包括工作电压,纹波电流和充放电系数。

温度因子(环境温度与由于纹波电流导致的内在加热)最能判断铝电解电容寿命。

评估铝电解电容寿命的通用公式:非固态电解电容的寿命通常用环境温度系数、应用电压和纹波电流三个原理来体现。

按以下公式来计算:Lx=Lo*Ktemp*Kvoltage*KrippleLx:电解电容的评估寿命Lo:电解电容的寿命基数Ktemp:环境温度加速系数Kvoltage:电压加速系数Kripple:纹波电流加速系数Ktemp(环境温度系数)由于铝电解电容本质上是一种电气化学的组件,温度增加会促进化学反应并产生气体扩散在电解电容内部,从而导致电容容量逐步减小及(损失角)和等效内阻逐步增大。

以下公式是通过实验得出,体现了温度加速度因子和电容老化的关系:Lx=Lo*Ktemp=Lo*B(T o-T x)/10Ktemp= B(T o-T x0)/1Lx:电解电容的评估寿命Lo:电解电容的寿命基数T o:电解电容最大额定温度(℃)Tx:电解电容实际的环境温度B:温度加速度因子(约等于2)这个公式与阿列纽斯定律相似,阿列纽斯定律用来表述化学反应速率和温度之间的关系,并叫做铝电解电容的阿列纽斯定律。

当环境温度在40℃到最大额定温度之间时,温度加速度因子约等于2。

也就是说随着环境温度每增加10℃电容寿命将减半。

当环境温度在20℃到40℃之间时,温度加速度因子接近2,其寿命将延长。

但是工作条件与环境的变化,特别是工作条件与环境温度的互相变化。

环境温度在这个范围内将发生很大的变化,因此寿命评估要在40℃以下,应该用40℃作为Tx。

Kvoltage(应用电压系数)微小及大型号的铝电解电容应用较普遍,像贴片型、插件型、方块型在其寿命中有较小的电压效应。

只要电容用于电压和温度的规格之内,其它因子像温度和纹波电流决定电容寿命与电压类似。

电解电容寿命计算公式 说明(1)

电解电容寿命计算公式 说明(1)

周围温度+纹波电流引起自身发热的限界值是指:
① 最高使用温度为105℃的HT系列:110℃
② 85℃一般标准规格:95℃
③ 其他系列:最高使用温度+5℃
举例:不同环境温度条件下有不同上限值
● 环境温度与自身发热限界值
环境温度(℃)
40
55
65
85
105
△T0
30
30
25
15
5
●最高使用温度为105℃系列的,符合最高使用温度的纹波电流所引起的发热是5℃为限界值(共 110℃),
◆铝电解电容器外径与温度差系数
电容器外径ФD(mm) 5Ф
6.3Ф

10Ф
13Ф
16Ф
温度差系数
1.1
1.1
1.1
1.15
1.2
1.25
电容器外径ФD(mm) 18Ф
22Ф
25Ф
30Ф
35Ф
40Ф
温度差系数
1.3
1.35
1.4
1.5
1.65
1.75
◆ 纹波电流引起的发热△T是按下列公式来计算,最高使用温度为105℃系列,△T 0=5℃
铝电解电容器的使用寿命计算公式
1、周围温度与寿命
温度对寿命的影响有静电容量的减少,损失角正接的增大,导致电解液通过封口部扩散到外部,电气
特性随时间的变化值与周围温度间成立试验公式,其关系式类似于温度增加,化学反应速度成指数倍 增加之化学反应规律式,称之为温度与铝电解电容寿命10℃法则。
LX=L0×B
<1> 关于 TX(实际使用时的周围温度)的注意事项 温度加速试验中确认为10℃的 2倍,以40℃-最高使用温度为范围。从市扬的反退品的测定结果来看,

铝电解电容器的寿命计算方法

铝电解电容器的寿命计算方法

铝电解电容器的寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。

Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下涟波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大涟波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗: XC="1/"(2πfC) 【Ω】感抗: XL="2"πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】涟波电流: IR=√(βA△T/ESR) 【mArms】功率: P="I2ESR" 【W】谐振频率: fo="1/"(2π√LC) 【Hz】P=(I²*R)+(IL*V)=Irms²*ESR= I rms²*DF/2╥fc (IL*V为漏电流与跨接电压的乘积---忽略不计)损耗因素DF=ESR/XC具体的计算公式好像这个论坛里有,一般都是按照经验取,好像是1uF/W吧。

电解电容寿命计算公式

电解电容寿命计算公式

寿命计算公式:1.不考虑纹波时:L=L 0×2(T0-T)/10L:温度T时电容寿命;L 0:温度T 0时电容寿命。

T 0:最高工作温度;T:实际工作温度。

2.考虑纹波时L=L D ×2(T0-T)/10×K [1-(I/I0)*(I/I0)]×ΔT/10L:温度T时的考虑纹波电流的电容寿命;L D:最高工作温度T 0时额定纹波内的电容寿命;T:实际工作温度;T 0:最高工作温度;ΔT:电容中心温升;I:电路实际施加纹波电流;I 0:最高工作温度下允许施加的最大纹波电流;K:施加纹波电流寿命常数(施加纹波在额定纹波电流内K取2,超过额定纹波电流K取4)。

其中:ΔT=I 2×ESR/(A×H)ESR:电容等效串联阻抗;A:电容表面积(侧面积+底面积,不考虑胶盖所在面);A=2πrL+πr 2;H:散热系数。

φd(mm)4~5 6.3810131618H×10-3W/cm 2φd(mm)222530354050~100H×10-3W/cm 2 2.18 2.16 2.13 2.1 2.052铝电解电容器寿命计算公式1.961.88 1.84 1.75 1.66 1.58 1.49绿宝石电子有限公司以RC10/505*11(105℃2000小时产品,105℃100KHz最大允许纹波为0.124A,20℃100KHz测试ESR标准值1.3Ω)为例:假设实际工作温度为85℃,电路中实际纹波电流值为0.162A1.不考虑纹波时:(T0-T)/10=(105-85)/10=2L=2000×22=8000(h)2.考虑纹波时:H取2.18/1000=0.00218电容表面积A=2×3.14×0.25×1.1+3.14×0.25×0.25=1.727+0.19625=1.92325(c㎡)电容中心温升ΔT=(0.162×0.162×1.3)/(0.00218×1.92325)=8.14(℃)I取0.162,I0取0.124,因为I>I0,故K取4;)2]×ΔT/10=-0.57535[1-(I/I温度T时的考虑纹波电流的电容寿命:L=2000×22×4-0.57535=3604(h)绿宝石电子有限公司。

铝电解电容液

铝电解电容液

铝电解电容液
铝电解电容液(Aluminum Electrolytic Capacitor)是一种电子
元件,用于存储和释放电能。

它由两个电极之间的电介质组成,通常使用电解质涂层的铝箔作为一个极板,而另一个极板则是氧化铝涂层的铝箔。

铝电解电容液的结构使其能够存储较大的电容量,并且具有较高的电压容忍度。

它们常用于各种电子设备中,如电视机、音响、电脑等,用于滤波、耦合和储能等应用。

然而,铝电解电容液也有一些缺点。

首先,它们的寿命相对较短,通常为几千到几万个小时。

此外,它们在极端温度下会失去容量。

最后,如果超过其额定电压,铝电解电容液可能会爆炸或发生内部短路。

因此,在使用铝电解电容液时需要注意其额定电压和温度范围,并定期检查并更换老化或损坏的电容液。

铝电解电容器寿命的计算方式

铝电解电容器寿命的计算方式
V0:额定工作电压,单位:V
V1:实际承受的直流电压,单位:V
二、使用寿命
使用寿命是指不超过规定失效率下可达到的寿命,由于环境和负载的不同使用寿命一般要远远大于额定寿命;
三、估算寿命公式
LX=LR× × ×
LX:实际推诿使用寿命,单位:H
LR:额定寿命,单位:H
T0:允许的最高温度,单位:℃
T1:电容器使用时的环境温度,单位:℃
I0:实际纹波电流,单位:A
I1:最大纹波电流,单位:A
衡量一款铝电解电容器好坏的一个标准就是铝电解电容器的寿命

铝电解电容器的定寿命是指铝电解电容器在规定的条件下(频率、温度、纹波电流、电压)使用,达到规定失效变量所持续的寿命;市场上国内外焊针式和螺栓型的铝电解电容器一般的寿命为2000小时,BIT铝电解电容器规定为3000小时,这种厂家承诺的铝电解电容器的寿命就是额定寿命。
BIT铝电解电容器寿命的计算方法
BIT销售经理郑淋先生
铝电解电容器作为电源组件里面不可或缺的电子元器件,针对现如今牛鬼蛇神都出现的铝电解电容器市场,很多采购人员无从下手,单纯的只考虑价格因素,或者只要不出问题就可以的心态在选择铝电解电容器。相信便宜无好货,那价格便宜了成本就低了,质量肯定就会打折了,做实业,做品牌要的就是能有市场竞争力,那随着人们生活水准的不断提升,那么重品质的时代已经来临,您做好准备了吗?

关于铝电解电容,看这一篇就够了!

关于铝电解电容,看这一篇就够了!

关于铝电解电容,看这一篇就够了!1、前言铝电解电容是目前除了陶瓷电容之外用得最广泛的电容品种了,因此,作为硬件工程师,必须熟练的掌握其特性。

笔者结合自身经验,通过查阅各种资料,针对硬件设计需要掌握的重点及难点,总结了此文档。

通过写文档,目的是能够使自己的知识更具有系统性,温故而知新,同时也希望对读者有所帮助,大家一起学习和进步。

2、铝电解电容器概述2.1、基本模型电容器是无源器件,在各种电容器中,铝电解电容器与其他电容器相比,相同尺寸时,CV值更大,价格更便宜。

电容器的基本模型如图所示。

静电容量计算式如下:其中,为介电常数,S为两极板正对表面积,d为两极板件距离(电介质厚度)。

从式中可以看出:静电容量与介电常数,极板表面积成正比、与两极板间距离成反比。

作为铝电解电容器的电介质氧化膜(Al2O3)的介电常数通常为8~10,这个值一般不比其他类型的电容器大,但是,通过对铝箔进行蚀刻扩大表面积,并使用电化学的处理得到更薄更耐电压的氧化电介质层,使铝电解电容器可以取得比其他电容器更大的单位面积CV值。

铝电解电容器主要构成如下:阳极-----铝箔电介质---阳极铝箔表面形成的氧化膜(Al2O3)阴极-----真正的阴极是电解液其他的组成成分包括浸有电解液的电解纸,和电解液相连的阴极箔。

综上所述,铝电解电容器是有极性的非对称构造的元件。

两个电极都使用阳极铝箔的是两极性(无极性)电容。

2.2、基本构造铝电解电容器素子的构造如图所示,由阳极箔,电解纸,阴极箔和端子(内外部端子)卷绕在一起含浸电解液后装入铝壳,再用橡胶密封而成。

2.3、材料的特性铝箔是铝电解电容器主要材料,将铝箔设置为阳极,在电解液中通电后,铝箔的表面会形成氧化膜(Al2O3),此氧化膜的功能为电介质。

形成氧化膜后的铝箔在电解液中是具有整流特性的金属,就像是一个二极管,被称之为阀金属。

①阳极铝箔首先,为了扩大表面积,将铝箔材料置于氯化物水溶液中进行电化学蚀刻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝电解电容的寿命电源产品中经常用到铝电解电容,他的寿命往往决定了整个产品的寿命。

因此,了解如何计算铝电解电容的寿命很有必要。

下面将我的一些心得整理出来,供大家参考。

希望有助于提高国人的知识水平。

说白了很简单,只不过很多人找不到相关的资料而已。

同时也希望学校的教材中能够近早讲解相关知识。

我尽量少翻译,因为我的语言能力及相关的专业术语还不行。

仅供参考。

Chapter 1铝电解电容的特性1.1 Circuit model (等效模型)The following circuit models the al uminium electrolytic capacitor’s normal operation as well as the over voltage and reverse voltage behavior. (此模型包含正常运行,过压,反压时的特性)C AC cR P ESR LD = Anode capacitance (阳极电容)= Cathode capacitance(阴极电容)= Parallel resistance, due to dielectric (并联电阻)= Series resistance, as a result of connections, paper, electrolyte, ect. 等效串联电阻= Winding inductance and connections 等效串联电感= Over and reverse voltage 等效稳压管The capacitance Ca and Cc are the capacitance of the capacitor and is frequency and temperature depended. (Ca and Cc,它的容量是频率及温度的函数)The resistance ESR is the equivalent series resistance which is frequency and temperature depended. It also increases with the rated voltage. (ESR是频率及温度的函数,随着额定电压的增加而增加)The inductance L is the equivalen t series inductance, and it’s independent for both frequency and temperature. It increases with terminal spacing. (L是频率及温度的函数)The resistance Rp is the equivalent parallel resistance and accounts for leakage current in the capacitor. It decreases with increasing the capacitance, temperature and voltage and it increases with time. (Rp的大小决定了漏电流的大小,随着容量温度电压的增加而降低,随着使用时间的延长而增加)The zener diode D models the over voltage and reverse voltage behavior. Application of over voltage on the order of 50 V beyond the cap acitor’s surge voltage rating causes high。

(D模拟过压及加反向电压时特性)Leakage current and a constant voltage-operating mode quite like the reverse conduction of a zener diode. Applications of reverse voltage much beyond 1.5 V causes high leakage current quite like the forward conduction of a diode. Neither of these operating modes can be maintained for long because hydrogen gas is produced, and the pressure built up will cause failure. (加到电容两端的反向电压不能大于1.5V)1.2 Capacitance (电容的容量)The rated capacitance is the nominal capacitance and it is specified at 120 Hz and a temperature of 25°C. Capacitance is a measure of the energy storage capability of a capacitor at a given voltage.(额定容量:标称电压,120Hz, 25°C时测量)。

The capacitance decreases under load conditions and increases under no load conditions over time. Whenreverse voltage or excessive ripple current is applied, or when the capacitor is repeatedly charged and discharged, an aluminium oxide film is formed on the cathode foil. This film induces a sharp capacitance drop. Capacitance in aluminium electrolytic capacitors is also affected by frequency changes. For example, the capacitance falls as the frequency rises. Variation of magnitude depends on capacitor type. (电容上的纹波电流,频繁地充放电导致阴极箔氧化,容量急剧下降)1.3 Equivalent series resistance (ESR)等效串联电阻The equivalent Series Resistance (ESR) is the sum of all the internal resistances of a capacitor measured in Ohms. It includes:- Resistance due to aluminium oxide thickness源于氧化铝厚度的电阻- Resistance due to electrolyte / spacer combination源于电解液/垫片结电阻- Resistance due to materials (Foil length; Tabbing; Lead wires; Contact resistance)源于材料的电阻(箔片长度,T abbing ,导线,接触电阻)At low frequencies (10 – 100 Hz) the ESR is determined by the oxide thickness,electrolyte / spacer combination and the materials. Above the 100 Hz electrolyte / spacer combination and the materials predominate. 低频时(10-100HZ ),ESR 由氧化铝厚度,电解液/垫片结电阻,材料决定。

100HZ 以上,电解液/垫片结电阻,材料主宰ESRThe lower the ESR the higher the current carrying ability the capacitor will have. The amount of heat generated by ripple current depends upon the ESR of the capacitor. ESR 越小,电流承受能力越高,浪涌电流产生的热量取决于电容的ESRESR is both frequency and temperature dependent, increasing either will cause a reduction in ESR. The ESR is an important parameter in calculating life expectancy as the power dissipation (internally generated heat) is directly proportional to its value.The limit is generally established at 120 Hz and 20º C.ESR 具有频率和温度属性,增加频率或者属性会降低ESR ,ESR 是计算期望寿命时的重要参数之一,因为功耗(内部发热)与它的值直接成正比限度通常确定为120HZ 和20摄氏度(centigrade )The ESR of the electrolytic capacitor can cause another effect, especially above the 10 kHz where the ESR is the dominant contribution to the capacitors impedance.铝电解电容的ESR 会导致另外一个效应,特别当频率高于10Khz ESR 在电容的阻抗中占主导地位的时候 When a current charges / discharges the capacitor, the voltage across the capacitor will increase / decrease:dtdVCI = and causes a voltage drop over the ESR (流过电容的充放电电流因为ESR 而产生纹波电压) ESR I V ⋅=如果电容由低占空比,高频脉冲电流充电时, 比较典型的是fly-back 电源的输出滤波电容,ESR 引起的纹波电压是最重要的,导致必须选用合适ESR 的电容来满足要求。

相关文档
最新文档