MBA联考数学排列组合概率的概念解析
管综数学排列组合和概率

一、排列组合排列组合是管综数学中常见的题型,也是非常重要的知识点。
排列组合主要研究从一组元素中选取一定数量的元素,并按一定顺序排列或组合的数学方法。
排列组合的应用非常广泛,例如在统计学、概率论、计算机科学等领域都有着广泛的应用。
排列组合主要包括排列和组合两种。
排列是指从一组元素中选取一定数量的元素,并按一定顺序排列。
排列的计算公式为:P(n, r) = n(n-1)(n-2)...(n-r+1)其中,n为元素总数,r为选取元素的数量。
组合是指从一组元素中选取一定数量的元素,而不考虑元素的顺序。
组合的计算公式为:C(n, r) = frac{P(n, r)}{r!}其中,n为元素总数,r为选取元素的数量,r!表示r的阶乘。
二、概率概率是管综数学中另一个重要的知识点。
概率主要研究随机事件发生的可能性。
概率的计算公式为:P(E) = frac{n(E)}{n(U)}其中,P(E)表示事件E发生的概率,n(E)表示事件E发生的次数,n(U)表示样本空间中所有可能事件的次数。
概率的应用也非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。
三、排列组合和概率在管综考试中的应用排列组合和概率是管综数学中非常重要的知识点,也是管综考试中经常考查的题型。
排列组合和概率的应用非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。
因此,掌握排列组合和概率的知识对于管综考试的成功非常重要。
排列组合和概率在管综考试中的应用主要包括以下几个方面:* 计算排列和组合的数量。
* 计算事件发生的概率。
* 分析排列和组合的规律。
* 解决排列和组合的应用问题。
四、排列组合和概率的学习方法排列组合和概率是管综数学中比较难的知识点,因此需要掌握一定的学习方法才能学好排列组合和概率。
排列组合和概率的学习方法主要包括以下几个方面:* 理解排列组合和概率的基本概念。
* 掌握排列组合和概率的计算公式。
* 熟悉排列组合和概率的应用场景。
数学中的排列组合与概率计算

数学中的排列组合与概率计算排列组合与概率计算是数学中重要的概念和工具,广泛应用于各个领域,包括统计学、物理学、计算机科学等。
本文将介绍排列组合与概率计算的基本概念和方法,并探讨它们在实际问题中的应用。
一、排列组合的基本概念1.1 排列排列是从一组元素中选取若干元素按一定顺序排列的方式。
对于n 个不同的元素,从中选取m个元素进行排列,可以表示为P(n,m)。
排列的计算公式为:P(n,m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。
1.2 组合组合是从一组元素中选取若干元素不考虑顺序的方式。
对于n个不同的元素,从中选取m个元素进行组合,可以表示为C(n,m)。
组合的计算公式为:C(n,m) = n! / (m! × (n-m)!)二、概率计算的基本原理概率是用来描述事件发生可能性的数值,它的取值范围在0到1之间,0表示不可能发生,1表示一定会发生。
概率计算基于排列组合的概念和原理,通过对事件的样本空间和事件的发生情况进行计数和分析,来得出事件发生的概率。
2.1 样本空间样本空间是指一个随机试验的所有可能结果的集合。
例如,掷一枚普通的硬币,它的样本空间包括正面和反面两个可能的结果。
2.2 事件事件是样本空间的子集,表示我们关心的某种结果。
例如,掷一枚硬币出现正面是一个事件。
2.3 概率概率是事件发生的可能性。
对于一个随机试验和事件,概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的发生情况数,n(S)表示样本空间的元素个数。
三、排列组合与概率计算的应用排列组合和概率计算在各个领域都有广泛的应用。
下面以几个具体的例子说明它们的具体应用。
3.1 组合在概率计算中的应用在扑克牌游戏中,计算一个牌型的概率就可以使用组合的概念。
掌握简单的排列组合和概率计算

掌握简单的排列组合和概率计算排列组合和概率计算是数学中非常重要的概念和方法,它们在实际生活和各个领域中都有广泛的应用。
本文将介绍简单的排列组合和概率计算的概念、原理和应用,并提供一些练习题供读者巩固所学知识。
1. 排列的概念和计算方法排列是指从给定的一组对象中,选取若干个对象按照一定的顺序排列组合的方式。
在排列中,每个对象只能使用一次。
例如,有3个不同的字母A、B、C,从中选取2个字母排列,可以得到以下6种排列:AB、AC、BA、BC、CA、CB。
计算排列的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象排列,计算公式为P(n, r) = n!/(n-r)!,其中n!表示n的阶乘。
2. 组合的概念和计算方法组合是指从给定的一组对象中,选取若干个对象按照任意顺序排列组合的方式。
在组合中,每个对象只能使用一次。
例如,有3个不同的字母A、B、C,从中选取2个字母组合,可以得到以下3种组合:AB、AC、BC。
计算组合的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象组合,计算公式为C(n, r) = n!/(r!(n-r)!)。
3. 概率的概念和计算方法概率是指某个事件发生的可能性大小。
概率的计算方法可以通过排列组合的方式得到。
对于一个随机事件A,其概率的计算公式为P(A) = 事件A发生的总数/总的可能发生的事件数。
例如,从一副扑克牌中取出5张牌,计算其中4张是红心牌的概率。
首先计算红心牌的总数,扑克牌中共有52张牌,其中红心总数为13张,因此红心牌的总数为C(13, 4)。
然后计算总的可能取牌的事件数,即从52张牌中取出5张牌,其计算公式为C(52, 5)。
最后,将红心牌的总数除以总的可能取牌的事件数即可得到概率。
4. 应用案例排列组合和概率计算在现实生活中有许多应用。
以下是几个常见的案例:a. 彩票中奖概率计算:彩票中奖概率的计算就是应用了排列组合和概率计算的原理。
通过计算选中的号码在所有可能的号码组合中所占的比例,得到中奖的概率大小。
MBA联考数学-排列组合与概率初步_真题(含答案与解析)-交互

MBA联考数学-排列组合与概率初步(总分84, 做题时间90分钟)一、条件充分性判断本大题要求判断所给出的条件能否充分支持题干中陈述的结论,阅读条件(1)和(2)后选择:(A) 条件(1)充分,但条件(2)不充分.(B) 条件(2)充分,但条件(1)不充分.(C) 条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.(D) 条件(1)充分,条件(2)也充分.(E) 条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.SSS_FILL1.该问题分值: 3答案:A[解析] 本题应分两步:首先,要选出所用的人,现设男生共有x人,则女生为(8-x)人,由于男生只能从男生中取,故有种.同理,女生的取法有种,故选人的方法为;其次把选出的学生分配出去的方法有=6,故3x(x-1)(8-x)=90,即x(x-1)(8-x)=30=2× 3×5,则x=5或x=3,当x=5为增根(舍);当x=3时,满足题意,故有男生3人,女生5人,即条件(1)充分,条件(2)不充分.此题也可以直接从条件(1)和条件(2)所给的值下手.故正确答案为(A).SSS_FILL2.该问题分值: 3答案:C[解析] 条件(1)和条件(2)分别给出了甲和乙每次击中目标的概率,显然单独都不充分,应联合起来考虑.甲恰好比乙多击中目标2次的情况是:甲击中2次而乙没有击中,或甲击中3次而乙只击中1次.甲击中目标2次而乙没有击中目标的概率为.甲击中目标3次而乙只击中目标1次的概率为所以甲恰好比乙多击中目标2次的概率为,两个条件联合起来充分.故选(C).SSS_FILL3.该问题分值: 3答案:E[解析] 基本事件共有6×6×6个.其中点数之积为奇数的事件,即3颗骰子均出现奇数的事件,共有3×3×3个,所以点数之积为奇数的概率点数之积为奇数的概率,则条件(2)也不充分.故正确答案为(E).SSS_FILL4.该问题分值: 3答案:D[解析] 仔细观察不难发现:条件(1)和条件(2)所构造的事件其实是同一个事件,只是不同的表达方式而已.因此,连续检测三件时都是合格品的概率为(0.9)3=0.729,至少有一件是次品的概率为1-(0.9) 3=1-0.729=0.271.即条件(1)和条件(2)都充分支持题干.故正确答案为(D).SSS_FILL5.该问题分值: 3答案:A[解析] 在条件(1)下,一个学生2本,其他3个学生每人1本,5本书取2本捆在一起作为1本,有C种方法,然后将这捆在一起的书连同其他3本共4个元素分给4个学生,有种分法,根据分步计数原理共有=240种不同的分法,则说明条件(1)是充分的.在条件(2)下,一个学生3本,其他2个学生每人1本;或者一个学生1本,其他两个学生每人2本.前一种情况下,5本书取3本捆在一起作为1本,有种方法,然后将这捆在一起的书连同其他2本共3个元素分给3个学生,有种分法,根据分步计数原理共有种不同的分法;后一种情况下,5本书分成1+2+2本书,有种方法,然后再将其分给三个学生,有种分法,根据分步计数原理共有种不同的分法;再根据分类计数原理共有60+90=150种不同的分法,则说明条件(2)是不充分的.故正确答案为(A).二、问题求解1.某洗衣机生产厂家,为了检测其产品无故障的启动次数,从生产的一批洗衣机中任意抽取了5台,如果测得的每台无故障启动次数分别为11300,11000,10700,10000, 9500,那么这批洗衣机的平均无故障启动次数大约为( ).SSS_SINGLE_SELA ( 10300B ( 10400C ( 10500D ( 10600E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 这5台洗衣机的平均无故障启动次数为故选(C).2.把6个人分配到3个部门去调研,每部门去2人,则分配方案共有( )种.SSS_SINGLE_SELA ( 15B ( 105C ( 45D ( 90E ( A、B、C、D都不正确该问题分值: 3答案:D[解析] 把6人先分为3组,每组2人,共有=15种分法.然后再把这3组分配到3个部门,有=6种分配方法.据乘法原理,总的分配方案有15×6=90种.解这类有组合又有排列的问题,常常用先组合再排列的方法考虑.故选(D).3.某种测验可以随时在网络上报名参加,某人通过这种测验的概率是.若他连续两次参加测验,则其中恰有一次通过的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:C[解析] 这是一个独立重复试验的问题.n次独立重复试验中恰有是次发生的概率为故选(C).如果做两次测验,两次都通过的概率,则有.两次测验都不通过的概率P2(0)也等于.4.SSS_SINGLE_SEL该问题分值: 3答案:A[解析] 依题意事件应该是“一颗骰子掷4次均未出现6点”,其概率应是,而事件表示“掷两颗骰子共2次每次均未出现双6点”,其概率为,因此故正确答案为(A).5.3名医生6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有( )种.SSS_SINGLE_SELA ( 90B ( 180C ( 270D ( 540E ( A、B、C、D都不正确该问题分值: 3答案:D[解析] 设计让3所学校依次挑选,先由学校甲挑选,有种,再由学校乙挑选,有种,余下的到学校丙只有一种,于是不同的方法共有种,故正确答案为(D).6.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人左右不相邻,那么不同的排法有( )种.SSS_SINGLE_SELA ( 234B ( 346C ( 350D ( 363E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 前后两排共23个座位,有3个座位不能坐,故共有20个座位两人可以坐,包括两人相邻的情况,共有种排法;考虑到两人左右相邻的情况,若两人均坐后排,采用捆绑法,把两人看成一体,共有种坐法,若两人坐前排,因中间3个座位不能坐,故只能坐左边4个或右边4个座位,共有种坐法,故题目所求的坐法种数共有,故正确答案为(B).7.盒内有大小相同的4个小球,全红、全白、全蓝的单色球各1个,另一个是涂有红、白、蓝3色的彩球,从中任取1个,记事件A、月、C分别表示取到的球上有“红色”、“白色”、“蓝色”,则一定有( ).SSS_SINGLE_SELA ( A、B、C两两互不相容B ( A、B、C两两互不相容且其和为ΩC ( A、B、C两两独立D ( A、B、C相互独立E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 依题意,P(A)=P(B)=P(C)==0.5,P(AB)-P(BC)-P(AC)= =0.25>0,由计算可看出A、B、C两两独立但是不相互独立,故正确答案为(C).8.设A、B是对立事件,0<P(A)<1,则一定有( ).SSS_SINGLE_SELA ( 0<P(AU<1 ( 0<PB (<1C ( 0<P()<1D ( 0<<1E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] A、B是对立事件,故P(A)+P(B)=1,又因为0<P(A)<1,故0<P(B)< 1,故正确答案为(B).进一步分析知,P(AUB)=1,,P(AB)=0,因此除B外各选项均不正确.9.把两个不同的白球和两个不同的红球任意地排成一列,结果为两个白球不相邻的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D[解析] 总排列数为=24.要使白球不相邻,可以先定两个位置放白球,放法有=2.两白球的左、右端和中间三处空位.若选左端和中间各放一红球,有=2种排法.同理选中间和右端各放一红球,也有2种排法.若选中间放两个红球,也是2种放法.白球不相邻的排法有=12.所求概率为.若考虑两个白球相邻的情况,如果把两个白球作为一整体与两个红球作排列,则有种排法,三个位置中的一个放两个白球,又有种排法,所以两个白球相邻的概率为白球不相邻的概率为.故选(D).10.某区乒乓球队的队员中有11人是甲校学生,4人是乙校学生,5人是丙校学生,现从这20人中随机选出2人配对双打,则此2人不属于同一学校的所有选法共有( )种.SSS_SINGLE_SELA ( 71B ( 119C ( 190D ( 200E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 从20个人中选出2人的所有选法为=190种,2人来自同一学校的所有选法为=55+6+10=71.所以2人不是同一学校的选法共有190-71=119种.故选(B).11.从4名男生和3名女生中挑出3人站成一排,3人中至少有一名男同学的不同排法共有( )种.SSS_SINGLE_SELA ( 29B ( 34C ( 204D ( 209E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 从4名男生和3名女生中挑出3人站成一排的所有不同排法共有=7× 6×5=210种,其中没有男同学的不同排法共有=3×2×1=6种,所以3人中至少有一名男同学的不同排法共有种.故选(C).12.从1,2,3,4,5,6这6个数中任取3个不同的数,使3个数之和能被3整除,则不同的取法有( )种.SSS_SINGLE_SELA ( 6B ( 7C ( 8D ( 9E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 本题讨论取出3个数之和的性质,是与3个数次序无关的组合问题.因为数目不太大,可以将各种情形逐个列出.例如,首先取1,然后取2,第3个可以取3或6.然后再依次(从小到大)考虑,列出{1,2,3),{1,2,6},{1,3,5},{1,5,6},{2,3,4},{2,4,6},{3,4,5), {4,5,6},共8种取法.只要按顺序不遗漏即可.故选(C).13.从正方体的8个顶点中任取3个点为顶点作三角形,其中直角三角形的个数为( ).SSS_SINGLE_SELA ( 56B ( 52C ( 48D ( 40E ( A、B、C、D都不正确该问题分值: 3答案:C[解析] 从正方体的每个面中的四个顶点中任取三点,均可构成直角三角形,共有6×个,从正方体的相对两条棱组成的矩形的四个顶点中任选三点,也构成直角三角形,共有个,应用加法原理,有个,故正确答案为(C).14.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )种.SSS_SINGLE_SELA ( 8B ( 12C ( 16D ( 20E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 记正方体的6个面为上、下、左、右、前、后,那么,从中取3个面有两个不相邻者,可分为3类.第一类:选取的3个面不含前、后面,有4种不同取法;第二类:选取的3个面不含左、右面,也有4种不同取法;第三类:选取的3个面不含上、下面,同样有4种不同取法.故应用加法原理,得不同取法数为N=4+4+4=12.故正确答案为(B).15.从12个化学实验小组(每小组4人)中选5人,进行5种不同的化学实验,且每小组至多选1人,则不同的安排方法有( )种.SSS_SIMPLE_SINA B C D E该问题分值: 3答案:B[解析] (1)先选5人,这也是一个两步问题:选5人的过程也分两步:①先确定要选取人的化学实验小组有种选法;②再从选取的小组中每组选取1人.共有:,可得选取人员的方法为:种.(2)把选取的5人安排到5个不同的实验中去,有种方法,所以,总的不同方法是:种,故正确答案为(B).16.设10件产品中有7件正品、3件次品,从中随机地抽取3件,若已发现2件次品,则3件都是次品的概率ρ是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D=“取出的3件产品中有i件次品”,i=0、1、2、3应用古典型[解析] 设Ai概率公式故正确答案为(D).17.k个坛子各装n个球,编号为1,2,…,n,从每个坛中各取一个球,所取到的k个球中最大编号是m(1≤m≤n)的概率p是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:A[解析] 设事件A=“取到的是个球最大编号是m”,如果每个坛子都从1~m号球中取一个,则是个球的最大编号不超过m,这种取法共有m k种等可能取法;如果每个坛子都从1~m-1号球中取一个,则是个球的最大编号不超过m-1,其等可能取法共有(m- 1) k种,因此由计算可知,正确答案为(A).18.任取一个正整数,其平方数的末位数是4的概率等于( ).SSS_SINGLE_SELA ( 0.1B ( 0.2C ( 0.3D ( 0.4E ( A、B、C、D都不正确该问题分值: 3答案:B[解析] 只有当所取正整数的末位数是2或8时,其平方数的末位数字才能是4.所有正整数的末位数字只有0,1,2,…,9共10种等可能,于是所要求的概率是.故选(B).19.12名同学分别到3个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )种.SSS_SIMPLE_SINA B C D E该问题分值: 3答案:A[解析] 先分配4个人到第一个路口,再分配4个人到第二个路口,最后分配4个人到第三个路口.由以上分析,得种,故正确答案为(A).20.某车间生产的一种零件中,一等品的概率是0.9.生产这种零件4件,恰有2件一等品的概率是( ).SSS_SINGLE_SELA ( 0.0081B ( 0.0486C ( 0.0972D (0.06E (A、B、C、D都不正确该问题分值: 3答案:B[解析] 4件产品中,2件一等品,2件非一等品的概率为故选(B).21.设A、B是两个随机事件,0<P(A)<1,P(B)>0,P(B|A)+( )=1,则一定有( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:C[解析] 对于任何事件与B,只要>0,定有,结合题设条件可以得出,即故正确答案为(C).22.设某种证件的号码由7位数字组成,每个数字可以是数字0,1,2,…,9中的任一个数字,则证件号码由7个完全不同的数字组成的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D[解析] 所有不同号码的号码数目都是107,即基本事件的总数,其中7个数字完全不相同的排列数是=10×9×8×7×6×5×4.故选(D).注意,基本事件的总数是107,而不是10!.每一位数字的取法都有10种可能10!相当于各位不重复的10位数字号码总数.在“从袋中取不同号码(颜色)的球”等问题中,也有“取后放回”和“取后不放回”的区别.此外,还要注意“7个不同数字”在这里是排列问题,不是组合问题.23.某班组共有员工10人,其中女员工3人.现选2名员工代表,至少有1名女员工当选的概率是( ).SSS_SIMPLE_SINA B C D E该问题分值: 3答案:D[解析] 基本事件的总数为,即10名员工选2名的组合数.至少1名女员工当选,其中含的基本事件数目为,于是故选(D).1。
mba考试知识点总结

mba考试知识点总结MBA考试是管理学硕士研究生入学考试,对于想要深造管理学的同学来说,MBA考试是非常重要的一关。
为了帮助考生更好地备考MBA考试,下面我们来总结一下MBA考试的知识点,希望能给大家带来一些帮助。
一、数学知识1.代数代数主要包括方程与不等式、函数、集合、数列等。
在MBA考试中,常考的代数知识点有方程与不等式的求解、函数的性质、集合的运算等。
2.几何几何包括平面和空间几何两个部分。
在MBA考试中,常考的几何知识点有平面几何中的三角形、圆的性质等,空间几何中的立体几何、空间向量等。
3.概率与统计概率与统计是MBA考试中的一个重要知识点。
考生需要掌握基本的概率与统计原理,以及应用这些原理解决实际问题的能力。
4.导数与积分导数与积分是微积分的两个主要部分,也是MBA考试的重点知识点。
考生需要掌握导数与积分的基本概念和运算方法,以及应用它们解决实际问题的能力。
5.排列组合与概率排列组合与概率是组合数学的两个主要部分,也是MBA考试的重点知识点。
考生需要掌握排列组合与概率的基本原理和运用方法,以及应用它们解决实际问题的能力。
二、英语知识1.阅读理解阅读理解是MBA考试的重点部分之一。
考生需要掌握阅读理解的技巧,能够快速准确地理解英语文章的内容,抓住文章的主旨和主要观点。
2.写作写作是MBA考试的另一个重点部分。
考生需要掌握写作的基本原理和技巧,能够独立撰写一篇文章、一封信或一份报告。
3.词汇与语法词汇与语法是MBA考试的基础知识,也是MBA考试中的重要考点。
考生需要掌握大量的英语词汇,并且熟练掌握英语语法的基本规则。
三、逻辑知识逻辑部分主要包括逻辑推理和逻辑填空两个部分。
在MBA考试中,常考的逻辑知识点有各种逻辑问题的推理和解题方法,以及逻辑填空题目的解题技巧。
四、管理学知识管理学知识是MBA考试的重点考点之一。
管理学知识包括管理学的基本概念、管理学的基本原理、管理学的基本技能等。
考生需要熟悉管理学的基本理论和方法,掌握管理学的基本技能。
排列组合的概率

排列组合的概率排列组合是概率论中一个非常重要的知识点,也是数学中的一支分支。
在实际生活中,排列组合也有广泛的应用,例如在概率统计、密码学等领域都有重要的作用。
本篇文章将为大家介绍排列组合在概率中的应用及其相关概念和公式。
一、排列组合的基本概念排列和组合是计数学中最基本的问题之一,他们的特点是在某个集合中从中选出元素并进行排列。
排列和组合的区别是排列允许重复,组合不允许重复。
举个例子,假设一个3个球的盒子中有红色、黄色和蓝色三个球,从中选两个球排列,那么所有可能的结果有:红色球,黄色球红色球,蓝色球黄色球,红色球黄色球,蓝色球蓝色球,红色球蓝色球,黄色球这是从三个球中选取两个并进行排列的结果,共有6个可能的结果。
这种情况下的计算就是典型的排列问题。
如果是组合问题的话,那么从三个球中选两个,可能的结果就是:红色球,黄色球红色球,蓝色球黄色球,蓝色球这是从三个球中选取两个并进行组合的结果,共有3个可能的结果。
二、排列组合的公式计算排列和组合的问题本质上就是在进行选择和排序。
在实际计算过程中,可以使用排列组合的公式来进行求解。
1. 排列公式在一个 n 个元素的集合中,如果选取 m 个元素进行排列,那么总的可能组合数就是:A(n,m) = n! / (n - m)!其中,n! 表示 n 的阶乘,即 n! = n × (n-1) × (n-2) × … × 2 × 1。
这个公式的意思是先从 n 个元素中选择 m 个不同的元素,然后对这 m 个元素进行全排列。
2. 组合公式在一个 n 个元素的集合中,如果选取 m 个元素进行组合,那么总的可能组合数就是:C(n,m) = n! / (m! × (n-m)!)在计算组合的时候,我们需要排除掉同一种组合中不同的位置排列,因此这个公式在计算的时候需要将排列问题中的 m! 减去,即:C(n,m) = A(n,m) / m!。
排列组合与概率计算

排列组合与概率计算在概率论和统计学中,排列组合是一种重要的数学工具,用于计算事件发生的可能性。
排列组合问题可以分为排列问题和组合问题两种类型。
本文将分别介绍排列和组合的概念,并探讨如何应用排列组合来计算概率。
一、排列排列是指从一组元素中选取若干个元素按照一定的顺序进行排列的过程。
排列问题中,元素的顺序是关键因素,不同的顺序会产生不同的排列结果。
对于给定的n个元素中选取r个元素进行排列,可以使用以下的排列公式来计算不同的排列可能性:P(n,r) = n! / (n-r)!其中,n! 表示n的阶乘,即n! = n * (n-1) * (n-2) * … * 2 * 1。
举例来说,假设有5个不同的球放入5个不同的盒子中,问有多少种放法?这就是一个排列问题。
根据排列公式可得:P(5,5) = 5! / (5-5)! = 5! / 0! = 120 / 1 = 120所以,共有120种不同的放法。
二、组合组合是指从一组元素中选取若干个元素进行组合的过程。
组合问题中,元素的顺序不是关键因素,只有元素的选择与否才会影响组合结果。
对于给定的n个元素中选取r个元素进行组合,可以使用以下的组合公式来计算不同的组合可能性:C(n,r) = n! / ((n-r)! * r!)举例来说,假设有9个不同的球,选取其中3个球,问有多少种不同的组合?这就是一个组合问题。
根据组合公式可得:C(9,3) = 9! / ((9-3)! * 3!) = 9! / (6! * 3!) = 84所以,共有84种不同的组合方式。
三、排列组合在概率计算中有着广泛的应用。
在计算事件的概率时,可以利用排列组合的原理来计算出事件发生的可能性。
例如,假设有一副标准扑克牌,从中抽取5张牌,问其中恰好有2张红心和3张黑桃的概率是多少?首先,我们需要确定总的样本空间,即抽取5张牌的不同排列数量。
根据排列公式,总共有:P(52,5) = 52! / (52-5)! = 52! / 47! = 2598960其次,我们需要确定符合条件的事件,即恰好有2张红心和3张黑桃的不同排列数量。
排列组合条件概率_概述说明以及解释

排列组合条件概率概述说明以及解释1. 引言1.1 概述: 在概率论中,排列组合条件概率是一种重要的计算方法,它涉及到排列组合的基础知识和条件概率概念。
通过理解排列组合的概念和条件概率的计算方法,我们可以更好地分析事件之间的关系,并作出准确的推断和预测。
1.2 文章结构: 本文将首先介绍排列组合的基础知识,包括什么是排列组合、排列与组合的区别以及其应用领域。
接着将详细阐述条件概率的定义、计算方法和与独立性的关系。
然后将探讨排列组合在条件概率中的具体应用,并通过实例分析展示其计算过程和结果。
最后,文章将总结主要内容和结论,展望未来研究方向,并给出结束语。
1.3 目的: 本文旨在帮助读者深入了解排列组合条件概率的理论知识和实际运用,在学习、工作或研究中能够灵活运用这一方法进行问题求解和决策。
通过阅读本文,读者将能够掌握排列组合条件概率的相关概念、原理和应用技巧,提高数学分析和推理能力。
排列组合是组合数学中的一个重要概念,它涉及到对元素进行有序或无序的排列和选择。
在排列中,我们考虑元素的先后顺序,而在组合中则只考虑元素的选择而不考虑顺序。
例如,假设有三个数字1、2、3,在排列中可能会有123、132、213、231、312和321这六种不同的排列方式;而在组合中只有123这一种选择方式。
排列与组合之间的主要区别在于是否考虑元素的排列顺序。
在实际问题中,通常需要根据具体情况来确定使用排列还是组合。
排列通常用于涉及具体次序或位置信息的问题,如密码锁密码的可能性计算;而组合则更多用于涉及选取对象数量而不考虑次序的问题,比如从一组人员当中选出一个小组成员。
排列和组合都在各种领域得到广泛应用。
在计算机科学和信息技术领域,排列和组合用于数据压缩、加密算法等方面;在统计学和概率论领域,排列和组合是条件概率、事件独立性等问题的基础;在经济学和管理学领域,排列和组合可用于市场调查、产品分析等决策问题。
总之,了解排列与组合知识将有助于我们更好地解决各种实际问题,并为进一步探讨条件概率提供坚实基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M B A联考数学排列组合概率的概念解析文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
【经典资料,WORD文档,可编辑修改】
【经典考试资料,答案附后,看后必过,WORD文档,可修改】 MBA联考数学:排列、组合、概率的概念解析
排列、组合、概率都与集合密切相关,在MBA 联考中都占有重要比重。
排列和组合都是求集合元素的个数,概率是求子集元素个数与全集元素个数的比值。
以最常见的全排列为例,用S(A)表示集合A的元素个数。
用1、2、3、4、5、6、7、8、9组成数字不重复的九位数,则每一个九位数都是集合A的一个元素,集合A中共有9!个元素,即S(A)=9!
如果集合A可以分为若干个不相交的子集,则A的元素等于各子集元素之和。
把A分成各子集,可以把复杂的问题化为若干简单的问题分别解决,但我们要详细分析各子集之间是否确无公共元素,否则会重复计算。
集合的对应关系
两个集合之间存在对应关系(以前学的函数的概念就是集合的对应关系)。
如果集合A与集合B存在一一对应的关系,则S(A)=S(B)。
如果集合B中每个元素对应集合A中N个元素,则集合A的元素个数是B的N倍(严格的定义是把集合A分为若干个。