小学数学奥数知识总结归纳

合集下载

32个小学奥数知识板块

32个小学奥数知识板块

32个小学奥数知识板块奥数对于培养学生数学思维,开发智力,好处是非常明显的。

下面给大家整理了小学奥数的32个知识板块,供大家作为学习的参考。

和差倍问题和差问题、和倍问题、差倍问题;已知条件:几个数的和与差、几个数的和与倍数、几个数的差与倍数公式适用范围:已知两个数的和、差、倍数关系公式:①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题:求出同一条件下的和与差;和与倍数;差与倍数等知识点。

年龄问题年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;植树问题单边植树(两端都植):距离÷间隔数+1=棵数单边植树(只植一端):距离÷间隔数=棵数单边植树(两端都不植):距离÷间隔数-1=棵数双边植树(两端都植):(距离÷间隔数+1)×2=棵数双边植树(只植一端):(距离÷间隔数)×2=棵数双边植树(两端都不植):(距离÷间隔数-1)×2=棵数循环植树:距离÷间隔数=棵数解释:1.非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2.封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

小学奥数有哪些知识点

小学奥数有哪些知识点

小学奥数有哪些知识点小学奥数知识点概览一、数论基础1. 质数与合数:理解质数的定义和性质,识别合数的因数分解。

2. 素因数分解:将一个合数分解为质数的乘积。

3. 最大公约数和最小公倍数:计算两个或多个数的GCD和LCM。

4. 整数的奇偶性:理解奇数和偶数的性质及其在问题解决中的应用。

5. 整数的四则运算:掌握整数加减乘除的规则和技巧。

6. 同余定理:理解同余的概念及其在解决数论问题中的应用。

二、分数与小数1. 分数的基本概念:分数的意义、性质和分类。

2. 分数的四则运算:分数的加、减、乘、除运算规则。

3. 分数的化简与比较:化简分数和比较分数大小的方法。

4. 小数的基本概念:小数的意义和性质。

5. 小数的四则运算:小数的加、减、乘、除运算规则。

6. 分数与小数的互化:分数与小数之间的转换方法。

三、几何知识1. 平面图形的认识:点、线、面的基本性质。

2. 常见平面图形的性质:正方形、长方形、三角形等的性质和计算。

3. 面积和周长的计算:计算各种平面图形的面积和周长。

4. 立体图形的初步认识:立方体、长方体、圆柱、圆锥等的性质。

5. 空间想象能力:通过剖面图、视图等理解三维空间。

四、代数基础1. 变量与常数:理解变量和常数的概念。

2. 简易方程:一元一次方程的建立和解法。

3. 代数表达式的简化:合并同类项、分配律等代数运算。

4. 不等式的概念:理解不等式的意义和基本性质。

5. 简单不等式的解法:解一元一次不等式。

五、逻辑推理1. 合情推理:通过已知信息推断未知信息。

2. 演绎推理:从一般到特殊的逻辑推理过程。

3. 归纳推理:从特殊到一般的推理方法。

4. 逻辑应用题:解决需要逻辑推理的实际问题。

六、组合数学1. 排列与组合:理解排列和组合的概念及其区别。

2. 简单排列组合问题:解决基础的排列组合问题。

3. 二项式定理:理解二项式定理并能够进行简单应用。

4. 容斥原理:解决涉及集合容斥问题的方法。

七、数列与级数1. 等差数列:理解等差数列的定义和性质。

五年级奥数主要知识点

五年级奥数主要知识点

五年级奥数主要知识点五年级奥数是小学数学竞赛的一个重要阶段,它不仅要求学生掌握基础数学知识,还要求学生具备一定的逻辑思维能力和解决问题的能力。

以下是五年级奥数的主要知识点:一、数论基础- 整数的奇偶性:理解奇数和偶数的概念,掌握奇偶数的基本性质。

- 质数与合数:区分质数和合数,了解它们的定义和特点。

- 最大公约数和最小公倍数:学会求两个或多个数的最大公约数和最小公倍数,理解其在数学中的应用。

二、分数和小数- 分数的加减乘除:掌握分数的四则运算,包括通分、约分等技巧。

- 分数的大小比较:学会比较分数的大小,理解分数的性质。

- 小数的运算:熟练进行小数的加减乘除运算,理解小数点的移动规律。

三、比例和比例关系- 比例的基本性质:理解比例的概念,掌握比例的基本性质。

- 正比例和反比例:区分正比例和反比例,理解它们在实际问题中的应用。

四、几何图形- 平面图形:学习三角形、四边形、圆等基本平面图形的性质和面积计算。

- 立体图形:了解长方体、正方体、圆柱、圆锥等立体图形的体积和表面积计算。

五、排列组合与计数原理- 排列组合:掌握排列和组合的基本概念,学会解决相关的数学问题。

- 计数原理:理解加法原理和乘法原理,学会应用这些原理解决实际问题。

六、逻辑推理- 条件逻辑:学会根据给定条件进行逻辑推理,解决数学问题。

- 数学证明:了解数学证明的基本方法,学会用逻辑推理来证明数学命题。

七、应用题- 行程问题:解决涉及速度、时间和距离的行程问题。

- 工程问题:理解工作效率和工作时间的关系,解决相关的工程问题。

- 经济问题:学习解决涉及价格、成本和利润的经济问题。

八、数学思维和解题技巧- 归纳推理:通过观察和分析,归纳出数学规律和模式。

- 逆向思维:学会从问题的结果出发,逆向推导出解决问题的方法。

- 转化思维:将复杂问题转化为简单问题,或将不同类型问题相互转化。

五年级奥数的学习不仅能够提高学生的数学素养,还能培养他们的逻辑思维和创新能力。

小学奥数知识点

小学奥数知识点

小学奥数知识点小学奥数知识点小学奥数是指参加全国小学数学奥赛的学生,他们需要掌握一些数学的基础知识和解题技巧。

下面是一些小学奥数常见的知识点:1. 数的认识:认识0-9的数字,知道数字的大小关系和位置价值。

学生需要掌握数字的读法和写法,以及数字之间的加减乘除运算。

2. 计算:学生需要掌握基本的加减乘除法,包括整数的计算和小数的计算。

他们需要学会口算和写算式,能够熟练地进行简单的运算。

3. 分数:学生需要学会认识和运算基本的分数,包括分数的加减乘除运算和带分数的运算。

他们需要知道分数的意义和表示方法,并能够将分数转化为小数和百分数。

4. 小数:学生需要学会认识和运算小数,包括小数的读法和写法,以及小数的加减乘除运算。

他们需要掌握小数和分数之间的转化,并能够将小数进行四舍五入。

5. 数据与图表:学生需要学会统计和分析数据,包括图表的读取和制作。

他们需要能够解决有关数据的问题,比如平均数、中位数和众数的计算,以及数据的比较和排序。

6. 几何:学生需要学会认识几何图形,包括点、线、面和体。

他们需要掌握几何图形的基本性质和分类方法,能够进行几何图形的比较、分析和构造。

7. 逻辑推理:学生需要学会进行逻辑推理和解决逻辑问题。

他们需要学会找出规律和推断结论,能够进行类比和推理,以及解决一些逻辑难题。

8. 排列组合:学生需要学会进行排列和组合的计算。

他们需要掌握基本的排列和组合原则,能够解决与排列组合相关的问题,比如有关种类、选择和次序的问题。

9. 等式与方程:学生需要学会解决等式和方程的问题。

他们需要掌握等式和方程的基本概念和性质,能够解决一些简单的一元一次方程和一元一次不等式。

10. 数学思维:学生需要培养数学思维和解决问题的能力。

他们需要学会分析和解决数学问题,能够运用所学的知识和技巧,寻找解题的方法和策略。

以上是小学奥数常见的一些知识点,学生在备战小学奥数的时候可以重点学习和巩固这些知识点。

通过不断地练习和思考,学生可以提高数学能力,成为一个优秀的小学奥数选手。

小学数学及奥数知识点归纳

小学数学及奥数知识点归纳

小学数学及奥数知识点归纳小学数学知识点归纳:一、数的基本概念和运算1.数的读法和写法2.数的比较大小3.数的相加、相减、相乘、相除4.四则运算的口诀和顺序5.分数的基本概念和运算6.小数的基本概念和运算7.百分数的基本概念和运算二、数的整体结构1.十以内数的认识和运算2.十以内数的整体关系3.十以内的数的位置表示法4.乘法口诀表三、数的拆分和合并1.数的拆分和合并2.分解因数和最大公约数3.合并同类项和分配率四、数的集合与表示1.自然数、整数、有理数和实数的概念和关系2.正数、负数和零的概念和比较3.数的绝对值4.数轴的表示和使用五、数的测量和单位换算1.长度、面积和体积的相关概念2.常用长度单位的换算3.常用面积和体积单位的换算4.常用重量和时间单位的换算六、平面图形的认识和构造1.点、线段、直线和射线的相关概念和表示2.角的相关概念和分类3.三角形、四边形和多边形的相关概念和分类4.圆的相关概念和构造5.直角、等腰和等边三角形的认识和构造七、几何形体的认识和计算1.立体几何体的结构和特点2.立方体和长方体的认识和计算3.圆柱体、圆锥体和圆球的认识和计算八、数据的处理和统计1.数据的搜集、整理和记录2.图表的认读和制作3.平均数的计算4.最大值和最小值的查找九、时间与稳态的认识与计算1.时、分、秒的单位换算2.日期和时间的表示和计算3.闰年的概念和判断奥数知识点归纳:一、数论和代数1.素数和合数2.奇数和偶数3.互质数和最大公约数4.递推数列和等差数列5.同余方程和同余定理6.式子的因式分解和求解7.不等式的性质和求解二、几何和图形1.数学图形的性质和判断2.相似和全等三角形的判断和计算3.圆的性质和计算4.平行线和垂直线的性质和判断5.相交线和角的性质和判断6.三角形的内心、外心和垂心7.平面上的旋转、翻转和平移三、概率和统计1.事件的概念和计算2.概率的性质和计算3.统计图表的制作和解读4.离散型和连续型随机变量的计算四、数学思维和推理1.数学证明和反证法2.数学问题的发现和解决方法3.数学推理和归纳法4.奥林匹克数学经典题型解法五、应用题和综合题1.将实际问题转化为数学问题2.利用公式和模型解决问题3.综合应用多个数学知识点解决问题。

34个小学奥数核心知识点

34个小学奥数核心知识点

34个小学奥数必掌握知识点1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数棵数=段数-1棵距×段棵数=段数棵距×段数=总长=总长数=总长关键确定所属类型,从而确定棵数与段数的关系问题5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。

下面为大家汇总小学阶段常见的奥数知识点。

一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。

小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。

3、分数四则运算同分母分数加减法:分母不变,分子相加减。

异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。

分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。

分数除法:除以一个数等于乘这个数的倒数。

二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。

偶数:能被 2 整除的整数。

奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。

合数:除了 1 和它本身还有别的因数的自然数。

1 既不是质数也不是合数。

3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。

倍数:c 就是 a 和 b 的倍数。

4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。

小学奥数题型知识点总结

小学奥数题型知识点总结

小学奥数题型知识点总结小学奥数是指小学生参加的一种数学竞赛。

奥数竞赛的题型多样,涵盖了各种数学知识。

在小学阶段,孩子们接触到的奥数题型较为基础,但也需要掌握一定的技巧和方法来解题。

以下是小学奥数常见的题型和相应的知识点总结。

一、整数计算1. 整数的加减法整数的加减法是小学奥数的基础题型。

在整数的加减法中,需要掌握两个整数相加减的规则,以及负数和正数相加减的规则。

2. 整数的乘法在整数的乘法中,需要理解负数相乘的结果,包括同号相乘得正,异号相乘得负等规则。

3. 整数的除法整数的除法需要掌握正数和负数相除的规则,以及0的特殊性。

二、分数1. 分数的加减法分数的加减法是小学奥数的难点之一。

在分数的加减法中,需要找到分子分母的最小公倍数,进行通分和约分,然后再进行加减运算。

2. 分数的乘法分数的乘法需要掌握分数乘法的公式,即分子相乘得分子,分母相乘得分母,然后再进行约分。

3. 分数的除法分数的除法需要掌握计算的步骤,即先将除法转化为乘法,再进行乘法运算。

三、小数1. 小数的加减法小数的加减法是小学奥数的基础题型。

在小数的加减法中,需要理解小数点的对齐规则,然后进行计算。

2. 小数的乘法小数的乘法需要掌握小数乘法的规则,即先去掉小数点,然后进行乘法运算,最后确定小数点的位置。

3. 小数的除法小数的除法需要掌握小数点的处理方法,即将小数点移到被除数的末尾,然后进行除法计算。

四、几何1. 图形的面积和周长在几何题中,需要掌握各种图形的面积和周长的计算方法,包括矩形、正方形、三角形、圆等。

2. 三角形的角度和边长需要掌握三角形的内角和外角的计算方法,以及三角形三边的关系。

3. 直角坐标系需要掌握直角坐标系中的横坐标和纵坐标的含义,以及坐标点的表示方法。

五、代数1. 代数式的化简需要掌握代数式的化简方法,包括合并同类项、因式分解等。

2. 一元一次方程需要掌握解一元一次方程的方法,包括用逆运算消去项、整理等。

3. 等比数列需要掌握等比数列的概念和求和公式,以及等比数列的性质。

小学数学奥数知识点总结

小学数学奥数知识点总结

目录一、和差倍问题 (2)二、年龄问题的三个基本特征: (2)三、归一问题的基本特点: (2)四、植树问题 (2)五、鸡兔同笼问题 (2)六、盈亏问题 (3)七、牛吃草问题 (3)八、周期循环与数表规律 (3)九、平均数 (4)十、抽屉原理 (4)十一、定义新运算 (4)十二、数列求和 (4)十三、二进制及其应用 (5)十四、加法乘法原理和几何计数 (5)十五、质数与合数 (6)十六、约数与倍数 (6)十七、数的整除 (7)十八、余数及其应用 (8)十九、余数、同余与周期 (8)二十、分数与百分数的应用 (9)二十一、分数大小的比较 (9)二十二、分数拆分 (10)二十三、完全平方数 (10)二十四、比和比例 (10)二十五、综合行程 (10)二十六、工程问题 (11)二十七、逻辑推理 (11)二十八、几何面积 (12)二十九、立体图形 (12)三十、时钟问题—快慢表问题 (13)三十一、时钟问题—钟面追及 (13)三十二、浓度与配比 (13)三十三、经济问题 (14)三十四、简单方程 (14)三十五、不定方程 (14)三十六、循环小数 (15)一、和差倍问题二、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;三、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;四、植树问题五、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数数论知识点

小学奥数数论知识点

小学奥数数论知识点一、数的认识1. 自然数:用于计数和排序的数,包括0和正整数。

2. 奇数与偶数:奇数是不能被2整除的整数,偶数是能被2整除的整数。

3. 质数与合数:质数是只有1和本身两个因数的大于1的自然数,合数是除了1和本身外还有其他因数的自然数。

4. 因数与倍数:如果整数a能被整数b整除,a是b的倍数,b是a的因数。

二、数的运算1. 加法与减法:加法是将两个或多个数合并成一个数的运算,减法是从一个数中去掉另一个数的运算。

2. 乘法与除法:乘法是重复加法的简化,除法是将一个数分成几个相等部分的运算。

3. 余数:在除法中,被除数除以除数后剩下的数称为余数。

三、数的性质1. 唯一分解定理:每个大于1的整数都可以唯一地表示为质数的乘积。

2. 最大公约数和最小公倍数:最大公约数是两个或多个整数共有的最大的因数,最小公倍数是这些整数的最小公共倍数。

3. 奇偶性:奇数加奇数得偶数,偶数加偶数得偶数,奇数加偶数得奇数。

四、数的应用1. 约数倍数问题:涉及找出一个数的约数或倍数的问题。

2. 质数问题:涉及质数的分布、判断和性质的问题。

3. 分数的拆分与比较:涉及将分数拆分为不同单位的和,以及比较分数大小的问题。

五、解题技巧1. 枚举法:通过列举所有可能的情况来找到答案。

2. 反证法:假设某个结论是错误的,通过推理得出矛盾,从而证明原结论是正确的。

3. 归纳法:通过观察一系列特殊情况,找出一般规律。

六、例题解析1. 例题一:找出20以内的所有质数。

- 解析:20以内的质数有2, 3, 5, 7, 11, 13, 17, 19。

2. 例题二:求36和54的最大公约数。

- 解析:通过辗转相除法,可以求得36和54的最大公约数是18。

七、总结数论是数学的基础分支之一,对于培养逻辑思维和解决问题的能力具有重要作用。

小学奥数数论涉及的知识点广泛,包括数的认识、数的运算、数的性质、数的应用以及解题技巧等。

掌握这些知识点,对于提高学生的数学素养和解决复杂问题的能力至关重要。

小学奥数重点归纳(史上最全)

小学奥数重点归纳(史上最全)
等;
表面积:S=2(ab+ah+bh)
合理利用行程问题中的比例关系。
2、在直线或者不封闭的曲线上 植树,两端都不植树
3、在直线或者不封闭的曲线上 植树,只有一端植树
4、封闭曲线上植树
基本公式:
棵数=段数+1
基本公式:
①平均数=总数量÷总份数
基本概念:
首项:等差数列的第一个数,一 般用a1表示;
基本公式:
通项公式:an = a1+(n-1)d;
再求它们的差,再找不大于这个 差的2的n次方,依此方法一直找 到差为0,按照二进制展开式特
②两个人的年龄是同时增加或者 同时减少的;
③两个人的年龄的倍数是发生变 化的;
3.归一问题的基个“单一量”,题目一般用 “照这样的速度”……等词语来
表示。
关键问题:根据题目中的条件确 定并求出单一量; 4.植树问题
基本类型:
1、 在直线或者不封闭的曲线上 植树,两端都植树
点即可写出。
基本特征:每一种方法都可完成 任务。
基本特征:每一步只能完成任务 的一部分。
直线特点:没有端点,没有长度。
线段特点:有两个端点,有长度。
射线特点:只有一个端点;没有 长度。
几何计数规律:
3、辗转相除法:每一次都用除 数和余数相除,能够整除的那个 余数,就是所求的最大公约数。
先找出不大于该数的2的n次方再求它们的差再找不大于这个差的2的n次方依此方法一直找到差为0按照二进制展开式特点即可写出
£®和差倍问题和差问题、和倍问 题、差倍问题
已知条件: 几个数的和与差、和 与倍数、差与倍数
公式适用范围: 已知两个数的和, 差,倍数关系
公式:
①(和-差)÷2=较小数

小学奥数关于数论知识点的总结

小学奥数关于数论知识点的总结

小学奥数关于数论知识点的总结数论是纯粹数学的分支之一,主要研究整数的性质。

整数可以是方程式的解(丢番图方程)。

有些解析函数(像黎曼ζ函数)中包括了一些整数、质数的性质,透过这些函数也可以了解一些数论的问题。

透过数论也可以建立实数和有理数之间的关系,并且用有理数来逼近实数(丢番图逼近)。

以下是无忧考网整理的相关资料,希望对您有所帮助。

【篇一】1. 奇偶性问题奇+奇=偶奇×奇=奇奇+偶=奇奇×偶=偶偶+偶=偶偶×偶=偶2. 位值原则形如:abc =100a+10b+c3. 数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4. 整除性质①如果c|a、c|b,那么c|(a b)。

②如果bc|a,那么b|a,c|a。

③如果b|a,c|a,且(b,c)=1,那么bc|a。

④如果c|b,b|a,那么c|a.⑤a个连续自然数中必恰有一个数能被a整除。

5. 带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的余数,q 为a除以b的不完全商(亦简称为商)。

用带余数除式又可以表示为a ÷b=q……r, 0≤r【篇二】分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 ×p2 ×...×pk约数个数与约数和定理设自然数n的质因子分解式如n= p1 ×p2 ×...×pk 那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

小学奥数30个知识点大汇总

小学奥数30个知识点大汇总

小学奥数30个知识点大汇总1.和差倍问题2.年龄问题的三个基本特征:3.归一问题4.植树问题5.鸡兔同笼问题6.盈亏问题7.牛吃草问题8.周期循环与数表逻辑9.平均数10.抽屉原理11.定义新运算12.数列求和13.二进制及其应用14.加法乘法原理和几何计数15.质数与合数16.约数与倍数17.数的整除18.余数及其应用19.余数、同余与周期20.分数与百分数的应用21.分数大小的比较22.分数拆分23.彻低平方数24.比和比例25.综合行程26.工程问题27.逻辑推理28.几何面积29.立体图形30.时钟问题—快慢表问题1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很容易,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增强或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题基本特点:问题中有一个不变的量,普通是那个“单一量”,题目普通用“照这样的速度”……等词语来表示。

关键问题:按照题目中的条件决定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,惟独一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题决定所属类型,从而决定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出浮上这个差的缘故;④再按照这两个差作适当的调节,消去浮上的差。

【小学数学】奥数最全面知识点总结

【小学数学】奥数最全面知识点总结

小学奥数最全面的知识点总结1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小学奥数必须掌握的30个知识模块

小学奥数必须掌握的30个知识模块

小学奥数必须掌握的30个知识模块1.和差倍问题2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

小学奥数奥数知识点汇总(全)

小学奥数奥数知识点汇总(全)

小学奥数重要知识点整理汇总资料目录数论知识点…………………………………………2~6计算知识点…………………………………………7~14应用题知识点…………………………………………15~23几何知识点…………………………………………24~27组合专题…………………………………………28~35数论知识点整除,奇数偶数,质数,合数,分解质因数,约数,倍数。

\r\n余数问题:完全平方数,数的进制,数的综合,周期性问题,数的拆分。

数的整除性1、整数a除以整数b(b≠0),所得的商是整数而没有余数,则称a能被b整除,或b整除a,记作:b|a。

2、整除的性质:性质1.如果c|a,c|b,则c|(a±b)。

性质2.如果bc|a,则b|a,c|a。

性质3.如果c|b,b|a,则c|a。

3、整除问题的解决方法:整除特征法;补9、补0试除法。

4、涉及极值的整除问题:逐步调整法。

5、数的整除特征:a.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……b.一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;c.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;d.一个数从个位到高位,每三位进行分段,将形成的奇位之和与偶位之和以大减小,如果差可以被7、11、13整除,则此数也可被7、11、13整除;如果一个整数的末三位与末三位之前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;e.如果逐次去掉最后一位数字并减去末位数字的2倍后能被7整除,那么这个数能被7整除;如果逐次去掉最后一位数字并减去末位数字后能被11整除,那么这个数能被11整除;如果逐次去掉最后一位数字并减去末位数字的9倍后能被13整除,那么这个数能被13整除;f.一个数从个位到高位,每两位分成一段,将每段上的数相加。

小学奥数知识点汇总

小学奥数知识点汇总

小学阶段奥数知识点汇总,小小数学家从这里开始!小学奥数都有哪些知识点和重点?看看下面的大汇总,学习数学总归用得到哦!还包括小升初中常考的题目类型等.有工程问题、行程问题、质数合数问题等等.1。

、小升初奥数知识点(年龄问题的三大特征)①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;2、小升初奥数知识点(植树问题总结):基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树。

3、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差.4、奥数知识点(盈亏问题)盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

小学的奥数知识框架与重点内容大全

小学的奥数知识框架与重点内容大全

和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学奥数知识总结归纳目录1.和、差、倍问题 (1)2,年龄问题的三个基本特征: (2)3.归一问题的基本特点: (2)4.植树问题 (2)5.鸡兔同笼问题 (3)6.盈亏问题 (3)7.牛吃草问题 (4)8.周期循环与数表规律 (4)9.平均数 (4)10.抽屉原理 (5)11.定义新运算 (5)12.数列求和 (5)13、加法、乘法原理和几何计数 (6)14.质数与合数 (7)15.约数与倍数 (7)16.数的整除 (8)17、分数与百分数的应用 (9)18、分数大小的比较 (9)19、比和比例 (9)20、综合行程 (10)1.和、差、倍问题和差问题、和倍问题、差倍问题已知条件:几个数的和与差,几个数的和与倍数,几个数的差与倍数。

公式适用范围:已知两个数的和,差,倍数关系。

公式:①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2,年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

11.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

12.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数-1) ×公差;数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13、加法、乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。

这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数-1);②数角规律=1+2+3+…+(射线数-1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数14.质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。

通常用短除法分解质因数。

任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。

求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

15.约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。

2、几个数的最大公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的最大公约数的约数。

4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。

相关文档
最新文档