数轴上的动点行程问题
数轴的动点问题公式
数轴的动点问题公式
数轴的动点问题是指一个点在数轴上按一定规律运动的问题。
为了描述这个运动过程,我们可以使用公式来表示动点的位置。
假设数轴上的起点为0,动点在某个时刻的位置为x。
动点按照某个速度v向左或向右运动,那么在经过t单位时间后,动
点的位置可以用下面的公式表示:
x=x0+vt
其中,x0表示初始位置,v表示速度,t表示时间。
如果速
度为正,表示向右移动;如果速度为负,表示向左移动。
如果动点在数轴上做匀速直线运动,那么速度v是常数,这
时可以将公式简化为:
x=x0+vt
如果动点在数轴上做加速或减速运动,速度v是变化的,那
么我们需要根据具体的问题来确定速度v的表达式。
常见的加
速或减速运动可以用以下几种公式表示:
匀加速运动:v=v0+at,其中v0表示初始速度,a表示加
速度。
匀减速运动:v=v0at,其中v0表示初始速度,a表示减速度。
自由落体运动:h=h0+v0t+(1/2)gt^2,其中h0表示初始高度,v0表示初始速度,g表示重力加速度。
希望上述内容能够对您有所帮助!如有任何疑问,请随时向我提问。
数轴中的动点问题洋葱数学
数轴中的动点问题洋葱数学
【原创版】
目录
1.引言:数轴中的动点问题
2.基础知识:数轴、动点问题基本公式
3.解题方法:利用数轴确定动点位置
4.案例分析:动点问题案例解析
5.总结:数轴中的动点问题解题技巧
正文
一、引言:数轴中的动点问题
数轴中的动点问题是中学数学中的常见问题,它涉及到数轴、函数等知识,能够帮助学生更好地理解数学概念。
二、基础知识:数轴、动点问题基本公式
数轴是一个直观的数学工具,它用来表示实数。
动点问题通常涉及到一个或多个动点在数轴上移动,我们需要找到动点的位置、速度和时间等参数。
常见的公式包括位移公式、速度公式和时间公式等。
三、解题方法:利用数轴确定动点位置
利用数轴确定动点位置是解决数轴中的动点问题的关键。
我们可以将数轴分成若干个小区间,然后根据动点的运动规律,计算出每个小区间的位移,从而确定动点的位置。
四、案例分析:动点问题案例解析
以下是一个动点问题的案例:一个质点从数轴原点的位置开始,以每秒1个单位的速度向右移动,同时每秒向数轴正方向移动1个单位。
问质点在10秒时到达的位置。
通过利用数轴确定动点位置的方法,我们可以计算出质点在10秒时到达的位置为10个单位。
五、总结:数轴中的动点问题解题技巧
数轴中的动点问题需要学生掌握数轴和动点问题的基本知识,并能够灵活运用数轴确定动点位置。
3.4(15)--数轴上的动态问题(行程问题)
3.4(15)--数轴上的动态问题(行程问题)一.【知识要点】方法:1.类比行程问题解决;2.利用数轴上两点的距离=两点表示的数的差的绝对值。
二.【经典例题】1. 如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,(1)写出数轴上点B所表示的数(2)点P所表示的数;(用含t的代数式表示);(3)M是AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN的长.(4)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B 个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点出发,以每秒43P追上点R后,立即返回向点Q运动,遇到点Q后则停止运动,那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?2.(绵阳2022期末第23题)如图,数轴上A,B两点表示的数分别是m,n满足(m+8)2+|2n ﹣20|=0.点P从点A出发以每秒2个单位的速度往点B的方向运动,点P出发1秒后,点Q从点B出发往点A的方向运动,设点Q的运动时间为t秒,点P出发3秒钟后,点Q恰好位于线段PB的中点处.(1)求m,n的值,并求线段AB的长度;(2)点Q每秒运动多少个单位长度?(3)当BQ=2PQ时,求t的值.三.【题库】【A】【B】1. 一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.【C】1.已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x. (1)若点P到点A,点B的距离相等,求点P对应的数.(2)数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由.(3)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.AO P B-1-203【D】。
数轴上动点行程乐乐课堂
数轴上动点行程乐乐课堂
(实用版)
目录
1.数轴简介
2.动点在数轴上的表示
3.动点在数轴上的行程问题
4.乐乐课堂对解决行程问题的帮助
5.总结
正文
1.数轴简介
数轴是一个直线,它被分成了无数个部分,每个部分都有一个对应的数字。
数轴上的点和数字之间存在着一一对应的关系,这使得数轴成为了数学中一个重要的工具。
2.动点在数轴上的表示
在数轴上,动点是指在不断移动的点。
动点的位置可以用一个数字来表示,这个数字就是动点在数轴上的坐标。
3.动点在数轴上的行程问题
在数轴上,动点的行程问题指的是动点从一点到另一点的移动过程。
这个问题可以通过计算动点的坐标来解决。
4.乐乐课堂对解决行程问题的帮助
乐乐课堂提供了一种直观的方式来解决动点在数轴上的行程问题。
通过乐乐课堂,学生可以看到动点在数轴上的移动过程,这有助于他们更好地理解行程问题。
5.总结
数轴上的动点行程问题是数学中的一个基本问题。
七年级数学数轴动点问题解题技巧
七年级数学数轴动点问题解题技巧一、数轴动点问题解题技巧。
1. 用字母表示动点。
- 在数轴上,设动点表示的数为x,如果已知动点的运动速度v和运动时间t,则经过t时间后,动点表示的数为初始位置加上运动的距离。
如果向左运动,距离为-vt;如果向右运动,距离为vt。
2. 表示两点间的距离。
- 数轴上两点A、B,若A表示的数为a,B表示的数为b,则AB=| a - b|。
3. 分析运动过程中的等量关系。
- 例如相遇问题,两个动点运动的路程之和等于两点间的初始距离;追及问题,快的动点比慢的动点多运动的路程等于两点间的初始距离。
二、题目及解析。
1. 已知数轴上A点表示的数为-5,B点表示的数为3,点P从A点出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从B点出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。
- 求t秒后点P表示的数。
- 解:点P从A点出发,A点表示的数为-5,向右运动速度为每秒2个单位长度,经过t秒后,运动的距离为2t,所以点P表示的数为-5 + 2t。
- 求t秒后点Q表示的数。
- 解:点Q从B点出发,B点表示的数为3,向左运动速度为每秒1个单位长度,经过t秒后,运动的距离为-t,所以点Q表示的数为3-t。
- 求t秒后PQ的距离。
- 解:t秒后点P表示的数为-5 + 2t,点Q表示的数为3 - t,则PQ=|(-5 +2t)-(3 - t)|=|-5 + 2t - 3+t|=|3t - 8|。
2. 数轴上点A表示的数为1,点B表示的数为-3,点C在点A右侧,且AC = 5。
点M从A点出发,以每秒1个单位长度的速度沿数轴向右运动,点N从B点出发,以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒。
- 求点C表示的数。
- 解:因为点A表示的数为1,AC = 5,且C在A右侧,所以点C表示的数为1+5 = 6。
- 求t秒后点M表示的数。
- 解:点M从A点出发,A点表示的数为1,向右运动速度为每秒1个单位长度,经过t秒后,运动的距离为t,所以点M表示的数为1+t。
(完整版)数轴上的动点问题
数轴上的线段与动点问题一、与数轴上的动点问题相关的基本概念主要涉及以下几个概数轴上的动点问题离不开数轴上两点之间的距离.念:,=|a-b|1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d右边点表示的数=也即用右边的数减去左边的数的差.即数轴上两点间的距离.—左边点表示的数÷2.中点坐标=(a+b)2.两点中点公式:线段AB因此向右运动的速点在数轴上运动时,由于数轴向右的方向为正方向,3.这样在起点的基础上加上点的度看作正速度,而向左运动的速度看作负速度.b,向左运动运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a.a+bb;向右运动b个单位后所表示的数为个单位后表示的数为a—点分析数轴上点的运动要结合图形进行分析,4.数轴是数形结合的产物,. 在数轴上运动形成的路径可看作数轴上线段的和差关系数轴上的动点问题基本解题思路和方法:二、t.、表示出题目中动点运动后的坐标(一般用含有时间的式子表示)1t的式子表示). 根据两点间的距离公式表示出题目中相关线段长度 2、(一般用含有时间 3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4、解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似AB两点对应数为-2、4,P为数轴上一动点,对应的数为x、已知数轴上1. 、 A B-2 -1 0 1 2 3 4(1) 若P为AB线段的三等分点,求P对应的数;(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?2 ++|abb、|=0c满足(c2、已知:-5b)是最小的正整数,且,请回答问题a、=________ b=________,c,1)请直接写出a、b、c的值.a=________(、、、、,xPc所对应的点分别为AB为一动点,其对应的数为C)(2a,点b+5|. -1|+2|xx ≤2时),请化简式子:|x+1|-|x0≤点P在0到2之间运动时(即请问个单位长度的速度向左运动,点C分别以每秒1个单位和2(3)若点A、CA,之间的距离为1个单位长度?几秒时,、、个单位长度的速度向左1A(4)点A以每秒BC开始在数轴上运动,若点个单位长度的速度向右个单位长度和5和点运动,同时,点BC分别以每秒2之A 之间的距离表示为BC,点与点BCt运动,假设秒钟过后,若点B与点的变化而改变?若变化,tAB的值是否随着时间BC间的距离表示为AB.请问:-请说明理由;若不变,请求其值.2b满足,且a,A在数轴上对应的数为a,点B在数轴上对应的数为b2.如图,若点2 B0. 1)= A -+|a2|+(b的长;(1)求线段AB1的根,在数轴上是否存在2x+-x1=C(2)点在数轴上对应的数为x,且x是方程2 2. P 对应的数;若不存在,说明理由PB+=PC,若存在,求出点点P,使PA点左侧运动时,点在ANPB的中点为,当PM左侧的一点,)若(3P是APA的中点为,的值不变,其中只有一个结论正确,PM的值不变;②PN-+有两个结论:①PMPN.请判断正确结论,并求出其值3,=10cm(如图所示)=60cm,BCCB、,满足OA=20cm,AB如图,3、在射线OM上有三点A、CO 从点C出发在线段出发,沿OOM方向以1cm/s的速度匀速运动,点Q点P从点. 匀速运动,两点同时出发上向点OQ运动的速度;Q运动到的位置恰好是线段AB的三等分点,求点=2(1)当PAPB时,点、两点相距70cm3cm/s,Q运动的速度为经过多长时间P;Q2()若点AP?OB、.的值,求EABOPABP3()当点运动到线段上时,取和的中点F EF4。
初一数学数轴上动点问题解题技巧
初一数学数轴上动点问题解题技巧
数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:
1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数-左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
例1.已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?
⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?
⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
初中数学数轴动点问题经典
初中数学数轴动点问题经典数轴是初中数学中一个重要的图形工具,它可以帮助我们更好地理解和解决各种数学问题。
在数轴上,我们经常遇到动点问题,即运动的点根据一定的规律在数轴上移动。
本文将介绍数轴动点问题的基本概念和解法,希望能够帮助读者更好地理解和应用数轴动点问题。
一、数轴的基本概念在开始介绍数轴动点问题之前,我们首先来了解一下数轴的基本概念。
数轴是由一条直线上的点组成的,这些点和原点之间的距离与它们在数轴上的位置一一对应。
数轴通常有正数部分和负数部分,它们分别位于原点的两侧。
原点是数轴上的起点,我们用0表示。
正数部分向右延伸,负数部分向左延伸。
数轴上的单位长度是相等的,通常我们以1为单位进行刻度。
二、数轴动点问题的分类数轴动点问题可以分为两类:匀速运动和变速运动。
1. 匀速运动:当动点在数轴上以相同的速度移动时,我们称之为匀速运动。
匀速运动的特点是动点在数轴上的移动是均匀的,即每隔相同的时间间隔,动点走过的距离相同。
对于匀速运动的动点问题,我们可以通过计算速度和时间,来计算动点在数轴上的位置。
2. 变速运动:当动点在数轴上以不同的速度移动时,我们称之为变速运动。
变速运动的特点是动点在数轴上的移动是不均匀的,即每隔相同的时间间隔,动点走过的距离不同。
对于变速运动的动点问题,我们需要通过给定的条件来确定动点的运动规律,并根据运动规律来计算动点在数轴上的位置。
三、数轴动点问题的解法解决数轴动点问题的关键是确定动点的位置和运动规律。
在解题时,我们可以采取以下步骤:1. 分析题目:仔细阅读题目,理解题目所给的条件和要求。
确定动点的初始位置和运动规律。
2. 建立数轴模型:根据题目中所给的条件,在纸上绘制出数轴模型。
标明动点的初始位置和运动规律。
3. 计算运动结果:根据给定的条件,计算动点在数轴上的位置。
对于匀速运动,我们可以通过速度和时间的关系来计算。
对于变速运动,我们则需要借助给定的运动规律来计算。
4. 检查答案:将计算得到的结果代入题目中,检查答案是否符合题目所给的条件和要求。
七年级数学:数轴上的动点题,就是用一元一次方程来解行程问题
七年级数学:数轴上的动点题,就是用一元一次方程来解行程问题这个题目是数轴上的动点题目。
类似的题型有动点P啦,或者说已知电子蚂蚁啦。
以后我们学了几何之后,还会有在三角形边上的动点,四边形边上的动点,还会有函数抛物线上的动点等等。
动点类的题型,解题关键就是化动为静。
然后利用行程问题的思路来解题。
因为动点就是在一定的线段里移动的,如果一个人活者一辆车在行走,有速度,有时间,然后有移动距离。
第一小题,P点从A点出发,向C的方向移动,速度是1,时间是t,这PA就是移动的距离:1xt=t。
然后P点到C点的距离其实就是AC的距离-PA距离。
结果是34-t。
这个数轴里,大家首先要搞清楚的时候,AB=14,BO=10,CO=10。
这个应该不需要方老师做解释了。
第二小题,其实是分了四种情景。
数学思维,一定要有分类讨论思想。
需要把存在的几种可能性都要摆出出来讨论,然后论证他的可能性。
那么第一种情况就是Q还没有追到P,距离P还有2个单位长度时的情景。
那么Q走的路程+2=P走的路程了。
解得t=6。
那么BP 就等于6个单位。
所以,P所表示的数就是-4。
第二种情况,就是当Q追上P,并且超过P点2个单位长度时的情景。
那么此时,P的路程+2=Q的路程。
也就是我答案里的等量关系:P的路程=Q的路程-2.第三种情景,就是当Q点到达C点后立即返回,然后还没有再次遇上P点,此时P点在Q点左侧。
那么此时他们的距离数量关系是怎么样的呢?P的路程+此时PQ的距离2+Q的路程3t,再减去AC的距离34,等于34,得方程。
第四种情景,就是当Q到达C点返回后和P相遇再次超过P点。
那么此时的数量关系式就是,P的路程- PQ的距离2+Q的路程3t,再减去AC的距离34,等于34,得方程。
这个题目就这样子,简单的讲解完毕。
看起来是数轴问题,其实就是行程问题。
而且包含了追及问题,到达终点返回再相遇的问题。
这道题目对于初一学生来说,有一定的难度。
但是小学六年级基础不差的学生来讲,仔细思考找准P和Q的位置关系,然后找准他们之间的距离数量关系,解题就迎刃而解了。
数轴动点问题6题型
数轴动点问题6题型数轴动点问题是数学中常见的问题之一,通过给定的条件,我们需要确定数轴上的某个点在未来的某个时刻的位置。
数轴动点问题可以分为六个不同的题型,包括直线匀速运动、自由落体运动、匀加速直线运动、正弦运动、周期性运动和复合运动。
一、直线匀速运动直线匀速运动是最简单的一个题型,其特点是物体在数轴上做匀速运动,即运动速度保持恒定。
在这种情况下,我们可以通过已知物体的初始位置和速度,以及经过的时间来确定物体在某个时刻的位置。
例如,已知小明从A点出发,以每小时30公里的速度向B点行进,经过2小时后,我们需要确定小明在这个时刻的位置。
解题思路如下:设小明从A点出发,以每小时30公里的速度向B点行进,经过2小时后小明行驶的距离为x公里。
根据速度的定义,速度等于位移与时间的比值,即速度=位移/时间。
因为小明的速度是恒定的,所以我们可以得到以下等式:30km/h = x km/2 h将等式化简,得到:x = 60 km因此,在经过2小时后,小明的位置在B点的60公里处。
二、自由落体运动自由落体运动是物体在重力作用下做垂直向下的运动。
在这种情况下,物体的初速度通常为0,所以我们只需考虑物体下落的距离和经过的时间。
例如,已知一个物体从高处下落,2秒后触地,我们需要确定物体下落的高度。
解题思路如下:设物体下落的高度为h米。
根据自由落体运动的公式:h = (1/2) * g * t^2其中,g为重力加速度,取9.8米/秒^2,t为时间,取2秒。
将这些数值代入公式中,我们可以计算出物体下落的高度:h = (1/2) * 9.8 * 2^2 = 19.6米因此,物体下落的高度为19.6米。
三、匀加速直线运动匀加速直线运动是物体在数轴上做匀加速运动,即运动的加速度保持恒定。
在这种情况下,我们需要根据已知的初始速度、加速度和时间来确定物体在某个时刻的位置。
例如,已知小车以每小时20公里的速度匀速行驶,并在10秒内加速到每小时60公里的速度,我们需要确定小车在这个时刻的位置。
数轴动点问题经典例题
数轴动点问题经典例题【最新版】目录一、数轴动点问题的概念二、数轴动点问题的解题思路三、经典例题解析四、总结正文一、数轴动点问题的概念数轴动点问题是数学中的一个经典问题,主要涉及到对数轴上点的移动和位置关系的分析。
在数轴上,有一个或两个动点,它们可以按照一定的速度和方向进行移动。
问题通常要求我们求解在某个时刻,这些动点的位置关系或者相遇时间等。
二、数轴动点问题的解题思路解决数轴动点问题,通常需要分析动点的移动速度和方向,然后根据题目要求,求解出相应的位置关系或相遇时间。
具体的解题思路如下:1.确定动点的移动速度和方向。
2.找到不动点,即在数轴上固定不动的点。
3.分析动点与不动点的位置关系,根据题目要求求解相遇时间或位置。
4.使用数学公式和方法进行计算,得出最终结果。
三、经典例题解析例题:在数轴上,有一个动点 A,初始位置为 1,速度为 2。
还有一个动点 B,初始位置为 3,速度为 1。
请问在多少秒后,点 A 与点 B 相遇?解题思路:1.确定动点的移动速度和方向。
点 A 的速度为 2,方向向右;点 B 的速度为 1,方向向右。
2.找到不动点。
由于题目没有给出不动点,我们可以假设不动点为原点(0)。
3.分析动点与不动点的位置关系。
点 A 从初始位置 1 开始,向右移动,与不动点 0 的距离逐渐增大。
当点 A 与点 B 相遇时,它们与不动点 0 的距离相等。
即:1 + 2t = 3 + t,其中 t 表示时间。
4.求解相遇时间。
将上述方程化简,得到 t = 2 秒。
综上,点 A 与点 B 在 2 秒后相遇。
四、总结数轴动点问题是数学中常见的问题,涉及到动点在数轴上的移动和位置关系的分析。
解决这类问题,需要掌握动点的移动速度和方向,找到不动点,分析位置关系,并运用数学公式和方法进行计算。
数轴上的动点行程问题完整版
数轴上的动点行程问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数轴上的动点行程问题一.解答题(共12小题)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为6个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是;(2)当t=2秒时,点A与点P之间的距离是个长度单位;(3)当点A为原点时,点P表示的数是;(用含t的代数式表示)(4)当t= 秒时,点P到点A的距离是点P到点B的距离的2倍.2.已知:线段AB=40cm.(1)如图1,点P沿线段AB自A点向B点以3厘米/秒运动,同时点Q沿线段BA 自B点向A点以5厘米/秒运动,问经过几秒后P、Q相遇?(2)几秒钟后,P、Q相距16cm?(3)如图2,AO=PO=8厘米,∠POB=40°,点P绕着点O以20度/秒的速度顺时针旋转一周停止,同时点Q沿直线B自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.3.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数.(2)当点P以每秒5个单位长度的速度从O点向右运动时,点A以每秒5个单位长度的速度向右运动,点B以每秒4个单位长度的速度向右运动,问它们同时出发,几秒后P到点A、点B的距离相等?4.如图,射线OM上有三点A,B,C,满足OA=20cm,AB=60cm,BC=10cm,动点P 从O点出发沿OM方向以每秒1cm的速度匀速运动;动点Q从点C出发,在线段CO 上向点O匀速运动(点Q运动到点O时,立即停止运动),点P,Q同时出发.(1)当点P与点Q都同时运动到线段AB的中点时,求点Q的运动速度;(2)若点Q运动速度为每秒3cm时,经过多少时间P,Q两点相距70m;(3)当PA=2PB时,点Q运动的位置恰好是线段AB的三等分,求点Q的速度.5.如图,数轴上两个动点A、B起始位置所表示的数分别为﹣8,4,A、B两点各自以一定的速度在数轴上运动,已知A点的运动速度为2个单位/秒.(1)若A、B两点同时出发相向而行,正好在原点处相遇,请直接写出B点的运动速度;(2)若A、B两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒钟时两点相距6个单位长度?(3)若A、B两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,如果在运动过程中,始终有CA=2CB,求C点的运动速度.6.若A、B两点在数轴上所表示的数分别为a、b,则A、B两点间的距离可记为|a ﹣b|:(1)如图:若A、B两点在数轴上所表示的数分别为﹣2、4,求A、B两点的距离为;(2)若A、B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题:①运动t秒后,A点所表示的数为,B点所表示的数为;(答案均用含t的代数式表示)②当t为何值时,A、B两点的距离为4?7.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)8.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以每秒2个单位长度和每秒个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B 之间的距离为3个单位长度时,求点P所对应的数是多少?9.如图,点A、B分别表示的数是6、﹣12,M、N、P为数轴上三个动点,它们同时都向右运动.点M从点A出发,速度为每秒2个单位长度,点N从点B出发,速度为点M的3倍,点P从原点出发,速度为每秒1个单位长度.(1)当运动3秒时,点M、N、P分别表示的数是、、;(2)求运动多少秒时,点P到点M、N的距离相等?10.已知数轴上点A、点B对应的数分别为﹣4、6.(1)A、B两点的距离是.(2)当AB=2BC时,求出数轴上点C表示的有理数;(3)点D以每秒10个单位长度的速度从点B出发沿数轴向左运动,点E以每秒8个单位长度的速度从点A出发沿数轴向左运动,点F从原点出发沿数轴向左运动,点D、点E、点F同时出发,t秒后点D、点E、点F重合,求出点F的速度.11.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB= ,BC= ;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t 的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.12.如图,AB=4,点O是线段AB上的点,点C,D分别是线段OA,OB的中点.(1)则CD= (直线写出答案);(2)若AB=m,点O是线段AB上的点,点C、D分别是线段OA、OB的中点,则CD= (说明理由);(3)若点O运动到AB的延长线上,(2)中的结论是否还成立,画出图形分析,并说明理由.。
专题——数轴上的动点问题
专题——数轴上的动点问题数轴上的动点问题处理数轴上动点问题的策略:1.两点间距离的计算:两点间距离等于它们对应的坐标差的绝对值,即右边点的坐标减去左边点的坐标。
2.数的表示:在数轴上,向右运动的速度看作正速度,向左运动的速度看作负速度。
点在起点的基础上加上运动路程就可以得到运动后的坐标。
例如,一个点表示的数为a,向左运动b个单位后表示的数为a-b,向右运动b个单位后表示的数为a+b。
3.分类讨论:数轴是数形结合的产物,分析点的运动要结合图形进行分析,注意多种情况的分类讨论。
4.绝对值策略:若点的左右位置关系不明确或有多种情况,可用两点距离的绝对值表示它们之间的距离,从而避免复杂分类讨论。
5.中点公式:若数轴上点A,B表示的数分别为a,b,M为线段AB中点,则M点表示的数为(a+b)/2.类型一:数轴上两点距离的应用例1:已知数轴上A,B两点表示的数分别为-2和5,点P为数轴上一点1)若点P到A,B两点的距离相等,求P点表示的数。
2)若PA=2PB,求P点表示的数。
3)若点P到点A和点B的距离之和为13,求点P所表示的数。
练1:已知数轴上A、B两点对应数分别为-2和4,P为数轴上一动点,对应数为x。
(1)若P为线段AB的三等分点,则x的值为-1;(2)若线段PA=3PB,则P点表示的数为2;(3)若点P到A点、B点距离之和为10,则P点表示的数为1.类型二:绝对值的处理策略例2:已知数轴上A,B两点表示的数分别为-8和20,点P,Q分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q点运动速度为每秒1个单位,设运动时间为t秒1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8?2)若P点和Q点都向右运动,多少秒后,P,Q两点之间距离为8?3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?练2、已知数轴上有A、B两点,其中点A对应的数为-8,点B对应的数为4.动点P从点A出发,以每秒2个单位长度的速度向右运动,同时动点Q从点B出发,以每秒1个单位长度的速度向左运动。
初中数学数轴动点问题经典
初中数学数轴动点问题经典
初中数学中的数轴动点问题是一个常见的问题类型,主要考察学生对于数轴、坐标系以及速度、时间等概念的理解和应用。
以下是一些经典的数轴动点问题:
1. 相遇问题:两个动点在数轴上分别从A、B两点同时向对方移动,求何时何地相遇。
示例:点A从原点出发,以每秒3个单位的速度向左移动,点B从
表示数2的点出发,以每秒1个单位的速度向右移动,求A、B两点相遇的点。
2. 追及问题:一个动点追赶另一个动点,求何时追上。
示例:点A从表示数-1的点出发,以每秒2个单位的速度向右移动,点B从表示数5的点出发,以每秒1个单位的速度向左移动,求A追上B
的时间和位置。
3. 速度与加速度问题:一个动点在数轴上移动,其速度随时间变化,求某时刻的位置或某段时间内的位移。
示例:点A从表示数-3的点出发,初始速度为每秒2个单位,并在接下来的2秒内,速度每秒增加1个单位,求2秒末A的位置。
4. 周期性移动问题:一个动点在数轴上按照某种周期性规律(如正弦、余弦函数)移动,求某时刻的位置或某段时间内的位移。
示例:点A从表示数0的点出发,按照正弦函数的规律上下移动,求5秒内A经过的路径长度。
5. 角度与距离问题:一个动点在数轴上以某个角度和速度移动,求某时刻的位置或某段时间内的位移。
示例:点A从表示数1的点出发,以每秒30°的速度顺时针旋转,求3秒后A移动的距离。
解决这类问题的关键是理解并应用数轴上的距离、速度和时间的关系,以及速度、加速度等物理概念在数学上的表达。
同时,还需要有一定的几何直觉和代数运算能力。
初一数学上册数轴动点问题
初一数学上册数轴动点问题一、什么是数轴动点问题数轴动点问题呢,就是在数轴这个特定的数学环境里,有一些点是可以动来动去的,然后让我们根据这些点的运动情况去解决各种各样的数学问题。
比如说,一个点从数轴上的某个位置开始,按照一定的速度向左或者向右移动,然后问我们在某个时刻这个点的位置在哪里呀,或者几个点之间的距离是多少啦之类的。
这就像一群小蚂蚁在数轴这条小路上跑来跑去,我们得搞清楚它们的位置变化情况。
二、常见的题型类型1. 求动点表示的数这种题就是给你一个动点在数轴上的初始位置,还有它运动的方向和速度,然后让你求出经过一段时间后这个动点所表示的数。
比如说,一个点在数轴上表示3,它以每秒2个单位长度的速度向右运动,经过5秒后,这个点就向右移动了2×5 = 10个单位长度,那这个点表示的数就变成了3+10 = 13啦。
2. 求两点之间的距离有时候会给你两个动点,它们分别在数轴上运动,然后问你在某个时刻这两个动点之间的距离是多少。
这就需要我们先算出这两个动点在那个时刻分别在数轴上的位置,然后用较大的数减去较小的数(如果是求绝对值距离的话就直接求两个数差的绝对值)。
就像两个人在数轴这条跑道上跑,我们要看看他们之间隔了多远。
3. 动点与线段的关系还有一种题型是关于动点和线段的关系的。
比如说,一个动点在数轴上运动,问这个动点什么时候会在线段的中点上,或者什么时候这个动点会把某条线段分成一定比例的两段。
这就比较复杂啦,我们要综合考虑线段的端点位置、动点的运动情况等很多因素呢。
三、解决数轴动点问题的小技巧1. 画数轴这可是超级重要的一步哦。
把题目中的情况在数轴上画出来,这样我们就能很直观地看到各个点的位置关系啦。
就像画画一样,把那些抽象的数字和动点变成我们能看得见的东西。
比如说,题目里说一个点在 -2的位置,另一个点在4的位置,我们就把它们在数轴上标出来,然后再根据动点的运动情况,一点一点地画出它们的新位置。
数轴上的动点问题
数轴上的运动问题在讲这个问题之前,我们先来看一道行程问题。
【题1】甲乙两地相距200米,小明从甲地步行到乙地,用时3分钟,小明的平均速度为多少米每秒?【分析】这个问题的本质,就是把实际生活中的问题剥离出来,抽象成了简单的数学问题,很多学生都会解;初学时,老师会画线段图,用线段的长度来将两点间的距离具象化,如下:小明甲地乙地【解法一】直接利用:速度=路程÷时间解决。
910180200=÷(米/秒)【解法二】用方程解。
设速度为秒米/x ,根据路程=时间×速度,得:x 180200=,解得910=x 。
如果在线段图上,用一个具体的数来表示甲地和乙地,从甲往乙的方向规定为正方向建立数轴,这个问题就转化为数轴上的运动问题了。
【题2】如图,数轴上有两点A 、B ,点A 表示的数为0,点B 表示的数为200,一只电子蚂蚁P 从A 出发,以1个单位每秒的速度由A 往B 运动,到B 点运动停止。
设运动时间为t 。
(1)用含t 的代数式表示电子蚂蚁P 运动的距离;(2)用含t 的代数式表示电子蚂蚁P 表示的数;(3)用含t 的代数式表示电子蚂蚁P 到数B 的距离。
(4)当电子蚂蚁运动多少时间后,点P 为线段AB 的三等分点?【分析】引入数轴后,其本质是把线段图换成了带方向带单位长度的直线,将有限的实际距离推广到了无限的距离问题。
所以,对于运动的点,处理的核心思想依然是路程=速度×时间。
其余的点的距离,利用数轴上两点间距离公式解决。
(1)根据路程=速度×时间,有:t AP =;(2)t AP =,故点P 表示的数为t ;(3)点B 表示的数为200,点P 表示的数为t ,且P 在B 左边,故t PB -=200。
(4)若P 为AB 的三等分点,有两种情况:①AP=2PB,即:()t t -⨯=2002,解得秒3400=t ;②2AP=PB,即:t t -=2002,解得秒3200=t ;现在,我们将【题2】一般化,线段AB 一般化为在数轴上的一条定长线段,便得到如下的题:【题3】如图,数轴上有两点A 、B ,点A 表示的数为a ,点B 表示的数为b ,且数A 和数B 的距离为200个单位长度,一只电子蚂蚁P 从A 出发,以1个单位每秒的速度由A 往B 运动,到B 点运动停止。
(完整版)数轴上的动点行程问题
数轴上的动点行程问题一.解答题(共12小题)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为6个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是;(2)当t=2秒时,点A与点P之间的距离是个长度单位;(3)当点A为原点时,点P表示的数是;(用含t的代数式表示)(4)当t=秒时,点P到点A的距离是点P到点B的距离的2倍.2.已知:线段AB=40cm.(1)如图1,点P沿线段AB自A点向B点以3厘米/秒运动,同时点Q沿线段BA自B点向A点以5厘米/秒运动,问经过几秒后P、Q相遇?(2)几秒钟后,P、Q相距16cm?(3)如图2,AO=PO=8厘米,∠POB=40°,点P绕着点O以20度/秒的速度顺时针旋转一周停止,同时点Q沿直线B自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.3.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数.(2)当点P以每秒5个单位长度的速度从O点向右运动时,点A以每秒5个单位长度的速度向右运动,点B以每秒4个单位长度的速度向右运动,问它们同时出发,几秒后P到点A、点B的距离相等?4.如图,射线OM上有三点A,B,C,满足OA=20cm,AB=60cm,BC=10cm,动点P从O点出发沿OM方向以每秒1cm的速度匀速运动;动点Q从点C出发,在线段CO上向点O匀速运动(点Q运动到点O时,立即停止运动),点P,Q 同时出发.(1)当点P与点Q都同时运动到线段AB的中点时,求点Q的运动速度;(2)若点Q运动速度为每秒3cm时,经过多少时间P,Q两点相距70m;(3)当PA=2PB时,点Q运动的位置恰好是线段AB的三等分,求点Q的速度.5.如图,数轴上两个动点A、B起始位置所表示的数分别为﹣8,4,A、B两点各自以一定的速度在数轴上运动,已知A点的运动速度为2个单位/秒.(1)若A、B两点同时出发相向而行,正好在原点处相遇,请直接写出B点的运动速度;(2)若A、B两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒钟时两点相距6个单位长度?(3)若A、B两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,如果在运动过程中,始终有CA=2CB,求C点的运动速度.6.若A、B两点在数轴上所表示的数分别为a、b,则A、B两点间的距离可记为|a﹣b|:(1)如图:若A、B两点在数轴上所表示的数分别为﹣2、4,求A、B两点的距离为;(2)若A、B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题:①运动t秒后,A点所表示的数为,B点所表示的数为;(答案均用含t的代数式表示)②当t为何值时,A、B两点的距离为4?7.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,①点P、Q同时运动运动的过程中有处相遇,相遇时t=秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)8.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?9.如图,点A、B分别表示的数是6、﹣12,M、N、P为数轴上三个动点,它们同时都向右运动.点M从点A出发,速度为每秒2个单位长度,点N从点B 出发,速度为点M的3倍,点P从原点出发,速度为每秒1个单位长度.(1)当运动3秒时,点M、N、P分别表示的数是、、;(2)求运动多少秒时,点P到点M、N的距离相等?10.已知数轴上点A、点B对应的数分别为﹣4、6.(1)A、B两点的距离是.(2)当AB=2BC时,求出数轴上点C表示的有理数;(3)点D以每秒10个单位长度的速度从点B出发沿数轴向左运动,点E以每秒8个单位长度的速度从点A出发沿数轴向左运动,点F从原点出发沿数轴向左运动,点D、点E、点F同时出发,t秒后点D、点E、点F重合,求出点F的速度.11.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由;(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C 移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t 秒,试用含t的代数式表示P、Q两点间的距离.12.如图,AB=4,点O是线段AB上的点,点C,D分别是线段OA,OB的中点.(1)则CD=(直线写出答案);(2)若AB=m,点O是线段AB上的点,点C、D分别是线段OA、OB的中点,则CD=(说明理由);(3)若点O运动到AB的延长线上,(2)中的结论是否还成立,画出图形分析,并说明理由.。
专题02 数轴上的动点问题(原卷版)(人教版)
专题02 数轴上的动点问题点的往返运动 1.一个动点P 从数轴上的原点O 出发开始移动,第1次向右移动1个单位长度到达点P 1,第2次向右移动2个单位长度到达点P 2,第3次向左移动3个单位长度到达点P 3,第4次向左移动4个单位长度到达点P 4,第5次向右移动5个单位长度到达点P 5…,点P 按此规律移动,则移动第158次后到达的点在数轴上表示的数为( )A .159B .-156C .158D .12.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长度,n x 表示第n 秒时机器人在数轴上的位置所对应的数.给出下列结论:①33x =;②51x =;③108104x x <;④20192020x x >.其中,正确结论的序号是 . 运动时间问题3.已知多项式10514293420x x y xy -+-的常数项是a ,次数是b a b ,、在数轴上分别表示的点是A B 、(如图),点A 与点B 之间的距离记作AB .(1)求a b ,的值;(2)求AB 的长;(3)动点P 从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A ,B 在数轴上运动,点A ,B 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.若点A 向右运动,点B 向左运动,AP PB =,求t 的值.4.已知数轴上有A ,B ,C 三个点,分别表示有理数2-,4,6.(1)画出数轴,并用数轴上的点表示点A ,点B ,点C ;(2)动点P 从点C 出发,以每秒4个单位长度的速度沿数轴向数轴负方向运动,到达点A 后立即以每秒2个单位长度的速度沿数轴返回到点C ,到达点C 后停止运动,设运动时间为t 秒.①当1t =时,PA 的长为__________个单位长度,PB 的长为__________个单位长度,PC 的长为____________个单位长度;②在点P 的运动过程中,若9PA PB PC ++=个单位长度,则请直接写出t 的值为___________5.如图,在数轴上点A 表示的数为﹣6,点B 表示的数为10,点M 、N 分别从原点O 、点B 同时出发,都向左运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,运动时间为t 秒.(1)求点M 、点N 分别所对应的数(用含t 的式子表示);(2)若点M 、点N 均位于点A 右侧,且AN =2AM ,求运动时间t ;(3)若点P 为线段AM 的中点,点Q 为线段BN 的中点,点M 、N 在整个运动过程中,当PQ +AM =17时,求运动时间t .点表示的数6.已知A,B两点在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB a b.已知数轴上A,B两点对应的数分别为-1,3,P为数轴上一动点.(1)若点P到A,B两点之间的距离相等,则点P对应的数为______.(2)若点P到A,B两点的距离之和为6,则点P对应的数为______.(3)现在点A以2个单位长度/秒的速度运动,同时点B以0.5个单位长度/秒的速度运动,A和B的运动方向不限,当点A与点B之间的距离为3个单位长度时,求点B所对应的数是多少?7.平移和翻折是初中数学中两种重要的图形变化,阅读并回答下列问题:(1)平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.①把笔尖放在数轴的原点处,先向左移动2个单位长度,再向右移动3个单位长度,这时笔尖的位置表示的数是______;②一个机器人从数轴上表示﹣1的点出发,并在数轴上移动2次,每次移动3个单位后到达B点,则B点表示的数是______;③数轴上点A表示的数为m.则点A向左移动n个单位长度所表示的数为______;(2)翻折:将一个图形沿着某一条直线折叠的运动.①若折叠纸条,表示﹣2的点与表示1的点重合,则表示﹣4的点与表示______的点重合;②若数轴上A、B两点之间的距离为8,点A在点B的左侧,A、B两点经折叠后重合,折痕与数轴相交于表示﹣2的点,则A点表示的数为______;③在数轴上,点P表示的数为4,点Q表示的数为x,将点P、Q两点重合后折叠,折痕与数轴交于M点;将点P与点M重合后折叠,新的折痕与数轴交于N点,若此时点P与点N的距离为3,数x 的值为______.定值问题8.如图,记数轴上A 、B 两点之间线段长为AB ,2AB =(单位长度),1CD =(单位长度),在数轴上,点A 在数轴上表示的数是12-,点D 在数轴上表示的数是15.(1)点B 在数轴上表示的数是_____,点C 在数轴上表示的数是_____,线段BC 的长=_____.(2)若线段AB 以1个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动,当点B 与C 重合时,点B 与点C 在数轴上表示的数是多少?(3)若线段AB 以1个单位长度/秒的速度向左匀速运动,同时线段CD 以2个单位长度/秒的速度也向左匀速运动,设运动时间为t 秒,当024t <<时,M 为AC 中点,N 为BD 中点.①若数轴上两个数为a 、b ,则它们的中点可表示为2a b +.则点M 表示的数为_____,点N 表示的数为______.(用代数式表示)②线段MN 的长是否为定值,如果是,请求出这个值;如果不是,请说明理由.9.如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向右移动3cm 到达B 点,然后再向右移动8cm 3到达C 点,数轴上一个单位长度表示1cm . (1)请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA =_______cm .(3)若点A 沿数轴以每秒3cm 匀速向右运动,经过多少秒后点A 到点C 的距离为3cm ? (4)若点A 以每秒1cm 的速度匀速向左移动,同时点B 、点C 分别以每秒4cm 、9cm 的速度匀速向右移动。
数轴动点问题解题思路
数轴动点问题解题思路1. 哎呀呀,数轴动点问题,先得看清它到底在怎么动呀!就像一辆汽车在公路上跑,你得知道它的速度和方向。
比如,一个点从 3 开始向右以每秒2 个单位的速度移动,这就是关键信息呀!2. 嘿,要抓住关键位置呀!这就好比你在找宝藏,那些特殊的点就是宝藏的位置。
像在数轴上,0 啊,1 啊这些点,说不定就是解题的关键呢,比如当动点到 0 时会怎样怎样。
3. 哇塞,一定要关注动点之间的关系呀!就好像两个人在赛跑,他们之间的距离和速度关系可重要啦。
比如两个动点,一个快一个慢,它们啥时候能相遇呢,这就得好好想想啦!4. 呀,别忘了设未知数呀!这就像给动点起个名字,好方便我们研究它。
比如设动点经过 t 秒后到某个位置,这不就清楚多啦。
5. 哈哈,要学会分类讨论呀!有时候就像走不同的路,得一条一条去分析。
比如动点在不同的区间时,它的运动情况可能完全不同哦,就像走山路和走平路能一样吗?6. 哟呵,多画画图呀!这就跟画地图一样,能让你清楚看到动点的轨迹。
像一个动点一会儿向左一会儿向右,在图上就能一目了然啦。
7. 哇,要利用数轴的对称性呀!这就如同照镜子,两边是对称的呢。
比如在数轴上关于原点对称的点,它们之间可有很多有趣的关系哦,想想就很有意思呢!8. 嘿嘿,注意等量关系呀!就好像找线索一样,找到关键的等量关系就能解题啦。
像两个动点之间的距离始终保持不变,这里面肯定有文章呀!9. 哎呀,别害怕复杂呀!就像爬山,虽然累但到山顶就超有成就感。
遇到难题不要退缩,一点点分析,总会找到答案的呀,就像解开一个大谜团一样刺激!10. 哈哈,多练习才能掌握呀!这就跟练功一样,练得多了就厉害啦。
多做几道数轴动点问题,你就会发现其实也没那么难嘛!总之,数轴动点问题并不可怕,只要掌握了这些方法,多思考多练习,你肯定能轻松搞定!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴上的动点行程问题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-
数轴上的动点行程问题
一.解答题(共12小题)
1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为6个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.
(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是;(2)当t=2秒时,点A与点P之间的距离是个长度单位;
(3)当点A为原点时,点P表示的数是;(用含t的代数式表示)
(4)当t= 秒时,点P到点A的距离是点P到点B的距离的2倍.
2.已知:线段AB=40cm.
(1)如图1,点P沿线段AB自A点向B点以3厘米/秒运动,同时点Q沿线段BA 自B点向A点以5厘米/秒运动,问经过几秒后P、Q相遇?
(2)几秒钟后,P、Q相距16cm?
(3)如图2,AO=PO=8厘米,∠POB=40°,点P绕着点O以20度/秒的速度顺时针旋转一周停止,同时点Q沿直线B自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.
3.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,点B的距离相等,求点P对应的数.
(2)当点P以每秒5个单位长度的速度从O点向右运动时,点A以每秒5个单位长度的速度向右运动,点B以每秒4个单位长度的速度向右运动,问它们同时出发,几秒后P到点A、点B的距离相等?
4.如图,射线OM上有三点A,B,C,满足OA=20cm,AB=60cm,BC=10cm,动点P 从O点出发沿OM方向以每秒1cm的速度匀速运动;动点Q从点C出发,在线段CO 上向点O匀速运动(点Q运动到点O时,立即停止运动),点P,Q同时出发.(1)当点P与点Q都同时运动到线段AB的中点时,求点Q的运动速度;
(2)若点Q运动速度为每秒3cm时,经过多少时间P,Q两点相距70m;
(3)当PA=2PB时,点Q运动的位置恰好是线段AB的三等分,求点Q的速度.5.如图,数轴上两个动点A、B起始位置所表示的数分别为﹣8,4,A、B两点各自以一定的速度在数轴上运动,已知A点的运动速度为2个单位/秒.
(1)若A、B两点同时出发相向而行,正好在原点处相遇,请直接写出B点的运动速度;
(2)若A、B两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒钟时两点相距6个单位长度?
(3)若A、B两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,如果在运动过程中,始终有CA=2CB,求C点的运动速度.
6.若A、B两点在数轴上所表示的数分别为a、b,则A、B两点间的距离可记为|a ﹣b|:
(1)如图:若A、B两点在数轴上所表示的数分别为﹣2、4,求A、B两点的距离为;
(2)若A、B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题:
①运动t秒后,A点所表示的数为,B点所表示的数为;(答案均用含t的代数式表示)
②当t为何值时,A、B两点的距离为4?
7.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.
(1)用含t的代数式表示P点对应的数:;
用含t的代数式表示点P和点C的距离:PC=
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,
①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.
②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)
8.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.
(1)若点P为AB的中点,直接写出点P对应的数;
(2)数轴的原点右侧是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;
(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A 与点B之间的距离为3个单位长度时,求点P所对应的数是多少?
9.如图,点A、B分别表示的数是6、﹣12,M、N、P为数轴上三个动点,它们同时都向右运动.点M从点A出发,速度为每秒2个单位长度,点N从点B出发,速度为点M的3倍,点P从原点出发,速度为每秒1个单位长度.
(1)当运动3秒时,点M、N、P分别表示的数是、、;(2)求运动多少秒时,点P到点M、N的距离相等?
10.已知数轴上点A、点B对应的数分别为﹣4、6.
(1)A、B两点的距离是.
(2)当AB=2BC时,求出数轴上点C表示的有理数;
(3)点D以每秒10个单位长度的速度从点B出发沿数轴向左运动,点E以每秒
8个单位长度的速度从点A出发沿数轴向左运动,点F从原点出发沿数轴向左运动,点D、点E、点F同时出发,t秒后点D、点E、点F重合,求出点F的速度.11.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB= ,BC= ;
(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒
2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由;
(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.
12.如图,AB=4,点O是线段AB上的点,点C,D分别是线段OA,OB的中点.(1)则CD= (直线写出答案);
(2)若AB=m,点O是线段AB上的点,点C、D分别是线段OA、OB的中点,则CD= (说明理由);
(3)若点O运动到AB的延长线上,(2)中的结论是否还成立,画出图形分析,并说明理由.。