小学奥数知识总结手册

合集下载

小学奥数最全面的知识点总结

小学奥数最全面的知识点总结

小学奥数最全面的知识点总结1.和差倍问题和差问题和倍问题差倍问题已知条件:几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围:已知两个数的和,差,倍数关系公式:①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数③和÷(倍数+1)=小数小数x倍数=大数和-小数=大数④差÷(倍数-1)=小数小数x倍数=大数小数+差=大数关键问题:求出同一条件下的和与差、和与倍数、差与倍数。

2.年龄问题年龄问题:已知两个人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。

年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数确是每年都在变化的这个关键。

例题:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍。

⑴父子年龄的差是多少?54 –18 = 36(岁)⑵几年前父亲年龄比儿子年龄大几倍?7 - 1 = 6⑶几年前儿子多少岁?36÷6 = 6(岁)⑷几年前父亲年龄是儿子年龄的7倍?18 –6 = 12 (年)答:12年前父亲的年龄是儿子年龄的7倍。

3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;其基本数量关系是: 总量÷份数=每份数(单一量)单一量x份数=总量(正归一)总量÷单一量=份数(反归一)4.植树问题基本类型及基本公式:①在直线或者不封闭的曲线上植树,两端都植树。

基本公式:棵数=段数+1②在直线或者不封闭的曲线上植树,两端都不植树。

基本公式:棵距x段数=总长棵数=段数-1③在直线或者不封闭的曲线上植树,只有一端植树。

小学奥数所有知识点大汇总(最全)

小学奥数所有知识点大汇总(最全)

1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。

下面为大家汇总小学阶段常见的奥数知识点。

一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。

小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。

3、分数四则运算同分母分数加减法:分母不变,分子相加减。

异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。

分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。

分数除法:除以一个数等于乘这个数的倒数。

二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。

偶数:能被 2 整除的整数。

奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。

合数:除了 1 和它本身还有别的因数的自然数。

1 既不是质数也不是合数。

3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。

倍数:c 就是 a 和 b 的倍数。

4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。

小学奥数知识总结

小学奥数知识总结

小学(数学)奥数知识总结1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学(数学)奥数知识总结手册

小学(数学)奥数知识总结手册

知识总结手册和差倍问题年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;植树问题鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学奥数最全面知识点总结

小学奥数最全面知识点总结

小学奥数最全面的知识点总结1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

奥数知识点总结手册

奥数知识点总结手册

奥数知识点总结手册一、基本概念1.1 数的基本概念数的概念是数学学习的基础,包括自然数、整数、有理数和实数等。

学生需要掌握各种数的性质、大小关系和运算规律。

1.2 几何图形的概念几何图形包括点、线、面等基本概念,还包括各种几何图形的性质和相互关系。

学生需要了解各种几何图形的定义、分类、性质和应用。

1.3 代数式和方程的概念代数式和方程是数学中重要的内容,学生需要了解代数式和方程的基本概念、运算规律和解题方法。

1.4 函数的概念函数是数学中的一种重要概念,学生需要了解函数的定义、性质、图像和应用等内容。

1.5 统计与概率的概念统计与概率是数学中的重要分支,学生需要掌握统计与概率的基本概念、计算方法和应用场景。

二、运算规律2.1 整数的四则运算学生需要掌握整数的加减乘除运算规律,包括加法、减法、乘法和除法的运算方法和性质。

2.2 分数的加减乘除分数是数学中的重要概念,学生需要了解分数的运算规律,包括分数的加减乘除运算方法和性质。

2.3 方程的解法方程是数学中的重要内容,学生需要掌握求解一元一次方程和一元二次方程的方法和步骤。

2.4 几何图形的计算学生需要掌握各种几何图形的计算方法,包括周长、面积、体积等计算公式和应用技巧。

2.5 函数的运算函数是数学中的重要内容,学生需要了解函数的复合、反函数、函数的性质和图像变化等内容。

三、问题解题技巧3.1 数学问题的分析学生需要培养对数学问题的分析能力,包括理解问题、分析问题、找出关键信息和建立数学模型等能力。

3.2 数学问题的解题方法学生需要掌握各种数学问题的解题方法,包括数学推理、逻辑推断、数学归纳法、递推关系等解题技巧。

3.3 数学问题的实际应用数学知识是解决现实问题的重要工具,学生需要了解数学知识在生活和工作中的实际应用,培养解决实际问题的能力。

3.4 数学问题的验证和证明数学问题的验证和证明是数学学习的重要环节,学生需要了解数学问题的验证和证明方法,培养逻辑思维和推理能力。

小学奥数知识总结手册

小学奥数知识总结手册

小学奥数知识总结手册 Revised by Chen Zhen in 20211、和差倍问题2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学阶段奥数知识点总结(33大类)

小学阶段奥数知识点总结(33大类)

小学阶段奥数知识点总结(共计33大类)一、年龄问题的三大特征二、归一问题特点三、植树问题总结四、鸡兔同笼问题五、盈亏问题六、牛吃草问题七、平均数问题八、周期循环数九、抽屉原理十、定义新运算十一、数列求和十二、二进制及其应用十三、加法原理十四、质数与合数十五、约数与倍数十六、数的整除十七、余数及其应用十八、余数问题十九、分数与百分数的应用二十、分数大小的比较二十一、完全平方数二十二、比和比例二十三、综合行程问题二十四、工程问题二十五、逻辑推理问题二十六、几何面积二十七、时钟问题—快慢表问题二十八、时钟问题—钟面追及二十九、浓度与配比三十、经济问题三十一、简单方程三十二、不定方程三十三、循环小数一、年龄问题的三大特征年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。

年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。

例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍?⑴父子年龄的差是多少?54 –18 = 36(岁)⑵几年前父亲年龄比儿子年龄大几倍?7 - 1 = 6⑶几年前儿子多少岁?36÷6 = 6(岁)⑷几年前父亲年龄是儿子年龄的7倍?18 –6 = 12 (年)答:12年前父亲的年龄是儿子年龄的7倍。

二、归一问题特点归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。

这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。

小学奥数重点知识归纳总结

小学奥数重点知识归纳总结

小学奥数重点知识归纳总结数学作为一门基础学科,对于孩子的综合素质培养具有重要意义。

奥林匹克数学竞赛作为培养学生数学思维和创新能力的重要途径之一,对小学生进行数学启蒙具有重要作用。

在这篇文章中,我将对小学奥数的重点知识进行归纳总结。

一、整数与分数1. 整数的概念与性质整数包括正整数、零和负整数,它们有一系列的性质,如加法、减法、乘法、乘方等运算规则,以及大小比较、绝对值等概念。

2. 分数的概念与性质分数是对一个整体的平均分割,由分子和分母两部分构成,它们有加法、减法、乘法、除法等运算规则,以及约分、比较大小等概念。

3. 整数与分数的转化可以将一个整数转化为相应的分数,也可以将一个分数转化为相应的整数或混合数。

转化时需要注意运算法则和化简。

二、小数与百分数1. 小数的概念与性质小数是指无限不循环小数、无限循环小数和有限小数,它们可以表示实际测量结果。

小数有加法、减法、乘法、除法等运算规则,以及大小比较等概念。

2. 百分数的概念与性质百分数是指以100为基数的分数,常用于表示比例和百分比,它们可以表示实际情况中的比例关系。

百分数有加法、减法、乘法、除法等运算规则,以及比较大小等概念。

3. 小数与百分数的转化可以将一个小数转化为相应的百分数,也可以将一个百分数转化为相应的小数。

转化时需要注意运算法则和移动小数点的位置。

三、几何图形与空间想象1. 图形的基本概念与性质图形包括点、线、线段、角、三角形、四边形、多边形等,它们有不同的性质和特点。

充分理解和掌握这些概念对于解题非常重要。

2. 平面图形的分类与特征平面图形可以分为正方形、长方形、圆、等边三角形等,每种图形都有自己的特征和性质。

熟练掌握它们的特征和相互关系有助于解决与图形相关的问题。

3. 空间图形的认识与探索空间图形包括正方体、长方体、圆柱、圆锥等,它们在现实生活中随处可见。

通过观察和探索,了解它们的性质和特点,有助于培养孩子的空间想象能力。

四、逻辑推理与推理策略1. 逻辑推理的基本思维方式逻辑推理是通过事实和前提推导出结论的思维方式,它要求学生具备辨认条件、推理关系和找出规律的能力。

小学奥数知识点归纳和总结

小学奥数知识点归纳和总结

小学奥数知识点归纳和总结二年级奥数知识点分类:一、运算符号类二、规律填数类三、规律画图类四、年龄问题类五、间隔问题类(含植树问题及智力计数)六、周期问题类七、有序思考类八、时钟问题类九、推理及思维训练类(包含算式类)十、和差问题类十一、和倍问题类十二、差倍问题类十三、一笔画类十四、移动变换类十五、智力趣味类(包含巧切西瓜)十六、鸡兔同笼类十七、盈亏问题类十八、应用类(含数量关系、重叠问题、)三年级奥数知识点分类:一、计算类计算是数学学习的基本知识,也是学好奥数的基础。

能否又快又准的算出答案,是历年数学竞赛考察的一个基本点。

三年级的计算包括:速算与巧算、数列规律、数列求和、等差数列的和等。

二、应用题类从三年级起,大量的奥数专题知识都是所有年级所有竞赛考试中必考的重点知识。

学生们一定要在各个应用题专题学习的初期打下良好的基础。

(1)和倍、差倍问题:用线段标识等方法揭示这两类问题中各种数量关系,和倍问题:小数=和÷(倍数+1)。

三、差倍问题:小数=差÷(倍数-1)(2)年龄问题:教授解决年龄问题的主要方法:和倍、差倍方法;画图线段标示法。

(3)盈亏问题:介绍盈亏问题的主要形式(双盈、双亏、一盈一亏)分配总人数=盈亏总额÷两次分配数之差。

(4)植树问题:总长、株距、棵树三要素之间的数量关系:总长=株距×段数,封闭图形:棵数=段数不封闭图形:两头都栽:棵数=段数+1两头都不栽:棵数=段数-1一头栽一头不栽:棵数=段数(5)鸡兔同笼问题:介绍鸡兔同笼问题的由来和主要形式,揭示鸡兔同笼问题中的数量关系,假设法(6)行程问题:相遇问题、追及问题等,相遇时间=总路程÷速度和,追及时间=距离÷速度差。

(7)周期问题(8)还原问题(9)归一问题(10)体育比赛中的数学、趣题巧解几何类三年级学校的学习中就会涉及到一些简单的图形求周长和面积了,那么在奥数中图形问题涉及到的是巧求周长、巧求矩形面积数论类现在三年级也开始涉及到了数论了,是比较简单的能被2、3、5整除的性质、奇数和偶数、余数与周期问题。

小学(数学)奥数知识总结手册 (1)

小学(数学)奥数知识总结手册 (1)

和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

小学数学奥数知识总结归纳

小学数学奥数知识总结归纳

小学数学奥数知识总结归纳第1篇:小学数学奥数知识总结归纳1.和、差、倍问题和差问题、和倍问题、差倍问题已知条件:几个数的和与差,几个数的和与倍数,几个数的差与倍数。

公式适用范围:已知两个数的和,差,倍数关系。

公式:①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2,年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换未完,继续阅读 >第2篇:小升初数学数的改写知识点归纳总结因为每位学生对知识点的掌握程度不同,复习进度也不同。

为大家提供了小升初数学数的改写知识点,希望能够切实的帮助到大家。

数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

学奥数有关的知识点总结

学奥数有关的知识点总结

学奥数有关的知识点总结一、基本数学概念1. 整数:整数是数轴上的一些点,包括正整数、负整数和零。

2. 分数:分子、分母,约分和通分的概念及方法。

3. 小数:小数点、小数的大小比较和四则运算。

4. 百分数:百分数的含义、百分数的计算。

5. 方程和不等式:一元一次方程和一元一次不等式的解法。

6. 同比例关系:同比例关系的概念、性质和应用。

7. 几何图形:平面图形的基本性质和计算方法。

8. 几何变换:平移、旋转、翻折、对称等几何变换的基本概念和性质。

二、奥数解题技巧1. 分析题目:把问题装换成数学语言。

2. 列方程:根据问题用数学符号进行表示。

3. 解方程:求解方程的方法,包括移项、合并同类项和通分等方法。

4. 推理:通过逻辑推理和数学方法解决问题。

5. 构造法:通过构造图形或例子来解决问题。

6. 反证法:通过反设假设得到矛盾,进而得出结论。

7. 综合方法:结合以上各种方法进行解题。

三、奥数思维培养1. 创造性思维:培养孩子解决问题的创造性思维能力。

2. 逻辑思维:培养孩子使用逻辑推理解决问题的能力。

3. 想象力:培养孩子对数学问题进行形象思维的能力。

4. 抽象思维:培养孩子将具体问题进行抽象化的能力。

5. 综合思维:培养孩子综合运用各种思维解决问题的能力。

四、奥数学习方法1. 灵活运用:在解决数学问题时,要善于灵活运用各种数学概念和方法。

2. 勤思考:多进行思考,善于总结经验和方法。

3. 多练习:掌握数学技巧需要进行多次练习。

4. 查漏补缺:及时发现和改正学习中的错误。

5. 多参考:善于向别人请教,多参考数学问题的解法和方法。

养成良好的学习习惯对于奥数学习至关重要,这包括:积极主动、坚韧不拔、自律自律、勇于挑战等。

除此之外,还需要孩子们在学习奥数的过程中,培养好自己的思维习惯、动手能力、问题解决能力和团队协作能力。

奥数的学习不仅可以提高孩子的数学水平,更可以培养孩子的逻辑思维和解决问题的能力。

希望家长和老师可以根据孩子的实际情况,给予孩子更系统和科学的奥数培养。

小学奥数各年级知识点

小学奥数各年级知识点

奥数各年级知识点必备手册一年级奥数知识点上册下册认识图形(一)速算与巧算(一)认识图形(二)速算与巧算(二)认识图形(三)数数与计数(一)数一数(一)数数与计数(二)数一数(二)数数与计数(三)动手画画数数与计数(四)摆摆看看填图与拆数(一)做做想想填图与拆数(二)区分图形分组与组式立体平面展开自然数串趣题做立体模型不等与排序图形的整体与部分奇与偶折叠描痕法是与非多个图形的组拼火柴棍游戏(一)一个图形的等积变换火柴棍游戏(二)一个图形的等份分划火柴棍游戏(三)发现图形的变化规律附录点、线、角多边形和扇形长方形、正方形、三角形和圆立体图形的认识二年级奥数知识点上册速算与巧算习题习题解答数数与计数(一)习题习题解答数数与计数(二)习题习题解答认识简单数列习题习题解答自然数列趣题习题习题解答找规律(一)习题习题解答找规律(二)习题习题解答找规律(三)习题习题解答填图与拆数习题习题解答考虑所有可能情况(一)习题习题解答考虑所有可能情况(二)习题习题解答仔细审题习题习题解答猜猜凑凑习题习题解答列表尝试法习题习题解答画图凑数法习题习题解答下册机智与顿悟习题习题解答数数与计数习题习题解答速算与巧算习题习题解答数与形相映习题习题解答一笔画问题习题习题解答七座桥问题习题习题解答数字游戏问题(一)习题习题解答数字游戏问题(二)习题习题解答整数的分拆习题习题解答枚举法习题习题解答找规律法习题习题解答逆序推理法习题习题解答画图显示法习题习题解答等量代换法习题习题解答等式加减法习题习题解答附录重量的认识习题习题解答长度的认识习题习题解答时间的认识习题习题解答三年级奥数知识点上册速算与巧算(一)习题及答案速算与巧算(二)习题及答案上楼梯问题习题及答案植树与方阵问题习题及答案找几何图形的规律习题及答案找简单数列的规律习题及答案填算式(一)习题及答案填算式(二)习题及答案数字谜(一)习题及答案数字谜(二)习题及答案巧填算符(一)习题及答案巧填算符(二)习题及答案火柴棍游戏(一)习题及答案火柴棍游戏(二)习题及答案综合练习题下册从数表中找规律习题及答案从哥尼斯堡七桥问题谈起习题及答案多笔画及应用问题习题及答案最短路线问题习题及答案归一问题习题及答案平均数问题习题及答案和倍问题习题及答案差倍问题习题及答案和差问题习题及答案年龄问题习题及答案鸡兔同笼问题习题及答案盈亏问题习题及答案巧求周长习题及答案从数的二进制谈起习题及答案综合练习四年级奥数知识点上册速算与巧算(三)习题习题解答速算与巧算(四)习题习题解答定义新运算习题习题解答等差数列及其应用习题习题解答倒推法的妙用习题习题解答行程问题(一)习题习题解答几何中的计数问题(一)习题习题解答几何中的计数问题(二)习题习题解答图形的剪拼(一)习题习题解答图形的剪拼(二)习题习题解答讲格点与面积习题习题解答数阵图习题习题解答填横式(一)习题习题解答填横式(二)习题习题解答下册乘法原理习题习题解答加法原理习题习题解答排列习题习题解答组合习题习题解答排列组合习题习题解答排列组合的综合应用习题习题解答行程问题习题习题解答数学游戏习题习题解答有趣的数阵图(一)习题习题解答有趣的数阵图(二)习题习题解答简单的幻方及其他数阵图习题习题解答数字综合题选讲习题习题解答三角形的等积变形习题习题解答简单的统筹规化问题习题习题解答五年级奥数知识点上册数的整除问题习题习题解答质数、合数和分解质因数习题习题解答最大公约数和最小公倍数习题习题解答带余数的除法习题习题解答奇数与偶数及奇偶性的应用习题习题解答能被30以下质数整除的数的特征习题习题解答行程问题习题习题解答流水行船问题习题习题解答“牛吃草”问题习题习题解答列方程解应用题习题习题解答简单的抽屉原理习题习题解答抽屉原理的一般表述习题习题解答染色中的抽屉原理习题习题解答面积计算习题习题解答下册不规则图形面积的计算(一)习题习题解答不规则图形面积的计算(二)习题习题解答巧求表面积习题习题解答最大公约数和最小公倍数习题习题解答同余的概念和性质习题习题解答不定方程解应用题习题习题解答时钟问题习题习题解答数学游戏习题习题解答逻辑推理(一)习题习题解答逻辑推理(二)习题习题解答容斥原埋习题习题解答简单的统筹规划问题习题习题解答递推方法习题习题解答速算与巧算1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+51.解:(1)18+28+72=18+(28+72)=18+100=118(2)87+15+13=(87+13)+15=100+15=115(3)43+56+17+24=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=2502.解:(1)98+67=98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=71(3)75+26=75+25+1=100+1=1013.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50再加49等于减1)(3)41-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=100×5-1-2-3-4-5=500-15=485(每个加数都按100算,再把多加的减去)或99+98+97+96+95=97×5=485 (2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=7×5=35(2)5+10+15+20+25+30+35=20×7=140(3)9+18+27+36+45+54=(9+54)×3=63×3=189(4)12+14+16+18+20+22+24+26=(12+26)×4=38×4=1526.解:(1)53+49+51+48+52+50=50×6+3-1+1-2+2+0=300+3=303(2)87+74+85+83+75+77+80+78+81+84=80×10+7-6+5+3-5-3+0-2+1+4 =800+4=8047.解:方法1:原式=21+21+21+15=78方法2:原式=21×4-6=84-6=78方法3:原式=(1+2+3+4+5+6)×3+15=21×3+15=63+15=78数数与计数(一)1.如图2-8所示,数一数,需要多少块砖才能把坏了的墙补好?2.图2-9所示的墙洞,用1号和2号两种特型砖能补好吗?若能补好,共需几块?3.图2-10所示为一块地板,它是由1号、2号和3号三种不同图案的瓷砖拼成.问这三种瓷砖各用了多少块?4.如图2-11所示,一个木制的正方体,棱长为3寸,它的六个面都被涂成了红色.如果沿着图中画出的线切成棱长为1寸的小正方体.求:(1)3面涂成红色的有多少块?(2)2面涂成红色的有多少块?(3)1面涂成红色的有多少块?(4)各面都没有涂色的有多少块?(5)切成的小正方体共有多少块?5.图2-12所示为棱长4寸的正方体木块,将它的表面全染成蓝色,然后锯成棱长为1寸的小正方体.问:(1)有3面被染成蓝色的多少块?(2)有2面被染成蓝色的多少块?(3)有1面被染成蓝色的多少块?(4)各面都没有被染色的多少块?(5)锯成的小正方体木块共有多少块?6.图2-13所示为一个由小正方体堆成的“塔”.如果把它的外表面(包括底面)全部涂成绿色,那么当把“塔”完全拆开时,3面被涂成绿色的小正方体有多少块?7.图2-14中的小狗与小猫的身体的外形是用绳子分别围成的,你知道哪一条绳子长吗?(仔细观察,想办法比较出来).1.解:用10块砖可把墙补好,可以从下往上一层一层地数(发挥想像力):共1+2+2+1+2+2=10(块).如果用铅笔把砖画出来(注意把砖缝对好)就会十分清楚了,如图2-15所示.2.解:仔细观察,同时发挥想像力可知需1号砖2块、2号砖1块,也就是共需(如图2-16所示)1+2=3(块).3.解:因为图形复杂,要特别仔细,最好是有次序地按行分类数,再进行统计:4.解:(1)3面涂色的有8块:它们是最上层四个角上的4块和最下层四个角上的4块.(2)2面涂色的有12块:它们是上、下两层每边中间的那块共8块和中层四角的4块.(3)1面涂色的有6块:它们是各面(共有6个面)中心的那块.(4)各面都没有涂色的有一块:它是正方体中心的那块.(5)共切成了3×3×3=27(块).或是如下计算:8+12+6+1=27(块).5.解:同上题(1)8块;(2)24块;(3)24块;(4)8块;(5)64块.6.解:3面被涂成绿色的小正方体共有16块,就是图2—18中有“点”的那些块(注意最下层有2块看不见).7.解:分类数一数可知,围成小猫的那条绳子比较长.因为小狗身体的外形是由32条直线段和6条斜线段组成;小猫身体的外形是由32条直线段和8条斜线段组成.数数与计数(二)例1 数一数,图3-1中共有多少点?解:(1)方法1:如图3-2所示从上往下一层一层数:第一层1个第二层2个第三层3个第四层4个第五层5个第六层6个第七层7个第八层8个第九层9个第十一层9个第十二层8个第十三层7个第十四层6个第十五层5个第十六层4个第十七层3个第十八层2个第十九层1个总数1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+2+1)=55+45=100(利用已学过的知识计算).(2)方法2:如图3-3所示:从上往下,沿折线数第一层1个第二层3个第三层5个第五层9个第六层 11个第七层 13个第八层 15个第九层 17个第十层 19个总数:1+3+5+7+9+11+13+15+17+19=100(利用已学过的知识计算).(3)方法3:把点群的整体转个角度,成为如图3-4所示的样子,变成为10行1 0列的点阵.显然点的总数为10×10=100(个).想一想:①数数与计数,有时有不同的方法,需要多动脑筋.②由方法1和方法3得出下式:1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想:1=1×11+2+1=2×21+2+3+2+1=3×31+2+3+4+3+2+1=4×41+2+3+4+5+4+3+2+1=5×51+2+3+4+5+6+5+4+3+2+1=6×61+2+3+4+5+6+7+6+5+4+3+2+1=7×71+2+3+4+5+6+7+8+7+6+5+4+3+2+1=8×81+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×91+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10这样的等式还可以一直写下去,能写出很多很多.同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.③由方法2和方法3也可以得出下式:1+3+5+7+9+11+13+15+17+19=10×10.即从1开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想:1+3=2×21+3+5=3×31+3+5+7=4×41+3+5+7+9=5×51+3+5+7+9+11=6×61+3+5+7+9+11+13=7×71+3+5+7+9+11+13+15=8×81+3+5+7+9+11+13+15+17=9×91+3+5+7+9+11+13+15+17+19=10×10还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.例2 数一数,图3-5中有多少条线段?解:(1)我们已知,两点间的直线部分是一条线段.以A点为共同端点的线段有:AB AC AD AE AF 5条.以B点为共同左端点的线段有:BC BD BE BF 4条.以C点为共同左端点的线段有:CD CE CF 3条.以D点为共同左端点的线段有:DE DF 2条.以E点为共同左端点的线段有:EF1条.总数5+4+3+2+1=15条.(2)用图示法更为直观明了.见图3-6.总数5+4+3+2+1=15(条).想一想:①由例2可知,一条大线段上有六个点,就有:总数=5+4+3+2+1条线段.由此猜想如下规律(见图3-7):还可以一直做下去.总之,线段总条线是从1开始的一串连续自然数之和,其中最大的自然数比总数小1.我们又发现了一条规律.它说明了点数与线段总数之间的关系.②上面的事实也可以这样说:如果把相邻两点间的线段叫做基本线段,那么一条大线段上的基本线段数和线段总条数之间的关系是:线段总条数是从1开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见图3-8).基本线段数线段总条数还可以一直写下去,同学们可以自己试试看.例3 数一数,图3-9中共有多少个锐角?解:(1)我们知道,图中任意两条从O点发出的射线都组成一个锐角.所以,以OA边为公共边的锐角有:∠LAOB,∠AOC,∠AOD,∠AOE,∠AOF共5个.以OB边为公共边的锐角有:∠BOC,∠BOD,∠BOE,∠BOF共4个.以OC边为公共边的锐角有:∠COD,∠COE,∠COF共3个.以OD边为公共边的锐角有:∠DOE,∠DOF共2个.以OE边为一边的锐角有:∠EOF只1个.锐角总数5+4+3+2+1=15(个).②用图示法更为直观明了:如图3-10所示,锐角总数为:5+4+3+2+1=15(个).想一想:①由例3可知:由一点发出的六条射线,组成的锐角的总数=5+4+3+2 +1(个),由此猜想出如下规律:(见图3-11~15)两条射线1个角(见图3-11)三条射线2+1个角(见图3-12)四条射线3+2+1个角(见图3-13)五条射线4+3+2+1个角(见图3-14)六条射线5+4+3+2+1个角(见图3-15)总之,角的总数是从1开始的一串连续自然数之和,其中最大的自然数比射线数小1.②同样,也可以这样想:如果把相邻两条射线构成的角叫做基本角,那么有共同顶点的基本角和角的总数之间的关系是:角的总数是从1开始的一串连续自然数之和,其中最大的自然数等于基本角个数.③注意,例2和例3的情况极其相似.虽然例2是关于线段的,例3是关于角的,但求总数时,它们有同样的数学表达式.同学们可以看出,一个数学式子可以表达表面上完全不同的事物中的数量关系,这就是数学的魔力..解:方法1:从左往右一摞一摞地数,再相加求和:10+11+12+13+14+15+14+13+12+11+10=135(本).方法2:把这摞书形成的图形看成是由一个长方形和一个三角形“尖顶”组成.长方形中的书 10×11=110三角形中的书 1+2+3+4+5+4+3+2+1=25总数:110+25=135(本).2.解:因为棋孔较多,应找出排列规律,以便于计数.仔细观察可知,图中大三角形ABC上的棋孔的排列规律是(从上往下数):1,2,3,4,5,6,7,8,9,10,11,12,13,另外还有三个小三角形中的棋孔的排列规律是1,2,3,4,所以棋孔总数是:(1+2+3+4+5+6+7+8+9+10+11+12+13)+(1+2+3+4)×3=91+10×3=121(个).3.解:方法1:按图3-22所示方法数(图中只画出了一部分)线段总数:7+6+5+4+3+2+1=28(条).方法2:基本线段共7条,所以线段总数是:7+6+5+4+3+2+1=28(条).4.解:按图3-23的方法数:角的总数:7+6+5+4+3+2+1=28(个).5.解:方法1:(1)三角形是由三条边构成的图形.以OA边为左公共边构成的三角形有:△OAB,△OAC,△OAD,△OAE,△OAF,△OAG,△OAH,共7个;以OB边为左公共边构成的三角形有:△OBC,△OBD,△OBE,△OBF,△OBG,△OBH,共6个;以OC边为左公共边构成的三角形有:△OCD,△OCE,△OCF,△OCG,△OCH,共5个;以OD边为左公共边构成的三角形有:△ODE,△ODF,△ODG,△ODH,共4个;以OE边为左公共边构成的三角形有:△OEF,△OEG,△OEH,共3个;以OF边为左公共边构成的三角形有:△OFG,△OFH,共2个;以OG边和OH,GH两边构成的三角形仅有:△OGH1个;三角形总数:7+6+5+4+3+2+1=28(个).(2)方法2:显然底边AH上的每一条线段对应着一个三角形,而基本线段是7条,所以三角形总数为:7+6+5+4+3+2+1=28(个).6.解:最小的正方形有25个,由4个小正方形组成的正方形 16个;由9个小正方形组成的正方形9个;由16个小正方形组成的正方形4个;由25个小正方形组成的正方形1个;正方形总数:25+16+9+4+1=55个.认识简单数列1.从1开始,每隔两个数写出一个自然数,共写出十个数来.2.从1开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?4.自2开始,隔两个数写一个数:2,5,8, (101)可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?5.如图4-1所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?6.如图4-2所示,把小立方体叠起来成为“宝塔”,求这个小宝塔共包括多少个小立方体?7.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4个星期后,这个小组共有多少组员?8.图4-3所示为细胞的增长方式.就是说一个分裂为两个,再次分裂变为4个,第三次分裂为8个,……照这样下去,问经过10次分裂,一个细胞变成几个?9.图4-4所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问(1)盒子里有多少珠子?(2)这串珠子共有多少个?1.解:可以先写出从1开始的自然数列,再按题目要求删去那些不应该出现的数,就得到答案了:即1,4,7,10,13,16,19,22,25,28可以看出,这是一个等差数列,后面一个数比前面一个数大3.2.解:仿习题1,先写前面的几个数如下:可以看出,1,8,15,22,……也是一个等差数列,后面的一个数比前面的一个数大7.按照这个规律,可以写出所有的10个数:1,8,15,22,29,36,43,50,57,64.3. 解:观察习题一和习题二两个数列:可见两个数列中最小的相同数是22.4.解:经仔细观察后可以看出,这是一个等差数列,后一个数比前一个数大3,即公差是3.下面再多写出几项,以便从中发现规律:(表四(4))再仔细观察可知:第二项=第一项+1×公差,即5=2+1×3;第三项=第一项+2×公差,即8=2+2×3;第四项=第一项+3×公差,即11=2+3×3;第五项=第一项+4×公差,即14=2+4×3;…………由于101=2+33×3;可见,101是第34项,即第34个数.5.解:仔细观察可发现,这个“阶梯形”图形最高处是4个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.所以最高处是12个小正方形时,它必有12个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个).6.解:从上往下数,小宝塔共有六层.仔细观察可发现如下规律(表四(5)):所以六层小立方体的总数为:1+3+6+10+15+21=56(个).7.解:列表如下:4个星期后小组的总人数:1+2+4+8=15(人).8.解:列表如下:一个细胞经过10次分裂变为1024个.9.解:仔细观察可知,这串珠子的排列规律是:白黑白黑白黑白黑白黑白黑白黑白 1, 1,1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1,①在盒子里有:4+1+4=9(个).②这一串珠子总数是:1+1+1+2+1+3+1+4+1+5+1+6+1+7+1=1+2+3+4+5+6+7+(1+1+1+1+1+1+1+1)=28+8=36(个).。

小学一二年级的奥数知识点总结

小学一二年级的奥数知识点总结

小学一二年级的奥数知识点总结
小学一二年级的奥数知识点总结如下:
1. 数字概念:学会认识数字,掌握数字的大小关系和顺序。

2. 算术运算:掌握简单的加法和减法,熟练运用加法和减法进行计算。

3. 排列组合:学会对一组事物进行排列和组合,如:将若干物品摆放在一起,有多少种排列方式。

4. 分数概念:认识简单的分数,了解分数的含义和用途。

5. 几何图形:学会认识基本的几何形状,如:正方形、长方形、圆形等;并能够识别和辨认各种几何图形。

6. 数量关系:掌握数字之间的数量关系,如:相等、比较大小、倍数和约数等。

7. 逻辑推理:培养逻辑思维能力,能够进行简单的逻辑推理和问题解答。

8. 空间想象:培养空间想象能力,能够观察和描述物体的形状、大小和位置等。

这些知识点仅是一二年级奥数的基础内容,实际上奥数的知识点还涉及到更深入和复杂的内容。

对于小学一二年级的孩子来说,培养对数学的兴趣和基本的数学思维能力更为重要。

小学奥数所有的知识点归纳

小学奥数所有的知识点归纳

小学奥数所有的知识点归纳对于小学生来说,参加奥数是提高数学能力和思维能力的绝佳途径。

小学奥数涉及的知识点广泛而深入,涵盖了数学的各个方面。

下面将对小学奥数的知识点进行归纳总结。

一、基础知识点1.1 数的认识和比较小学奥数的基础知识点之一是数的认识和比较。

包括数的读写、数的加减法运算、数的大小比较等。

1.2 整数的四则运算整数的四则运算是小学奥数必备的基础知识点,包括整数的加减乘除运算、负数的加减乘除运算等。

1.3 分数和小数的基本运算分数和小数的基本运算也是小学奥数的核心知识点之一。

包括分数的加减乘除运算、分数与整数的混合运算、小数的加减乘除运算等。

1.4 平方根和立方根的计算平方根和立方根的计算是小学奥数的一项重要知识点。

要求学生能够计算非负整数的平方根和立方根,并应用于实际问题中。

二、应用问题2.1 算术题小学奥数中,包含了各类应用算术题,如速算、面积体积计算、运算顺序等。

此类问题要求学生具备计算能力和分析解决问题的能力。

2.2 类比题类比题是小学奥数中的经典题型之一,它要求学生能够发现和分析事物之间的相似关系,并运用到具体问题中。

2.3 推理与判断题推理与判断题是小学奥数中较为复杂的类型,它要求学生通过逻辑思维和推理能力来解答问题。

这类题目既考察了学生的思维能力,又培养了他们的逻辑思维能力。

三、数学思维3.1 抽象思维小学奥数培养学生的数学抽象思维能力,使学生能够将数学问题具象化,提高解决问题的能力。

3.2 推理思维推理思维是解决数学问题的重要能力之一。

小学奥数中的推理题要求学生能够发现问题的规律,并运用推理能力进行解答。

3.3 分析思维分析思维是解决复杂数学问题的关键能力。

小学奥数中的分析题要求学生能够分析问题的结构和关系,并找出解题的关键点。

以上是小学奥数知识点的简要归纳。

通过学习这些知识点,可以提高小学生的数学能力和思维能力,为他们将来更高阶段的数学学习打下坚实基础。

希望同学们能够充分利用好奥数学习的机会,努力提高自己的数学水平!。

小学奥数知识点归纳和总结

小学奥数知识点归纳和总结

小学奥数知识点归纳和总结小学奥数是指小学生参与的奥林匹克数学竞赛。

小学奥数的目的是培养学生的数学兴趣、创造力和解决问题的能力。

在小学奥数的学习过程中,有一些重要的知识点需要掌握。

下面我将对这些知识点进行归纳和总结。

1.数的认识与应用:小学奥数中,首先需要掌握自然数、整数、有理数和逻辑推理的基础。

还需要学会数的位数、十进制和分数的基本概念,以及运用数来解决实际问题。

2.整数的性质与运算:整数组成了一条数轴,并学会在数轴上表示整数。

需要掌握整数的比较、绝对值、加减乘除等基本运算。

同时还需要学会利用整数的性质解决简单的代数方程。

3.分数的应用:小学奥数中,分数是一个十分重要的知识点。

学生需要掌握分数的读法、表示方法和运算法则。

还需要学会将分数转化为小数和百分数,并能够运用分数解决实际问题。

4.几何与图形:小学奥数中,几何与图形是一个重要的知识点。

学生需要认识各种图形的名称、性质和特点,并学会计算图形的面积、周长和体积。

同时还需要了解一些几何的基本定理,如平行线的性质、三角形的性质等。

5.概率与统计:学生需要了解概率和统计的基本概念,学会利用概率和统计的知识解决实际问题。

例如,学生需要学会计算事件的概率、众数、中位数、平均数等。

6.数据与图表:小学奥数中,学生还需要学会认识和运用数据和图表。

例如,学生需要学会读懂表格、柱状图、折线图等,并从中获取有用的信息。

7.进制与数制:学生需要学会认识和运用不同的进制和数制。

例如,学生需要了解二进制、八进制和十六进制,并学会运用它们进行计算。

8.数论与整除性质:学生需要学会运用数论中的整除性质解决问题。

例如,学生需要学会判断一个数是否为素数,以及学会找出一个数的因数和倍数。

9.方程与不等式:学生需要学会解一元一次方程和一元一次不等式。

例如,学生需要学会用代数方法解方程和不等式,并在实际问题中应用。

10.排列与组合:学生需要学会计算排列和组合的数量。

例如,学生需要学会利用排列和组合的知识解决排队、抽签等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学(数学)奥数知识总结手册目录1、和差倍问题2、年龄问题的三个基本特征:3、归一问题的基本特点:4、鸡兔同笼问题5、植树问题6、盈亏问题7、牛吃草问题8、周期循环与数表规律9、平均数9、抽屉原理10、定义新运算11、加法乘法原理和几何计数12、数列求和13、二进制及其应用14、质数与合数15、约数与倍数16、余数及其应用17、余数、同余与周期18、数的整除19、分数与百分数的应用20、分数拆分21、分数大小的比较22、完全平方数23、比和比例24、综合行程25、工程问题26、逻辑推理27、立体图形28、几何面积29、时钟问题—快慢表问题30、时钟问题—钟面追及31、浓度与配比32、经济问题33、简单方程34、不定方程35、循环小数1、和差倍问题2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

5、植树问题6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7、牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8、周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9、平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②9、抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

10、定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

11、加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有m n种不同方法,那么完成这件任务共有:m1+ m2....... +m n种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有m n种方法,那么完成这件任务共有:m1×m2....... ×m n种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。

这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数12、数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用a n表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,a n, d, n,s n,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:a n = a1+(n-1)d;通项=首项+(项数一1) ×公差;数列和公式:s n,= (a1+ a n)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (a n+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(a n-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13、二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。

所以234=200+30+4=2×102+3×10+4。

=A n×10n-1+A n-1×10n-2+A n-2×10n-3+A n-3×10n-4+A n-4×10n-5+A n-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

)= A n×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+A n-6×2n-7+……+A3×22+A2×21+A1×20注意:An不是0就是1。

十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

14、质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。

通常用短除法分解质因数。

任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N=,其中a1、a2、a3……a n都是合数N的质因数,且a1<a2<a3<……<a n。

求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(r n+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

15、约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。

2、几个数的最大公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的最大公约数的约数。

4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

相关文档
最新文档