分类讨论的思想方法
分类讨论的思想方法
分类讨论的思想方法知识点导读也是科学研究中最常用、最基本的方法.数学中的分类讨论贯穿知识的各个部分,形式多样、综合性强、逻辑严谨,在解数学题中,分类讨论是一种十分常见和重要的思想方法.那么,什么是数学中的分类讨论呢?一般来说,当一个问题所给的对象不宜进行统一的研究或推理,只有按某一个标准用分组的形式才能方便地表示出来,那么就需要对研究的对象进行分类(即分组),并对其中的每一类分别进行研究,最后综合各类的结果得到整个问题的结果.它是逻辑划分思想在解决数学问题中的具体运用,它将一个数学问题化整为零,把一个复杂的问题转化为单一的问题,从而“各个击破”,最终使整个问题得以顺利解决.高中数学中经常遇到需要进行分类讨论的问题,归纳起来有以下几种常见类型:一、由数学概念引起的分类有许多数学概念本身就是分类定义的,例如数的绝对值的概念:|a |=⎩⎪⎨⎪⎧a (当a ≥0时)-a (当a <0时)这样,当我们遇到求解与绝对值|a |有关的问题时,就要分a ≥0和a <0两种情况讨论.二、由有关数学的性质、运算法则、定理、公式引起的分类如在判断两直线是否相互垂直时,要讨论其斜率是否存在;又如指数、对数函数的性质在应用时,要分别针对它们底数的取值进行讨论等.再如等比数列a, aq, aq 2, …, aq n -1,…的前n 项和公式为S n =⎩⎪⎨⎪⎧a (1-q n )1-q (当q ≠1时)na (当q =1时)因此,遇到公比q 是字母或含字母的表达式时,就要讨论公比等于1及公比不等于1的两种情形.三、涉及有关不确定的情况时引起的分类如分段函数、图形、特殊要求等在计算或列式时需要分类讨论,一般是综合的题型.四、由参数变化而引起的分类运用分类讨论的思想解数学题时,一般分为以下四个步骤: (1) 确定讨论的对象和所要讨论对象的范围.(2) 合理分类就是将讨论对象的范围划分子区域,划分子区域时应符合以下三个条件: ① 确定分类的标准一致,不重复、不遗漏; ② 划分子区域只能按同一标准进行; ③ 区域分类应逐级进行.(3) 严格按层次逐级或逐段讨论,不能越级.(4) 归纳总结,综合出结论.其中,确定分类的标准是分类讨论的关键. 范例分类与解题分析【例1】 已知集合A ={1, x 2},集合B ={1, 3, x },且A B ,求x 的值.【解】 ①当x 2=3,即x =±3时,A B .②当⎩⎪⎨⎪⎧x 2=x x ≠1即x =0时,A B .所以x =±3或x =0.【点评】 注意真子集概念中“B 中至少有一个元素不属于A ”,可以认为A 的元素个数至少比B 的元素个数少1个,又集合的元素具有互异性,即同一个元素在集合中只出现一次,故在第2种情形中要求x ≠1.二、根据运算的要求进行分类【例2】 解关于x 的不等式:2(a +1)x -2a >ax +4.【分析】 原不等式可化为(a +2)x >2(a +2),因为x 的系数中含有字母a (a 称为参数),所以应分成a +2>0,a +2=0,a +2<0三种情况来解答.【解】 原不等式可化成(a +2)x >2(a +2). ①当a >-2时,不等式解集为{x |x >2}; ②当a =-2时,原不等式为0·x >0,原不等式解集为∅; ③当a <-2时,不等式解集为{x |x <2}. 【点评】 数学中的某些运算有着严格的运算要求.如实数集中偶次根式的被开方数必须非负,方程或不等式的两边同乘(同除)的一个数不能为零,不等式两边同乘(同除)一个负数不等号要改变方向等.凡涉及到运算要求的问题,求解时应按照运算的要求进行分类讨论.三、根据定理、公式、法则的限制条件进行分类【例3】 设{a n }是以d 为公差的等差数列,求3a 1+ 3a 2+3a 3+…+3a n .【分析】 当数列为等比数列且其公比不确定时,在求前n 项和时,必须对公比是否为1分成两种情况进行讨论.【解】 设b n =3a n ,∵ b n +1b n =3a n +13a n=3a n +1-a n =3d∴ {b n }是以b 1=3a 1为首项,以q =3d 为公比的等比数列 当q =3d =1,即d =0时, 3a 1+3a 2+3a 3+…+3a n =3a 1·n ,(n ∈N +)当q =3d≠1,即d ≠0时,3a 1+3a 2+3a 3+…+3a n =3a 1(1-3nd )1-3d,(n ∈N +).【点评】 数学中的某些定理、公式、法则等均受到一些条件的限制,如复数的模为非负实数;公式S n =a 1(1-q n )1-q中,q ≠1;三角形任意两边之和大于第三边,任意两边之差小于第三边;方程ax 2+bx +c =0 (a ≠0)有实根的充要条件是b 2-4ac ≥0,无实根的充要条件是b 2-4ac <0等,在求解这类问题时,可根据相应的限制条件进行分类讨论.四、根据函数的性质进行分类【例4】 已知幂函数y =x 3m -7(m ∈N +)在区间(0, +∞)内是减函数,且图像关于y 轴对称,求函数解析式.【解】 由于幂函数y =x n ,当n <0时,在区间(0, +∞)内是减函数,所以可得3m -7<0.解得m <73.又∵ m ∈N +, ∴ m =1, 2.当m =1时,函数的解析式为y =x -4,是偶函数,其图象关于y 轴对称.当m =2时,函数的解析式为y =x -1,是奇函数,其图象关于原点对称,∴ m =2(舍去).因此,所求函数的解析式为y =x -4.【点评】 幂函数y =x n 当n <0时,在区间(0, +∞)内是减函数,据此可定出m 的取值范围,再由m ∈N +及该幂函数为偶函数(图象关于y 轴对称),进一步确定m 的值.五、根据图形相对位置的变化特征进行分类【例5】 如图,在直角梯形ABCD 中,∠B =90°,AB =4,BC =CD =2,DC ∥AB ,动点P 从B 点出发,沿折线B →C →D 运动,设点P 运动的路程为x ,△ABP 的面积为y ,写出y 与自变量x 之间的函数关系式,并在直角坐标系中画出它的图象.【分析】 △ ABP 的面积由于点P 的运动,函数关系式共分两个部分来求解,分别为点P 在BC 上和点P 在CD 上.【解】 当点P 由B →C 运动时,PB =x ,则S △ABP =12×AB ×PB =2x ,且x ∈;当点P 由C →D 运动时,S △ABP =12×AB ×BC =124×2=4,且x ∈(2,4].∴综上所述:y =⎩⎪⎨⎪⎧ 2x ,4,x ∈x ∈(2,4],且该函数关系式的图像如图所示.【点评】 此例的求解是根据图形的位置特征进行分类讨论的,对于这类与图形的位置特征有关的数学问题,求解时可根据图形的位置特征进行分类讨论.六、根据参数的取值进行分类【例6】 试根据k 的不同取值,讨论方程kx 2+y 2=1所表示的曲线形状.【分析】 根据不同曲线方程对参数的要求,可对方程中参数m 的取值进行分类,求得曲线的标准方程,从而确定出方程所表示的不同曲线.【解】 当k =0时,方程为y 2=1,即y =±1表示两条垂直于y 轴的直线;当k =1时,方程为x 2+y 2=1,表示以原点为圆心,以1为半径的圆;当k ≠0且k ≠1时,方程为x21k+y 2=1;当1k>1,即0<k <1时,表示焦点在x 轴上的椭圆; 当0<1k 1,即k >1时,表示焦点在y 轴上的椭圆;当1k<0,即k <0时,表示焦点在y 轴上的双曲线. 【点评】 在讨论曲线方程时,一定要掌握不同曲线方程的特征,并按照不同曲线方程的要求进行讨论,然后从一般到特殊,进行分类讨论,可先讨论直线、圆,然后再讨论抛物线、椭圆、双曲线.【例7】 不等式(a 2-1)x 2-(a -1)x -1<0的解集为R ,求a 的取值范围.【分析】 因x 2的系数a 2-1可以等于0也可以不等于0,因此对a 2-1是否等于0应分类讨论.【解】 (1)若a 2-1=0,则a =-1或a =1 因a =1符合题意,而a =-1不符合题意 ∴a =1;(2)若a 2-1≠0则由题意知 ⎩⎪⎨⎪⎧a 2-1<0(a -1)2+4(a 2-1)<0∴-35<a<1 综合(1)(2)得,a 的取值范围是(-35,1].【点评】 由于参数的取值不同,问题的表述也不相同.因此只有对参数进行分类才能根据问题的不同表述分别列式求解.【举一反三】 对任意实数x ,不等式ax 2+2ax -(a +2)<0恒成立,求实数a 的取值范围.【解】 当a =0时,由题意得-2<0.符合题意.当a ≠0时,由题意得⎩⎨⎧a <0(2a )2+4a (a +2)<0,解之得-1<a <0. 综上所述,a 的取值范围(-1,0].【例8】 已知函数y =log a x(a>0且a ≠1)在[1, 2]上的最大值比最小值大2,求a 的值. 【分析】 因a 的不同取值,对数函数y =log a x 在[1, 2]上的单调性不同,因此必须对a 进行分类讨论.【解】 (1)若a>1由已知得log a 2-log a 1=2∴log a 2=2 ∴a 2=2 ∴a =2; (2)若0<a<1由已知得log a 1-log a 2=2∴log a 12=2 ∴a 2=12 ∴a =22综合(1)(2)得a =2或a =22.【点评】 由于参数的取值不同,对数函数y =log a x 的单调性也不相同,因此只有对a 进行分类,才能利用函数的单调性列式求解.七、根据求解数学问题结论的多样性进行分类【例9】 根据a 的不同取值,求函数f (x )=ax 2+x +1的单调区间.【分析】 f (x )可能为一次函数,也有可能为二次函数,而当f (x )为二次函数时,可根据抛物线的开口方向及对称轴的位置,讨论其单调区间.【解】 当a =0时,f (x )=x +1,∴ f (x )的递增区间为(-∞,+∞).当a ≠0时,f (x )为二次函数,对称轴为x =-12a,当a >0时,f (x )的递增区间为⎣⎡⎭⎫-12a ,+∞,递减区间为⎝⎛⎦⎤-∞,-12a , 当a <0时,f (x )的递增区间为⎝⎛⎦⎤-∞,-12a ,递减区间为⎣⎡⎭⎫-12a ,+∞. 【点评】 一次函数、指数函数、对数函数等在其定义域内的单调性都有两种可能性,二次函数的单调性不仅要考虑抛物线的开口方向,还要考虑对称轴的位置.综合训练1.A ={x |x 2-2x -3=0},B ={x |ax -1=0},B A ,则a 的值是( )A .-1,0, 13B .-1, 13C .-13,0,1D .-13,1【分析】 A ={-1,3}当B =∅时,方程ax -1=0无解,a =0 当B ={-1}时,-a -1=0,a =-1当B ={3}时,3a -1=0,a =13 a 的值是-1, 0, 13.2.在同一坐标中,y =x a和y =ax +1a的图象可能是( )A B C D3.已知m ∈R ,且(m 2-8m +7)+(m 2-1)i =|(2-23i)2|,则m =( ) A .-1或1 B .-1 C .1或7 D .7【分析】 |(2-23i)2|=|8+83i|=16 故有⎩⎪⎨⎪⎧m 2-8m +7=16m 2-1=0解得m =-1.4.顶点间的距离为6,渐近线方程为y =±12x 的双曲线的标准方程是( )A.x 29-4y 29=1或y 29-x 236=1B.y 29-4x 291或x 29-y 236=1C.x 29-4y 29 1D.y 29-x236=1【分析】 2a =6,a =3当焦点在x 轴上时,渐近线为y =±b a =±12x, b a =12 b =32双曲线的标准方程是x 29-4y29=1.当焦点在y 轴上时,渐近线为y =±a b =±12x ,a b =12, b =6双曲线的标准方程是y 29-x236=1.二、填空题5.设A ={1,2,3},B ={3, lg a },若B ⊆A ,则a =__10或100________. 【分析】 由题得lg a =1或lg a =2,∴ a =10或a =100.6.已知π2<α<3π2,则|tan α|tan α+|sin α|sin α=_____0___.【分析】 π2<α<π时,|tan α|tan α+|sin α|sin α=0;π<α<3π2|tan α|tan α+|sin α|sin α0.7.若log a 45<1,则a 的取值范围是___(0,45)∪(1,+∞)_______.【分析】 由题意,得log a 45<1=log a a ,则当a >1时,y =log a x 是单调增的,∴a >45,即a >1;当0<a <1时,y =log a x 是单调减的,∴a <45,即0<a <45.综上所述,a 的取值范围为(0,45)∪(1,+∞).8.设f (x )=⎩⎪⎨⎪⎧2x -1,x >03-x ,x ≤0,则xf (x )>0的解集是___⎝⎛⎭⎫12,+∞_______.【分析】 当x >0时,x (2x -1)>0,即x >12或x <0 ∴x >12.当x ≤0时,x (3-x )>0,解为∅.9.在△ABC 中,已知a =23,c =2,∠C =30°,则b =____2或4____.【分析】 cos C =a 2+b 2-c 22ab ,32=12+b 2-443b,b 2-6b +8=0,b =2或4.10.已知椭圆的中心在原点,对称轴为坐标轴,长轴为8,短轴为4,则椭圆方程是___x 216+y 24=1或y 216+x24=1_____. 【分析】 若焦点在x 轴上,则椭圆方程为x 216+y 24=1,若焦点在y 轴上则椭圆方程为y 216+x241.11.平行于直线3x -4y -20=0,且和它相距3个单位的直线方程是__3x -4y -5=0或3x -4y -35=0______.【分析】 设所求直线方程为3x -4y +m =0,由题意知两直线间的距离d =|-20-m |5=3,则m =-5或-35.三、解答题12.已知集合A ={1, p, p 2},集合B ={1, 1-q, 1-2q },且A =B ,求p 的值.【解】 因为A =B .所以有⎩⎪⎨⎪⎧ p =1-q p 2=1-2q ①或⎩⎪⎨⎪⎧p =1-2q p 2=1-q ②由①得⎩⎪⎨⎪⎧2p =2-2qp 2=1-2q ⇒p 2-2p =-1⇒p =1(舍去).由②得⎩⎪⎨⎪⎧p =1-2q 2p 2=2-2q ⇒2p 2-p =1⇒p =-12或p =1(舍去).所以p =-12.(舍去p =1是因为集合中的元素是互异的)13.求与双曲线x 22y 2=1有两个公共焦点,且过点(3,2)的圆锥曲线的方程.【解】 双曲线x 22y 2=1的两个焦点为F 1(-3,0),F 2(3,0)当圆锥曲线为椭圆时,设其方程为x 2a 2+y 2b2=1(a >b >0),由⎩⎪⎨⎪⎧ 3a 2+4b 2=1a 2-b 2=3 得: a 2=9,b 2=6,椭圆的方程为x 29+y 26=1.当圆锥曲线为双曲线时,设其方程为x 2a 2y 2b2=1(a ,b >0),由⎩⎪⎨⎪⎧3a 2-4b 2=1a 2+b 2=3得: a 2=1, b 2=2,双曲线的方程为x 2-y 22=1.14.函数y =a -b cos3x 的最大值是6,最小值是-2,求函数y =cos πxa+b 的最小正周期与最小值.【解】 当b ≥0时,根据题意⎩⎪⎨⎪⎧ a +b =6a -b =-2, ∴ ⎩⎪⎨⎪⎧a =2b =4函数y =cos πx a +b 的最小正周期T =2ππ2=4,最小值是3;当b <0时,根据题意⎩⎪⎨⎪⎧ a -b =6a +b =-2,∴ ⎩⎪⎨⎪⎧a =2b =-4,函数y =cos πx a +b 的最小正周期T =2ππ2=4,最小值是-5.15.如图,已知矩形ABCD ,AB =4,BC =3,点P 为BC 或DC 上一动点,设AP 与矩形ABCD 所围成的三角形面积是S ,从点A 沿矩形周界且经过B (或再经过点C )到P 的距离是x ,试用解析式将S 表示为x 的函数.图(1) 图(2) 第15题图【解】 如P 在BC 间,AB +BP =x ,PB =x -4,S =12AB ·BP =12×4(x -4)=2x -8,此时,x ∈(4,7];如P 在DC 间,AB +BC+CP =x ,CP =x -7,DP =DC -CP =4-(x -7)=11-x ,S =12AD ·DP =12×3×(11-x )=-32x +332此时x ∈(7,11),∴S =⎩⎪⎨⎪⎧2x -8 x ∈(4,7]-32x +332x ∈(7,11)。
高中数学分类讨论思想方法
高中数学分类讨论思想方法高中数学分类讨论思想方法是高中数学教学中一种重要的解题思路和方法。
它通过从不同的角度和不同的方法分析问题,使得解决问题更加全面和灵活。
分类讨论思想方法在高中数学中应用广泛,涉及到许多数学概念和技巧。
下面我将结合具体的例子,对高中数学分类讨论思想方法进行详细的介绍。
首先,分类讨论思想方法的基本思路是将问题分成若干个子问题,每个子问题用不同的方法进行求解或分析。
这样做可以把原本比较复杂的问题转化为几个较简单的子问题,从而更好地理解和解决。
例如,考虑一个常见的二次方程问题:求解方程$x^2-5x+6=0$。
首先,我们可以分类讨论这个方程的根的情况。
根据二次方程的求根公式,方程的根可以分为以下几种情况:1. 当 $\Delta=0$ 时,方程有两个相等的实根。
此时,$\Delta=b^2-4ac=5^2-4\cdot1\cdot6=1$,由于 $\Delta=0$,所以方程有两个相等的实根。
根据求根公式$x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$,可得方程的两个根为$x_1=x_2=\frac{-(-5)\pm\sqrt{1}}{2\cdot1}=\frac{5}{2}$。
2. 当 $\Delta>0$ 时,方程有两个不相等的实根。
此时,$\Delta=b^2-4ac=5^2-4\cdot1\cdot6=1$,由于 $\Delta>0$,所以方程有两个不相等的实根。
根据求根公式$x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$,可得方程的两个根为$x_1=\frac{-(-5)+\sqrt{1}}{2\cdot1}=2$ 和$x_2=\frac{-(-5)-\sqrt{1}}{2\cdot1}=3$。
3. 当 $\Delta<0$ 时,方程没有实根。
此时,$\Delta=b^2-4ac=5^2-4\cdot1\cdot6=1$,由于 $\Delta<0$,所以方程没有实根。
分类讨论的思想方法
b 1 时, f (x) x2 ln(x 1) ,令 h(x) x3 f (x) ,则
例
8:已知函数
f
(x)
2ax x2
a2 1
1
(
x
R)
,其中
a
R
.
(Ⅰ)当 a 1 时,求曲线 y f (x) 在点 (2,f (2)) 处的切线方程;
(Ⅱ)当 a 0 时,求函数 f (x) 的单调区间与极值.
内为减函数.
函数 f (x) 在 x1 a 处取得极大值 f (a) ,且 f (a) 1 .
函数
f
(x)
在
x2
1 a
处取得极小值
f
1 a
,且
f
1 a
a2 .
例 9:设函数 f (x) x(x a)2 (x∈R),其中 a∈R,
(1)当 a=1 时,求曲线 y= f(x) 在点(2,f (2))处的切线方程; (2)当 a≠0 时,求函数 f(x)的极大值和极小值;。
g(x) 在 (0, ) 上为增函数, x 0 时, g(x) g(0) 0 ,即
f (x) ax 。
2)若 a 2 ,方程 g '(x) 0 的正根为 x1 ln a
a2 2
4
,此时若
x
(0,
x1 )
,则
g
'( x)
0
,故
g(x)
在该区
间为减函数,因此 g(x) g(0) 0 ,即 f (x) ax
解:(1)设 r 为方程的一个根,即 f (r) 0 ,则由题设得 g( f (r)) 0 .于是,
g(0) g( f (r)) 0 ,即 g(0) d 0 . 所以, d 0 . (2)由题意及(1)知 f (x) bx2 cx , g(x) ax3 bx2 cx .
分类讨论的思想方法
分类讨论的思想方法慕泽刚 (重庆市龙坡区渝西中学 401326)一、知识要点概述1.分类讨论的思想方法的原理及作用:在研究与解决数学问题时,如果问题不能以统一的同一种方法处理或同一种形式表述、概括,可根据数学对象的本质属性的相同和不同点,按照一定的原则或某一确定的标准,在比较的基础上,将数学对象划分为若干既有联系又有区别的部分,然后逐类进行讨论,再把这几类的结论汇总,从而得出问题的答案,这种研究解决问题的思想方法就是分类讨论的思想方法.分类讨论的思想方法是中学数学的基本方法之一,在近几年的高考试题中都把分类讨论思想方法列为重要的思想方法来考查,体现出其重要的位置.分类讨论的思想方法不仅具有明显的逻辑性、题型覆盖知识点较多、综合性强等特点,而且还有利于对学生知识面的考查、需要学生有一定的分析能力、一定分类技巧,对学生能力的考查有着重要的作用.分类讨论的思想的实质就是把数学问题中的各种限制条件的制约及变动因素的影响而采取的化整为零、各个突破的解题手段.2.引入分类讨论的主要原因(1)由数学概念引起的分类讨论:如绝对值的定义、直线与平面所成的角、定比分点坐标公式等;(2)由数学运算要求引起的分类讨论:如除法运算中除数不为零、对数中真数与底数的要求等;(3)由函数的性质、定理、公式的限制引起的分类讨论;(4)由图形的不确定引起的分类讨论;(5)由参数的变化引起的分类讨论;(6)按实际问题的情况而分类讨论.二、解题方法指导1.分类讨论的思想方法的步骤:(1)确定标准;(2)合理分类;(3)逐类讨论;(4)归纳总结.2.简化分类讨论的策略:(1)消去参数;(2)整体换元;(3)变更主元;(4)考虑反面;(5)整体变形;(6)数形结合;(7)缩小范围等.3.解题时把好“四关”(1)要深刻理解基本知识与基本原理,把好“基础关”;(2)要找准划分标准,把好“分类关”;(3)要保证条理分明,层次清晰,把好“逻辑关”;(4)要注意对照题中的限制条件或隐含信息,合理取舍,把好“检验关”.三、范例剖析例1解关于x 的不等式:a(x-1)x-2>1(a ≠1) 解析:原不等式等价于:(a-1)x-(a-2)x-2>0,即(a ﹣1)(x ﹣a-2a-1)(x ﹣2)>0 ①若a>1,则①等价于(x ﹣a-2a-1)(x ﹣2)>0. 又∵2﹣a-2a-1=﹣1a-1﹣1<0,∴a-2a-1<2 ∴原不等式的解集为;(﹣∞,a-2a-1)∪(2,+∞); 若a<1时,则①等价于(x ﹣a-2a-1)(x ﹣2)<0.由于2﹣a-2a-1=a a-1, 当0<a<1时,a-2a-1>2,∴原不等式的解集为(2,a-2a-1). 当a<0时,a-2a-1<2,∴原不等式的解集为(a-2a-1,2).当a =0时,原不等式为(x ﹣2)2<0,解集为∅.综上所述:当a<0时,原不等式的解集为;(a-2a-1,2); 当a =0时,原不等式的解集为∅;当0<a<1时,原不等式的解集为(2,a-2a-1) 当a>1时,原不等式的解集为;(﹣∞,a-2a-1)∪(2,+∞). 点拨:本题需要两级分类,第一级,按开口方向分类分a >1和a <1,在a<1时,又需要讨论两个根2与a-2a-1的大小,又分为三类,即a <0,a=0和0<a <1. 例2在等比数列{a n }中,S n = a 1+a 2+a 3+…+a n ,T n = a 1a 2a 3… a n ,P n =1a 1+1a 2 +1a 3 +…+1a n ,求证:(S n P n )n=T n 2. 解析:由所要证明的等式,知须分别求出S n 、T n 、P n ,因此要用等比数列的前n 项和公式,根据公式的要求必须对公比q 进行分类讨论.(1)当q=1时,S n =na 1,T n = a 1n ,P n =n a 1,∴(S n P n )n =[n a 1n a 1]n =a 12n ,T n 2= a 12n ,∴(S n P n )n =T n 2; (2) 当q ≠1时,S n =a 1(1-q n)1-q ,T n = a 1n ·q n(n-1)2 ,P n = 1a 1(1-1q n )1-1q =q n+1-q a 1q n (q -1), ∴S n P n = a 12q n-1 ,(S n P n )n =a 12n q n(n-1),T n 2= a 12n q n(n-1),∴(S n P n )n=T n 2. 点拨:扎实的基础和严密的推理是进行合理有效的分类讨论的前提,课本中的公式比较多,必须对每一个公式都要有透彻的理解,对在应用公式解题时是否需要对公式进行分类讨论才能做到心中有数,使解答过程具有完整性.例3解关于x 的不等式3log a x -2<2 log a x -1(a >0,a≠1)解析;转化为等价不等式组,注意对于log a x 的底数的a 进行讨论.原不等式等价于⎩⎪⎨⎪⎧ 3log a x -2≥0 ①3log a x -2<(2 log a x -1) 2 ②2log a x -1>0 ③ 由①得log a x ≥23,由②得log a x<34或log a x>1,由③得log a x>12,∴23≤log a x<34或log a x>1, 当a>1时,所求不等式的解集为{x|a 23 ≤x < a 34或x >a};当0<a<1时,所求不等式的解集为{x| a 34 <x ≤a 23或0<x <a }.点拨:本题是一道等价转化与分类讨论的典型题,解此类根式、对数不等式时,要注意等价性、不要忽略不等式两边函数的定义域,根据对数函数的性质,对a 进行分类讨论.例4如图,已知一条线段AB ,它的两个端点分别在直二面角P-l -Q 的两个平面内移动,若AB 和平面P 、Q 所成的角分别为α、β,试讨论α+β的范围.解析:(1)当AB ⊥l 时,α+β=90︒.(2)AB 与l 不垂直时,在平面P 内作AC ⊥l ,C 为垂足,连结BC ,∵平面P ⊥平面Q ,∴AC ⊥平面Q ,∴∠ABC 是AB 与平面Q 所成的角,即∠ABC=β,在平面Q 内作BD ⊥l ,垂足为D ,连结AD ,同理∠BAD=α,在Rt △BDA 和Rt △ACB 中,BD <BC ,BD AB <BC AB,即sin α<sin ∠BAC, ∵α和∠BAC 均为锐角,∴α<∠BAC ,而∠BAC+β=90︒,∴α+β<90︒.(3)若AB 与l 重合,则α+β=0︒.综上讨论可知0︒≤α+β≤90︒.点拨:在几何问题中,研究各元素间的位置关系时,要注意每一个位置关系都不可遗漏,对于多种可能的情况,必须分开来进行研究.例5四个男孩和三个女孩站成一列,男孩甲前面至少有一个女孩站着,并且站在这个男孩前面的女孩个数必少于站在他后面的男孩个数的站法共有多少种?解析:现在按男孩甲前面的男、女孩数来分类.第一类,甲前面有2个女孩,其它男孩和另一女孩必须站在甲后面,有A 23A 44(种);第二类,甲前面有一个女孩和一个男孩,有:C 13C 13A 22A 44(种);第三,甲前面仅有一个女孩,有:A 13A 55(种);∴满足条件的站法为:A 23A 44+C 13C 13A 22A 44+A 13A 55=936(种).点拨:相当一部分排列组合应用问题需要分类求解,而排列组合应用题中的分类,与其它章节问题中的分类不同,它不是就某个字母的取值范围不同或图形的形状、位置不同等进行的分类,而是就处理问题的不同方法去分类.例6函数y=sinx |sinx|+|cosx|cosx +tanx |tanx|+|cotx|cotx 的值域是( ) A.{-2,4} B.{-2,0,4} C.{-2,0,2,4} D.{-4,-2,0,4}解析:须根据绝对值的意义去掉绝对值符号,因此必须对角x 所在的象限进行讨论.由题意可知x ≠k π2(k ∈Z), (1)当x 在第一象限时,y=1+1+1+1=4;(2)当x 在第二象限时,y=1+(-1)+(-1)+(-1)=-2;(3)当x 在第三象限时,y=-1+(-1)+1+1=0;(4)当x 在第四象限时,y=-1+1+(-1)+(-1)=-2.故值域为{-2,0,4},应选B.点拨:由于三角函数在各象限内符号不同,依此特点,从不同的象限入手分类讨论是解此类题的常见方法.例7已知直角坐标平面上点Q(2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ|的比等于常数λ(λ>0).求动点M 的轨迹方程,说明它表示什么曲线.解析:如图,设MN 切圆于N ,则由动点M 组成的集合是:P={M||MN|=λ|MQ|,λ>0}.∵ON ⊥MN ,|ON|=1,∴|MN|2=|MO|2-1.设动点M 的坐标为(x,y),则x 2+y 2﹣1=λ2[(x-2) 2+y 2],整理,得(λ2-1)(x 2+y 2)-4λ2x+(4λ2+1)=0.故M 的轨迹方程是(λ2-1)(x 2+y 2)-4λ2x+(4λ2+1)=0.(1)当λ=1时,方程化为x=54,且交x 轴于点(54,0)的直线; (2)当λ≠时,方程化为(x ﹣2λ2λ2-1)2+y 2=1+3λ2(λ2-1)2,它是以点(2λ2λ2-1,0)为圆心,1+3λ2|λ2-1|为半径的圆. 点拨:点M 的轨迹方程由已知条件很容易得出,本题考查的重点是曲线的类型,因此,对于含有x 2+y 2项系数λ2-1是否等于零进行了讨论.。
初中数学思想方法之分类讨论
初中数学思想方法之分类讨论数学是一门既抽象又具体的学科,它需要学生具备一定的思维方法和思想能力。
在初中数学中,分类讨论是一种常用的思想方法,它可以帮助学生分析问题、归纳规律并解决问题。
本文将详细介绍初中数学中分类讨论的基本思想和具体步骤,并通过例题来说明如何运用这种方法。
一、分类讨论的基本思想分类讨论是指将问题进行细化,将其分解成几个易于分析和解决的小问题,并分别进行讨论和解决。
通过这种方法可以更好地理解问题的本质,找到解题的关键点,并最终得到问题的解决办法。
分类讨论的基本思想包括以下几点:1.具体问题具体分析。
将问题进行细化后,每个小问题都有其独特的特点和解决思路,需要根据具体情况展开分析。
2.归纳总结。
在分析过程中,要总结出各个小问题之间的共同点和规律,以便更好地理解问题,并找到解决办法。
3.统一思考。
将各个小问题的解决办法进行归纳和整合,形成对大问题的解决思路。
二、分类讨论的具体步骤分类讨论的具体步骤可以简单概括为以下几点:1.理解问题。
仔细阅读题目,了解问题的背景和要求,确定需要解决的具体问题。
2.分析问题。
将大问题分解成几个小问题,每个小问题都有明确的目标和限制条件。
在分析过程中,可以通过画图、列举数据等方式进行辅助分析。
3.解决小问题。
按照特定的思路和方法,分别解决各个小问题。
在解决过程中,可以运用已经学过的数学知识、规律和公式。
4.总结归纳。
在解决小问题的过程中,要总结各个小问题之间的共同点和规律,归纳出解决大问题的关键思路和方法。
5.整合答案。
将各个小问题的解答整合成对大问题的解答。
在整合过程中,要仔细检查各个小问题的解答是否符合大问题的要求,并进行必要的修正和调整。
三、分类讨论的具体例题下面以一些常见的初中数学题目为例,说明如何运用分类讨论的方法解决问题。
例题1:现有一些白球和红球,共18个。
白球的个数不超过红球的个数。
问,最少有多少个红球?解题思路:根据题目要求和条件,可以将问题进行分类讨论。
分类转化 分散难点 各个击破――分类讨论的思想方法(高考数学解题技巧)
分类转化分散难点各个击破――分类讨论的思想方法一、方法整合在解决一些数学问题时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑的方法,也是一种重要的数学思想和解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
1.需要分类讨论的情形主要有以下几个方面:①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
如等比数列的前n项和的公式,分q=1和q≠1两种情况。
③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。
如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,分类解决,以保证其完整性,使之具有确定性。
2.分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”。
3.分类讨论问题的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
二.典例精析例1.设0<x<1,a>0且a≠1,比较|loga (1-x)|与|loga(1+x)|的大小。
(一道经典高考题)思维启动点:此题中含有绝对值,去绝对值可能需要分类处理,对数的底数是字母,比较对数大小,运用对数函数的单调性,而单调性与底数a有关,所以对底数a分两类情况进行讨论,如果既要对绝对值、又要对底数a进行双重分类讨论,势必麻烦,考虑到x的范围已经确定,我们可以在对a的范围进行分类时同时就考虑去绝对值。
§2 分类讨论思想
3.回顾总结中学数学教材中分类讨论的知识点,大致有: ①绝对值概念的定义;②一元二次方程根的判别式与根 的情况;③二次函数二次项系数的正负与抛物线的开口 k 方向;④反比例函数 y= (x≠0)的反比例系数 k,正比例 x 函数 y=kx 的比例系数 k,一次函数 y=kx+b 的斜率 k 与图象位置及函数单调性的关系; ⑤幂函数 y=xa 的幂指 数 a 的正、负与定义域、单调性、奇偶性的关系;⑥指 数函数 y=ax 及其反函数 y=logax 中底数 a>1 及 a<1 对 函数单调性的影响; ⑦等比数列前 n 项和公式中 q=1 与 q≠1 的区别;⑧不等式性质中两边同乘(除)以正数或负 数时对不等号方向的影响;⑨直线与圆锥曲线位置关系 的讨论;⑩运用点斜式、斜截式直线方程时斜率 k 是否 存在.
x 2 y2 变式训练 3 设 F1、F2 为椭圆 + =1 的两个焦点,P 为 9 4 椭圆上一点,已知 P、F1、F2 是一个直角三角形的三个 PF1 顶点,且 PF1>PF2.求 的值. PF2
解
若∠PF2F1=90° ,则 PF12=PF22+F1F22,
∵PF1+PF2=6,F1F2=2 5, 14 4 PF1 7 解得 PF1= 3 ,PF2=3,∴ = . PF2 2 若∠F1PF2=90° , 则 F1F22=PF12+PF22=PF12+(6-PF1)2. PF1 ∴PF1=4,PF2=2,∴ =2. PF2 PF1 7 综上知, = 或 2. PF2 2
变式训练 1 设 0<x<1,a>0 且 a≠1,比较loga (1-x)与
loga (1+x)的大小. Nhomakorabea
解 ∵0<x<1,∴0<1-x<1,1+x>1,0<1-x2<1. ①当 0<a<1 时,loga (1-x)>0,loga (1+x)<0,
小学数学思想方法的梳理(七)分类讨论思想
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 小学数学思想方法的梳理(七)分类讨论思想小学数学思想方法的梳理(七)分类讨论思想七、分类讨论思想 1. 分类讨论思想的概念。
人们面对比较复杂的问题,有时无法通过统一研究或者整体研究解决,需要把研究的对象按照一定的标准进行分类并逐类进行讨论,再把每一类的结论综合,使问题得到解决,这种解决问题的思想方法就是分类讨论的思想方法。
其实质是把问题分而治之、各个击破、综合归纳。
其分类规则和解题步骤是:(1)根据研究的需要确定同一分类标准;(2)恰当地对研究对象进行分类,分类后的所有子项之间既不能交叉也不能从属,而且所有子项的外延之和必须与被分类的对象的外延相等,通俗地说就是要做到既不重复又不遗漏;(3)逐类逐级进行讨论;(4)综合概括、归纳得出最后结论。
分类讨论既是解决问题的一般的思想方法,适应于各种科学的研究;同时也是数学领域解决问题较常用的思想方法。
2. 分类讨论思想的重要意义。
课程标准在总目标中要求学生能够有条理地思考,这种有条理性的思考就是一种有顺序的、有层次的、全面的、有逻辑性的思考,分类讨论就是具有这些特性的思考方法。
因此,分类讨论思想是培养学生有条理地思考和良好数学思维1/ 6品质的一种重要而有效的方法。
无论是解决纯数学问题,还是解决联系实际的问题,都要注意数学原理、公式和方法在一般条件下的适用性和特殊情况下的不适用性,注意分类讨论,从而做到全面地思考和解决问题。
从知识的角度而言,把知识从宏观到微观不断地分类学习,既可以把握全局、又能够由表及里、细致入微,有利于形成比较系统的数学知识结构和构建良好的认知结构。
分类讨论思想与集合思想也有比较密切的联系,知识的分类无时不渗透着集合的思想。
分类讨论的思想方法
(1)由数学概念引起的分类讨论:如绝对值的定义、
不等式的定义、二次函数的定义、直线与平面所成的角
、直线的倾斜角、两条直线所成的角等等.
(2)由数学运算要求引起的分类讨论:如除法运算中 除数不为零、偶次方根为非负、对数中真数与底数的要 求、不等式中两边同乘以一个正数、负数对不等号方向 的影响等等;
n 1 1 q = nlim 1 q n
lim S n1 若0<q<1, =1成立, n S n
S n1 若q>1,则 nlim S n S n1 lim 综上:若 n Sn
不存在
=1,则0<q≤1
[点评] 本题主要考查等比数列的求和和数列的极限求法.在
等比数列求前n项和时要对公比q进行为1与不为1的讨
1 2 1 2
例3:如图,一环形花坛分成四块,现有4种不同的花供 选种,要求在每块里种1种花,且相邻的2块种不同的花 ,则不同的种法总数为( ) A.96 B.84 C.60 D.48
A D B C
[ 解析]
2 2 3 2 A2 ;C4 A3 2;A4 对所需颜色的种类分情况讨论: C4 4
n n a b lim 论;在求形如 n 的极限时要讨论a与b的大小. a n b n
总结: 1.分类讨论问题已成为高考考查学生知识与能力的热点问题,
这是因为:
其一,分类讨论问题一般都覆盖知识点较多,有利于知识的考查 ;
其二,解分类讨论问题要有一定的分析能力、一定的分类思想与
分类技巧,有利于对学生能力的考查; 其三,分类思想与生产实践和高等数学都紧密相关.
例题讲解:
例1.如果函数f(x)=ax(ax-3a2-1)(a>0且a≠1) 在区间[0,+∞)上是增函数,那么实数a的取值范围是(
分类思想
分类讨论思想1. 分类讨论思想的概念。
人们面对比较复杂的问题,有时无法通过统一研究或者整体研究解决,需要把研究的对象按照一定的标准进行分类并逐类进行讨论,再把每一类的结论综合,使问题得到解决,这种解决问题的思想方法就是分类讨论的思想方法。
其实质是把问题“分而治之、各个击破、综合归纳”。
其分类规则和解题步骤是:(1)根据研究的需要确定同一分类标准;(2)恰当地对研究对象进行分类,分类后的所有子项之间既不能“交叉”也不能“从属”,而且所有子项的外延之和必须与被分类的对象的外延相等,通俗地说就是要做到“既不重复又不遗漏”;(3)逐类逐级进行讨论;(4)综合概括、归纳得出最后结论。
分类讨论既是解决问题的一般的思想方法,适应于各种科学的研究;同时也是数学领域解决问题较常用的思想方法。
2. 分类讨论思想的重要意义。
课程标准在总目标中要求学生能够有条理地思考,这种有条理性的思考就是一种有顺序的、有层次的、全面的、有逻辑性的思考,分类讨论就是具有这些特性的思考方法。
因此,分类讨论思想是培养学生有条理地思考和良好数学思维品质的一种重要而有效的方法。
无论是解决纯数学问题,还是解决联系实际的问题,都要注意数学原理、公式和方法在一般条件下的适用性和特殊情况下的不适用性,注意分类讨论,从而做到全面地思考和解决问题。
从知识的角度而言,把知识从宏观到微观不断地分类学习,既可以把握全局、又能够由表及里、细致入微,有利于形成比较系统的数学知识结构和构建良好的认知结构。
分类讨论思想与集合思想也有比较密切的联系,知识的分类无时不渗透着集合的思想。
另外,分类讨论思想还是概率与统计知识的重要基础。
3. 分类讨论思想的具体应用。
分类讨论思想在小学数学的学习中有很多应用,例如从宏观的方面而言,小学数学可以分为数与代数、空间与图形、统计与概率和实践与综合应用四大领域。
从比较具体的知识来说,几大领域的知识又有很多分支,例如小学数学中负数成为必学的内容以后,小学数学数的认识范围实际上是在有理数范围内,有理数可以分为整数和分数,整数又可以分为正整数、零和负整数,整数根据它的整除性又可以分为偶数和奇数。
高中数学思想方法之“分类讨论思想”
高中数学思想方法之“分类讨论思想”(2012.8.6)一、知识整合:1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,有关分类讨论的数学命题在高考试题中占有重要位置。
2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。
实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。
4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。
5.含参数问题的分类讨论是常见题型。
解含有参数的题目时,必须根据参数的不同取值范围进行讨论。
如解不等式2ax >时分0a >、0a =和0a <三种情况讨论。
这称为含参型。
6.中学数学教材中分类讨论的知识点,大致有:①绝对值概念的定义;②一元二次方程根的判别式与根的情况;③二次函数二次项系数的正负与抛物线的开口方向;④反比例函数y =k x(x ≠0)的反比例系数k ,正比例函数y =kx 的比例系数k ,一次函数y =kx +b 的斜率k 与图象位置及函数单调性的关系;⑤幂函数y =x a 的幂指数a 的正、负与定义域、单调性、奇偶性的关系;⑥指数函数y =a x 及其反函数y =log a x 中底数a >1及a <1对函数单调性的影响;⑦等比数列前n 项和公式中q =1与q ≠1的区别;⑧不等式性质中两边同乘(除)以正数或负数时对不等号方向的影响;⑨直线与圆锥曲线位置关系的讨论;⑩运用点斜式、斜截式直线方程时斜率k 是否存在.二、典型例题:例1.已知圆x y 224+=,求经过点P ()24,,且与圆相切的直线方程。
例2.1log (1)1a x x->解关于的不等式:例3.设,问方程表示什么曲线?k R k x k y k k ∈-+-=--()()()()848422例4、(2012广东高考文科数学21题)设0<a <1,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D AB =.(1)求集合D (用区间表示)三、巩固练习1. 若3201log (1)log (1)a a a a p a a q a a >≠=++=++,且,,,则,p q 的大小关系为( ) A. p q= B. p q < C. p q > D. a p q >>1时,;01<<<a pq 时, 2. 若{}A x x p x x R =+++=∈|()2210,,且A R +=∅,则实数中的取值范围是( ) A. p ≥-2 B. p ≤-2 C. 40p -<< D. p >-43.已知集合{}{}10,1,1A x ax B x =--==-,若A B B =,则实数a 的取值的集合是( ) A. {}1- B. {}1 C. {}1,1- D. {}0,1,1-4. 一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( )A. x y +-=70B. 250x y -=C. 70250x y x y +-=-=或D. 70250x y y x ++=-=或5. 若sin cos 1sin cos ()n n x x x x n N +=+∈则的值为,( )A. 1B. -1C. 11-或D. 不能确定 6. 函数fx m x mx ()()=+-+231的图象与x 轴的交点至少有一个在原点的右侧,则实数m 的取值范围为( )A. [)0,+∞B. (]-∞,1C. (]01,D.7.集合A ={x ||x |≤4,x ∈R },B ={x ||x -3|<a ,x ∈R },若A ∩B=B ,那么a 的取值范围是( )A .0≤a ≤1B .a ≤1C .a <1D .0<a <18.若方程x 2k -4-y 2k +4=1表示双曲线,则它的焦点坐标为 ( ) A .(2k,0),(-2k,0) B .(0,2k ),(0,-2k )C .(2|k |,0),(-2|k |,0)D .由k 的取值确定9.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是 ( )A.⎝⎛⎭⎫0,12B.⎝⎛⎦⎤0,12C.⎝⎛⎭⎫12,+∞ D .(0,+∞) 10.已知双曲线的渐近线方程为y =±34x ,则双曲线的离心率为 ( ) A.53 B.52 C.52或153 D.53或5411.函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是____________.12.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为___________13. 若lo g a 231<,则a 的取值范围为________________ 14. 与圆x y 2221+-=()相切,且在两坐标轴上截距相等的直线方程为______________ 15.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大a 2,则a 的值是________. 16.若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a ,b 的取值范围为________.17、(1)求曲线y =13x 3+43经过点P (2,4)的切线方程. (2)已知f (x )=12x 2-a ln x (a ∈R),求函数f (x )的单调区间;18、解关于x 的不等式2(1)10ax a x -++<。
[全]高中数学:分类讨论思想(含详细分析和例题解析)
[全]高中数学:分类讨论思想(含详细分析和例题解析)所谓分类讨论,就是当题目所给的对象不能进行统一研究时,就需要对研究对象按某个标准进行分类,然后对每个类别级别进行研究,得出每一类的结论,最后将各类结果进行综合,得到整个问题的解答。
分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略。
分类讨论,是一种重要的数学思想,也是一种逻辑方法,同时又是一种重要的解题策略。
在高中数学中,分类讨论时非常重要的一种解题思路,每次高考的数学试卷中,必然会有需要用到这种思想方法的题目。
一、分类讨论的要求及其意义1、分类讨论的要求:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
2、分类讨论的因素:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等。
(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{an}的前n项和公式等。
(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等。
(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等。
(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等。
二、分类讨论思想的原则为了分类的正确性,分类讨论必需遵循一定的原则进行,在中学阶段,我们经常用到的有以下四大原则:(1) 同一性原则:分类应按照同一标准进行,即每次分类不能同时使用几个不同的分类根据。
分类讨论思想方法
2.逻辑划分应遵循的原则:
分类的对象是确定的,标准是统一的,不遗漏、不重复、 分层次,不越级讨论。
3.多层次分类及“二分法”——处理复杂问题的分类方法。
4.分类讨论后如何归纳结论。
(1)统一式。针对变量分类讨论的,且在不同条件下问题 有不同的结论,归纳结论时应采用统一式。
(2)分列式。针对参数分类讨论的,且每一类讨论结果均 是总结论的一个子集,归纳结论时应采用分列式。
三、灵活运用逻辑划分的思想方法
1.通过“补集”间接求解。 2.有条件时,尽量减少分类层次,寻求整体解决方法。
6.正三棱柱的侧面展开图是边长分别为2和4的矩形,
则它的体积为___D______。
A. 8 3;B. 4 3 ;C. 2 3 ;D. 4 3 或 8 3 。
9
9
9
99
Ⅱ、示范性题组:
例1.设0<x<1,a>0且a≠1,比较| 的大小。
log a (1 x)|与|
log a (1 x)|
【分析】对数函数的性质与底数a有关,而分两类讨论。
【解】∵0<x<1∴0<1-x<1,1+x>1
当0<a<1时, |log a (1 x)|-| log a (1 x) |= log a (1 x) -
log a (1 x) log a (1 x 2 ) >0;
当a>1时,| log a (1 x)|-| log a (1 x)|=……
2≥0
或
;
分类讨论的思想方法
科技信息分类讨论是一种重要的数学思想,它在人的思维发展中有着重要的作用。
当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类结果,最后综合各类结果得到整个问题的解答。
因此,在近几年高考试题中,它都被列为一种重要的思想方法来考察。
有关分类讨论的数学问题,关键是明确分类讨论的原因,即认识为什么要分类讨论,只有明确了讨论的原因,才能准确、恰当地进行分类与讨论。
引起分类讨论的原因大致可以归纳为以下几种:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线与平面所成角、直线的倾斜角、两直线所成角、定比分点公式、两条异面直线所成角等。
(2)由数学运算要求而引起的分类讨论:如除法运算中的除数不能为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,异面直线上两点间的距离公式等。
(3)由函数的性质、定理、公式的限制而引起的分类讨论。
(4)由图形的不确定性而引起的分类讨论。
(5)由参数的变化而引起的分类讨论:如某些含有参数的问题。
由于参数的取值不同会导致所得结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等。
(6)运用的解题方法途径有局限性。
(7)求解的数学问题的结论有多种情况或者多种可能性。
(8)较复杂或者非常规的数学问题,需要采取分类讨论的解题策略来解决的。
(9)其他根据实际情况具体分析而引起的分类讨论,如排列组合问题,应用问题等。
合理分类的三条标准:(1)对所讨论的全域分类要“既不重复,又不遗漏”。
(2)同一分类必须按同一标准进行。
(3)对多级讨论,应逐级进行,不能越级。
分类讨论是一种逻辑方法,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
分类讨论的一般步骤是:(1)确定分类讨论的对象。
(2)对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准要统一、分层不越级)。
分类讨论思想方法-文档资料
分类讨论思想方法
分类讨论思想方法
在解答某些数学问题时,有时会有多种情 况,对各种情况加以分类,并逐类求解,然 后综合归纳,这就是分类讨论法。 分类讨论是一种逻辑方法,也是一种数学 思想。有关分类讨论的数学问题具有明显的 逻辑性、综合性、探索性,能训练人的思维 条理性和概括性,所以在高考试题中占有重 要的位置。
→明确讨论对象,确定对象的全体 →确定分类标准,正确进行分类 →逐步进行讨论,获取阶段性结果 →归纳小结,综合得出结论。
2.逻辑划分应遵循的原则: 分类的对象是确定的,标准是统一的,不遗漏、不重复、 分层次,不越级讨论。 3.多层次分类及“二分法”——处理复杂问题的分类方法。
4.分类讨论后如何归纳结论。
l o g( x ) l o g( x ) a1 a1
log 1 x )|=…… a(
例2.已知集合A和集合B各含有12个元素,A∩B含有4个元素, 试求同时满足下面两个条件的集合C的个数:①C (A∪B) 且C中含有3个元素;②C∩A≠φ。 【分析】由已知并结合集合的概念,C中的元素分两类: ①属于A元素;②不属于A而属于B的元素。并由含A中 元素的个数1、2、3,而将取法分三种。 【解】 C
1 · 12
C
2 + 8
C
2 12·
C
1 8+
C
3 · 12
C 80 =1084
3 3 【另解】(排除法): C C 1 0 8 4 2 0 8 例3.设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有 f(x)>0,求实数a的取值范围。
【分析】含参的一元二次函数在有界区间上的值域问题, 先对开口方向讨论,再对其抛物线对称轴的位置进行分 类讨论。(也属数形结合法)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类讨论的思想方法
问题的提出:分类讨论的思想方法一方面可将复杂的问题分解若干个简单的问题,另一方面恰当的分类可避免丢值漏解,从而提高全面考虑问题的能力,提高周密严谨的数学教养。
当我们所研究的各种对象之间过于复杂或涉及范围比较广泛时,我们大多采取分类讨论的方法进行解决,即对问题中的各种情况进行分类,或对所涉及的范围进行分割,然后分别研究和求解。
分类讨论解题的实质,是将整体问题化为部分问题来解决,以增加题设条件。
问题:从1到100这100个自然数中每次取两个,要使它们的和大于100,有多少中取法?
分析:这个问题看似简单,但很多人拿过来却是丈二和尚摸不着头脑,这时们就可以使用分类讨论的思想方法了。
解:
很显然每取的两个数中,总有一个是较大的,那么以“两数中较大者”作为分类的标准,逐一给予讨论:
若较大的数是100,则另一个数从其余99个数中任取一个与100配对,都满足条件,且这样的取法有99种:(100,99)、(100,98)、·····、(100,1);
若较大的数是99,则时有97种取法:(99,98)、(99,97)、······、(99,2);
若较大的数是98,则有95种取法:(98,97)、(98,96)、······、(98,3);
······
若较大的数是51,则这时只有1种取法:(51,50);
若较大的数都是小于等于50的数,这时都不可能再取出满足条件的数对。
因此可以得出结果:99+97+95+······+3+1=2500
总结:生活中有许许多多的实际问题也要分类讨论的方法来解决,这时我们要记住的是:在分类之后不能遗漏问题中可能出现的任何一种情况。
否则,分类就是不完备的,当然也就无法求出正确的解。
注:应用分类讨论思想解决问题必须保证分类科学,标准统一,做到不重复,不遗漏,并力求最简。
摘要:
为了解决问题,把问题中涉及的所有对象不遗漏地分成有限的若干类情况,然后对其中的每类逐一给以解决,最终达到解决整个问题的目的,这种解题方法称为分类讨论法。
这种方法也是解决问题的一种重要思想,这篇论文就是用这种方法来解决问题例子。