小学奥数数学公式集

合集下载

小学奥数数学图形计算公式

小学奥数数学图形计算公式

小学奥数数学图形计算公式★这篇《小学奥数数学图形计算公式》,是特地为大家整理的,希望对大家有所帮助!数学图形计算公式:1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3 总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)。

小学奥数公式大全

小学奥数公式大全

小学奥数公式大全一、基本运算符号:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a二、数的性质:1.奇数与奇数相加等于偶数:奇数+奇数=偶数2.奇数与偶数相加等于奇数:奇数+偶数=奇数3.偶数与偶数相加等于偶数:偶数+偶数=偶数4.0与任何数相乘等于0:0×a=05.1与任何数相乘等于原数:1×a=a6. 除零是不存在的:a ÷ 0 = undefined三、算术运算公式:1.两个数相加:a+b=c2.两个数相减:a-b=c3.两个数相乘:a×b=c4.两个数相除:a÷b=c四、公约数与最大公约数:1.求两个数的公约数:a、b的公约数有d2.求两个数的最大公约数:a、b的最大公约数为d五、倍数与最小公倍数:1.求一个数的倍数:a的倍数有b2.求两个数的最小公倍数:a、b的最小公倍数为c六、平方与平方根:1.一个数的平方:a的平方是b,即a²=b2.开平方:一个数的平方根:√a=b,b²=a七、百分数与比例:1.百分数转换为小数:百分数÷100=小数2.小数转换为百分数:小数×100=百分数3.比例换算:a:b=c:d八、平均数:1.n个数的平均数:(a₁+a₂+...+aₙ)÷n=平均数九、等差数列:1.等差数列的通项公式:第n个数aₙ=a₁+(n-1)×d2.求等差数列前n项和:前n项和Sn=(a₁+aₙ)×n÷2十、等比数列:1.等比数列的通项公式:第n个数aₙ=a₁×q^(n-1)2.求等比数列前n项和:前n项和Sn=a₁(1-q^n)÷(1-q),(q≠1)十一、三角形:1.三角形的周长:周长=边1+边2+边32.直角三角形勾股定理:c²=a²+b²(c为斜边,a、b为直角边)3. 正弦定理:a/sinA = b/sinB = c/sinC4. 余弦定理:a² = b² + c² - 2bc × cosA。

小奥数公式定理大全

小奥数公式定理大全

小奥数公式定理大全
小学奥数公式定理如下:
1. 每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。

2. 1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。

3. 速度×时间=路程,路程÷速度=时间,路程÷时间=速度。

4. 单价×数量=总价,总价÷单价=数量,总价÷数量=单价。

5. 工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率。

6. 加数+加数=和,和-一个加数=另一个加数。

7. 被减数-减数=差,被减数-差=减数,差+减数=被减数。

8. 因数×因数=积,积÷一个因数=另一个因数。

9. 被除数÷除数=商,被除数÷商=除数,商×除数=被除数。

以上是小奥数的公式定理,仅供参考,可以查阅奥数书籍获取更多公式定理。

小学五年级奥数常用公式

小学五年级奥数常用公式

1.两数相加的和等于两数交换后的和a+b=b+a2.两数相减的差等于两数交换后的差a-b=b-a3.两数相乘的积等于两数交换后的积a×b=b×a4.除法的基本性质:a÷b=c,则a=b×c5.乘方的性质a^m×a^n=a^(m+n)a^m÷a^n=a^(m-n)(a^m)^n=a^(m×n)(a×b)^n=a^n×b^n6.开方的性质a^(1/n)=n√aa^(1/n)×b^(1/n)=(a×b)^(1/n)(a/b)^(1/n)=(a^(1/n))/(b^(1/n))7.相关系数平均数:a,b,c三个数的平均数=(a+b+c)/3百分数:百分数=(每百份中的部分数)/总数×100%比例:a:b=c:d如果a、b、c、d都是整数,并且所给的比例是最简比,则a:b=c:d=k;他们的第一项的倍数是相同的。

计算面积:长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高/2圆的面积=π×半径×半径计算体积:长方体的体积=长×宽×高立方体的体积=边长×边长×边长圆柱体的体积=π×半径×半径×高锥形的体积=1/3×圆锥的底面积×高单位换算:1千克=1000克1千克=0.001吨1千米=1000米1米=100厘米1厘米=10毫米1平方米=10000平方厘米1立方米=1000000立方厘米。

小升初奥数学习公式大全

小升初奥数学习公式大全

小升初奥数学习公式大全【导语】孩子的奥数成绩无法提高,是因为不适合学奥数呢?还是因为没有掌握住好的方法?整理的小升初常见的数学公式,希望对大家有所帮助。

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数(1-2不必涉及,不用讲也不提,让孩子自悟就可以了)3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率(3-5功夫放在理解量的概念和感念间的关系上,不必背公式) 6、正方形C周长,S面积,a边长周长=边长×4,C=4a面积=边长×边长,S=a×a7、正方体V:体积,a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 8、长方形C周长,S面积,a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab9、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh10、三角形s面积,a底,h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高述题,抓住最后的两三分。

11、平行四边形s面积,a底,h高面积=底×高s=ah12、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷213、圆形S面积,C周长,∏(pai),d=直径,r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏14、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径15、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数16、扇形圆心角n度,半径r弧长L=n/180×∏×r面积S=n/360×∏×r×r=1/2×L×r圆锥侧面积S侧=∏×r×l圆锥表面积S=∏×r×l+∏×r×r(6-16,周长让孩子们自悟,面积统一为平均累线乘累高,理解了面积是线段的积累,OK,至于说体积,用平均累面乘累高即可)17、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数18、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)19、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)20、植树问题(A)非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)(B)封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数21、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数(17、18、19、21不记公式,领悟各个量之间的关系就OK了,最好提前学方程,在四年级上学期就学,20参照手指头就行了)22、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间23、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间24、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2(相遇问题,追及问题,流水问题,工程问题,牛吃草问题,水龙头问题,等是一个问题)25、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量(浓度问题其实是个平均问题,理解了就迎刃而解了,何必背公式)26、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)税后利息=本金×利率×时间×(1-利息税)(利润问题重在理解概念,弄清关系,不需记公式。

小升初奥数公式大全PDF.pdf

小升初奥数公式大全PDF.pdf

34个小学奥数必考公式1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数竞赛速算公式汇总

小学奥数竞赛速算公式汇总

奥数竞赛速算公式1、平方数速算:牢记常用平方数,特别是11~30以内数的平方,可以很好地提高计算速度:121、144、169、196、225、256、289、324、361、400441、484、529、576、625、676、729、784、841、9002、尾数法速算:尾数法只适用于未经近似或者不需要近似的计算之中。

错位相加/减:A×9型速算技巧:A×9=A×10-A;如:743×9=7430-743=6687 A×9.9型速算技巧:A×9.9=A×10+A÷10;如:743×9.9=7430-74.3=7355.7A×11型速算技巧:A×11=A×10+A;如:743×11=7430+743=8173 A×101型速算技巧:A×101=A×100+A;如:743×101=74300+743=750433、乘/除以5、25、125的速算技巧:A×5型速算技巧:A×5=10A÷2;A÷5型速算技巧:A÷5=0.1A×2 例8739.45×5=87394.5÷2=43697.2536.843÷5=3.6843×2=7.3686A× 25型速算技巧:A×25=100A÷4;A÷ 25型速算技巧:A÷25=0.01A×4例7234×25=723400÷4=1808503714÷25=37.14×4=148.56A×125型速算技巧:A×125=1000A÷8;A÷125型速算技巧:A÷125=0.001A×8例8736×125=8736000÷8=10920004115÷125=4.115×8=32.924、减半相加:A×1.5型速算技巧:A×1.5=A+A÷2;例3406×1.5=3406+3406÷2=3406+1703=51095、“首数相同尾数互补”型两数乘积速算技巧:积的头=头×(头+1);积的尾=尾×尾例:“23×27”,首数均为“2”,尾数“3”与“7”的和是“10”,互补所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=6216、由两自然数连续写上两遍所得的数,那么这些算式及它们的得数都有下面的规律:因此,就有6759×78437843-7843×67596759=0.7、【凑整巧算】用“凑整方法”巧算,常常能使计算变得比较简便、快速。

(完整版)小学奥数公式汇总

(完整版)小学奥数公式汇总

奥数公式和差倍:和差和倍差倍已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式合用范已知两个数的和,差,倍数关系①(和-差 ) ÷2=小数小数+差 =大数和-小数 =大数和÷ ( 倍数+ 1)= 小数差÷ ( 倍数 -1)= 小数公式小数×倍数 =大数小数×倍数 =大数②( 和+差 ) ÷2=大数和-小数 =大数小数+差 =大数大数-差 =小数和-大数 =小数求出同一条件下的关和与差和与倍数差与倍数年的三个基本特色:①两个人的年差是不的;②两个人的年是同增添或许同减少的;③两个人的年的倍数是生化的;一的基本特色:中有一个不的量,一般是那个“ 一量”,目一般用“照的速度” ⋯⋯ 等来表示。

关:依据目中的条件确立并求出一量;植:在直或许不封在直或许不封在直或许不封的封曲基本型的曲上植,两的曲上植,曲上植,只有一上植端都植两头都不植端植基本公式棵数 =段数+ 1棵数 =段数- 1棵数 =段数棵距×段数 =棵距×段数 =棵距×段数=关确立所属型,进而确立棵数与段数的关系兔同:基本看法:兔同又称置、假,就是把假的那部分置出来;基本思路:①假定,即假定某种现象存在(甲和乙同样或许乙和甲同样):②假定后,发生了和题目条件不一样的差,找出这个差是多少;③每个事物造成的差是固定的,进而找出出现这个差的原由;④再依据这两个差作适合的调整,消去出现的差。

基本公式:①把所有鸡假定成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假定成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)重点问题:找出总量的差与单位量的差。

盈亏问题:基本看法:必定量的对象,依照某种标准分组,产生一种结果:依照另一种标准分组,又产生一种结果,因为分组的标准不一样,造成结果的差别,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分派方案进行比较,剖析因为标准的差别造成结果的变化,依据这个关系求出参加分派的总份数,而后依据题意求出对象的总量.基此题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不够数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不够数一较小不够数)÷两次每份数的差基本特色:对象总量和总的组数是不变的。

小学奥数公式大全

小学奥数公式大全

目录计算板块 (2)计数板块 (5)数论板块 (7)应用题板块 (11)几何板块 (15)行程板块 (21)计算板块1、加法交换律: a b b a , a b c a c b2、加法结合律: a b c a bc3、乘法交换律: a b b a , a b c a cb4、乘法结合律: ab c ab c5、乘法分配律: a bcabac6、“除法分配律”: a b c a c b c7、减法性质: a b c a b c8、除法性质: a bc a bc9、商不变性质: a b a m b m an b n,m 0,n 010、积不变性质: ab amb m,m 011、等差数列相关:项数n,公差d ,首项a ,第 n 项a,前 n 项和S , 1nn通项公式: aa 1 nd , aa n m dn1n,m项数公式:1 nn1,aad若 mn p q , m a aaanpq求和公式:2 S1a a nn,n中项定理,奇数项等差数列: S nann 1从 1 开始连续自然数求和:21 1 2n n n2从 1 开始连续奇数求和:1 32n 1n2从 2 开始连续偶数求和: 2 42n n n 112、多位数乘法:99101MMnM 99时,积的数字和为 9n当n个9n 个913、a,ba b 2a2abb2a 2 2ab b 222a,a 1b 1 ab a b 1b a b a 2 b2a 3a3a b3abbb3223a,3ba b aab b332222a 3b a b a abb114、平方求和:12 11222n 2 n n n 61立方求和:132n12nn n12 2 3324115、整数裂项:1 212 23n n 1 n n n 3 1123 23 4 n n 1 n 2 n n n n1 2 34 113 352n 1 2n 1 n n n2 3 2 1 2 1 36 11 11分数裂项:111 2 23n n 1n1111 1112 3 23 4 n n1 n 22 1 2 n 1 n 216、缺 8 数:123456799 111111111,1234567918 222222222 ,···,1234567981 999999999;123456798 98765432 17、走马灯数:1, ··0.142857 7 4, ··0.57142872·, ·0. 2 857147 5··,0.714285 73 ··,0.4 28571 76··0.8571427142857 2 285714,142857 3 428571,142857 4 571428, 1428575 714285,1428576 857142,1428577 999999.18、山顶数:1111121,11111112321, ······山顶数列求和:12n 1 n n1 2 1n2121,1 2 1 22 1232112 32 1333 , ······22奇数山顶数列求和:132219、重码数: ab 101 abab , ab 1001 ab 0ababc 1001 abcabc , ab 10101 ababab20、车轮数:12342341341241231 23 4111121、循环小数化分数:·a a, 9 0.· ·ab0. a b,99· ·0.a b ca bc a990附:若一个最简分数,它的分母仅含质因数 2 和 5,则它可化为有限小数,反之必为无 限循环小数;若分母仅含 2,5 以外的质因数,则必可化为纯循环小数,若分母含质因数 2 或 5,且含 2,5 以外的质因数,则必可化为混循环小数.a a qn1n122、等比数列相关:S na q1n1a 1 q n aqaS11q 1nn1 q 1 q23、常用数列:1,4,9,16,25,36,······,a n n 2 0,3,8,15,24,35,······,an 2 1n1,3,7,13,21,31,······,an 2 n 1n1,2,4,8,16,32,······,2n 1an1,1,2,3,5,8,13,······,a naan 1n211,3,6,10,15,21,······,1an n n2计数板块1、 容斥原理二元容斥: A B =A +B -A B 三元容斥: A BC =A +B +C -A B -B C -A C +A B C2、 抽屉原理苹果数÷抽屉数 (n) =商……余数 余数:(1)余数= x(1≤x ≤n -1) ,结论:至少有“商+1”个苹果在同一个抽屉里 (2)余数=0,结论:至少有“商”个苹果在同一个抽屉里3、 排列组合n!排列: Pmm=A =n(n -1)(n -2)(n -m +1)=n- n (n m)!组合:n n 2)(n -m 1)n!(n -1)( -+C m== n-m(m -1)(m -2) ××1(nm)!×m!n -其他: CC n1 C +C +C +=20n == , C n m =C nm,12 nn -nnnnn常用方法:捆绑法;插空法;隔板法;排除法;枚举法.4、 几何计数① 线段:一条线段被分成 n 个互不重叠的小线段,那么这条线段共包含的线段数1为:1+2+3++ = 2( 1) 条。

34个数学奥数公式

34个数学奥数公式

34个数学奥数公式1.二次方程:ax+bx+c=0,其中a≠0,x=(-b±√(b-4ac))/2a。

2. 相似三角形:两个三角形对应角度相等,对应边比例相等。

3. 向量加法:两个向量相加,顺次连接起点和终点得到第三个向量。

4. 余弦定理:在任意三角形中,c=a+b-2abcosC。

5. 正弦定理:在任意三角形中,a/sinA=b/sinB=c/sinC。

6. 面积公式:三角形面积S=1/2×底边×高,梯形面积S=1/2×(上底+下底)×高,圆面积S=πr。

7. 对数性质:loga(mn)=logam+logan,loga(m/n)=logam-logan,loga(m^k)=klogam。

8. 逆三角函数:sinx表示siny=x,y∈[-π/2,π/2],cosx、tanx同理。

9. 极坐标:点P(r,θ)表示距离原点r,与极轴正方向夹角为θ的点。

10. 二项式定理:(a+b)=C(n,0)a+b+C(n,1)ab++C(n,n)ab。

11. 勾股定理:在直角三角形中,a+b=c。

12. 求和公式:等差数列前n项和Sn=n(a+an)/2,等比数列前n 项和Sn=a(1-q)/(1-q)。

13. 余弦双倍角:cos2θ=cosθ-sinθ。

14. 正切双倍角:tan2θ=(2tanθ)/(1-tanθ)。

15. 平方差公式:a-b=(a+b)(a-b)。

16. 随机事件:P(A∪B)=P(A)+P(B)-P(A∩B)。

17. 代数因式分解:a-b=(a+b)(a-b),a-b=(a-b)(a+ab+b)。

18. 等差数列通项公式:an=a+(n-1)d。

19. 等比数列通项公式:an=aq。

20. 数列求和公式:等差数列前n项和Sn=n(2a+(n-1)d)/2,等比数列前n项和Sn=a(1-q)/(1-q)。

21. 立方和公式:1+2+3++n=(n(n+1)/2)。

小学奥数公式大全

小学奥数公式大全

小学奥数公式大全小学奥数中的公式主要包括数学、几何和概率等方面的公式。

下面是一些小学奥数常用的公式:一、数学公式:1.正整数相乘的结果等于两个数的乘积:a×b=c2.正整数相除的结果等于除数a的倍数:a÷b=c3.正整数相减的结果等于差:a-b=c4.正整数相加的结果等于和:a+b=c5. 两个数的平方和等于两个数平方的和与两倍乘积的和:(a + b)² = a² + 2ab + b²6. 两个数的差的平方等于两个数平方的差与两倍乘积的差:(a -b)² = a² - 2ab + b²7.两个数的乘积的平方等于两个数平方的积的平方:(a×b)²=a²×b²8.两个数的商的平方等于两个数平方的商的平方:(a÷b)²=a²÷b²9.n个相同的数相乘的结果可以表示为这个数的n次幂:a×a×...×a=a^n10.平方数是两个相邻奇数的和:1²=1,2²=3,3²=5...,n²=(n-1)+(n+1)二、几何公式:11.长方形的面积等于长乘以宽:面积=长×宽12.正方形的面积等于边长的平方:面积=边长²13.三角形的面积等于底边乘以高的一半:面积=1/2×底边×高14.圆的面积等于半径的平方乘以π(圆周率):面积=π×半径²15.圆的周长等于直径乘以π:周长=直径×π16.矩形的周长等于两倍的长加两倍的宽:周长=2×(长+宽)17.等边三角形的内角为60°18.三条边长度为a、b、c的三角形,满足a+b>c、b+c>a、c+a>b19.两条边为a、b的锐角三角形的第三边最大为√(a²+b²)20.两条边为a、b的直角三角形的斜边长度为√(a²+b²)三、概率公式:21.事件的概率等于有利结果数目除以总结果数目:P(A)=有利结果数目/总结果数目22.两个相互独立的事件同时发生的概率等于各自概率的乘积:P(A且B)=P(A)×P(B)23.两个互为逆事件的概率之和等于1:P(A)+P(非A)=1这些是小学奥数中常见的一些公式,掌握了这些公式可以帮助你更好地解题。

奥数计算公式大全

奥数计算公式大全

奥数计算公式大全代数公式:1. 平方差公式:$(a+b)^2=a^2+2ab+b^2$2. 平方和公式:$(a-b)^2=a^2-2ab+b^2$3.公式$a^2-b^2=(a+b)(a-b)$4. 一次三项式相乘规则:$(ax+by)(cx+dy)=acx^2+(ad+bc)xy+bdy^2$5. 比例公式:$\frac{a}{b}=\frac{c}{d}$, 则 $ad=bc$6. 二次公式求根公式:对于 $ax^2+bx+c=0$,二次公式按如下公式求根:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$7. 因式分解公式:$ax^2+bx+c$ 可以因式分解为 $(px+q)(rx+s)$的形式,其中 $pr=a$,$qs=c$,$ps+qr=b$几何公式:1. 两点之间的距离公式:对于坐标平面上的两点 $A(x_1,y_1)$,$B(x_2,y_2)$,两点之间的距离为 $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$2.线段分割公式:对于线段$AB$上的一点$C$,$AC:CB=(x-x_a):(x_b-x)$,其中$A(x_a,y_a)$,$B(x_b,y_b)$3.矩形的周长公式:矩形的周长为$2(a+b)$,其中$a$和$b$分别为矩形的长和宽4. 矩形的面积公式:矩形的面积为 $ab$,其中 $a$ 和 $b$ 分别为矩形的长和宽5.三角形的周长公式:三角形的周长为$a+b+c$,其中$a$,$b$和$c$分别为三角形的三条边的长度6. 三角形的面积公式:对于已知三角形的三边长 $a$,$b$ 和 $c$,可以使用海伦公式求解面积:$A=\sqrt{s(s-a)(s-b)(s-c)}$,其中$s=\frac{a+b+c}{2}$7.直角三角形勾股定理:对于直角三角形,较长的边称为斜边,较短的两条边称为直角边。

根据勾股定理,斜边的平方等于直角边的平方和:$c^2=a^2+b^2$概率公式:1. 事件发生的概率:事件 $A$ 的概率为 $P(A)=\frac{事件A发生的次数}{总的实验次数}$2. 互斥事件的概率:对于互斥事件 $A$ 和 $B$,它们不会同时发生,因此它们的概率可以直接相加:$P(A\cup B) = P(A) + P(B)$3.独立事件的概率:对于独立事件$A$和$B$4. 条件概率:对于事件 $A$ 和 $B$,当已知条件 $B$ 发生时,事件 $A$ 发生的概率为 $P(A,B)=\frac{P(A\cap B)}{P(B)}$5. 全概率公式:对于事件 $A$ 和互斥事件 $B_i$,全概率公式可以表示为 $P(A) = \sum_{i}P(A,B_i)\cdot P(B_i)$6. 贝叶斯公式:根据条件概率和全概率公式,可以得到贝叶斯公式:$P(B_i,A) = \frac{P(A,B_i)\cdot P(B_i)}{P(A)}$。

小学数学公式汇总(含奥数)

小学数学公式汇总(含奥数)

小学数学公式汇总一般运算规则1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 正方形 C周长 S面积 a边长周长=边长×4 C=4a面积=边长×边长 S=a×a2 正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a3 长方形 C周长 S面积 a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4 长方体 V:体积 s:面积 a:长 b: 宽 h:高表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)体积=长×宽×高 V=abh5 三角形 s面积 a底 h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形 s面积 a底 h高面积=底×高 s=ah7 梯形 s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)× h÷28 圆形 S面积 C周长∏ d=直径 r=半径周长=直径×∏=2×∏×半径 C=∏d=2∏r面积=半径×半径×∏9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高体积=侧面积÷2×半径10 圆锥体 v:体积 h:高 s;底面积 r:底面半径体积=底面积×高÷3小学奥数公式和差问题的公式(和+差)÷2=大数 (和-差)÷2=小数和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数)差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数)植树问题的公式1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)。

小学奥数公式大全

小学奥数公式大全

小学奥数公式大全1.两数之和:a+b=c例如:5+3=82.两数之差:a-b=c例如:7-2=53.两数之积:a×b=c例如:4×3=124.两数之商:a÷b=c例如:9÷3=35.平方:a²=b例如:3²=96.开方:√a=b例如:√9=37.百分数:a%=b例如:25%=0.258.两个数的平均数:(a+b)÷2=c例如:(3+5)÷2=49.相邻角和:a+b=180°例如:80°+100°=180°10.对角线的关系:正方形对角线相等,长方形对角线不相等,且满足勾股定理。

例如:正方形ABCD,对角线AC=BD;长方形ABCD,对角线AC≠BD。

11.垂直线的斜率乘积为-1例如:两条互相垂直的线的斜率之积为-112.正整数相邻数之积减1的平方根之和等于整数本身。

例如:3×4-1=√11+√1113.等边三角形三个内角都是60°。

14.三角形周长:a+b+c=p其中,a、b、c分别是三角形的三边的长度,p是三角形的周长。

例如:三角形ABC,AB = 3cm,BC = 4cm,CA = 5cm,则周长p = 3 + 4 + 5 = 12cm15.相似三角形对应边的比例相等:若三角形A与三角形B相似,则AB/DE=AC/DF=BC/EF。

16.平行线的性质:平行线之间的对应角相等,对顶角互补,内错角相等。

17.枚举法:通过列举所有可能的情况来解题。

18.因数分解:将一个数拆分成几个素数的乘积。

19.最大公约数(最小公倍数)的性质:若a能被b整除,且a能被c整除,那么a也能被b与c的最大公约数整除。

20.偶数与奇数相加的结果是奇数。

最新的奥数公式大全

最新的奥数公式大全

最新的奥数公式大全(一)时钟问题一.追及距离(格数)÷速度差(1-121)= 时间 1.两针重合公式:格数÷(1-121) 2.两针垂直公式:(格数±15)÷(1-121) 3.两针成直线公司:(格数±30)÷(1-121)推广:两针成30°公式:(格数±5)÷(1-121)两针成60°公式:(格数±10)÷(1-121)两针成120°公式:(格数±20)÷(1-121)4.两针与某时刻距离相等(假设为相遇问题)公式:格数÷(1+121)5.镜子中的时刻:镜子中与实际时针只需将分针与时针互换。

例:镜子中6点20分即现实中的5点40分。

6.时针与分针成多少度公式:时针点数×5×6°-分针点数×5.5°7.从0点到12点时针与分针共重合11次。

(二)整数的计算公式:1.求和公式:和=(首项+末项)×项数÷22.项数公式:项数=(末项-首项)÷公差+13.末项公式:末项=首项+(项数-1)×公差另有:奇数个数的和除以项数等于中间数4.从1开始的连续自然数的平方求和公式:21+22+23+ (2)n = 6)12()1(+?+?n n n 从1开始的连续奇数的求平方和公式:21+23+25+……(2n -1)2 = 61×n ×(n+1)×(n+2) 从2开始的连续偶数的平方求和公式:22+24+26+……+2n 2 = 61×n ×(n+1)×(n+2) 5.连续自然数的立方求和公式:13+23+33+……+n 3 = (1+2+3+……+n )2 6.平方差公式:a 2-b 2=(a +b )×(a -b ) a -1=(a +1)×(a -1)7.公比是2的等比数列求和公式:S=2+22+23+24……+2n = 21+n -2 8.等差数列的平均数公式:(首项+末项)÷29.裂项公式:①)1(1+?n n =n 1-11+n 211?+321?+431?=1-21+21-31+31-41 ②)(1k n n +?=(n 1-k n +1)×k 1 有公差的分母,分拆成首项与末项的差乘以公差的倒数。

小学奥数常用公式大全

小学奥数常用公式大全

小学奥数常用公式大全在小学奥数竞赛中,掌握一些常用的数学公式是非常重要的。

这些公式可以帮助学生更好地解决数学问题,并提高其在奥数竞赛中的竞争力。

本文将为大家介绍一些常见的小学奥数公式。

一、四则运算公式1.1 加法:a + b = c例子:4 + 5 = 91.2 减法:a - b = c例子:8 - 3 = 51.3 乘法:a × b = c例子:3 × 6 = 181.4 除法:a ÷ b = c例子:24 ÷ 4 = 6二、整数运算公式2.1 整数相乘:(-a) × (-b) = c例子:(-2) × (-3) = 62.2 整数相除:(-a) ÷ (-b) = c例子:(-12) ÷ (-4) = 32.3 整数的乘方:(-a)的-b次方 = c例子:(-2)的3次方 = -8三、几何公式3.1 矩形的面积:面积 = 长 ×宽例子:矩形的面积 = 4 × 6 = 243.2 正方形的面积:面积 = 边长 ×边长例子:正方形的面积 = 5 × 5 = 253.3 圆的周长:周长= 2 × π × 半径例子:圆的周长≈ 2 × 3.14 × 5 ≈ 31.4四、分数运算公式4.1 分数的加法:a/b + c/d = (ad + bc) / bd例子:1/2 + 1/3 = (1 × 3 + 1 × 2) / (2 × 3) = 5/6 4.2 分数的减法:a/b - c/d = (ad - bc) / bd例子:3/4 - 1/2 = (3 × 2 - 4 × 1) / (4 × 2) = 1/8 4.3 分数的乘法:(a/b) × (c/d) = ac / bd例子:2/3 × 3/5 = (2 × 3) / (3 × 5) = 6/15 = 2/5 4.4 分数的除法:(a/b) ÷ (c/d) = ad / bc例子:2/3 ÷ 4/5 = (2 × 5) / (3 × 4) = 10/12 = 5/6五、平方和立方公式5.1 平方的计算:a² = a × a例子:7² = 7 × 7 = 495.2 立方的计算:a³ = a × a × a例子:4³ = 4 × 4 × 4 = 64六、百分数公式6.1 百分数转小数:百分数 / 100例子:50% = 50 / 100 = 0.56.2 小数转百分数:小数 × 100例子:0.6 = 0.6 × 100 = 60%七、简单方程求解公式7.1 小学一元一次方程求解:ax + b = c例子:2x + 3 = 7,解得 x = 27.2 小学二元一次方程求解:ax + by = c例子:2x + 3y = 12,3x + 4y = 14,解得 x = 2,y = 3综上所述,小学奥数中常用的公式包括四则运算公式、整数运算公式、几何公式、分数运算公式、平方和立方公式、百分数公式以及简单方程求解公式等。

奥数需要掌握的十大公式

奥数需要掌握的十大公式

奥数需要掌握的十大公式奥数是指奥林匹克数学竞赛,是一个注重逻辑思维和数学运算能力的竞赛项目。

在奥数竞赛中,学生们需要熟练掌握各种数学公式,以解决复杂的数学问题。

在这篇文章中,我将介绍奥数竞赛中需要掌握的十大公式,并附上相关的例题来帮助读者更好地理解和应用这些公式。

公式一:二项式定理二项式定理是奥数竞赛中非常重要的公式之一,它可以用来展开任意一个二次多项式的幂。

二项式定理的数学表达式为:(a + b)ⁿ = C(n, 0)aⁿb⁰ + C(n, 1)aⁿ⁻¹b¹ + C(n, 2)aⁿ⁻²b² + ... + C(n, n-1)abⁿ⁻¹ + C(n, n)a⁰bⁿ其中,C(n, k)表示从n个元素中选取k个元素的组合数。

例题一:展开(a + b)⁵,并计算其结果。

解析:根据二项式定理,展开(a + b)⁵可得:(a + b)⁵ = C(5, 0)a⁵b⁰ + C(5, 1)a⁴b¹ + C(5, 2)a³b² + C(5, 3)a²b³ + C(5,4)ab⁴ + C(5, 5)a⁰b⁵计算出每一项的系数并整理可得展开结果:(a + b)⁵ = a⁵ + 5a⁴b + 10a³b² + 10a²b³ + 5ab⁴ + b⁵公式二:勾股定理勾股定理是一条关于直角三角形的定理,它可以用于求解直角三角形的任意边长、角度和面积。

根据勾股定理,直角三角形中两条较短的边的平方和等于斜边的平方。

数学表达式为:a² + b² = c²其中,a和b为直角三角形的两条较短的边,c为斜边的长度。

例题二:已知直角三角形的两条直角边分别为4cm和5cm,求斜边的长度。

解析:根据勾股定理,可得:4² + 5² = c²16 + 25 = c²41 = c²c ≈ 6.4因此,直角三角形的斜边长度为约6.4cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用a n表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,a n, d, n,s n,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:a n = a1+(n-1)d;通项=首项+(项数一1)×公差;数列和公式:s n,= (a1+ a n)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (a n+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(a n-a1)÷(n-1);)公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有m n种不同方法,那么完成这件任务共有:m1+ m2....... +m n种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有m n种方法,那么完成这件任务共有:m1×m2.......×m n种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。

这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。

通常用短除法分解质因数。

任何一个合数分解质因数的结果是唯一的。

互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。

2、几个数的最大公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的最大公约数的约数。

4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法数的整除一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1.能被2、5整除:末位上的数字能被2、5整除。

2.能被4、25整除:末两位的数字所组成的数能被4、25整除。

3.能被8、125整除:末三位的数字所组成的数能被8、125整除。

4.能被3、9整除:各个数位上数字的和能被3、9整除。

5.能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6.能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7.能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

4.如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

余数及其应用基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b 的余数,q叫做a除以b的不完全商。

相关文档
最新文档