【小学数学】小学奥数所有知识点大汇总(最全)
小学奥数知识点梳理(完整版)
小学奥数(知识点梳理)前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质若111a b c>>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n n m m m <<。
5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n ②()()612121222++=+++n n n n ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则 形如:abc =100a+10b+c4. 整除性质① 如果c|a 、c|b ,那么c|(a ±b)。
小学奥数知识点汇总基础知识点
小学奥数知识点汇总基础知识点一、奥数概述小学奥数全称小学数学奥林匹克竞赛,是指面向小学生的一项数学竞赛活动。
通过奥数的学习和参与,可以提高学生的数学思维能力、逻辑推理能力、问题解决能力和创新思维。
二、奥数知识点汇总1. 数学基础知识a. 数的读写:正整数、负整数和小数的读写方法。
b. 分数与小数的换算:将分数转化为小数、将小数转化为分数。
c. 数轴:理解数轴上数的相对位置,掌握数轴上正数、负数和零的位置表示。
d. 数的比较大小:通过数的大小比较符号(>、<、=)来比较大小。
e. 数的倍数与因数:了解倍数与因数的概念,能够判断一个数是另一个数的倍数或因数。
f. 素数与合数:理解素数与合数的定义,能够判断一个数是素数还是合数。
2. 算术运算a. 四则运算:掌握加、减、乘、除四则运算的基本规则,能够进行简单的算术运算。
b. 多位数的加减法:掌握多位数的加减法运算方法,能够灵活运用。
c. 分数的运算:学会分数的加减乘除运算,能够进行分数的化简和比较。
d. 百分数的运算:掌握百分数的加减乘除运算,能够解决与百分数相关的问题。
3. 几何知识a. 图形的分类与性质:了解图形的基本分类(三角形、四边形、圆等),掌握各类图形的性质。
b. 直角、钝角与锐角:理解直角、钝角和锐角的概念,能够判断角的大小。
c. 周长与面积:掌握求图形周长和面积的方法,能够计算各类图形的周长和面积。
d. 空间几何:了解三维图形的基本概念,如长方体、立方体等,并能够计算它们的体积和表面积。
4. 数列与推理a. 数列的概念:理解数列的定义,能够判断数列的规律。
b. 算术数列:了解算术数列的特点,能够求解算术数列的通项公式和前n项和。
c. 几何数列:认识几何数列的特点,能够求解几何数列的通项公式和前n项和。
d. 推理与归纳:培养推理和归纳的能力,能够根据已知条件进行推理和推算。
5. 逻辑推理与证明a. 推理方法:学会使用归纳法、逆否命题、反证法等推理方法。
小学奥数很简单,就这30个知识点
小学奥数很简单,就这30个知识点小学奥数很简单,就这三十个知识点和差问题问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
奥数知识点总结(非常全面)
小学奥数知识点总结2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
}关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):!②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
雪帆提示:鸡兔同笼的公式千万不要死记硬背,因为它的变形更多!\6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差\③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学奥数基础知识汇集
小学奥数的三十个知识汇集1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
34个小学奥数核心知识点
34个小学奥数必掌握知识点1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数棵数=段数-1棵距×段棵数=段数棵距×段数=总长=总长数=总长关键确定所属类型,从而确定棵数与段数的关系问题5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
汇总小学阶段奥数知识点
汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。
下面为大家汇总小学阶段常见的奥数知识点。
一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。
小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。
3、分数四则运算同分母分数加减法:分母不变,分子相加减。
异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。
分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。
分数除法:除以一个数等于乘这个数的倒数。
二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。
偶数:能被 2 整除的整数。
奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。
合数:除了 1 和它本身还有别的因数的自然数。
1 既不是质数也不是合数。
3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。
倍数:c 就是 a 和 b 的倍数。
4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
【小学数学】小学奥数所有知识点大汇总(最全)
1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数一、和差倍问题(一)和差问题:已知两个数的和及两个数的差;求这两个数。
方法①:(和-差)÷2=较小数;和-较小数=较大数方法②:(和+ 差)÷2=较大数;和- 较大数=较小数例如:两个数的和是15;差是5;求这两个数。
方法:(15-5)÷2=5 ;(15+5)÷2=10 .(二)和倍问题:已知两个数的和及这两个数的倍数关系;求这两个数。
方法:和÷(倍数+1)=1倍数(较小数)1倍数(较小数)×倍数=几倍数(较大数)或和-1 倍数(较小数)= 几倍数(较大数)例如:两个数的和为50;大数是小数的4倍;求这两个数。
方法:50÷(4+1)=10 10×4=40(三)差倍问题:已知两个数的差及两个数的倍数关系;求这两个数。
方法:差÷(倍数-1 )=1倍数(较小数)1倍数(较小数)×倍数=几倍数(较大数)或和-倍数(较小数)=几倍数(较大数)例如:两个数的差为80;大数是小数的5倍;求这两个数。
方法:80÷(5-1)=20 20×5=100和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;两人年龄的倍数关系是变化的量;解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄;几年前年龄=小年龄-大小年龄差÷倍数差.3.归一问题的基本特点:问题中有一个不变的量;一般是那个“单一量”;题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树;两端都植树在直线或者不封闭的曲线上植树;两端都不植树在直线或者不封闭的曲线上植树;只有一端植树封闭曲线上植树三、植树问题(一)不封闭型(直线)植树问题1、直线两端植树:棵数=段数+1=全长÷株距+1 ;全长=株距×(棵数-1 );株距=全长÷(棵数-1 );2、直线一端植树:全长=株距×棵数;棵数=全长÷株距;株距=全长÷棵数;3 、直线两端都不植树:棵数=段数-1= 全长÷株距-1 ;株距=全长÷(棵数+1 );(二)封闭型(圆、三角形、多边形等)植树问题棵数=总距离÷棵距;总距离=棵数×棵距;棵距=总距离÷棵数.5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题;就是把假设错的那部分置换出来; 基本思路:①假设;即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后;发生了和题目条件不同的差;找出这个差是多少;③每个事物造成的差是固定的;从而找出出现这个差的原因;④再根据这两个差作适当的调整;消去出现的差。
小学数学】小升初必考奥数30个知识点大汇总
小学数学】小升初必考奥数30个知识点大汇总1.和差倍问题和差问题和倍问题是常见的数学问题,而差倍问题则是二者的结合。
已知条件可以是几个数的和与差,几个数的和与倍数,或者几个数的差与倍数。
公式适用范围是已知两个数的和、差或倍数关系。
关键问题是求出同一条件下的和与差或和与倍数或差与倍数。
2.年龄问题年龄问题有三个基本特征:两个人的年龄差是不变的,两个人的年龄是同时增加或者同时减少的,两个人的年龄的倍数是发生变化的。
3.归一问题归一问题的基本特点是问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。
关键问题是根据题目中的条件确定并求出单一量。
4.植树问题植树问题有几种基本类型:在直线或者不封闭的曲线上植树,两端都植树,在直线或者不封闭的曲线上植树,两端都不植树,在封闭曲线上植树,只有一端植树。
基本公式是棵数=段数+1,棵距×段数=总长或者棵数=段数-1,棵距×段数=总长或者棵数=段数,棵距×段数=总长。
关键问题是确定所属类型,从而确定棵数与段数的关系。
5.鸡兔同笼问题鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来。
基本思路是假设某种现象存在(甲和乙一样或者乙和甲一样),假设后发生了和题目条件不同的差,找出这个差是多少,每个事物造成的差是固定的,从而找出出现这个差的原因。
基准数法:为了求一组数的平均数,我们可以选择一个基准数,并计算每个数与基准数的差。
将这些差加起来,求出它们的平均数,再将这个平均数加上基准数,就是所求的平均数。
一般来说,我们会选择与所有数比较接近的数或者中间数作为基准数。
具体关系可以参考基本公式②。
抽屉原理:抽屉原理指出,如果将(n+1)个物体放在n个抽屉里,那么至少会有一个抽屉中放有2个或多于2个物体。
例如,将4个物体放在3个抽屉里,就会有至少一个抽屉中放有2个或多于2个物体。
我们可以通过将4分解成三个整数的和来验证这一点。
小学奥数知识点及公式总汇(必背)
⼩学奥数知识点及公式总汇(必背)⼩学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归⼀问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.⽜吃草问题8.周期循环与数表规律9.平均数10.抽屉原理 411.定义新运算12.数列求和13.⼆进制及其应⽤ 514.加法乘法原理和⼏何计数15.质数与合数 616.约数与倍数17.数的整除 718.余数及其应⽤19.余数、同余与周期20.分数与百分数的应⽤ 821.分数⼤⼩的⽐较 922.分数拆分23.完全平⽅数24.⽐和⽐例 1025.综合⾏程26.⼯程问题27.逻辑推理 1128.⼏何⾯积29.⽴体图形30.时钟问题—快慢表问题 1231.时钟问题—钟⾯追及32.浓度与配⽐33.经济问题 1333.经济问题34.简单⽅程35.不定⽅程36.循环⼩数 14和差倍问题和差问题和倍问题差倍问题已知条件⼏个数的和与差⼏个数的和与倍数⼏个数的差与倍数公式适⽤范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较⼩数较⼩数+差=较⼤数和-较⼩数=较⼤数②(和+差)÷2=较⼤数较⼤数-差=较⼩数和-较⼤数=较⼩数和÷(倍数+1)=⼩数⼩数×倍数=⼤数和-⼩数=⼤数差÷(倍数-1)=⼩数和-⼩数=⼤数差÷(倍数-1)=⼩数⼩数×倍数=⼤数⼩数+差=⼤数关键问题求出同⼀条件下的和与差和与倍数差与倍数 2.年龄问题的三个基本特征:①两个⼈的年龄差是不变的;②两个⼈的年龄是同时增加或者同时减少的;③两个⼈的年龄的倍数是发⽣变化的;3.归⼀问题的基本特点:问题中有⼀个不变的量,⼀般是那个“单⼀量”,题⽬⼀般⽤“照这样的速度”……等词语来表⽰。
关键问题:根据题⽬中的条件确定并求出单⼀量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有⼀端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从⽽确定棵数与段数的关系 5.鸡兔同笼问题基本概念:鸡兔同笼问题⼜称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和⼄⼀样或者⼄和甲⼀样):②假设后,发⽣了和题⽬条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从⽽找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
小学奥数重点归纳(史上最全)
表面积:S=2(ab+ah+bh)
合理利用行程问题中的比例关系。
2、在直线或者不封闭的曲线上 植树,两端都不植树
3、在直线或者不封闭的曲线上 植树,只有一端植树
4、封闭曲线上植树
基本公式:
棵数=段数+1
基本公式:
①平均数=总数量÷总份数
基本概念:
首项:等差数列的第一个数,一 般用a1表示;
基本公式:
通项公式:an = a1+(n-1)d;
再求它们的差,再找不大于这个 差的2的n次方,依此方法一直找 到差为0,按照二进制展开式特
②两个人的年龄是同时增加或者 同时减少的;
③两个人的年龄的倍数是发生变 化的;
3.归一问题的基个“单一量”,题目一般用 “照这样的速度”……等词语来
表示。
关键问题:根据题目中的条件确 定并求出单一量; 4.植树问题
基本类型:
1、 在直线或者不封闭的曲线上 植树,两端都植树
点即可写出。
基本特征:每一种方法都可完成 任务。
基本特征:每一步只能完成任务 的一部分。
直线特点:没有端点,没有长度。
线段特点:有两个端点,有长度。
射线特点:只有一个端点;没有 长度。
几何计数规律:
3、辗转相除法:每一次都用除 数和余数相除,能够整除的那个 余数,就是所求的最大公约数。
先找出不大于该数的2的n次方再求它们的差再找不大于这个差的2的n次方依此方法一直找到差为0按照二进制展开式特点即可写出
£®和差倍问题和差问题、和倍问 题、差倍问题
已知条件: 几个数的和与差、和 与倍数、差与倍数
公式适用范围: 已知两个数的和, 差,倍数关系
公式:
①(和-差)÷2=较小数
【小学数学】奥数最全面知识点总结
小学奥数最全面的知识点总结1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数知识点及公式总汇(必背)
小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理 411.定义新运算12.数列求和13.二进制及其应用 514.加法乘法原理和几何计数15.质数与合数 616.约数与倍数17.数的整除718.余数及其应用19.余数、同余与周期20.分数与百分数的应用821.分数大小的比较922.分数拆分23.完全平方数24.比和比例1025.综合行程26.工程问题27.逻辑推理1128.几何面积29.立体图形30.时钟问题—快慢表问题1231.时钟问题—钟面追及32.浓度与配比33.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍问题2①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
小学奥数奥数知识点汇总(全)
小学奥数重要知识点整理汇总资料目录数论知识点…………………………………………2~6计算知识点…………………………………………7~14应用题知识点…………………………………………15~23几何知识点…………………………………………24~27组合专题…………………………………………28~35数论知识点整除,奇数偶数,质数,合数,分解质因数,约数,倍数。
\r\n余数问题:完全平方数,数的进制,数的综合,周期性问题,数的拆分。
数的整除性1、整数a除以整数b(b≠0),所得的商是整数而没有余数,则称a能被b整除,或b整除a,记作:b|a。
2、整除的性质:性质1.如果c|a,c|b,则c|(a±b)。
性质2.如果bc|a,则b|a,c|a。
性质3.如果c|b,b|a,则c|a。
3、整除问题的解决方法:整除特征法;补9、补0试除法。
4、涉及极值的整除问题:逐步调整法。
5、数的整除特征:a.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……b.一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;c.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;d.一个数从个位到高位,每三位进行分段,将形成的奇位之和与偶位之和以大减小,如果差可以被7、11、13整除,则此数也可被7、11、13整除;如果一个整数的末三位与末三位之前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;e.如果逐次去掉最后一位数字并减去末位数字的2倍后能被7整除,那么这个数能被7整除;如果逐次去掉最后一位数字并减去末位数字后能被11整除,那么这个数能被11整除;如果逐次去掉最后一位数字并减去末位数字的9倍后能被13整除,那么这个数能被13整除;f.一个数从个位到高位,每两位分成一段,将每段上的数相加。
小学奥数知识点及公式总汇(必背)
小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.平均数101112131415161718192021222324252627282930313233.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍问题②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差78闰年平年9②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
小学数学奥数知识点归纳
小学数学奥数知识总结归纳1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的:和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1 棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数所有的知识点归纳
小学奥数所有的知识点归纳对于小学生来说,参加奥数是提高数学能力和思维能力的绝佳途径。
小学奥数涉及的知识点广泛而深入,涵盖了数学的各个方面。
下面将对小学奥数的知识点进行归纳总结。
一、基础知识点1.1 数的认识和比较小学奥数的基础知识点之一是数的认识和比较。
包括数的读写、数的加减法运算、数的大小比较等。
1.2 整数的四则运算整数的四则运算是小学奥数必备的基础知识点,包括整数的加减乘除运算、负数的加减乘除运算等。
1.3 分数和小数的基本运算分数和小数的基本运算也是小学奥数的核心知识点之一。
包括分数的加减乘除运算、分数与整数的混合运算、小数的加减乘除运算等。
1.4 平方根和立方根的计算平方根和立方根的计算是小学奥数的一项重要知识点。
要求学生能够计算非负整数的平方根和立方根,并应用于实际问题中。
二、应用问题2.1 算术题小学奥数中,包含了各类应用算术题,如速算、面积体积计算、运算顺序等。
此类问题要求学生具备计算能力和分析解决问题的能力。
2.2 类比题类比题是小学奥数中的经典题型之一,它要求学生能够发现和分析事物之间的相似关系,并运用到具体问题中。
2.3 推理与判断题推理与判断题是小学奥数中较为复杂的类型,它要求学生通过逻辑思维和推理能力来解答问题。
这类题目既考察了学生的思维能力,又培养了他们的逻辑思维能力。
三、数学思维3.1 抽象思维小学奥数培养学生的数学抽象思维能力,使学生能够将数学问题具象化,提高解决问题的能力。
3.2 推理思维推理思维是解决数学问题的重要能力之一。
小学奥数中的推理题要求学生能够发现问题的规律,并运用推理能力进行解答。
3.3 分析思维分析思维是解决复杂数学问题的关键能力。
小学奥数中的分析题要求学生能够分析问题的结构和关系,并找出解题的关键点。
以上是小学奥数知识点的简要归纳。
通过学习这些知识点,可以提高小学生的数学能力和思维能力,为他们将来更高阶段的数学学习打下坚实基础。
希望同学们能够充分利用好奥数学习的机会,努力提高自己的数学水平!。
小学数学奥数知识点全面汇总
小学数学奥数知识点全面汇总数学作为一门科学,不仅是学校教育中重要的学科,也是培养学生逻辑思维和解决问题能力的重要工具。
在小学阶段,学生接触的数学知识比较基础,但是在数学奥数竞赛中,往往需要更加深入和全面的掌握数学知识,以解决更为复杂的问题。
下面将对小学数学奥数知识点进行全面的汇总。
一、四则运算1. 加法2. 减法3. 乘法4. 除法在加法运算中,学生需要熟练掌握进位原理,能够灵活运用各种进位运算方法。
在减法运算中,学生需要掌握相应的借位原理,能够正确计算减法运算。
在乘法运算中,应重点掌握两位数与一位数的乘法运算,以及两位数与两位数的乘法运算。
在除法运算中,学生需要熟练掌握除法运算的步骤和原理,能够正确计算商和余数。
二、倍数与因数1. 倍数的概念2. 公倍数3. 最小公倍数4. 因数的概念5. 公因数6. 最大公因数学生需要了解倍数和因数的概念,并能够正确计算倍数和因数。
特别是在最小公倍数和最大公因数的计算中,需要采用较为灵活的方法,以解决复杂的问题。
三、分数1. 分数的概念2. 分数的基本运算3. 分数的化简与约分4. 分数的比较大小学生需要熟悉分数的概念和表示方法,并能够进行分数的加减乘除运算。
在运算过程中,需要进行分数的化简和约分。
此外,学生还需要掌握分数的大小比较,以便正确排序和比较大小。
四、小数1. 小数的概念2. 小数的基本运算3. 小数和分数的转化学生需要了解小数的概念和表示方法,并能够进行小数的加减乘除运算。
在小数和分数的转化中,需要掌握正确的转化方法,以便在不同的运算中互相转化。
五、图形与几何1. 平面图形的名称和性质2. 直角、钝角、锐角的判断3. 直线、线段、射线的概念4. 平行线和垂直线的判断5. 三角形的分类和性质学生需要熟悉各种平面图形的名称和性质,并能够准确判断直角、钝角和锐角,平行线和垂直线的关系等。
在解决几何问题时,需要熟练应用各种定理和性质,以推导和证明几何关系。
小学数学及奥数知识点归纳
小学数学及奥数知识点归纳小学数学知识点归纳:一、数的基本概念和运算1.数的读法和写法2.数的比较大小3.数的相加、相减、相乘、相除4.四则运算的口诀和顺序5.分数的基本概念和运算6.小数的基本概念和运算7.百分数的基本概念和运算二、数的整体结构1.十以内数的认识和运算2.十以内数的整体关系3.十以内的数的位置表示法4.乘法口诀表三、数的拆分和合并1.数的拆分和合并2.分解因数和最大公约数3.合并同类项和分配率四、数的集合与表示1.自然数、整数、有理数和实数的概念和关系2.正数、负数和零的概念和比较3.数的绝对值4.数轴的表示和使用五、数的测量和单位换算1.长度、面积和体积的相关概念2.常用长度单位的换算3.常用面积和体积单位的换算4.常用重量和时间单位的换算六、平面图形的认识和构造1.点、线段、直线和射线的相关概念和表示2.角的相关概念和分类3.三角形、四边形和多边形的相关概念和分类4.圆的相关概念和构造5.直角、等腰和等边三角形的认识和构造七、几何形体的认识和计算1.立体几何体的结构和特点2.立方体和长方体的认识和计算3.圆柱体、圆锥体和圆球的认识和计算八、数据的处理和统计1.数据的搜集、整理和记录2.图表的认读和制作3.平均数的计算4.最大值和最小值的查找九、时间与稳态的认识与计算1.时、分、秒的单位换算2.日期和时间的表示和计算3.闰年的概念和判断奥数知识点归纳:一、数论和代数1.素数和合数2.奇数和偶数3.互质数和最大公约数4.递推数列和等差数列5.同余方程和同余定理6.式子的因式分解和求解7.不等式的性质和求解二、几何和图形1.数学图形的性质和判断2.相似和全等三角形的判断和计算3.圆的性质和计算4.平行线和垂直线的性质和判断5.相交线和角的性质和判断6.三角形的内心、外心和垂心7.平面上的旋转、翻转和平移三、概率和统计1.事件的概念和计算2.概率的性质和计算3.统计图表的制作和解读4.离散型和连续型随机变量的计算四、数学思维和推理1.数学证明和反证法2.数学问题的发现和解决方法3.数学推理和归纳法4.奥林匹克数学经典题型解法五、应用题和综合题1.将实际问题转化为数学问题2.利用公式和模型解决问题3.综合应用多个数学知识点解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数一、和差倍问题(一)和差问题:已知两个数的和及两个数的差;求这两个数。
方法①:(和-差)÷2= 较小数;和-较小数=较大数方法②:(和+ 差)÷2=较大数;和- 较大数=较小数例如:两个数的和是15;差是5;求这两个数。
方法:(15-5)÷2=5 ;(15+5)÷2=10 .(二)和倍问题:已知两个数的和及这两个数的倍数关系;求这两个数。
方法:和÷(倍数+1)=1倍数(较小数)1倍数(较小数)×倍数=几倍数(较大数)或和-1 倍数(较小数)= 几倍数(较大数)例如:两个数的和为50;大数是小数的4倍;求这两个数。
方法:50÷(4+1)=10 10×4=40(三)差倍问题:已知两个数的差及两个数的倍数关系;求这两个数。
方法:差÷(倍数-1 )=1倍数(较小数)1倍数(较小数)×倍数=几倍数(较大数)或和-倍数(较小数)=几倍数(较大数)例如:两个数的差为80;大数是小数的5倍;求这两个数。
方法:80÷(5-1)=20 20×5=100和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;两人年龄的倍数关系是变化的量;解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄;几年前年龄=小年龄-大小年龄差÷倍数差.题目一般用“照3.归一问题的基本特点:问题中有一个不变的量;一般是那个“单一量”;这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树;两端都植树在直线或者不封闭的曲线上植树;两端都不植树在直线或者不封闭的曲线上植树;只有一端植树封闭曲线上植树三、植树问题(一)不封闭型(直线)植树问题1、直线两端植树:棵数=段数+1=全长÷株距+1 ;全长=株距×(棵数-1 );株距=全长÷(棵数-1 );2、直线一端植树:全长=株距×棵数;棵数=全长÷株距;株距=全长÷棵数;3 、直线两端都不植树:棵数=段数-1= 全长÷株距-1 ;株距=全长÷(棵数+1 );(二)封闭型(圆、三角形、多边形等)植树问题棵数=总距离÷棵距;总距离=棵数×棵距;棵距=总距离÷棵数.5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题;就是把假设错的那部分置换出来;基本思路:①假设;即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后;发生了和题目条件不同的差;找出这个差是多少;③每个事物造成的差是固定的;从而找出出现这个差的原因;④再根据这两个差作适当的调整;消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
【鸡兔问题公式】(1)已知总头数和总脚数;求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如;“有鸡、兔共36只;它们共有脚100只;鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数;当鸡的总脚数比兔的总脚数多时;可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数;当兔的总脚数比鸡的总脚数多时;可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法;可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如;“灯泡厂生产灯泡的工人;按得分的多少给工资。
每生产一个合格品记4分;每生产一个不合格品不仅不记分;还要扣除15分。
某工人生产了1000只灯泡;共得3525分;问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”;运到完好无损者每只给运费××元;破损者不仅不给运费;还需要赔成本××元……。
它的解法显然可套用上述公式。
)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数;求鸡兔各多少的问题);可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如;“有一些鸡和兔;共有脚44只;若将鸡数与兔数互换;则共有脚52只。
鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼;这是一个古老的数学问题;在现实生活中也是普遍存在的.重点掌握鸡兔同笼问题的解法--假设法;并会将这种方法应用到一些实际问题中.解鸡兔同笼问题的基本关系式是:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然;也可以先假设全是鸡;那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数6.盈亏问题基本思路:先将两种分配方案进行比较;分析由于标准的差异造成结果的变化;根据这个关系求出参加分配的总份数;然后根据题意求出对象的总量.按不同的方法分配物品时;经常发生不能均分的情况.如果有物品剩余就叫盈;如果物品不够就叫亏;这就是盈亏问题的含义.一般地;一批物品分给一定数量的人;第一种分配方法有多余的物品(盈);第二种分配方法则不足(亏);当两种分配方法相差n个物品时;那就有:盈数+亏数= 人数×n ;这是关于盈亏问题很重要的一个关系式.解盈亏问题的窍门可以用下面的公式来概括:(盈+亏)÷两次分得之差=人数或单位数;(盈-盈)÷两次分得之差=人数或单位数;(亏-亏)÷两次分得之差= 人数或单位数.解盈亏问题的关键是要找到:什么情况下会盈;盈多少?什么情况下"亏";"亏"多少?找到盈亏的根源和几次盈亏结果不同的原因.另外在解题后;应进行验算.基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题份;根据两次不同的吃法;求出其中的总草量的差;基本思路:假设每头牛吃草的速度为“1”再找出造成这种差异的原因;即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中;某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除;则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除;但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数;利用基本公式①进行计算.②基准数法:根据给出的数之间的关系;确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准;求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和;就是所求的平均数;具体关系见基本公式②。
10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里;那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里;也就是把4分解成三个整数的和;那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式;我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体;也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里;其中n>m;那么必有一个抽屉至少有:①k=[n/m]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。