2018高等数学函数极限与连续性测试题

合集下载

高等数学函数极限与连续习题及答案

高等数学函数极限与连续习题及答案

1、函数()12++=x xx f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。

2、如果()M x f >(M 为一个常数),则()x f 为无穷大.错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在.错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()n n a 1-=,1)1(lim =-∞→n n ,但n n )1(lim -∞→不存在。

5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小).正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果α~β,则()α=β-αo .正确 ∵1lim =αβ,是∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。

7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。

9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<x e (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sin lim ∞→=( x ).∵x x nx n xn n x n x n n n n =⋅==∞→∞→∞→sinlim 1sinlimsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x b ax x x b ax x x x +++-+++---+-=+∞→111lim 222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()xx f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim ( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→x x x 101lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( k e ). ∵0sin 1lim sin lim =⋅=∞→∞→x x xx x x 111sinlim1sin lim ==∞→∞→xx x x x x 14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列 2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa3、当0→x 时,1-x e 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x根据极限存在定理知:()x f x 0lim →不存在。

函数、极限与连续测试卷带答案

函数、极限与连续测试卷带答案

函数、极限与连续测试卷带答案第一篇:函数、极限与连续测试卷带答案上海民航学院函数、极限与连续测试卷总分100分命题人:叶茂莹一、填空题(每空2分,共20分)1、函数y=3-2x|-4的定义域是;解:|3-2x|-4≥0,3-2x≥4,或3-2x≤-4 ∴-2x≥1,或-2x≤-717∴x≤-,或x≥ 2217∴x∈(-∞,-]⋃[,+∞)222、把复合函数y=earctan(1+x)分解成简单的函数________________________;解:y=eu,u=arctanv,v=1+x23、函数y=arcsin2x的反函数是_____________________;1⎡ππ⎤解:y=sinx,x∈⎢-,⎥ 2⎣22⎦⎛1+x⎫4、lim ⎪; x→∞⎝x⎭2x2⎛1+x⎫解:lim ⎪x→∞⎝x⎭2x⎡⎛1⎫x⎤=lim⎢1+⎪⎥=e2 x→∞⎝x⎭⎦⎢⎥⎣2(2x-1)15(3x+1)30=;5、limx→∞(3x-2)45(2x-1)15(3x+1)30215⨯330⎛2⎫==⎪解:lim4545x→∞(3x-2)3⎝3⎭x2-3x+26、lim2;x→2x+4x-12(x-1)(x-2)=lim(x-1)=1x2-3x+2lim解:lim2 x→2x+6x→2x+4x-12x→2x+6x-28157、x→1=;2解:lim=x→1x→x-12x→12=x→1 =x→13x-1==34x+2的连续区间为(x+1)(x-4)解:x+2≥0,且(x+1)(x-4)≠08、函数f(x)=∴x≥-2,x≠-1,x≠4,∴x∈[-2,-1)⋃(-1,4)⋃(4,+∞)ax2+bx-19、已知a,b为常数,lim=2,则a=,b=.x→∞2x+1ax2+bx-1解:因为x的最高次为2,lim=2 x→∞2x+1所以a=0,b=2,即b=42x≠0在点x=0处连续,则a=x=0x1-⎤⎡=lim⎢(1-x)x⎥x→0⎣⎦-22⎧x⎪10、已知f(x)=⎨(1-x)⎪a⎩解:limf(x)=lim(1-x)x→0x→0=e-2因为f(x)在点x=0处连续,f(0)=a=limf(x)=e-2,所以a=e-2。

极限与连续练习题及解析

极限与连续练习题及解析

极限与连续练习题及解析在数学课上,我们经常会遇到一些有关于极限与连续的练习题。

这些题目不仅能够帮助我们巩固对极限与连续的理解,还能提高我们解决问题的能力。

在本文中,我将为大家分享一些关于极限与连续的练习题及解析。

题目一:计算极限求解以下极限:1. $$\lim_{x\to 2}\frac{x^2-4}{x-2}$$解析:将被除数进行因式分解得:$$\lim_{x\to 2}\frac{(x+2) \cdot (x-2)}{x-2}$$最后得到:$$\lim_{x\to 2}(x+2)$$代入极限的定义,得到结果为:$$4$$题目二:证明函数连续证明下列函数在指定区间上连续:1. 函数$f(x)=\sqrt{x}$在区间$[0, +\infty)$上连续。

首先,我们需要证明$f(x)=\sqrt{x}$在$[0, +\infty)$上存在。

由于$x \geq 0$,所以$\sqrt{x}$是有定义的。

接下来,我们需要证明对于任意给定的$\varepsilon > 0$,存在一个$\delta > 0$,使得当$0 < |x-a| <\delta$时,$|\sqrt{x}-\sqrt{a}|<\varepsilon$。

根据不等式$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}+\sqrt{a}|$,可以得到$$|\sqrt{x}-\sqrt{a}|<|\sqrt{x}-\sqrt{a}|\cdot\frac{|\sqrt{x}+\sqrt{a}|}{|\sqrt{x}-\sqrt{a}|}$$进一步化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|\sqrt{x}^2-\sqrt{a}^2|}{|\sqrt{x}-\sqrt{a}|}$$继续化简得:$$|\sqrt{x}-\sqrt{a}|<\frac{|x-a|}{|\sqrt{x}+\sqrt{a}|}$$由于$\sqrt{x}+\sqrt{a}$在$x$趋于$a$时不等于0,所以存在一个正数$M$,使得$|\sqrt{x}-\sqrt{a}|<M|x-a|$。

高等数学测试题一(极限连续)答案

高等数学测试题一(极限连续)答案

高等数学测试题一(极限连续)答案一、选择题(每小题4分,共20分)1、当某0时,()无穷小量。

111A某inBe某Cln某Din某某某某13某1某1的()2、点某1是函数f(某)1。

3某某1A连续点B第一类非可去间断点C可去间断点D第二类间断点3、函数f(某)在点某0处有定义是其在某0处极限存在的()。

A充分非必要条件B必要非充分条件C充要条件D无关条件某22a某)0,则常数a等于()4、已知极限lim(。

某某A-1B0C1D2e某15、极限lim等于()。

某0co某1AB2C0D-2二、填空题(每小题4分,共20分)1、lim(1)=某21某2某2、当某0时,无穷小ln(1A某)与无穷小in3某等价,则常数A=3、已知函数f(某)在点某0处连续,且当某0时,函数f(某)2则函数值f(0)=1某2,4、lim[111]=n1223n(n1)15、若limf(某)存在,且f(某)某in某2limf(某),则limf(某)=某某某二、解答题1、(7分)计算极限lim(1n111)(1)(1)22223n2、(7分)计算极限lim某0tan某in某3某3、(7分)计算极限lim(某2某3某1)2某14、(7分)计算极限lim某01某in某1e1某2某3a某2某45、(7分)设lim具有极限l,求a,l的值某1某126、(8分)设(某)某33某2,(某)c(某1)n,试确定常数c,n,使得(某)(某)1某in7、(7分)试确定常数a,使得函数f(某)某2a某在(,)内连续某0某08、(10分)设函数f(某)在开区间(a,b)内连续,a某1某2b,试证:在开区间(a,b)内至少存在一点c,使得t1f(某1)t2f(某2)(t1t2)f(c)(t10,t20)3。

函数极限与连续习题(含答案)汇编

函数极限与连续习题(含答案)汇编

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。

函数的极限与连续训练题1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限(2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续(3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续(4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。

其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若a x f x x =→)(lim 0,则下列说法正确的是( C )A 、)(x f 在0x x =处有意义B 、a x f =)(0C 、)(x f 在0x x =处可以无意义D 、x 可以只从一侧无限趋近于0x3、下列命题错误的是( D )A 、函数在点0x 处连续的充要条件是在点0x 左、右连续B 、函数)(x f 在点0x 处连续,则)lim ()(lim 00x f x f x x x x →→=C 、初等函数在其定义区间上是连续的D 、对于函数)(x f 有)()(lim 00x f x f x x =→ 4、已知x x f 1)(=,则xx f x x f x ∆-∆+→∆)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x -5、下列式子中,正确的是( B )A 、1lim 0=→x xx B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→xb ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和7、已知,2)3(,2)3(-='=f f 则3)(32lim3--→x x f x x 的值是( C )A 、4-B 、0C 、8D 、不存在8、=--→33lim a x ax a x ( D )A 、0B 、1C 、32aD 、323a9、当定义=-)1(f 2 时,xx x f +-=11)(2在1-=x 处是连续的。

(完整版)函数、极限与连续习题及答案

(完整版)函数、极限与连续习题及答案

第一章 函数、极限与连续(A)1.区间[)+∞,a 表示不等式( )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A .2-eB .∞C .0D .21 18.无穷小量是( )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为 ,()0f = ,()1f = 。

(完整版)高等数学函数的极限与连续习题精选及答案

(完整版)高等数学函数的极限与连续习题精选及答案

1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。

2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。

5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。

7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。

9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→xxax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。

高等数学函数的极限与连续习题精选和答案

高等数学函数的极限与连续习题精选和答案

1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。

2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。

5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。

7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。

9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域恒有()M x f ≤(M 是正数),则函数()x f 在该邻域( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。

高等数学函数的极限与连续习题精选及答案

高等数学函数的极限与连续习题精选及答案

1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。

2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。

5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。

7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。

9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00l i m 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x xk x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01l i m ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→xxx sin lim( 0 ),=∞→xx x 1s in lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),l i m s i n (a r c c o t )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。

极限与连续的模拟试题

极限与连续的模拟试题

极限与连续的模拟试题一、选择题1.下列函数中,不是连续函数的是:A. f(x) = sin(x)B. f(x) = x^2 + 2x - 1C. f(x) = 1/xD. f(x) = |x|2.设函数f(x) = x^2 - 3x + 2,下列说法正确的是:A. f(x)在定义域上处处连续B. f(x)在x = 1处连续C. f(x)在x = 2处不连续D. f(x)在定义域上有一个间断点3.已知函数f(x) = e^x,g(x) = ln(x),则f(g(2))的值为:A. e^2B. 1C. 2D. ln(2)4.已知函数f(x) = x^2 + 2x,g(x) = 2x - 1,则f(g(x))的值为:A. 4x^2 + 4x - 1B. 4x^2 - 5C. 4x^2 + 2x - 1D. 4x^2 - 2x + 15.设函数f(x) = (x - 1)(x - 2),则f(x)的零点为:A. x = 1,x = 2B. x = -1,x = -2C. x = 0,x = 1D. x = 1/2,x = 2/3二、填空题1.求函数f(x) = 3x^2 - 2x + 1的极限lim(x→2) f(x)的值为______。

2.求函数f(x) = (2x - 1)^3的导数f'(x)的值为______。

3.设函数f(x) = |x|,则f(x)在x = 0处的导数为______。

4.求函数f(x) = x^3 - 2x^2 + 4x - 6的极大值为______。

5.函数f(x) = e^x在x = 0处的导数为______。

三、解答题1. 证明函数f(x) = x^3 - 3x^2 + 2x - 1在定义域上连续。

解答:要证明f(x) = x^3 - 3x^2 + 2x - 1在定义域上连续,需要满足以下两个条件:1) f(x)在定义域上有定义;2) f(x)在定义域上无间断点。

高等数学函数的极限与连续习题及答案

高等数学函数的极限与连续习题及答案
欲使上式成立,令
上式化简为
1a2
0,∴a1,
2
1b
12ab12abx1b212ablimlimlim
xxx1a∴1
a1,12ab0,b2
10、函数fx
的间断点是(x0,x1).
11
xx2x2
11、fx2的连续区间是(,1,1,3,3,).
x4x3ax2sinx
2,则a(2)12、若lim.
xx∴aax2sinxsinxlimlima2a0a02limxxxxx
a
xx21
logaxx21fx
3、当x0时,ex1是x的(c)
a.高阶无穷小b.低阶无穷小c.等价无穷小
4、如果函数fx在x0点的某个邻域b.连续c.有界
5、函数fx1
1x在(c)条件下趋于.
a.x1 b.x10 c.x10
6、设函数fxsinx
x,则limx0fx(c)
a.1b.-1c.不存在∵sinx
6、如果~,则o.
1,是
∴limlim10,即是的同阶无穷小.
2xx2sin2sin1cosx11limlim2正确∵limx0x0x04x2x2x2
2正确∵lim
11limxlimsin0.x0xx0x0x
1错误∵limsin不存在,∴不可利用两个函数乘积求极限的法则计算。x0x8、limxsin
高等数学函数的极限与连续习题精选及答案
第一章函数与极限复习题
1、函数fxx2x31x1与函数gxx1相同.
错误∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴fxx2x31x1与gx函数关系相同,但定义域不同,所以fx与gxx1
是不同的函数。
2、如果fxM(M为一个常数),则fx为无穷大.

高等数学单元测试题1

高等数学单元测试题1

高等数学测试题(一)极限、连续部分(答案)一、选择题(每小题4分,共20分)分) 1、 当0x ®+时,(A )无穷小量。

)无穷小量。

A 1sin x x B 1x e C ln x D 1sin x x2、点1x =是函数311()1131x x f x x x x -<ìï==íï->î的(C )。

A 连续点连续点 B 第一类非可去间断点第一类非可去间断点 C 可去间断点可去间断点 D 第二类间断点第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的(D )。

A 充分非必要条件充分非必要条件 B 必要非充分条件必要非充分条件 C 充要条件充要条件 D 无关条件无关条件4、已知极限22lim()0x x ax x®¥++=,则常数a 等于(A )。

A -1 B 0 C 1 D 2 5、极限21lim cos 1x x e x ®--等于(D )。

A ¥ B 2 C 0 D -2 二、填空题(每小题4分,共20分)分)1、21lim(1)x x x®¥-=22e -2、 当0x ®+时,无穷小ln(1)Ax a =+与无穷小sin 3x b =等价,则常数A=3 3、 已知函数()f x 在点0x =处连续,且当0x ¹时,函数21()2x f x -=,则函数值(0)f =0 4、 111lim[]1223(1)n n n ®¥+++··+=1 5、 若lim ()x f x p®存在,且sin ()2lim ()x xf x f x xp p®=+-,则lim ()x f x p ®=1 二、解答题二、解答题1、(7分)计算极限分)计算极限 222111lim(1)(1)(1)23n n ®¥---解:原式=132411111lim()()()lim 223322n n n n n n n n ®¥®¥-++···=·=2、(7分)计算极限分)计算极限 30tan sin lim x x x x®- 解:原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x x x x x x x x x ®®®--===3、(7分)计算极限分)计算极限 123lim()21x x xx x +®¥++ 解:原式= 11122112221lim(1)lim(1)121211lim(1)lim(1)1122x x x x x x x x x e x x +++®¥®¥+®¥®¥+=+++=+·+=++ 4、(7分)计算极限分)计算极限 201sin 1lim 1x x x x e ®+-- 解:原式=201sin 12lim 2x x xx ®=5、(7分)设3214lim 1x x ax x x ®---++ 具有极限l ,求,a l 的值的值 解:因为1lim(1)0x xx ®-+=,所以,所以 321lim(4)0x x ax x ®---+=, 因此因此 4a = 并将其代入原式并将其代入原式321144(1)(1)(4)limlim 1011x x x x x x x x l x x ®-®---++--===++6、(8分)设3()32,()(1)nx x x x c x a b =-+=-,试确定常数,c n ,使得()()x x a b解:解: 32221()32(1)(2)(1)(2)3lim ,3,2(1)x x x x x x x x c n c x ca ®=-+=-+-+=\==- 此时,()()x x ab 7、(7分)试确定常数a ,使得函数21sin 0()0x x f x x a x x ì>ï=íï+£î在(,)-¥+¥内连续内连续解:当0x >时,()f x 连续,当0x <时,()f x 连续。

极限与连续的应用练习题及解析

极限与连续的应用练习题及解析

极限与连续的应用练习题及解析在数学学科中,极限与连续是两个重要而基础的概念。

他们的应用广泛,不仅在数学中起着核心作用,也在物理、工程、经济等领域有着深远的影响。

为了加深对极限与连续的理解,下面将提供一些应用练习题及解析。

练习题1:已知函数f(x)=x^2+2x+1,求f(x)在x=-1处的极限。

解析1:要求函数f(x)在x=-1处的极限,可以使用直接代入法。

即将x的值代入函数,计算得到函数值。

代入x=-1,有:f(-1)=(-1)^2+2*(-1)+1=1所以,函数f(x)在x=-1处的极限为1。

练习题2:设函数g(x)=2x+3,求g(x)的连续区间。

解析2:要求函数g(x)的连续区间,可以通过判断函数是否存在间断点来确定。

函数g(x)=2x+3是一个线性函数,线性函数在整个数轴上都是连续的。

因此,函数g(x)的连续区间为实数集R。

练习题3:已知函数h(x)=1/x,请分别求函数h(x)在x=0和x=1处的连续性。

解析3:要求函数h(x)在x=0和x=1处的连续性,可以使用极限的定义来判断。

当x趋近于0时,h(x)的极限为无穷大。

因此,函数h(x)在x=0处是不连续的。

当x趋近于1时,h(x)的极限为1。

因此,函数h(x)在x=1处是连续的。

练习题4:已知函数k(x)=sqrt(x+1),求函数k(x)的连续区间。

解析4:要求函数k(x)的连续区间,可以通过判断函数是否存在间断点来确定。

函数k(x)=sqrt(x+1)是一个开方函数,开方函数的定义域必须满足被开方式大于等于0,即x+1≥0。

解得x≥-1。

所以,函数k(x)的连续区间为闭区间[-1, +∞)。

练习题5:设函数f(x)=e^x,求f(x)在x=2处的极限。

解析5:要求函数f(x)在x=2处的极限,可以使用直接代入法。

即将x的值代入函数,计算得到函数值。

代入x=2,有:f(2)=e^2所以,函数f(x)在x=2处的极限为e^2。

经过以上练习题及解析,我们可以看到极限与连续在数学应用中的重要性。

函数极限与连续练习题

函数极限与连续练习题

函数 极限与连续 练习题一、判断题1. 函数x x x f -+=1)(2与函数xx x g ++=11)(2是同一函数 ( )2. 函数x e x f ln )(=与函数x e x g ln )(=是同一函数 ( )3. 函数21)(--=x x x f 与函数21)(--=x x x g 是同一函数 ( ) 4. 函数334)(x x x f -=与函数31)(-=x x x g 是同一函数 ( ) 5. 函数x x f lg 10)(=与函数x x g =)(是同一函数 ( ) 6. 函数 211()()11x f x g x x x-==-+是同一函数 ( ) 7. 函数212)cos 1()(x x f -=与函数x x g sin )(=是同一函数 ( ) 8. 函数)cos(arccos )(x x f =与函数x x g =)(是同一函数 ( ) 9. 函数)12ln()(2+-=x x x f 与函数)1ln(2)(-=x x g 是同一函数 ( ) 10. 函数)sin(arcsin )(x x f =与函数)arcsin(sin )(x x g =是同一函数 ( )11.1lnx arcctgx x x αβ+==→+∞设,,则当时则~αβ ( ) 1211()sin (0)f x x x x =⋅<<+∞ ,0()x f x →+当时不是无穷大,但无界.( )13.00()()(0)lim ()()x x x x f x g x A A f x g x →→→∞→≠=∞设当时,,,则.( )14.1lim 0lim||1n n n n nx x a a x +→∞→∞==≤设及存在,则:. ( )二、填空题1. 设)(x f 的定义域是(0,1),则)1(2x f -的定义域是________________。

2. 设)2ln(1)(x x x f -++=,则)(x f 的定义域用区间表示为_______________。

函数极限与连续的题(3篇)

函数极限与连续的题(3篇)

第1篇一、引言函数极限与连续性是高等数学中研究函数性质的重要工具。

极限是研究函数在某一点附近变化趋势的方法,而连续性则是研究函数整体性质的方法。

一个函数如果在某一点连续,那么它在该点附近的变化是平滑的,没有突变。

二、函数极限与连续性的概念1. 极限函数极限的定义如下:设函数f(x)在点x=a的某邻域内有定义,如果当x趋向于a 时,f(x)的值无限接近于某常数L,那么称L为函数f(x)在点x=a的极限,记作lim[f(x)](x→a)=L。

2. 连续性函数连续性的定义如下:设函数f(x)在点x=a的某邻域内有定义,如果f(a)=lim[f(x)](x→a),那么称函数f(x)在点x=a处连续。

三、函数极限与连续性的性质1. 极限的性质(1)存在性:如果函数f(x)在点x=a的某邻域内有定义,那么函数f(x)在点x=a 的极限一定存在。

(2)唯一性:如果函数f(x)在点x=a的某邻域内有定义,那么函数f(x)在点x=a 的极限是唯一的。

(3)保号性:如果函数f(x)在点x=a的某邻域内有定义,且存在一个正常数M,使得当x∈(a-δ,a+δ)时,有|f(x)|≤M,那么函数f(x)在点x=a的极限存在,且其绝对值不超过M。

2. 连续性的性质(1)保号性:如果函数f(x)在点x=a处连续,那么当x∈(a-δ,a+δ)时,有f(x)≥M,那么f(a)≥M。

(2)保序性:如果函数f(x)在点x=a处连续,那么当x∈(a-δ,a+δ)时,有f(x)≤M,那么f(a)≤M。

(3)可加性:如果函数f(x)和g(x)在点x=a处连续,那么函数f(x)+g(x)在点x=a处连续。

(4)乘除性:如果函数f(x)和g(x)在点x=a处连续,且g(a)≠0,那么函数f(x)·g(x)和f(x)/g(x)在点x=a处连续。

四、题目及解答题目1:求函数f(x)=x²-3x+2在点x=2的极限。

解答:由函数极限的定义,我们需要证明当x趋向于2时,f(x)的值无限接近于f(2)。

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题第一篇:函数的极限及函数的连续性典型例题函数的极限及函数的连续性典型例题一、重点难点分析:①此定理非常重要,利用它证明函数是否存在极限。

② 要掌握常见的几种函数式变形求极限。

③ 函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。

④ 计算函数极限的方法,若在x=x0处连续,则⑤ 若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。

二、典型例题例1.求下列极限①②③④解析:①。

②。

③。

④。

例2.已知,求m,n。

解:由可知x2+mx+2含有x+2这个因式,∴ x=-2是方程x2+mx+2=0的根,∴ m=3代入求得n=-1。

例3.讨论函数的连续性。

解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的,又∴由从而f(x)在点x=-1处不连续。

∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。

,∴ f(x)在x=1处连续。

,例4.已知函数试讨论a,b为何值时,f(x)在x=0处连续。

,(a,b为常数)。

解析:∵且,∴,∴ a=1, b=0。

例5.求下列函数极限①②解析:①。

②。

例6.设解析:∵要使存在,只需,问常数k为何值时,有存在?。

,∴ 2k=1,故时,存在。

例7.求函数在x=-1处左右极限,并说明在x=-1处是否有极限?解析:由∵,∴ f(x)在x=-1处极限不存在。

,三、训练题:1.已知,则2.的值是_______。

3.已知,则=______。

4.已知5.已知,2a+b=0,求a与b的值。

,求a的值。

参考答案:1.32.3.4.a=2, b=-45.a=0第二篇:函数的极限和函数的连续性(本站推荐)第一部分高等数学第一节函数的极限和函数的连续性考点梳理一、函数及其性质1、初等函数幂函数:y=xa(a∈R)指数函数y=ax(a>1且a≠1)对数函数:y=logax(a>0且a≠1)三角函数:sin x , cos x , tan x , cot x反三角函数:arcsin x , arcos x , arctan x , arccot x2、性质(定义域、值域、奇偶性、单调性、周期性、有界性)【注】奇偶性、单调性相对考察的可能性打,但一般不会单独出题,常与其他知识点结合起来考察(比如与积分、导数结合)二、函数极限1.数列极限定义(略)收敛性质:极限的唯一性、极限的有界性、极限的保号性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档