小学奥数知识点归纳和总结

合集下载

小学奥数所有知识点总结

小学奥数所有知识点总结

1-6 年级奥数所有知识点总结一、鸡兔同笼①:壮壮数他家的鸡和兔,有头共 16 个,有脚共 44 只。

问:壮壮家的鸡和兔共有多少只?二、火车问题②两列火车同向而行,甲火车的速度是 20 米/秒,乙火车的速度是25米/秒,已知甲车车身长 250米,乙车车身长 200 米,从乙车车头追上甲车车尾到乙车车尾离开甲车车头需要多少时间?③两辆火车相向而行,甲火车的速度是 20 米/秒,乙火车的速度是25米/秒,已知甲车长 250米,乙车长200 米,从两车车头到两车车尾离开,需要多少时间?三、流水问题(即流水行船问题)④一条船行驶在甲、乙两地之间,顺流速度为 42km/h,逆流速度为30km/h,求水流的速度?船在静水中的速度?四、植树问题⑤一个圆形池塘,它的周长是 150 米,每隔3米种一棵树,共需要树苗多少株?五、列车过桥问题⑥一列火车长 150 米,每秒钟行 19 米。

全车通过长 800 米的大桥,需要多少时间?六、剪绳问题⑦一根绳子对折 10次,用剪刀从中间剪了1刀,问:此绳子剪成了多少段?七、年龄问题⑧妈妈说:我在你这个年龄时,你才 2 岁;你到我这个年龄时我就77岁了。

问:现在女儿几岁了?八、盈亏问题⑨小朋友分包子,每人分9个要少8个,每人分7个要多6 个,一共有几人?九、和、差、倍问题⑩小明和妈妈年龄之和为 40 岁,妈妈的年龄是小明的3 倍,问小明多少岁?十、方阵问题11 .运动会开幕式上,三一班的同学排成一个实心方阵入场,最外层每边有 6人,三一班有多少个同学?十一、握手问题12 .6个人,每2人握一次手,一共要握多少次?十二、等差数列13.求自然数中所有三位数的和?一、鸡兔同笼公式:鸡数=(兔脚数X总头数-总脚数)(兔脚数-鸡脚数)兔数= (总脚数-鸡脚数X总头数)(兔脚数鸡脚数)①解:依据公式: 有兔=(44-2X16) (4-2)=12÷2=6 (只)有鸡=16-6=10 (只)答:壮壮家有兔6只有鸡10只二、火车问题基本数量关系:火车速度X时间=车长+桥长1、超车问题(同向运动、追击问题)路程差=车身长的和超车时间 =车身长的和速度差2、错车问题(反向运动、相遇问题)路程和=车身长的和错车时间=车身长的和速度和3、过人(将人看成是车身长度是0的火车)②解题思路:此类问题相当于追击问题,利用公式得(250+200)六(25-20)=90(秒)答:需要90秒。

小学奥数很简单,就这30个知识点

小学奥数很简单,就这30个知识点

小学奥数很简单,就这30个知识点小学奥数很简单,就这三十个知识点和差问题问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

奥数知识点总结(非常全面)

奥数知识点总结(非常全面)

小学奥数知识点总结2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

}关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):!②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

雪帆提示:鸡兔同笼的公式千万不要死记硬背,因为它的变形更多!\6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差\③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学奥数知识点总结

小学奥数知识点总结

小学奥数知识点总结小学奥数作为数学学习的拓展和延伸,对于培养孩子的逻辑思维、创新能力和解决问题的能力有着重要的作用。

以下是对小学奥数常见知识点的总结。

一、计算类1、速算与巧算这部分主要包括加法交换律、结合律,乘法交换律、结合律、分配律的灵活运用。

例如,通过凑整、拆数等方法,可以让计算变得更加简便。

2、等差数列要掌握等差数列的通项公式:第 n 项=首项+(n 1)×公差;求和公式:和=(首项+末项)×项数÷2 。

3、定义新运算根据给出的新运算规则,进行计算和推理。

二、数论类1、整除能被 2、3、5、9 等整除的数的特征要牢记。

例如,能被 2 整除的数末尾是偶数,能被 3 整除的数各位数字之和能被 3 整除。

2、质数与合数理解质数和合数的概念,知道 20 以内的质数有 2、3、5、7、11、13、17、19 。

3、最大公因数与最小公倍数通过短除法等方法求两个或多个数的最大公因数和最小公倍数。

三、图形类1、平面图形(1)三角形三角形的内角和是 180 度,三角形的面积=底×高÷2 。

(2)四边形包括平行四边形、长方形、正方形、梯形等。

要掌握它们的周长和面积计算公式。

(3)圆形圆的周长=2πr ,面积=πr² 。

2、立体图形(1)长方体和正方体了解它们的表面积、体积计算公式。

(2)圆柱体和圆锥体圆柱体的表面积=侧面积+两个底面积,体积=底面积×高;圆锥体的体积= 1/3×底面积×高。

四、应用题类1、行程问题涉及速度、时间和路程的关系,如相遇问题、追及问题。

2、工程问题工作总量=工作效率×工作时间,通常把工作总量看作单位“1”。

3、利润问题要清楚成本、售价、利润、利润率之间的关系。

4、浓度问题浓度=溶质÷溶液×100% ,通过溶质和溶液的变化来解决问题。

5、植树问题分为两端都种、两端都不种、一端种一端不种等情况。

34个小学奥数核心知识点

34个小学奥数核心知识点

34个小学奥数必掌握知识点1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数棵数=段数-1棵距×段棵数=段数棵距×段数=总长=总长数=总长关键确定所属类型,从而确定棵数与段数的关系问题5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。

下面为大家汇总小学阶段常见的奥数知识点。

一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。

小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。

3、分数四则运算同分母分数加减法:分母不变,分子相加减。

异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。

分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。

分数除法:除以一个数等于乘这个数的倒数。

二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。

偶数:能被 2 整除的整数。

奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。

合数:除了 1 和它本身还有别的因数的自然数。

1 既不是质数也不是合数。

3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。

倍数:c 就是 a 和 b 的倍数。

4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。

奥数知识点总结

奥数知识点总结

奥数知识点总结一、整数与分数1.1 奇数与偶数•奇数是指不能被2整除的数,如1、3、5等。

•偶数是指能被2整除的数,如2、4、6等。

1.2 质数与合数•质数是指除了1和自身外没有其他因数的数,如2、3、5等。

•合数是指除了1和自身外还有其他因数的数,如4、6、8等。

1.3 最大公约数与最小公倍数•最大公约数是指两个或多个数的公共因数中最大的一个数,常用符号为gcd。

•最小公倍数是指两个或多个数的公共倍数中最小的一个数,常用符号为lcm。

二、代数与方程2.1 代数运算•加法是指两个或多个数相加,常用符号为+。

•减法是指一个数减去另一个数,常用符号为-。

•乘法是指两个或多个数相乘,常用符号为*。

•除法是指一个数除以另一个数,常用符号为/。

2.2 一元一次方程•一元一次方程是指只含有一个未知数的一次方程,如2x+3=7。

•解一元一次方程的步骤:1.将方程中的常数项移到等式的右边。

2.将未知数的系数移到等式的左边。

3.化简方程,求得未知数的值。

2.3 二元一次方程•二元一次方程是指含有两个未知数的一次方程,如2x+3y=7。

•解二元一次方程的步骤:1.选择一种方法消去其中一个未知数,得到一个只含有一个未知数的一次方程。

2.解这个一次方程,得到一个未知数的值。

3.将得到的未知数的值代入原方程中,求得另一个未知数的值。

三、几何与概率3.1 直线与角•直线是指在平面上无限延伸的一条线段。

•角是指由两条线段共享一个端点所形成的图形。

3.2 三角形与四边形•三角形是指由三条线段所围成的图形。

•四边形是指由四条线段所围成的图形。

3.3 圆与圆周角•圆是指平面上一组离一个固定点相等距离的点的集合。

•圆周角是指以圆心为顶点的角。

3.4 概率与统计•概率是指事件发生的可能性大小。

•统计是指对数据进行收集、整理、分析和解释的过程。

四、数论与逻辑4.1 数列与递推•数列是指按照一定规律排列的一组数。

•递推是指根据数列中前一项或前几项推导出后一项的方法。

小学奥数知识点汇总,所有奥数知识点都在这啦!

小学奥数知识点汇总,所有奥数知识点都在这啦!

⼩学奥数知识点汇总,所有奥数知识点都在这啦!今天分享的这篇⽂章包括⼩升初常考的题⽬类型,有⼯程问题、⾏程问题、质数合数问题等。

快收藏吧!1、年龄问题的三⼤特征①两个⼈的年龄差是不变的;②两个⼈的年龄是同时增加或者同时减少的;③两个⼈的年龄的倍数是发⽣变化的;2、植树问题总结:基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有⼀端植树。

3、鸡兔同笼问题基本概念:鸡兔同笼问题⼜称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①设,即假设某种现象存在(甲和⼄⼀样或者⼄和甲⼀样):②假设后,发⽣了和题⽬条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从⽽找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔⼦:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔⼦假设成鸡:兔数=(总脚数⼀鸡脚数×总头数)÷(兔脚数⼀鸡脚数)关键问题:找出总量的差与单位量的差。

4、盈亏问题盈亏问题基本概念:⼀定量的对象,按照某种标准分组,产⽣⼀种结果:按照另⼀种标准分组,⼜产⽣⼀种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配⽅案进⾏⽐较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①⼀次有余数,另⼀次不⾜;①⼀次有余数,另⼀次不⾜;基本公式:总份数=(余数+不⾜数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较⼤余数⼀较⼩余数)÷两次每份数的差③当两次都不⾜;基本公式:总份数=(较⼤不⾜数⼀较⼩不⾜数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

小学奥数重点知识归纳总结

小学奥数重点知识归纳总结

小学奥数重点知识归纳总结数学作为一门基础学科,对于孩子的综合素质培养具有重要意义。

奥林匹克数学竞赛作为培养学生数学思维和创新能力的重要途径之一,对小学生进行数学启蒙具有重要作用。

在这篇文章中,我将对小学奥数的重点知识进行归纳总结。

一、整数与分数1. 整数的概念与性质整数包括正整数、零和负整数,它们有一系列的性质,如加法、减法、乘法、乘方等运算规则,以及大小比较、绝对值等概念。

2. 分数的概念与性质分数是对一个整体的平均分割,由分子和分母两部分构成,它们有加法、减法、乘法、除法等运算规则,以及约分、比较大小等概念。

3. 整数与分数的转化可以将一个整数转化为相应的分数,也可以将一个分数转化为相应的整数或混合数。

转化时需要注意运算法则和化简。

二、小数与百分数1. 小数的概念与性质小数是指无限不循环小数、无限循环小数和有限小数,它们可以表示实际测量结果。

小数有加法、减法、乘法、除法等运算规则,以及大小比较等概念。

2. 百分数的概念与性质百分数是指以100为基数的分数,常用于表示比例和百分比,它们可以表示实际情况中的比例关系。

百分数有加法、减法、乘法、除法等运算规则,以及比较大小等概念。

3. 小数与百分数的转化可以将一个小数转化为相应的百分数,也可以将一个百分数转化为相应的小数。

转化时需要注意运算法则和移动小数点的位置。

三、几何图形与空间想象1. 图形的基本概念与性质图形包括点、线、线段、角、三角形、四边形、多边形等,它们有不同的性质和特点。

充分理解和掌握这些概念对于解题非常重要。

2. 平面图形的分类与特征平面图形可以分为正方形、长方形、圆、等边三角形等,每种图形都有自己的特征和性质。

熟练掌握它们的特征和相互关系有助于解决与图形相关的问题。

3. 空间图形的认识与探索空间图形包括正方体、长方体、圆柱、圆锥等,它们在现实生活中随处可见。

通过观察和探索,了解它们的性质和特点,有助于培养孩子的空间想象能力。

四、逻辑推理与推理策略1. 逻辑推理的基本思维方式逻辑推理是通过事实和前提推导出结论的思维方式,它要求学生具备辨认条件、推理关系和找出规律的能力。

小学奥数知识点归纳和总结

小学奥数知识点归纳和总结

小学奥数知识点归纳和总结二年级奥数知识点分类:一、运算符号类二、规律填数类三、规律画图类四、年龄问题类五、间隔问题类(含植树问题及智力计数)六、周期问题类七、有序思考类八、时钟问题类九、推理及思维训练类(包含算式类)十、和差问题类十一、和倍问题类十二、差倍问题类十三、一笔画类十四、移动变换类十五、智力趣味类(包含巧切西瓜)十六、鸡兔同笼类十七、盈亏问题类十八、应用类(含数量关系、重叠问题、)三年级奥数知识点分类:一、计算类计算是数学学习的基本知识,也是学好奥数的基础。

能否又快又准的算出答案,是历年数学竞赛考察的一个基本点。

三年级的计算包括:速算与巧算、数列规律、数列求和、等差数列的和等。

二、应用题类从三年级起,大量的奥数专题知识都是所有年级所有竞赛考试中必考的重点知识。

学生们一定要在各个应用题专题学习的初期打下良好的基础。

(1)和倍、差倍问题:用线段标识等方法揭示这两类问题中各种数量关系,和倍问题:小数=和÷(倍数+1)。

三、差倍问题:小数=差÷(倍数-1)(2)年龄问题:教授解决年龄问题的主要方法:和倍、差倍方法;画图线段标示法。

(3)盈亏问题:介绍盈亏问题的主要形式(双盈、双亏、一盈一亏)分配总人数=盈亏总额÷两次分配数之差。

(4)植树问题:总长、株距、棵树三要素之间的数量关系:总长=株距×段数,封闭图形:棵数=段数不封闭图形:两头都栽:棵数=段数+1两头都不栽:棵数=段数-1一头栽一头不栽:棵数=段数(5)鸡兔同笼问题:介绍鸡兔同笼问题的由来和主要形式,揭示鸡兔同笼问题中的数量关系,假设法(6)行程问题:相遇问题、追及问题等,相遇时间=总路程÷速度和,追及时间=距离÷速度差。

(7)周期问题(8)还原问题(9)归一问题(10)体育比赛中的数学、趣题巧解几何类三年级学校的学习中就会涉及到一些简单的图形求周长和面积了,那么在奥数中图形问题涉及到的是巧求周长、巧求矩形面积数论类现在三年级也开始涉及到了数论了,是比较简单的能被2、3、5整除的性质、奇数和偶数、余数与周期问题。

小学奥数知识点及公式总汇(必背)

小学奥数知识点及公式总汇(必背)

⼩学奥数知识点及公式总汇(必背)⼩学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归⼀问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.⽜吃草问题8.周期循环与数表规律9.平均数10.抽屉原理 411.定义新运算12.数列求和13.⼆进制及其应⽤ 514.加法乘法原理和⼏何计数15.质数与合数 616.约数与倍数17.数的整除 718.余数及其应⽤19.余数、同余与周期20.分数与百分数的应⽤ 821.分数⼤⼩的⽐较 922.分数拆分23.完全平⽅数24.⽐和⽐例 1025.综合⾏程26.⼯程问题27.逻辑推理 1128.⼏何⾯积29.⽴体图形30.时钟问题—快慢表问题 1231.时钟问题—钟⾯追及32.浓度与配⽐33.经济问题 1333.经济问题34.简单⽅程35.不定⽅程36.循环⼩数 14和差倍问题和差问题和倍问题差倍问题已知条件⼏个数的和与差⼏个数的和与倍数⼏个数的差与倍数公式适⽤范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较⼩数较⼩数+差=较⼤数和-较⼩数=较⼤数②(和+差)÷2=较⼤数较⼤数-差=较⼩数和-较⼤数=较⼩数和÷(倍数+1)=⼩数⼩数×倍数=⼤数和-⼩数=⼤数差÷(倍数-1)=⼩数和-⼩数=⼤数差÷(倍数-1)=⼩数⼩数×倍数=⼤数⼩数+差=⼤数关键问题求出同⼀条件下的和与差和与倍数差与倍数 2.年龄问题的三个基本特征:①两个⼈的年龄差是不变的;②两个⼈的年龄是同时增加或者同时减少的;③两个⼈的年龄的倍数是发⽣变化的;3.归⼀问题的基本特点:问题中有⼀个不变的量,⼀般是那个“单⼀量”,题⽬⼀般⽤“照这样的速度”……等词语来表⽰。

关键问题:根据题⽬中的条件确定并求出单⼀量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有⼀端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从⽽确定棵数与段数的关系 5.鸡兔同笼问题基本概念:鸡兔同笼问题⼜称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和⼄⼀样或者⼄和甲⼀样):②假设后,发⽣了和题⽬条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从⽽找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

小学奥数数论知识点

小学奥数数论知识点

小学奥数数论知识点一、数的认识1. 自然数:用于计数和排序的数,包括0和正整数。

2. 奇数与偶数:奇数是不能被2整除的整数,偶数是能被2整除的整数。

3. 质数与合数:质数是只有1和本身两个因数的大于1的自然数,合数是除了1和本身外还有其他因数的自然数。

4. 因数与倍数:如果整数a能被整数b整除,a是b的倍数,b是a的因数。

二、数的运算1. 加法与减法:加法是将两个或多个数合并成一个数的运算,减法是从一个数中去掉另一个数的运算。

2. 乘法与除法:乘法是重复加法的简化,除法是将一个数分成几个相等部分的运算。

3. 余数:在除法中,被除数除以除数后剩下的数称为余数。

三、数的性质1. 唯一分解定理:每个大于1的整数都可以唯一地表示为质数的乘积。

2. 最大公约数和最小公倍数:最大公约数是两个或多个整数共有的最大的因数,最小公倍数是这些整数的最小公共倍数。

3. 奇偶性:奇数加奇数得偶数,偶数加偶数得偶数,奇数加偶数得奇数。

四、数的应用1. 约数倍数问题:涉及找出一个数的约数或倍数的问题。

2. 质数问题:涉及质数的分布、判断和性质的问题。

3. 分数的拆分与比较:涉及将分数拆分为不同单位的和,以及比较分数大小的问题。

五、解题技巧1. 枚举法:通过列举所有可能的情况来找到答案。

2. 反证法:假设某个结论是错误的,通过推理得出矛盾,从而证明原结论是正确的。

3. 归纳法:通过观察一系列特殊情况,找出一般规律。

六、例题解析1. 例题一:找出20以内的所有质数。

- 解析:20以内的质数有2, 3, 5, 7, 11, 13, 17, 19。

2. 例题二:求36和54的最大公约数。

- 解析:通过辗转相除法,可以求得36和54的最大公约数是18。

七、总结数论是数学的基础分支之一,对于培养逻辑思维和解决问题的能力具有重要作用。

小学奥数数论涉及的知识点广泛,包括数的认识、数的运算、数的性质、数的应用以及解题技巧等。

掌握这些知识点,对于提高学生的数学素养和解决复杂问题的能力至关重要。

【小学数学】奥数最全面知识点总结

【小学数学】奥数最全面知识点总结

小学奥数最全面的知识点总结1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数的所有知识点总结

小学奥数的所有知识点总结

小学奥数的所有知识点总结第一章数学基础知识一、数字的认识1.自然数、整数、有理数、小数、分数2.有关数的表示和认识3.大小比较二、数的四则运算1.加法、减法、乘法、除法2.运算规律3.运算技巧三、数的倍数和约数1.倍数的概念和判断2.约数的概念和判断3.倍数和约数的性质四、数的整除1.整除的概念和性质2.质数和合数3.分解质因数4.最小公倍数和最大公约数五、分数1.分数的概念和表示2.化简、通分3.分数的加减乘除4.分数的比较5.带分数第二章几何基础知识一、点、线、面1.点的概念2.直线和线段的概念3.射线和角的概念4.平行线和垂直线的关系二、线段和角1.线段的长度2.角的度量3.相交线的性质三、三角形1.三角形的分类2.三角形的性质3.三角形的周长和面积四、四边形1.四边形的分类2.四边形的性质3.四边形的周长和面积五、多边形1.多边形的分类和性质2.多边形的内角和外角和3.多边形的周长和面积六、相似和全等1.相似和全等的概念2.相似和全等的判断3.相似和全等的性质第三章综合应用一、尺规作图1.用图形工具画简单图形2.用尺规作出平行线、垂直线等二、平面图形的变化1.旋转和平移2.镜面反射3.放大、缩小三、数学应用题1.通过故事和实际问题引出运算2.建立方程和不等式3.奥数问题解题技巧四、数学启发题1.奇妙的数学问题2.趣味的数学游戏3.数学思维培养第四章奥数竞赛技巧一、备战奥数竞赛1.理解奥数竞赛2.奥数竞赛的特点3.比赛常见题型二、解题技巧1.快速计算技巧2.巧妙应用数学知识解题3.发散性思维和逻辑推理三、比赛心态1.放松心态2.临场发挥3.全面准备总结:小学奥数的知识点总结包括了数学基础知识、几何基础知识、综合应用和奥数竞赛技巧四个部分。

在数学基础知识中,包括了数字的认识、数的四则运算、数的倍数和约数、数的整除和分数等内容。

在几何基础知识中,包括了点、线、面、线段和角、三角形、四边形、多边形、相似和全等等内容。

小学生奥数基础知识点总结

小学生奥数基础知识点总结

小学生奥数基础知识点总结奥数,即奥林匹克数学竞赛,是一种专门针对小学生、初中生和高中生的数学竞赛活动。

通过参加奥数竞赛,学生可以培养自己的逻辑思维能力、数学解题能力和创造力,提高数学学科成绩和对数学的兴趣。

奥数竞赛可以帮助学生在数学领域得到更深层次的理解和掌握,对学习和未来的发展有积极的影响。

下面我们来总结一下小学生奥数的基础知识点,希望对小学生学习奥数有所帮助。

一、数的认识1. 数的读写在小学奥数中,学生首先需要掌握阿拉伯数字的读写,包括0-100以内的数字。

不仅要能够正确读出数字,还要能够正确书写数字的阿拉伯字符。

2. 数的大小比较了解数字的大小关系,比如大小、大小、等等。

3. 数的进位与退位学习理解多位数的进位与退位。

4. 数的整除性学习认识能够整除的数字,了解倍数、约数的概念。

5. 数的位数和数位认识数字的组成结构,包括位数和数位的概念。

6. 数的四则运算学习加法、减法、乘法、除法的基本概念和运算方法。

7. 分数了解分数的概念,认识分数的大小比较和运算法则。

二、几何图形1. 直线、线段、射线认识直线、线段和射线的定义,了解它们的性质和应用。

2. 角认识角的定义、性质,了解不同种类的角如锐角、直角、钝角等。

3. 三角形了解三角形的种类、性质和判定方法。

4. 四边形认识四边形的种类、性质和判定方法。

5. 多边形认识多边形的概念,了解正多边形的性质。

6. 圆认识圆的定义、性质和相关定理。

7. 长方体、正方体了解长方体和正方体的定义、性质和应用。

8. 平面图形的相似性了解相似图形的定义、性质和判定方法。

三、算术题1. 整数了解整数的概念和性质,能够进行整数的四则运算。

2. 小数认识小数的概念和性质,能够进行小数的运算。

3. 分数了解分数的概念和性质,能够进行分数的四则运算。

4. 百分数认识百分数的概念和性质,能够进行百分数的运算。

5. 取整与估算了解取整与估算的方法和应用。

6. 比例认识比例的概念和性质,能够进行比例的求解。

小学数学四至六年级奥数知识点,归纳总结

小学数学四至六年级奥数知识点,归纳总结

总份数=比的前后项之和,甲份:乙份=A:B,则总 份数=A+B
甲数量 = 总量 × 甲份数/总份数
乙数量 = 总量 × 乙份数/总份数
盈亏问题 牛吃草
一盈一亏 参加分配的总人数=(盈+亏)÷分配差 双盈 参加分配的总人数=(大盈-小盈)÷分配差 双亏 参加分配的总人数=(大亏-小亏)÷分配差 一盈一尽 参加分配的总人数=盈÷分配差 一亏一尽 参加分配的总人数=亏÷分配差 关键 确定盈与亏单位,一般与分配的每份单位一致
火车 相遇追及
分针每分钟走1分格,时针每分钟走1/12分格 分钟速度是时针的12倍,二者的速度差为11/12 通常按追及问题对待,也可按差倍问题计算。
(距离按钟面60格标准来统计有多少格)
时钟问题
过桥时间=(车长+桥长)÷车速
车长=过桥时间×车速-桥长
桥长=过桥时间×车速-车长
顺水速=船速+水速 =船速×2-逆水速 =逆水速+水速×2
短时间)
原有草=任一方式总草量-这些天减少草量 牛数×天数)+减少草*天数
天数=原有草÷(牛数+1天减少草)
牛数=原有草÷天数-1天减少草
相遇时间=相遇路程÷速度和 相遇路程=速度和×相遇时间
相遇
追及时间=追及路程÷速度差 追及路程=速度差×追及时间
追及
相遇时间=(甲车长+乙车长+距离)÷速度和 追及时间=(甲车长+乙车长+距离)÷速度差
和差和=大数 (和-差)÷2=小数 总和÷(倍数+1)=较小数 总和-较小数=较大数 两数差÷(倍数-1)=较小数 较小数+差=较大数
①两个人年龄差是不变的; ②两个人年龄是同时加或减; ③两个人年龄倍数会发生变化;

学奥数有关的知识点总结

学奥数有关的知识点总结

学奥数有关的知识点总结一、基本数学概念1. 整数:整数是数轴上的一些点,包括正整数、负整数和零。

2. 分数:分子、分母,约分和通分的概念及方法。

3. 小数:小数点、小数的大小比较和四则运算。

4. 百分数:百分数的含义、百分数的计算。

5. 方程和不等式:一元一次方程和一元一次不等式的解法。

6. 同比例关系:同比例关系的概念、性质和应用。

7. 几何图形:平面图形的基本性质和计算方法。

8. 几何变换:平移、旋转、翻折、对称等几何变换的基本概念和性质。

二、奥数解题技巧1. 分析题目:把问题装换成数学语言。

2. 列方程:根据问题用数学符号进行表示。

3. 解方程:求解方程的方法,包括移项、合并同类项和通分等方法。

4. 推理:通过逻辑推理和数学方法解决问题。

5. 构造法:通过构造图形或例子来解决问题。

6. 反证法:通过反设假设得到矛盾,进而得出结论。

7. 综合方法:结合以上各种方法进行解题。

三、奥数思维培养1. 创造性思维:培养孩子解决问题的创造性思维能力。

2. 逻辑思维:培养孩子使用逻辑推理解决问题的能力。

3. 想象力:培养孩子对数学问题进行形象思维的能力。

4. 抽象思维:培养孩子将具体问题进行抽象化的能力。

5. 综合思维:培养孩子综合运用各种思维解决问题的能力。

四、奥数学习方法1. 灵活运用:在解决数学问题时,要善于灵活运用各种数学概念和方法。

2. 勤思考:多进行思考,善于总结经验和方法。

3. 多练习:掌握数学技巧需要进行多次练习。

4. 查漏补缺:及时发现和改正学习中的错误。

5. 多参考:善于向别人请教,多参考数学问题的解法和方法。

养成良好的学习习惯对于奥数学习至关重要,这包括:积极主动、坚韧不拔、自律自律、勇于挑战等。

除此之外,还需要孩子们在学习奥数的过程中,培养好自己的思维习惯、动手能力、问题解决能力和团队协作能力。

奥数的学习不仅可以提高孩子的数学水平,更可以培养孩子的逻辑思维和解决问题的能力。

希望家长和老师可以根据孩子的实际情况,给予孩子更系统和科学的奥数培养。

小学奥数所有的知识点归纳

小学奥数所有的知识点归纳

小学奥数所有的知识点归纳对于小学生来说,参加奥数是提高数学能力和思维能力的绝佳途径。

小学奥数涉及的知识点广泛而深入,涵盖了数学的各个方面。

下面将对小学奥数的知识点进行归纳总结。

一、基础知识点1.1 数的认识和比较小学奥数的基础知识点之一是数的认识和比较。

包括数的读写、数的加减法运算、数的大小比较等。

1.2 整数的四则运算整数的四则运算是小学奥数必备的基础知识点,包括整数的加减乘除运算、负数的加减乘除运算等。

1.3 分数和小数的基本运算分数和小数的基本运算也是小学奥数的核心知识点之一。

包括分数的加减乘除运算、分数与整数的混合运算、小数的加减乘除运算等。

1.4 平方根和立方根的计算平方根和立方根的计算是小学奥数的一项重要知识点。

要求学生能够计算非负整数的平方根和立方根,并应用于实际问题中。

二、应用问题2.1 算术题小学奥数中,包含了各类应用算术题,如速算、面积体积计算、运算顺序等。

此类问题要求学生具备计算能力和分析解决问题的能力。

2.2 类比题类比题是小学奥数中的经典题型之一,它要求学生能够发现和分析事物之间的相似关系,并运用到具体问题中。

2.3 推理与判断题推理与判断题是小学奥数中较为复杂的类型,它要求学生通过逻辑思维和推理能力来解答问题。

这类题目既考察了学生的思维能力,又培养了他们的逻辑思维能力。

三、数学思维3.1 抽象思维小学奥数培养学生的数学抽象思维能力,使学生能够将数学问题具象化,提高解决问题的能力。

3.2 推理思维推理思维是解决数学问题的重要能力之一。

小学奥数中的推理题要求学生能够发现问题的规律,并运用推理能力进行解答。

3.3 分析思维分析思维是解决复杂数学问题的关键能力。

小学奥数中的分析题要求学生能够分析问题的结构和关系,并找出解题的关键点。

以上是小学奥数知识点的简要归纳。

通过学习这些知识点,可以提高小学生的数学能力和思维能力,为他们将来更高阶段的数学学习打下坚实基础。

希望同学们能够充分利用好奥数学习的机会,努力提高自己的数学水平!。

小学奥数知识点归纳和总结

小学奥数知识点归纳和总结

小学奥数知识点归纳和总结小学奥数是指小学生参与的奥林匹克数学竞赛。

小学奥数的目的是培养学生的数学兴趣、创造力和解决问题的能力。

在小学奥数的学习过程中,有一些重要的知识点需要掌握。

下面我将对这些知识点进行归纳和总结。

1.数的认识与应用:小学奥数中,首先需要掌握自然数、整数、有理数和逻辑推理的基础。

还需要学会数的位数、十进制和分数的基本概念,以及运用数来解决实际问题。

2.整数的性质与运算:整数组成了一条数轴,并学会在数轴上表示整数。

需要掌握整数的比较、绝对值、加减乘除等基本运算。

同时还需要学会利用整数的性质解决简单的代数方程。

3.分数的应用:小学奥数中,分数是一个十分重要的知识点。

学生需要掌握分数的读法、表示方法和运算法则。

还需要学会将分数转化为小数和百分数,并能够运用分数解决实际问题。

4.几何与图形:小学奥数中,几何与图形是一个重要的知识点。

学生需要认识各种图形的名称、性质和特点,并学会计算图形的面积、周长和体积。

同时还需要了解一些几何的基本定理,如平行线的性质、三角形的性质等。

5.概率与统计:学生需要了解概率和统计的基本概念,学会利用概率和统计的知识解决实际问题。

例如,学生需要学会计算事件的概率、众数、中位数、平均数等。

6.数据与图表:小学奥数中,学生还需要学会认识和运用数据和图表。

例如,学生需要学会读懂表格、柱状图、折线图等,并从中获取有用的信息。

7.进制与数制:学生需要学会认识和运用不同的进制和数制。

例如,学生需要了解二进制、八进制和十六进制,并学会运用它们进行计算。

8.数论与整除性质:学生需要学会运用数论中的整除性质解决问题。

例如,学生需要学会判断一个数是否为素数,以及学会找出一个数的因数和倍数。

9.方程与不等式:学生需要学会解一元一次方程和一元一次不等式。

例如,学生需要学会用代数方法解方程和不等式,并在实际问题中应用。

10.排列与组合:学生需要学会计算排列和组合的数量。

例如,学生需要学会利用排列和组合的知识解决排队、抽签等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数知识点归纳和总结二年级奥数知识点分类:一、运算符号类二、规律填数类三、规律画图类四、年龄问题类五、间隔问题类(含植树问题及智力计数)六、周期问题类七、有序思考类八、时钟问题类九、推理及思维训练类(包含算式类)十、和差问题类十一、和倍问题类十二、差倍问题类十三、一笔画类十四、移动变换类十五、智力趣味类(包含巧切西瓜)十六、鸡兔同笼类十七、盈亏问题类十八、应用类(含数量关系、重叠问题、)三年级奥数知识点分类:一、计算类计算是数学学习的基本知识,也是学好奥数的基础。

能否又快又准的算出答案,是历年数学竞赛考察的一个基本点。

三年级的计算包括:速算与巧算、数列规律、数列求和、等差数列的和等。

二、应用题类从三年级起,大量的奥数专题知识都是所有年级所有竞赛考试中必考的重点知识。

学生们一定要在各个应用题专题学习的初期打下良好的基础。

(1)和倍、差倍问题:用线段标识等方法揭示这两类问题中各种数量关系,和倍问题:小数=和十(倍数+1)。

三、差倍问题:小数=差十(倍数-1)(2)年龄问题:教授解决年龄问题的主要方法:和倍、差倍方法;画图线段标示法。

(3)盈亏问题:介绍盈亏问题的主要形式(双盈、双亏、一盈一亏)分配总人数=盈亏总额十两次分配数之差。

(4)植树问题:总长、株距、棵树三要素之间的数量关系:总长=株距X段数,封闭图形:棵数=段数不封闭图形:两头都栽:棵数=段数+1 两头都不栽:棵数=段数-1 一头栽一头不栽:棵数=段数(5) 鸡兔同笼问题:介绍鸡兔同笼问题的由来和主要形式,揭示鸡兔同笼问题中的数量关系,假设法(6) 行程问题:相遇问题、追及问题等,相遇时间=总路程十速度和,追及时间=距离十速度差。

(7) 周期问题(8) 还原问题(9) 归一问题(10) 体育比赛中的数学、趣题巧解几何类三年级学校的学习中就会涉及到一些简单的图形求周长和面积了,那么在奥数中图形问题涉及到的是巧求周长、巧求矩形面积数论类现在三年级也开始涉及到了数论了,是比较简单的能被2、3、5 整除的性质、奇数和偶数、余数与周期问题。

四年级奥数知识点分类:1. 圆周率常取数据3.14 X 1 = 3.143.14 X 2 = 6.283.14 X 3 = 9.423.14 X 4 = 12.563.14 X 5 = 15.73.15 X 6 = 18.843.14 X 7 = 21.983.14 X 8 = 25.123.14 X 9 = 28.262. 常用特殊数的乘积125X 8= 100025 X 4 = 100125X 3= 375625X 16= 100007X11X13=100125X 8= 200125X 4= 50037X 3=1113.100 内质数:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 974. 单位换算:1 米=3 尺=3.2808 英尺=1.0926 码1 公里=1000米=2里1 码=3 英尺=36 英寸1 海里=1852米=3.704 里=1.15 英里1 平方公里=1000000 平方米=100 公顷=4 平方里=0.3861 平方英里1 平方米=100 平方分米=10000 平方厘米1 公顷=100 公亩=15 亩=2.4711 英亩1 立方米=1000 立方分米=1000000 立方厘米1 立方米=27 立方尺=1.308 立方码=35.3147 立方英尺1 吨=1000 公斤=1000 千克1 公斤=1000 克=2 斤(市制)=2.2046 磅5. 加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。

加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。

6. 乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。

除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律积的变化规律:同扩同缩法。

同级运算时,如果有交换数的位置,应该注意符号搬家。

加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号;7. 等差数列数列是指按一定规律顺序排列成一列数。

如果一个数列中从第二个数开始,相邻两个数的差都相等,我们就把这样的一列数叫做等差数列,等差数列中的每一个数都叫做项,第一个数叫第一项,通常也叫“首项”,第二个数叫第二项,第三个数叫第三项……最后一项叫做“末项” 。

等差数列中相邻两项的差叫做“公差” ,等差数列中项的个数叫做“项数” 。

公式:和=(首项+ 末项)x项数十2项数=(末项-首项)十公差+1第n项=首项+ (n-1 )x公差8. 和倍问题己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问题。

解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据其他几个数与较小数的倍数关系,确定总和相当于标准数的多少倍,然后用除法求出标准数,再求出其他各数,最好采用画线段图的方法。

和倍公式:和+(倍数+ 1)=小数9. 差倍问题己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍问题。

解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍数关系,确定差是标准数的多少倍,然后用除法先求出较小数,再求出较大数。

解答这类问题,先画线段图,帮助分析数量关系。

差倍公式:差+(倍数- 1)=小数10. 和差问题和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少的应用题。

解答和差问题的基本公式是:(和一差)十2=较小数(和+差)十2=较大数九、11. 年龄问题己知两个人或几个人的年龄,求他们年龄之间的某种数量关系;或己知某些人年龄之间的数量关系,求他们的年龄等,这种题称为年龄问题。

年龄问题的特点是:一般用和差或者和倍问题的方法解答。

(1)两人的年龄之差是不变的,称为定差。

(2)两个人的年龄同时都增加同样的数量。

(3)两个年龄之间的倍数关系,随着年龄的增长,也在发生变化。

年龄问题的解题方法是:几年后=大小年龄之差十倍数差-小年龄几年前=小年龄-大小年龄差十倍数差12. 平均数求平均数必须知道总数和份数,常用公式:平均数=总数十份数总数=平均数X份数份数=总数十平均数相遇问题行程问题又分为相遇问题、13. 相遇与追及问题路程=速度X时间时间=路程十速度速度=路程十时间。

相遇问题它的特点是两个运动物体或人,同时或不同时从两地相向而行,或同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和X相遇时间=路程路程十速度和=相遇时间速度十相遇时间=速度和追及问题运动的物体或人同向而不同时出发,后出发的速度快,经过一段时间追上先出发的,这样的问题叫做追及问题,解答追及问题的基本条件是“追及路程” 和“速度差” 。

追及问题的基本数量关系是:追及时间=追及路程十速度差追及路程=速度差X追及时间速度差=追及路程十追及时间14. 行船问题船在江河里航行,前进的速度与水流动的速度有关系。

船在流水中行程问题,叫做行船问题(也叫流水问题),船顺流而下的速度和逆流而上的速度与船速、水速的关系是:顺水速度=船速+水速逆水速度=船速-水速由于顺水速度是船速与水速的和,逆水速度是船速与水速的差,因此行船问题就是和差问题,所以解答行船问题有时需要驼用和差问题的数量关系。

船速=(顺水速度+逆水速度)十2水速=(顺水速度—逆水速度)十2 因为行船问题也是行程问题,所以在行船问题中也反映了行程问题的路程、速度与时间的关系。

顺水路程=顺水速度X时间逆水路程=逆水速度X时间15. 过桥问题过桥问题的一般数量关系是:路程=桥长+车长车速=(桥长+车长)十通过时间通过时间=(桥长+车长)十车速车长=车速X通过时间-桥长桥长=车速X通过时间-车长16. 植树问题在首尾不相接的路线上植树,段数与棵数关系可分为三类:(1)两端都种树段数=棵数—1 (2)一端种一端不种段数=棵数(3)两端都不种段数=棵数+1 (4)在首尾相接的路线上种树(如圆、正方形、闭合曲线等)段数=棵数17. 还原问题还原问题又叫逆推问题。

己知一个数的结果,再经过逆运算反求原数,叫做还原问题。

解决这类题要从结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘)。

18. 方阵问题很多的人或物按一定条件排成正方形(简称方阵),再根据己知条件求总人数,这类题叫方阵问题。

在解决方阵问题时,要搞清方阵中一些量(如层数,最外层人数,最里层人数,总人数)之间的关系。

方阵问题的基本特点是:(1)方阵不管在哪一层,每边的人数都相同,每向里面一层,每边上的人数减少2,每一层就少8。

(2)每层人数=(每边人数—1)X 4(3)每边人数=每层人数十4 + 1(4)实心方阵人数=每边人数X每边人数19. 幻方与数阵幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。

这相相等的和叫“幻和” 。

两种方法:奇阶:1 、九子排列法2、罗伯法,3 、巴舍法。

偶阶:1、对称交换法2、圆心方阵法。

数阵有三种基本类型:(1)封闭型,(2)辐射型(3)综合型解数阵问题一般思路是从和相等入手,确定重处长使用的中心数,是解答解数阵类型题的解题关键。

一般答案不唯一。

20. 奇数与偶数加法:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数减法:偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数乘法:偶数X偶数=偶数奇数X奇数=奇数偶数X奇数=偶数盈亏问题解21. 盈亏问题通常是比较法和对应法结合使用。

公式是:(同盈同亏用减法,一亏一盈用加法)即:两次分配结果差十两次分配数差=人数22. 牛吃草问题牛吃草问题涉及三种数量: A.原有的草。

B.新长出的草。

C牛吃掉的草。

牛吃草问题解法一般分为三步:一、求每天新生的草量;二、求原有草量;三、求出最终的问题。

(类似于行程问题中的追及问题)23. 还原问题解题关键:在从后往前推算的过程中,每一步都是做同原来相反的运算,原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘。

24. 假设问题假设法是解答应用题时经常用到的一种方法。

所谓“假设法”就是依据题目中的己知条件或结论作出某种设想,然后按照己知条件进行推算,根据数量上出现的矛盾,再适当调整,从而找到正确答案。

25. 余数问题一个带余数除法算式包含4个数:被除数十除数=商”余数。

它们的关系也可表示为:被除数=除数X商+余数,或(被除数—余数)十除数=商。

相关文档
最新文档