北师大版_八下_数学分式方程应用题练习

合集下载

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。

最新北师大版八年级下册分式及分式方程各个章节测试试题以及答案

最新北师大版八年级下册分式及分式方程各个章节测试试题以及答案

最新八年级下册分式及分式方程各个章节测试试题(1)分式无意义:B=0。

(2)分式有意义:B ≠0时。

(3)分式的值为0:A=0,B ≠01、在x1、5ab 2、3y x y 7.0+﹣、mnm +、a5cb +-、π2x 3中,是分式的有 个。

2、如果分式1x 3-有意义,那么x 的取值范围是 。

3、下列分式中,不论a 取何值总有意义的是 。

A 、1a 1a 22+-B 、1a 1a 2+-C 、1a 1a 22-+D 、1a 1a 2-+4、若分式1x 1x 2+-的值是0,则x 的值是 。

5、某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵.实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了______小时完成任务(用含a 的代数式表示).6、若a 、b 都是实数,且04b 16b 2a 22=++-)-(,写3a -b= 。

分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变.1、化简下列分式。

yx 20x y52=abb ab a 22++=22m m 39m --=22112m m m -+-=2、把分式x yy x +中的x 、y 都扩大2倍,那么分式的值 。

A 、扩大2倍B 、不变C 、缩小一半D 、扩大4倍 3、分式x22-可变形为 。

A 、x 22+ B 、x 22+﹣ C 、2x 2- D 、2x 2-﹣4、已知3y1x1=-,则代数式yx y 2x y 2x y 14x 2----= 。

5、对一任意非零实数a 、b ,定义运算“△”如下:a △b=abb a -,计算2△1+3△2+4△3+.......+2024△2023的值。

6、观察下面一列有规律的式子:1x 1x 1x 2+=--1x x 1x 1x 23++=--1x x x 1x 1x 234+++=--1x x x 1x 1x 2345++++=x --.......(1)计算1x 1x n --的结果是(2)根据规律计算:63623222.......2221++++++分式的乘除: 1、计算.(1)2224ab a a b+-÷a 4b a b+-;(2)22(14)41292341y y y y y -++•+-;(3)244x (16x y)()y -÷- (4)222x 6x 92x 69x x 3x-+-÷-+(5)xy x yy x x y x 2--÷+(6))-(-2222y x 4y2x y x y 4x 4÷++2、已知09b 4a =+--,计算22222ba aba b ab a --•+的值。

(完整版)北师大版数学八年级下册第五章分式与分式方程综合测试卷(含答案)

(完整版)北师大版数学八年级下册第五章分式与分式方程综合测试卷(含答案)

D.x≠3,且 x≠4,且 x≠-5
09 分式方程 3 1 3 的根为
x(x 1) x 1
()
A.-1 或 3 B.-1 C.3 D.1 或-3
10
如果关于
x
的分式方程
x
a 1
5
x3 1 x
有正数解,且关于
x
的不等式组
a 2x≤1, x
4x 1>x 2
3
的解集为 x> 5 ,那么符合条件的所有整数 a 的和为 ( )
所以 2
2
2(2 3m) ,
4 9m2 (2 3m)(2 3m) (2 3m)(2 3m)2
3
3 3(2 3m) .
9m2 12m 4 (2 3m)2 (2 3m)(2 3m)2
The shortest way to do many things is to only one thing at a time and All thi
= x 1 x 1
x 1 (x 1)2
整理,得 290x≥4350,解得 x≥15. ∴每千克该种水果的标价至少是 15 元. 答:每千克该种水果的标价至少是 15 元.
=1 x 1.
解不等式组
2 x≤3, 2x 3<0,
.得-1≤x<
3 2

∴不等式组的整数解有-1,0,1,
25 解:设排球的单价为 x 元,则足球的单价为(x+30)元,由题意,得 500 800 解得 x=50,
20 解: 16 m2 m 4 Am 2
16 8m m2 2m 8 m 2
= (4 m)(4 m)A2(m 4)Am 2
(4 m)2
m4 m2
= 4 2m .

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)(1)

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)(1)

一、选择题1.下列运算中,正确的是( )A .211a a a +=+B .21111a a a -⋅=-+C .1b a a b b a +=--D .0.22100.7710++=--a b a b a b a b2.下列命题:①若22||11x x x x x ++⋅=++,则x 的值是1; ②若关于x 的方程1122mx x x -=--无解,则m 的值是1-; ③若(2019)(2018)2017x x --=,则22(2019)(2018)4034x x -+-=;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠,则abc ab bc ac ++的值是19. 其中正确的个数是( )A .1B .2C .3D .4 3.现在汽车已成为人们出行的交通工具.李刚、王勇元旦那天相约一起到某加油站加油,当天95号汽油的单价为m 元/升,他俩加油的情况如图所示.半个月后的某天,他俩再次相约到同一加油站加油,此时95号汽油的单价下调为n 元/升,他俩加油的情况与上次相同,请运用所学的数学知识计算李刚、王勇两次加油谁的平均单价更低?低多少?下列结论正确的是( )A .李刚比王勇低()22m n mn-元/升B .王勇比李刚低()22mn m n -元/升C .王勇比李刚低()22m n mn -元/升D .李刚与王勇的平均单价都是2m n +元/升 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 7.计算221(1)(1)x x x +++的结果是( ) A .1B .1+1xC .x +1D .21(+1)x 8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 9.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 10.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .411.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12-12.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N二、填空题13.若关于x 的分式方程3122++=--x m x x有增根,则m 的值是______. 14.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 15.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 16.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 17.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 18.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.19.计算:262393x x x x -÷=+--______. 20.若()()023248x x ----有意义,则x 的取值范围是______.三、解答题21.(1)分解因式3228x xy -(2)解分式方程:23193x x x +=-- (3)先化简:2443111a a a a a -+⎡⎤÷-+⎢⎥++⎣⎦,然后a 在2-,1-,1,2五个数中选一个你认为合适的数代入求值.22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?24.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?25.先化简,再求值:221111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中2021x =. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的运算法则及分式的性质逐项进行计算即可.【详解】A :211a a a a+=+,故不符合题意; B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意; C :1b a b a a b b a a b a b+=-=-----,故不符合题意;D :0.22100.7710++=--a b a b a b a b,故不符合题意; 故选:D .【点睛】 本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键. 2.B解析:B【分析】根据等式的性质和分式有意义的条件判断①;根据分式方程无解的意义求出m 值,可判断②;运用完全平方公式判断③;根据分式的化简求值判断④.【详解】解:①若22||11x x x x x ++⋅=++, ∴||1x =,又∵x ≠-1,∴x 的值是1,故正确; ②1122mx x x -=--化简得:()13m x +=, ∵方程1122mx x x -=--无解, ∴m +1=0,或321x m ==+, 则m 的值是-1或12,故错误; ③若(2019)(2018)2017x x --=,则22(2019)(2018)x x -+-=[]2(2019)(2018)(2019)(2018)2x x x x +-----=2120172+⨯=4035,故错误; ④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠, ∴1111115,6,7a b b c a c ab a b bc b c ac a c +++=+==+==+=, ∴ab bc ac abc++ =111a b c ++ =12222a b c ⎛⎫⨯++ ⎪⎝⎭=11111112a b b c a c ⎛⎫⨯+++++ ⎪⎝⎭ =()15672⨯++ =9 ∴abc ab bc ac ++的值是19,故正确; 故选:B .【点睛】本题考查了分式有意义的条件,完全平方公式,分式的化简求值,解题的关键是灵活运用运算法则以及分式的性质.3.A解析:A【分析】先求解李刚两次加油每次加300元的平均单价为每升:2mn m n +元,再求解王勇每次加油30升的平均单价为每升:2m n +元,再利用作差法比较两个代数式的值,从而可得答案. 【详解】解:李刚两次加油每次加300元,则两次加油的平均单价为每升: ()6006002300300300mn m n m n m n mn==+++(元), 王勇每次加油30升,则两次加油的平均单价为每升:3030602m n m n ++=(元), ()()()224222m n m n mn mn m n m n m n ++∴-=-+++ ()()()222222m n m mn n m n m n --+==++ 由题意得:,m n ≠ ()()22m n m n -∴+>0, ∴ 2m n +>2mn m n +. 故A 符合题意,,,B C D 都不符合题意,故选:.A本题考查的是列代数式,分式的加减运算,代数式的值的大小比较,掌握以上知识是解题的关键.4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a ≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 7.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确;方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.11.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 12.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.二、填空题13.1【分析】分式方程去分母转化为整式方程由分式方程有增根确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2由分式方程有增根得到x ﹣2=0即x =2把x =2代入整式方程得:3﹣2﹣m =0解得:m =1解析:1【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:3﹣2﹣m =0,解得:m =1,故答案:1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.15.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13 【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 16.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 17.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 18.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 19.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.且【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组求出x 的取值范围即可【详解】解:∵(x-3)0-(4x-8)-2有意义∴解得x≠3且x≠2故答案为:x≠3且x≠2【点睛】本题考查解析:2x ≠,且3x ≠【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.【详解】解:∵(x-3)0-(4x-8)-2有意义,∴30480x x -≠⎧⎨-≠⎩, 解得x≠3且x≠2.故答案为:x≠3且x≠2.【点睛】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.三、解答题21.(1)()()222x x y x y +-;(2)4x =-;(3)22a a --+,13【分析】(1)先提取公因式,然后再利用平方差公式进行求解即可;(2)先去分母,然后进行整式方程的求解即可;(3)先算括号内的,然后再进行分式的运算即可,最后选择一个使最简公分母不为零的数代值求解即可.【详解】解:(1)3228x xy -=()2224x x y -=()()222x x y x y +-;(2)23193x x x +=-- 去分母得:()2339x x x ++=-,整理得:312x =-,解得:4x =-,经检验4x =-是方程的解;(3)2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭=()222411a a a a --÷++ =()()()221122a a a a a -+⨯++- =22a a --+, 把1a =代入得:原式=311212-=-+. 【点睛】 本题主要考查因式分解、分式方程及分式的运算,熟练掌握因式分解、分式方程及分式的运算是解题的关键.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】 (1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可;(2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天, 根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;24.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键. 25.1x x-,20202021 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】 解:221111x x x ⎛⎫-÷ ⎪+-⎝⎭ 211(1)(1)1x x x x x +-+-=⋅+ 2(1)(1)1x x x x x +-=⋅+ 1x x-=, 当2021x =时, 原式202112021-=20202021=. 【点睛】 此题主要考查了分式的化简求值,正确化简分式是解题关键.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。

2020-2021学年北师大版八年级下册 第五章《分式与分式方程》实际应用常考综合题专练(一)

2020-2021学年北师大版八年级下册 第五章《分式与分式方程》实际应用常考综合题专练(一)

八年级下册第五章《分式与分式方程》实际应用常考综合题专练(一)1.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?2.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价6元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1680元所购该书的数量比第一次多50本,当按定价售出300本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?3.列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时各行多少千米?4.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步,在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.5.扎西与卓玛共同清点一批图书,已知扎西清点完300本图书所用的时间与卓玛清点完200本所用的时间相同,扎西平均每分钟比卓玛多清点10本,求卓玛平均每分清点图书的数量?6.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?7.甲、乙两车分别从A、B两地同时出发,沿同一公路相向而行,开往B、A两地.已知甲车每小时比乙车每小时多走20km,且甲车行驶350km所用的时间与乙车行驶250km所用的时间相同.甲、乙两车的速度各是多少km/h?8.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?9.2020年初,一场突如其来的新型冠状病毒肺炎疫情,打破了我们宁静的生活,为了预防新型冠状病毒肺炎,人们已经习惯出门戴口罩.某口罩生产企业在若干天内加工120万个口罩(每天生产数量相同),在实际生产时,由于提高了生产技术水平,每天加工的个数是原来的1.5倍,从而提前2天完成任务,问该企业原计划每天生产多少万个口罩?10.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?参考答案1.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.2.解:(1)设第一次购书的进价是每本书x元,则第二次购书时,每本书的批发价是(1+20%)x元,根据题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,答:第一次购书的进价是每本书4元;(2)第一次购书为1200÷4=300(本),第二次购书为300+50=350(本),第一次赚钱为300×(6﹣4)=600(元),第二次赚钱为300×(6﹣4×1.2)+(350﹣300)×(6×0.4﹣4×1.2)=240(元),所以两次共赚钱为:600+240=840(元),答:该老板两次售书总体上是赚钱了,共赚了840元.3.解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行3x千米,由题意得:=+,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴3x=60,答:李明乘公交、刘峰骑自行车每小时分别行60千米、20千米.4.解:设这名女生跑完800米所用时间为x秒,则这名男生跑完1000米所用时间(x+56)秒,根据题意得:,解得:x=224,经检验,x=224是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.5.解:设卓玛平均每分钟清点图书x本,则扎西平均每分钟清点(x+10)本,依题意,得:=.解得:x=20.经检验,x=20是原方程的解.答:卓玛平均每分钟清点图书20本.6.解:设甲每秒加工x个口罩,则乙每秒加工(35﹣x)个口罩.由题意得:=,解得:x=15,经检验:x=15是原方程的根,且x=15,35﹣x=20符合题意,答:甲每秒加工15个口罩,乙每天加秒20个口罩.7.解:设乙车的速度是xkm/h,则甲车的速度是(x+20)km/h,依题意得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+20=70.答:甲车的速度是70km/h,乙车的速度是50km/h.8.解:(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:=,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.9.解:设该企业原计划每天生产x万个口罩,则在实际生产时每天生产1.5x万个口罩,由题意得:﹣=2,解得:x=20,经检验:x=20是原分式方程的解,且符合题意,答:该企业原计划每天生产20万个口罩.10.解:设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该厂原计划每天加工4万只医用一次性口罩.。

北师大版八年级下册数学习题课件5.4分式方程第3课时分式方程的应用

北师大版八年级下册数学习题课件5.4分式方程第3课时分式方程的应用

知识点
4.【2020·孝感】某电商积极响应市政府号召,在线销售甲、乙、 丙三种农产品,已知 1 kg 乙产品的售价比 1 kg 甲产品的售价 多 5 元,1 kg 丙产品的售价是 1 kg 甲产品售价的 3 倍,用 270 元购买丙产品的数量是用 60 元购买乙产品数量的 3 倍. (1)求甲、乙、丙三种农产品每千克的售价分别是多少元.
BS版八年级下
第五章 分式与分式方程
5.4 分式方程 第3课时 分式方程的应用
习题链接
提示:点击 进入习题
1 见习题 2 见习题
3 见习题 4 见习题
5 见习题 6 见习题 7 见习题 8 见习题
答案显示
习题链接
提示:点击 进入习题
9 见习题 10 见习题 11 见习题 12 见习题
13 见习题
解:设乙店的利润为 w 元. 由题意得 w=(180-130)a+(180×0.9-130)b+(180×0.7- 130)(150-a-b)=54a+36b-600=54a+36×1502-a-600=36a +2 100.∵乙店按标价售出的数量不超过九折售出的数量,
知识点
∴a≤b,即 a≤1502-a,解得 a≤50. ∵w 随 a 的增大而增大, ∴当 a=50 时,w 取得最大值,此时 w=36×50+2 100=3 900. 答:乙店利润的最大值是 3 900 元.
知识点
解:设甲种货车每辆车可装 x 件帐篷,乙种货车每辆车可装 y 件 帐篷,依题意有x1=0x0y0+=2800y,0,解得xy==8100.0,
经检验,xy==81000,是原方程组的解,且符合题意. 答:甲种货车每辆车可装 100 件帐篷,乙种货车每辆车可装 80
件帐篷.

北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。

新北师大版八年级数学下册第五章《分式与分式方程》单元练习题含答案解析 (27)

新北师大版八年级数学下册第五章《分式与分式方程》单元练习题含答案解析 (27)

(共25题)一、选择题(共10题)1.若分式x2−4x+2的值为0,则x的值为( )A.±2B.2C.−2D.02.在方程:x+32−5=0,4x=6,x2+x−3=0,x3−4x=1中,是分式方程的有( )A.2个B.3个C.4个D.0个3.使分式3xx+2有意义的x的取值范围为( )A.x≠−2B.x≠2C.x≠0D.x≠±24.若代数式1x−9有意义,则实数x的取值范围是( )A.x≠0B.x≥0C.x≠9D.x≥95.使分式13−x有意义的x的取值范围是( )A.x≠3B.x=3C.x≠0D.x=06.计算2x+3x+1−2xx+1的结果为( )A.1B.3x+1C.3D.x+3x+17.下列方程是分式方程的是( )A.x−32+x+13=4B.xπ+1−x+1π−1=2C.√x−1x−12=1D.2xx+x−22=48.计算(1+1x )÷x2+2x+1x的结果是( )A.x+1B.1x+1C.xx+1D.x+1x9.若分式xx−3有意义,则x的取值范围是( )A . x >3B . x <3C . x ≠3D . x =310. 要使分式 3x−1有意义,则 x 的取值范围是 ( )A . x ≠1B . x >1C . x <1D . x ≠−1二、填空题(共7题) 11. 化简:4xy 220x 2y = . 12. 若 a b=23,则a−b b= .13. 要使分式 x−1x+1 有意义,x 的取值应满足 .14. 要使分式 x 2−1(x+1)(x−2) 有意义,则 x 应满足的条件是 .15. 当 x 时,分式 1x+3 有意义.16. 当 x 时,分式 1x 的值为正数.17. 用换元法解方程1x 2−2x+2x 2−4x =3 时,如果设 x 2−2x =y ,那么原方程可以化为关于 y 的整式方程是 .三、解答题(共8题) 18. 按要求计算:(1) 计算:√12−∣2√3−1∣+(π−2√3)0÷(12)−2.(2) 因式分解:① 4a 2−25b 2;② −3x 3y 2+6x 2y 3−3xy 4. (3) 解方程:x−1x−2+2=32−x .19. 已知 1x −1y =2,求 3x+4xy−3y2x−5xy−2y 的值.20.解下列方程:2x−2−1x=0.21.计算:11+x +x1−x.22.化简:x4−16x3+2x2+4x+8.23.从不同角度谈谈你对等式x(x+4)=5的理解.24.“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?25.解方程:5x−4=14−x+2.答案一、选择题(共10题)1. 【答案】B【解析】根据题意得x2−4=0且x+2≠0,解得x=2.【知识点】分式值为正,为负,为零的条件2. 【答案】B【解析】由分式方程的定义,知4x =6,x2+x−3=0,x3−4x=1是分式方程.【知识点】分式方程的概念3. 【答案】A【解析】x+2≠0,∴x≠−2.【知识点】分式有无意义的条件4. 【答案】C【知识点】分式有无意义的条件5. 【答案】A【解析】分式13−x有意义,则3−x≠0,解得:x≠3.【知识点】分式有无意义的条件6. 【答案】B【解析】2x+3x+1−2xx+1=2x+3−2xx+1=3x+1.【知识点】分式的加减7. 【答案】D【知识点】分式方程的概念8. 【答案】B【解析】原式=(xx+1x)÷(x+1)2x=x+1x⋅x(x+1)2=1x+1.【知识点】分式的混合运算9. 【答案】C【解析】∵分式xx−3有意义,∴x−3≠0,∴x的取值范围是x≠3.【知识点】分式有无意义的条件10. 【答案】A【解析】由题意得,x−1≠0,解得x≠1.【知识点】分式有无意义的条件二、填空题(共7题)11. 【答案】y5x【解析】原式=4xy⋅y4xy⋅5x =y5x.故答案为:y5x.【知识点】约分12. 【答案】−13【知识点】分式的基本性质13. 【答案】x≠−1【解析】∵分式x−1x+1有意义,∴x+1≠0,解得x≠−1.【知识点】分式有无意义的条件14. 【答案】x≠−1且x≠2【知识点】分式有无意义的条件15. 【答案】≠−3【解析】由题意得:x+3≠0,解得x≠−3.【知识点】分式有无意义的条件16. 【答案】 >0【解析】由题意得:1x >0,即 x >0.【知识点】分式值为正,为负,为零的条件17. 【答案】 2y 2−3y +1=0【知识点】分式方程的解法三、解答题(共8题) 18. 【答案】(1)√12−∣2√3−1∣+(π−2√3)0÷(12)−2=2√3−2√3+1+1+4= 6.(2) ① 原式=(2a +5b )(2a −5b );② 原式=−3xy 2(x 2−2xy +y 2)=−3xy 2(x −y )2.(3) 去分母得,x −1+2(x −2)=−3.3x −5=−3.解得x =23.检验:把 x =23 代入 x −2≠0,所以 x =23 是原方程的解.【知识点】提公因式法、算术平方根的运算、平方差、负指数幂运算、完全平方式、零指数幂运算、绝对值、分式方程的解法19. 【答案】 29.【知识点】约分、简单的代数式求值20. 【答案】去分母得:2x −x +2=0.解得:x =−2.经检验,x =−2 是原方程的解.【知识点】分式方程的解法21. 【答案】 1+x 21−x 2.【知识点】分式的加减22. 【答案】 x −2.【知识点】约分23. 【答案】①方程:一元二次方程 x 2+4x −5=0,两根分别为 x 1=1,x 2=−5;或分式方程 x +4−5x =0,两根分别为 x 1=1,x 2=−5; ②函数:二次函数 y =x 2+4x 与直线 y =5 的交点,或一次函数y=x+4与反比例函数y=5x的交点;③图形:边长为x和x+4,面积为5的矩形.【知识点】一元二次方程的解法、矩形的面积、分式方程的解法24. 【答案】设这种新型儿童玩具第一次进价为x元/个,则第二次进价为1.2x元/个,根据题意,得15001.2x −1200x=10,变形为:1500−1440=12x,解得:x=5.经检验,x=5是原方程的解.则该老板这两次购买玩具一共盈利为:15001.2×5×(8−1.2×5)+12005×(7−5)=980(元).答:该老板两次一共赚了980元.【知识点】分式方程的应用25. 【答案】去分母得:5=−1+2(x−4).整理得:2x=14.解得:x=7.经检验x=7是分式方程的解.【知识点】分式方程的解法。

2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)

2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)

八年级下册第五章《分式与分式方程》实际应用常考综合题专练(二)1.在新冠肺炎疫情发生后,某企业加快转型步伐,引进A,B两种型号的机器生产防护服,已知一台A型机器比一台B型机器每小时多加工20套防护服,且一台A型机器加工800套防护服与一台B型机器加工600套防护服所用时间相等.(1)每台A,B型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排A,B两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A型机器?2.春节是我国的传统节日,人们素有吃水饺的习俗.某商场在年前准备购进A、B两种品牌的水饺进行销售,据了解,用3000元购买A品牌水饺的数量(袋)比用2880元购买B 品牌水饺的数量(袋)多40袋,且B品牌水饺的单价(元/袋)是A品牌水饺单价(元/袋)的1.2倍.(1)求A、B两种品牌水饺的单价各是多少?(2)若计划购进这两种品牌的水饺共220袋销售,且购买A品牌水饺的费用不多于购买B品牌水饺的费用,写出总费用w(元)与购买A品牌水饺数量m(袋)之间的关系式,并求出如何购买才能使总费用最低?最低是多少?3.为了防疫,某学校需购买甲、乙两种品牌的额温枪.已知甲品牌额温枪的单价比乙品牌额温枪的单价低40元,且用4800元购买甲品牌额温枪的数量是用4000元购买乙品牌额温枪的数量的倍.(1)求甲、乙两种品牌额温枪的单价;(2)若学校计划购买甲、乙两种品牌的额温枪共80个,且乙品牌额温枪的数量不小于甲品牌额温枪数量的2倍,购买两种品牌额温枪的总费用不超过15000元.设购买甲品牌额温枪m个,总费用为W元,则该校共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?4.两个小组同时开始攀登一座450m高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早1.5min到达峰顶.两个小组的攀登速度各是多少?(Ⅰ)设第二组的攀登速度为xm/min,根据题意,用含有x的式子填写下表:速度(m/min)时间(min)距离(m)第一组450第二组x450(Ⅱ)列出方程,并求出问题的解.5.创建文明城市,携手共建幸福美好.某地为美化环境,计划种植树木4800棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前4天完成任务.求原计划每天植树的棵数.6.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?7.受新冠肺炎疫情影响,口罩、体温计、消毒液等一度紧缺,某药店用3200元采购一批耳温计(测量体温的),上市后发现供不应求,很快销售完了,该药店又去采购第二批同样的耳温计,进货价比第一批贵了5元,该店用了9900元,所购数量是第一批的3倍.(1)求第一批采购的耳温计单价是多少元?(2)若该药店按每个耳温计的售价为210元,销售光这两批耳温计,总共获利多少元?8.小华到超市购买大米,第一次按原价购买,用了60元,几天后,遇上这种大米8折出售,他用96元又买了一些,两次一共购买了30kg,这种大米的原价是多少?9.随着5G网络技术的发展,对5G手机的需求越来越大,为满足市场需求,某大型5G手机的生产厂家更新技术后,加快了生产速度,现在每月比更新技术前每月多生产2万部5G 手机,现在生产60万部5G手机所需的时间与更新技术前生产50万部5G手机所需时间相同,求更新技术前每月生产多少万部5G手机?10.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?参考答案1.解:(1)设每台B型号的机器每小时加工x套防护服,则每台A型号的机器每小时加工(x+20)套防护服,依题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+20=80.答:每台A型号的机器每小时加工80套防护服,每台B型号的机器每小时加工60套防护服.(2)设需要安排m台A型机器,则安排(10﹣m)台B型机器,依题意得:80m+60(10﹣m)≥720,解得:m≥6.答:至少需要安排6台A型机器.2.解:(1)设A品牌水饺单价为x元/袋,则B品牌水饺单价为1.2x元/袋,根据题意,得:﹣=40,,解得:x=15,经检验,x=15是原方程的解,∴1.2x=18;答:A品牌水饺单价为15元/袋,B品牌水饺单价为18元/袋;(2)设购进A品牌水饺m袋,则购进B品牌水饺(220﹣m)袋,依题意,得:15m≤18(220﹣m),解得:m≥120,由题意得:w=15m+18(220﹣m)=﹣3m+3960,当m=120时,w最小=3600,220﹣120=100,答:A品牌水饺购买120袋,B品牌水饺购买100袋时,总费用最低,最低是3600元.3.解:(1)设甲、乙两种品牌额温枪的单价分别为x元、(x+40)元,由题意得:=×,解得:x=160,经检验,x=160是原方程的解,且符合题意,则x+40=200,答:甲、乙两种品牌额温枪的单价分别为160元、200元;(2)由题意得:W=160m+200(80﹣m)=﹣40m+16000,,解得:25≤m≤,∴该校共有2种购买方案:①m=25时,80﹣m=55,即购买甲种品牌的额温枪25个,购买乙种品牌的额温枪55个;②m=26时,80﹣m=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个;∵W=﹣40m+16000,﹣40<0,∴W随m的增大而减小,∴当m=26时,总费用最低,最低费用W=﹣40×26+16000=14960(元),80﹣26=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个时,可使总费用最低,最低费用是14960元.4.解:(Ⅰ)设第二组的攀登速度为xm/min,则第一组的攀登速度为1.2xm/min,∴第一组的攀登时间为(min),第二组的攀登时间为(min).故答案为:1.2x;;.(Ⅱ)根据题意得:﹣1.5=,解得:x=50,经检验,x=50是原分式方程的解,且符合题意,∴1.2x=60.答:第一组的攀登速度是60m/min,第二组的攀登速度是50m/min.5.解:设原计划每天植树x棵,则实际每天植树(1+20%)x棵,依题意,得:﹣=4,解得:x=200,经检验.x=200是原方程的解,答:原计划每天植树200棵.6.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.7.解:(1)设第一批采购的耳温计的单价为x元,则第二批采购的耳温计的单价是(x+5)元,依题意,得:,解得:x=160,经检验,x=160是原方程的解,且符合题意,答:第一批采购的耳温计的单价是160元;(2)第一批采购的耳温计的数量为3200÷160=20(个),第二批采购的耳温计数量为20×3=60(个),∴销售完这两批耳温计共获利210×(20+60)﹣3200﹣9900=3700元.答:销售光这两批耳温计,总共获利3700元.8.解:设这种大米的原价是每千克x元,根据题意,得:+=30,解得:x=6,经检验,x=6是原方程的解,且符合题意,答:这种大米的原价是每千克6元.9.解:设更新技术前每月生产x万部5G手机,则更新技术后每月生产(x+2)万部5G手机,由题意列方程,得:,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:更新技术前每月生产10万部5G手机.10.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.。

八年级数学下册《分式方程》练习题及答案(北师大版)

八年级数学下册《分式方程》练习题及答案(北师大版)

八年级数学下册《分式方程》练习题及答案(北师大版)一、单选题 1.方程123x x=-的解为( ) A .6x =-B .2x =-C .2x =D .6x = 2.方程2113x =+的解的情况是( ). A .5x = B .4x = C .3x = D .无解3.学校为满足学生体育运动的需求,计划购买一定数量的篮球和足球.若每个足球的价格比篮球的价格贵15元,且用600元购买篮球的数量与用800元购买足球的数量相同.设每个篮球的价格为x 元,则可列方程为( )A .60080015x x =+ B .60080015x x =- C .60080015x x =+ D .60080015x x=- 4.甲、乙两人同时开始栽树,栽了一小时,两人共栽了20棵,两人均保持栽树速度不变,当甲栽27棵时,乙恰好栽33棵。

那么甲每小时栽树多少棵?设甲每小时裁树x 棵,则列方程为( )A .273320x x =+B .273320x x =-C .273320x x =+D .273320x x=- 5.如果关于x 的分式方程4122ax x x =+--有解,则a 的值为( ) A .1a ≠B .2a ≠C .1a ≠-且2a ≠-D .1a ≠且2a ≠ 6.方程21211x x =--的解为( ) A .1 B .-1 C .-2 D .无解7.九年级(3)班小王和小张两人练习跳绳,小王每分钟比小张少跳60个,小王跳120个所用的时间和小张跳180个所用的时间相等.设小王跳绳速度为x 个每分钟,则列方程正确的是( )A .12018060x x =+ B .12018060x x =- C .12018060x x =+ D .12018060x x=- 8.分式方程101m x x -=-有解,则m 的取值范围是( ) A .0m ≠ B .1m ≠ C .0m ≠或1m ≠ D .0m ≠且1m ≠9.已知关于x 的方程11a x =+的解是负数,则a 的取值范围是( ) A .1a < B .1a <且0a ≠ C .1a ≤ D .1a ≤ 或0a ≠10.关于x 的分式方程28222m x x x x +=--无解,则m =( ) A .2 B .4 C .2或4D .2或0二、填空题 11.分式方程33x -=2x的解是________. 12.若分式方程11322x x x-+=--有增根,则增根为x =_________. 13.如果分式22224x x x x x x ⎛⎫-÷ ⎪---⎝⎭的值为1,则x 的值为___________. 14.关于x 的方程2322x m x x-+--=3有增根,则m 的值为___________. 15.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,依题意列方程,得_____________.三、解答题 16.解分式方程:3201(1)x x x x +-=--.17.(1)计算:()20120193π-⎛⎫-+- ⎪⎝⎭ (2)计算:()()()22242x y x y x y --+(3)因式分解:22363ax axy ay -+(4)解方程:2216124x x x ++=---18.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾桶,学校先用2400元购买了一批给班级使用的小号垃圾桶,再用3200元购买了一批放在户外使用的大号垃圾桶,已知一个大号垃圾桶的价格是小号垃圾桶的4倍.且大号垃圾桶购买的数量比小号垃圾桶少50个,求一个小号垃圾桶的价格.19.解分式方程:211 33x x+= --20.新会柑是国家地理标志保护产品,新会柑普茶入口甘醇香甜,保健作用突出,很受市场欢迎.某茶店用4000元购进了A款新会柑普茶若干盒,用8400元购进了B款新会柑普茶若干盒,所购的B款新会柑普茶比A款新会柑普茶多10盒,且B款新会柑普茶每盒进价比A款贵40%.问:A、B两款新会柑普茶每盒进价分别是多少元?。

北师大版数学八年级下册期末备考:第五章《分式与分式方程》实际应用之选择易错试题(一)

北师大版数学八年级下册期末备考:第五章《分式与分式方程》实际应用之选择易错试题(一)

期末备考:第五章《分式与分式方程》实际应用之选择易错试题(一)1.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑自行车速度的2倍,现在小军乘班车上学可以从家晚出发10分钟,结果与原来到校的时间相同,那么校车的速度是()A.12千米/小时B.15千米/小时C.18千米/小时D.36千米/小时2.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.某人沿正在向下运动的自动扶梯从楼上走到楼下,用了24秒;若他站在自动扶梯上不动,从楼上到楼下要用56秒.若扶梯停止运动,他从楼上走到楼下要用()A.32秒B.38秒C.42秒D.48秒4.甲、乙两个清洁队参加了某社区“城乡清洁工程”,甲队单独做2天完成了工程的三分之一,这时乙队加入,两队又共同做了1天,完成了全部工程.则乙队单独完成此项工程需要()A.6天B.4天C.2天D.3天5.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.5606.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成7.甲乙两人同时从同一地点出发,相背而行1小时后他们分别到达各自的终点A与B,若仍从原地出发,互换彼此的目的地,则甲在乙到达A之后50分钟到达B,甲乙的速度之比为()A.2:3 B.3:5 C.3:2 D.3:48.某工程队承接了60万平方米的绿化工程,由于情况有变,….设原计划每天绿化的面积为x万平方米,列方程为,根据方程可知省略的部分是()A.实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B.实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C.实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D.实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务9.一艘轮船在静水中的最大航速为30千米/小时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()A.=B.=C.=D.=10.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递40件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.C.=﹣40 D.=11.在学校组织的秋季登山活动中,某班分成甲、乙两个小组同时开始攀登一座450m高的山,乙组的攀登速度是甲组的1.2倍,乙组到达顶峰所用时间比甲组少15min.如果设甲组的攀登速度为xm/min,那么下面所列方程中正确的是()A.=+1.2 B.=﹣15C.=1.2×D.=+1512.一艘轮船在静水中的最大航速为50km/h,它以最大航速沿河顺流航行80km所用时间和它以最大航速沿河逆流航行60km所用时间相等,设河水的流速为xkm/h,则可列方程()A.=B.=C.=D.=13.2021年是中国共产党建党100周年,某校为了纪念党的生日,计划组织540名学生去外地参观学习.现有A,B两种不同型号的客车可供选择,在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆,设A型客车每辆坐x人,则根据题意可列方程为()A.﹣=6 B.﹣=6C.﹣=6 D.﹣=614.甲乙两港口相距50千米,一艘轮船从甲港口顺流航行至乙港口,又立即从乙港口逆流返回甲港口,共用去8小时,已知水流速度为4km/h,若设该轮船在静水中的速度为xkm/h,则可列方程()A.B.C.D.15.某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为()A.B.C.D.16.当前,国内多地呈现新冠零星散发病例、局部聚集性疫情连发态势,市教育局紧急对全市初一、初二学生15万人进行核酸检测,由于志愿者的加入,实际每天检测人数比原计划多50%,结果提前3天完成任务,设原计划每天检测x万人,则依题意列出的方程是()A.=3 B.=3C.+3=D.=317.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.5元.设每箱凉茶有x罐,则下列方程正确的是()A.B.C.D.18.某果品分拣车间有甲、乙两组工人负责将猕猴桃装箱,已知每小时甲组比乙组少装16箱,甲组装260箱与乙组装340箱所用的时间相等,设甲组每小时装x箱,所列方程正确的是()A.B.C.D.19.某童装店有几件不同款式的衣服,每件衣服的原价一样,6月1日儿童节那天,全场打7折,某宝妈在儿童节那天去购买该款式的衣服时发现:平时花350元购买到的衣服件数比现在少2件,设原价是x元,则根据题意可列出方程()A.=B.=C.﹣2=D.=﹣220.某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程()A.﹣=6 B.﹣=6C.﹣=6 D.﹣=6参考答案1.解:设小军骑车的速度为x千米/小时,则校车的速度为2x千米/小时,根据题意得:﹣=,解得:x=7.5,经检验,x=7.5是原方程的解,且符合题意,则2x=15,即校车的速度为15千米/小时,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:设楼上到楼下的路程为1,∴人的速度为﹣,∴(﹣)x=1,解得x=42.故选:C.4.解:设乙队单独完成此项工程需要的时间为x天,由题意,得×1+×1=1﹣,解得:x=2,经检验,x=2是原方程的根.∴x=2.故选:C.5.解:设第一次购进计算器x个,则第二次购进计算器3x个,根据题意得:=+1,解得:x=20,经检验x=20是原方程的解,则这笔生意该店共盈利:[50×(20+60﹣4)+4×50×90%]﹣(880+2580)=520(元);故选:B.6.解:设实际每天铺设管道x米,原计划每天铺设管道(x﹣10)米,方程,则表示实际用的时间﹣原计划用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.故选:C.7.解:设甲的速度为v1千米/时,乙的速度为v2千米/时,根据题意知,从出发地点到A的路程为v1千米,到B的路程为v2千米,从而有方程:,化简得:,解得:,﹣是负数,应该舍去故选:A.8.解:设原计划每天绿化的面积为x万平方米,∵所列分式方程为﹣=30,∴为实际工作时间,为原计划工作时间,∴省略的条件为:实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务.故选:C.9.解:设江水的流速为x千米/时,由题意得:=,故选:D.10.解:设原来平均每人每周投递快件x件,则更换了快捷的交通工具后平均每人每周投递快件(x+40)件,依题意得:=.故选:D.11.解:设甲组的攀登速度为xm/min,则乙组的攀登速度为1.2xm/min,依题意得:﹣15=.故选:B.12.解:设河水的流速xkm/h,则以最大航速沿江顺流航行的速度为(50+x)km/h,以最大航速逆流航行的速度为(50﹣x)km/h,根据题意得,=,故选:C.13.解:设A型客车每辆坐x人,则B型客车每辆坐(x+15)人,依题意得:﹣=6.故选:A.14.解:设该轮船在静水中的速度为xkm/h,根据题意得,,故选:A.15.解:设该工厂计划x天内生产120件零件,则实际生产了(x﹣2)天,依题意得:=+3.故选:B.16.解:由题意可得,=3,故选:A.17.解:由题意可得,=0.5,故选:B.18.解:设甲组每小时装x箱,则乙组每小时装(x+16)箱,依题意得:=.故选:B.19.解:设原价是x元,则打折后的价格为0.7x元,依题意得:=﹣2.故选:D.20.解:由题意可得:﹣=6,故选:B.。

北师大版八年级下册数学 第5章《分式与分式方程》实际应用提高练习(二)

北师大版八年级下册数学 第5章《分式与分式方程》实际应用提高练习(二)

北师大版八年级下册数学:第5章《分式与分式方程》实际应用提高练习(三)1.清明时节“雨后绿初见,择艾作青团”.“元祖”推出一款鲜花青团和一款芒果青团,鲜花青团每个售价是芒果青团的倍,4月份鲜花青团和芒果青团总计销售60000个.鲜花青团销售额为250000元,芒果青团销售额为280000元.(1)求鲜花青团和芒果青团的售价?(2)5月份正值“元祖”店庆,计划再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花青团个数的,且不多于鲜花青团的2倍,其中,鲜花青团每个让利3元销售,芒果青团售价不变,问:“元祖”如何设计生产方案?可使总销售额最大,并求出总销售额的最大值.2.为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?3.疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?4.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?5.某车间加工24个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,求采用新工艺前每小时加工多少个零件?6.A,B两种机器人都被用来搬运化工原料,A型机器人每小时搬运的化工原料是B型机器人每小时搬运的化工原料的1.5倍,A型机器人搬运900kg所用时间比B型机器人搬运800kg所用时间少1小时.(1)求两种机器人每小时分别搬运多少化工原料?(2)某化工厂有8000kg化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时.现计划先由6个B型机器人搬运3小时,再增加若干个A型机器人一起搬运,请问至少要增加多少个A型机器人?7.为厉行节能减排,倡导绿色出行,我市推行“共享单车“公益活动某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的倍,B 型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?8.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?9.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不大于A类摊位数量的3倍,建造这90个摊位的总费用不超过10850元.则共有哪几种建造方案?(3)在(2)的条件下,哪种方案的总费用最少?最少费用是多少?10.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾分类垃圾桶,学校先用2700元购买了一批给班级使用的小号垃圾桶,再用3600元购买了一批放在户外永久使用的大号垃圾桶,已知每个大号垃圾桶的价格是小号垃圾桶的4倍,且购买的数量比小号垃圾桶少40个,求每个小号垃圾桶的价格是多少元?11.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?12.A、B两地距80千米,一辆公共汽车从A地去B地,15分钟后又从A地同方向开出一辆小汽车去B地,小汽车车速是公共汽车车速的2倍,结果小汽车比公共汽车早33分钟到达B地,求两车速度.13.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?14.12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.15.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运900件帐篷所用车辆与乙种货车装运600件帐篷所用车辆相等.求甲、乙两种货车每辆车可装多少件帐篷?参考答案1.解:(1)设每个芒果青团的售价为x元,则每个鲜花牛奶青团的售价为x元,依题意,得:,解得:x=8,经检验,x=8是原方程的解,且符合题意,∴x=10.答:每个鲜花牛奶青团的售价为10元,每个芒果青团的售价为8元.(2)设生产芒果青团m个,则生产鲜花牛奶青团(12000﹣m)个,依题意,得:,解得:7200≤m≤8000.设总销售额w元,则w=(10﹣3)(12000﹣m)+8m=m+84000.∵1>0,∴w随m的增大而增大,∴当m=8000时,w取得最大值,最大值为92000元.即生产芒果青团8000个、鲜花牛奶青团4000个,使总销售额最大,总销售额的最大值为92000.2.解:设第一批口罩每只的进价是x元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:=2×,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.3.(1)设购进的第一批医用口罩有x包,则=﹣0.5.解得:x=2000.经检验x=2000是原方程的根并符合实际意义.答:购进的第一批医用口罩有2000包;(2)设药店销售该口罩每包的售价是y元,则由题意得:[2000+2000(1+50%)]y﹣4000﹣7500≤3500.解得:y≤3.答:药店销售该口罩每包的最高售价是3元.4.解:(1)设A品牌口罩每个进价为x元,则B品牌口罩每个进价为(x+0.7)元,依题意,得:=2×,解得:x=1.8,经检验,x=1.8是原方程的解,且符合题意,∴x+0.7=2.5,答:A品牌口罩每个进价为1.8元,B品牌口罩每个进价为2.5元.(2)设购进B品牌口罩m个,则购进A品牌口罩(6000﹣m)个,依题意,得:(2﹣1.8)(6000﹣m)+(3﹣2.5)m≥1800,解得:m≥2000.答:最少购进B品牌口罩2000个.5.解:设采用新工艺前每小时加工的零件数为x个,根据题意可知:﹣1=,解得:x=8,经检验,x=8是原方程的解.答:采用新工艺前每小时加工8个零件.6.解:(1)设B型机器人每小时搬运xkg化工原料,则A型机器人每小时搬运1.5xkg 化工原料,依题意,得:﹣=1,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.5x=300.答:A型机器人每小时搬运300kg化工原料,B型机器人每小时搬运200kg化工原料.(2)设增加y个A型机器人,依题意,得:200×5×6+(5﹣3)×300y≥8000,解得:y≥,∵y为正整数,∴y的最小值为4.答:至少要增加4个A型机器人.7.解:设A型共享单车的成本单价是x元,则B型共享单车的成本单价是(x+20)元,依题意,得:=×,解得:x=200,经检验,x=200是所列分式方程的解,且符合题意.答:A型共享单车的成本单价是200元.8.解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工=(36﹣0.5m)天,依题意,得:0.5m+1.2(36﹣0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.9.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,依题意得:=×,解得:x=3,经检验,x=3是原方程的解,且符合题意,∴x+2=5.答:每个A类摊位的占地面积为5平方米,每个B类摊位的占地面积为3平方米.(2)设建造m个A类摊位,则建造(90﹣m)个B类摊位,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴共有3种建造方案,方案1:建造23个A类摊位,67个B类摊位;方案2:建造24个A类摊位,66个B类摊位;方案1:建造25个A类摊位,65个B类摊位.(3)方案1所需总费用为40×5×23+30×3×67=10630(元),方案2所需总费用为40×5×24+30×3×66=10740(元),方案3所需总费用为40×5×25+30×3×65=10850(元).∵10630<10740<10850,∴方案1的总费用最少,最少费用是10630元.10.解:设每个小号垃圾桶的价格是x元,则每个大号垃圾桶的价格是4x元,依题意,得:﹣=40,解得:x=45,经检验,x=45是原方程的解,且符合题意.答:每个小号垃圾桶的价格是45元.11.解:设两种机器人需要x小时搬运完成,∵900kg+600kg=1500kg,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:﹣=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.12.解:设公共汽车的速度为x千米/时,则小汽车的速度为2x千米/时,由题意的可得:,解得:x=50,经检验:x=50是原方程的解,∴当x=50时,2x=100(千米/时),答:公共汽车的速度为50千米/时,则小汽车的速度为100千米/时.13.解:(1)设甲队每天修路x米,则乙队每天修路(x﹣50)米,依题意,得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y天才能完工,依题意,得:45000﹣(200﹣50)y≤200×120,解得:y≥140.答:乙队至少需要140天才能完工.14.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.15.解:设乙种货车每辆车可装x件帐篷,则甲种货车每辆车可装(x+20)件帐篷,依题意,得:=,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴x+20=60.答:甲种货车每辆车可装60件帐篷,乙种货车每辆车可装40件帐篷.。

北师大八年级数学下册分式方程应用题精选

北师大八年级数学下册分式方程应用题精选

分式方程应用题1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。

2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。

又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。

3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。

已知B的速度是A的速度的3倍,求两车的速度。

4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。

乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。

求A、B每小时各做多少个零件。

6、某甲有25元,这些钱是甲、乙两人总数的20%。

乙有多少钱?7、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?8、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。

已知水流的速度是3千米/时,求轮船在静水中的速度。

10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。

求先遣队和大队的速度各是多少?11、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。

12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。

八年级数学下 第5章 分式与分式方程5.1 认识分式第2课时分式的基本性质习题北师大

八年级数学下 第5章 分式与分式方程5.1 认识分式第2课时分式的基本性质习题北师大

12.当 x 为何值时,分式xx2+-24有意义? 【点拨】求解使分式有无意义的字母的取值范围时,不能先约去
分子与分母的公因式,以免出现如下错解:xx2+-24= (x+2)x+(2x-2)=x-1 2,从而误认为只要当 x≠2 时,分式 xx2+-24就有意义.
解:由 x2-4=(x+2)(x-2)≠0,得 x≠-2 且 x≠2.所以当 x≠-2 且 x≠2 时,分式xx2+-24有意义.
9.【2020·孝感】已知 x= 5-1,y= 5+1,那么代数式x(x3- x-xyy2) 的值是( D ) A.2 B. 5 C.4 D.2 5
10.【中考·滨州】下列分式中,最简分式是( ) x2-1 x+1 x2-2xy+y2 x2-36
A.x2+1 B.x2-1 C. x2-xy D.2x+12
【点拨】选项 A 为最简分式;选项 B,xx2+-11=(x+1x)+(1x-1) = x-1 1;选项 C,x2-x22-xyx+y y2=x((xx--yy))2=x-x y;选项 D, 2xx2-+3162=(x+2(6)x+(6x)-6)=x-2 6,故选 A.
【答பைடு நூலகம்】A
*11.下列计算中,错误的是( ) A.00..27aa+ -bb=27aa+ -bb B.2xx2=2x C.ab- -ba=-1 D.ab=abcc(c≠0)
(2)求-2((m2+m+n)2n2+)32m2n2的值. 解:∵m+n=mn, ∴-2((m2+m+n)2n2+)32m2n2= -2((m2nm)n2)+23m2n2=4mm22nn22=14.
探究培优 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月27日星期日2022/3/272022/3/272022/3/27

北师大版八年级下册数学第五章《分式与分式方程》综合练习题

北师大版八年级下册数学第五章《分式与分式方程》综合练习题

《分式与分式方程》综合练习题一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6 7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.15.(2009春•营山县期末)已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.(2020秋•北京期末)依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=++,则++=三.解答题(共10小题)21.(2021•包河区三模)市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.(2021•平房区三模)某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.(2021•岳阳二模)岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.(2021•宝安区模拟)为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.(2020秋•香洲区期末)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.(2021春•滨湖区期中)小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.(2021春•大兴区期中)已知非零实数a、b满足等式,求的值.28.(2020秋•连山区期末)阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.(2020秋•乌苏市期末)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.30.(2021•禅城区校级一模)先化简(1﹣)÷,再从0,2,﹣1,1中选择一个合适的数代入并求值.参考答案一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=50【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据“现在生产400台机器所需时间比原计划生产450台机器所需时间少1天”列出方程即可.【解答】解:设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据题意,得﹣=1.故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,利用本题中“生产400台机器所需时间比原计划生产450台机器所需时间少1天”这一个隐含条件,进而得出等式方程是解题关键.2.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=20【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”列方程即可.【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据题意可得:﹣=20.故选:B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.3.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.15【考点】分式方程的解;解一元一次不等式组.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据不等式组的解集为x≥6,列出不等式,求出a的范围;解出分式方程的解,根据方程的解是正整数,列出不等式,求得a的范围;检验分式方程,列出不等式,求得a的范围;综上所述,得到a的范围,最后根据方程的解是正整数求得满足条件的整数a的值,求和即可.【解答】解:,解不等式①得:x≥6,解不等式②得:x>,∵不等式组的解集为x≥6,∴6,∴a<7;分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=,∵方程的解是正整数,∴>0,∴a>﹣5;∵y﹣1≠0,∴1,∴a≠﹣3,∴﹣5<a<7,且a≠﹣3,∴能使是正整数的a是:﹣1,1,3,5,∴和为8,故选:B.【点评】本题考查了解一元一次不等式组,解分式方程,注意解分式方程一定要检验.4.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.5【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;一元一次不等式(组)及应用;推理能力.【分析】分别求出满足不等式有解与分式方程的解为正数的a的取值范围,再求出其中满足使分式方程的解为正整数的a的整数值,注意舍去增根的情况.【解答】解:解不等式①得x<2,解不等式②得x>﹣1,∵不等式组有解,∴﹣1<2,解得a<9,解分式方程=4﹣得y=,∵方程的解为正数,∴>0且≠3,∴a>﹣且a≠3,∴﹣<a<9且a≠3,满足使方程的解为正整数的整数a的值有0,6两个.故选:A.【点评】本题考查一元一次不等式组与分式方程的解,解题关键是求解过程要注意分式方程的增根情况.5.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣1【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据“结果比原计划提前一周完成任务”即可得出关于x的分式方程,此题得解.【解答】解:设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据题意,得:=+1.故选:C.【点评】本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.6.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据有且只有两个整数解列出不等式求出a的范围;解分式方程,根据解为正数,且y﹣1≠0,得到a的范围;然后得到a的范围,再根据a为整数得到a的值,最后求和即可.【解答】解:,解不等式①得:x≤2,解不等式②得:x≥,∴不等式组的解集为≤x≤2,∵不等式组有且只有两个整数解,∴0<≤1,∴0<a≤3;分式方程两边都乘以(y﹣1)得:1﹣3y+2a=﹣2(y﹣1),解得:y=2a﹣1,∵分式方程的解为正数,∴2a﹣1>0,∴a>;∵y﹣1≠0,∴y≠1,∴2a﹣1≠1,∴a≠1,∴<a≤3,且a≠1,∵a是整数,∴a=2或3,∴2+3=5,故选:C.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时别忘记检验.7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出不等式组的解集,根据不等式组有解且至多3个整数解,求得m的取值范围;解分式方程,检验,根据方程有整数解求得m的值【解答】解:,解不等式①得:x≥﹣1,∴﹣1≤x<,∵不等式组有解且至多3个整数解,∴﹣1<<2,∴﹣3<m<6,分式方程两边都乘以(x﹣1)得:mx﹣2﹣3=2(x﹣1),∴(m﹣2)x=3,当m≠2时,x=,∵x﹣1≠0,∴x≠1,∴≠1,∴m≠5,∵方程有整数解,∴m﹣2=±1,±3,解得:m=3,1,5,﹣1,∵m≠5,∴,m=3,1,﹣1.故选:C.【点评】本题考查了解一元一次不等式组,解分式方程,考核学生的计算能力,解分式方程时一定要检验.8.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.15【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解不等式组,根据不等式组有且仅有3个整数解,得到a的范围;解分式方程,根据分式方程有意义和方程有正数解求得a的范围,从而得到2<a≤6,且a≠5,所以a 的整数解为3,4,6,和为13.【解答】解:,解不等式①得:x<5,解不等式②得:x≥,∴不等式组的解集为,∵不等式组有且仅有3个整数解,∴1<≤2,∴2<a≤6;分式方程两边都乘以(x﹣1)得:ax﹣2﹣3=x﹣1,解得:x=,∵x﹣1≠0,∴x≠1,∵方程有正数解,∴0,≠1,∴a>1,a≠5,∴2<a≤6,且a≠5,∴a的整数解为3,4,6,和为13,故选:B.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程不要忘记检验.9.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时【考点】分式方程的应用.【专题】分式方程及应用.【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【解答】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则=.解得x=20经检验x=20是原方程的根,且符合题意.则丙的工作效率是.所以一轮的工作量为:++=.所以4轮后剩余的工作量为:1﹣=.所以还需要甲、乙分别工作1小时后,丙需要的工作量为:﹣﹣=.所以丙还需要工作小时.故一共需要的时间是:3×4+2+=14小时.故选:C.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.10.设x<0,x﹣=,则代数式的值()A.1B.C.D.【考点】分式的值;分式的加减法.【专题】计算题;整体思想.【分析】根据完全平方公式以及立方和公式即可求出答案.【解答】解:∵x﹣=,∴(x)2=5,∴x2+=7,∴(x+)2=x2+2+=9,∵x<0,∴x+=﹣3,∴x2+1=﹣3x,∴x4+1=7x2,∵(x2+)2=x4+2+,∴x4+=47,∴x8+1=47x4,∵x3+=(x+)(x2﹣1+),∴x3+=﹣18,∴x6+1=﹣18x3,∴原式=====故选:B.【点评】本题考查学生的整体的思想,解题的关键是熟练运用完全平方公式以及立方和公式,本题属于难题.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为﹣2.【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】分别解出两个一元一次不等式的解集,根据不等式组的解集为x≥5,列出不等式求得a的范围;解分式方程,根据方程有非负整数解,且y﹣2≠0列出不等式,求得a 的范围;综上所述,求得a的范围.根据a为整数,求出a的值,最后求和即可.【解答】解:,解不等式①得:x≥5,解不等式②得:x>a+2,∵解集为x≥5,∴a+2<5,∴a<3;分式方程两边都乘以(y﹣2)得:y﹣a=﹣(y﹣2),解得:y=,∵分式方程有非负整数解,∴≥0,∴a≥﹣2,∵≠2,∴a≠2,综上所述,﹣2≤a<3且a≠2,∴符合条件的所有整数a的数有:﹣2,﹣1,0,1,和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时一定记得要检验.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是4710元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).【考点】分式方程的应用.【专题】整式;运算能力.【分析】设乙的成本价为a,然后根据题意列出90﹣s=40%a,求得a,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,然后列式计算即可.【解答】解:设乙的成本价为a,根据题意列出90﹣s=40%a,解得a=70,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,m+n=50则有70n+m(3x+3×)=6213÷(1+30%)70n+70m+mx=4710.xm=,节后乙每盒成本98÷2÷(1+40%)=35,甲每盒成本2x+2×x+35﹣x=35+x,总成本35n+m(35+x)=35×50+×=2657.5.故答案为:2657.5.【点评】本题考查了列代数式和一元一次方程,根据题意正确列出代数式是解题的关键.13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为1.【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】计算题;方程与不等式;应用意识.【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.【解答】解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣2<a≤2;解分式方程得,y=2﹣a(a≠1);∵方程的解为非负数,∴2﹣a≥0即a≤2且a≠1综上可知,﹣2<a≤2且a≠1,∵a是整数,∴a=﹣1,0,2;∴﹣1+0+2=1,故答案为:1.【点评】本题考查了解一元一次不等式组,分式方程,本题易错,易忽视分式方程有意义的条件.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.【考点】分式的化简求值.【分析】先根据题意得出x2=5x﹣1,再根据分式混合运算的法则进行计算即可.【解答】解:∵x2﹣5x+1=0,∴x2=5x﹣1,∴原式======.故答案为:.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.15.(2009春•营山县期末)已知,则=﹣.【考点】分式的化简求值.【专题】探究型.【分析】先根据题意得出x﹣y=﹣2xy,再代入所求代数式进行计算即可.【解答】解:∵﹣=2,∴=2,即x﹣y=﹣2xy,原式====﹣.故答案为:﹣.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.【考点】分式的化简求值.【专题】分式;运算能力;推理能力.【分析】根据xyz=6,可以先将所求式子化简,然后根据x+a2=2010,y+a2=2011,z+a2=2012,可以得到x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,然后代入化简后的式子即可解答本题.【解答】解:∵xyz=6,∴++﹣﹣﹣=﹣=﹣==[(x﹣y)2+(y﹣z)2+(x﹣z)2],∵x+a2=2010,y+a2=2011,z+a2=2012,∴x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,∴原式=×[(﹣1)2+(﹣1)2+(﹣2)2]=×(1+1+4)==,故答案为:.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有27人.【考点】分式方程的应用.【专题】一元一次不等式(组)及应用;应用意识.【分析】设每人每天可检疫x头猪,该组检疫工作人员有y人,则每人半天检疫头猪,由甲养殖场的生猪比乙养殖场的生猪多1倍,根据题意可得不等式,从而得解.【解答】解:设每人每天可检疫x头猪,该组检疫工作人员有y人,由题意得:xy+x(1+20%)×<2[x(1+20%)×+6×],化简得:0.4y<11.4∴y<28.5,∵y只能为正整数,且有一人离开后,人数平分∴y的最大值为27.故答案为:27.【点评】本题是较复杂的不等式应用题,题目中有两个变量,但是列完之后,每个因式中都含有x,从而可以消掉,变成一元一次不等式,从而得解,本题的难点在于变量较多,不等关系的得出较为复杂.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比。

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(包含答案解析)(2)

(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(包含答案解析)(2)

一、选择题1.下列运算中,正确的是( )A .211a a a+=+B .21111a a a -⋅=-+C .1b a a b b a +=-- D .0.22100.7710++=--a b a ba b a b2.下列各式中,分式有( )个3x ,1n ,15a +,15a b +,2z x y ,()22ab a b +A .4B .3C .2D .13.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个求,若摸到白球的概率为57,则盒子中原有的白球的个数为( ) A .10B .15C .18D .204.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是( ) A .3B .4C .5D .65.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 6.已知x a =时,分式211x x ++的值为m .若a 取正整数,则m 的取值范围为( )A .112m ≤< B .312m ≤<C .322m ≤< D .522m ≤<7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.若a =1,则2933a a a -++的值为( ) A .2 B .2-C .12D .12-9.若ab ,则下列分式化简中,正确的是( )A .22a ab b+=+ B .22a ab b -=- C .33a a b b = D .22a a b b=10.若0234x y z==≠,则下列等式不成立的是( ) A .::2:3:4x y z = B .27x y z += C .234x y zx y z+++== D .234y x z ==11.对于两个非零的实数a ,b ,定义运算*如下:11a b b a*=-.例如:113443*=-.若2x y *=,则xy x y -的值为( )A .12B .2C .12-D .2-12.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±1二、填空题13.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______. 14.已知2a b=,则a ba b +-=_____.15.关于x 的分式方程211mx =-+无解,则m 的取值是_______. 16.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 17.观察给定的分式,探索规律: (1)1x ,22x,33x ,44x ,…其中第6个分式是__________;(2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________;(3)2b a -,52b a ,83b a -,114b a ,…其中第n 个分式是__________(n 为正整数).18.已知215a a+=,那么2421a a a =++________. 19.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.20.计算:22x x xyx y x -⋅=-____________________. 三、解答题21.甲、乙两公司全体员工踊跃参与“携手并肩,共渡难关”捐款活动,甲公司共捐款10万元,乙公司共捐款14万元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A ,B 两种物资,A 种物资每箱1.5万元,B 种物资每箱1.2万元,若购买B 种物资不少于5箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A ,B 两种物资均需购买,并按整箱配送) 22.解下列分式方程(1)42122x x x x ++=--; (2)()()21112x x x x =+++-. 23.解方程: (1)81877--=--x x x; (2)21124x x x -=--. 24.计算(1)()()2222232322a a a a a -⋅+-+(2)()()()2235x x x ---+(3)用简便方法计算:22202020204020-⨯+(4)解分式方程:52332x x x=-- (5)2124111x x x +=+-- 25.今年11月14日,“行孝仗义,柿柿如意”2020第三届孝义柿子文化节在兑镇镇产树原村隆重开幕.柿子是孝义市地理标志农产品,开发柿子产业是转型跨越发展致富的新路.某食品公司有一批新鲜柿子,公司将一部分新鲜柿子直接销售,这批新鲜柿子的总售价为4000元,剩余的一部分加工成柿饼后进行销售,这批柿饼的总售价为80000元.已知柿饼的销售数量比直接销售的新鲜柿子多2000千克,且每千克的售价是新鲜柿子的10倍.求新鲜柿子和柿饼每千克的售价各多少元?26.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据分式的运算法则及分式的性质逐项进行计算即可. 【详解】A :211a a a a+=+,故不符合题意;B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意;C :1b a b a a b b a a b a b+=-=-----,故不符合题意; D :0.22100.7710++=--a b a ba b a b,故不符合题意;【点睛】本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键.2.A解析:A 【分析】分母是整式且整式中含有字母,根据这点判断即可. 【详解】 ∵3x中的分母是3,不含字母, ∴3x不是分式; ∵1n中的分母是n ,是整式,且是字母, ∴1n是分式; ∵15a +中的分母是a+5,是多项式,含字母a , ∴15a +是分式; ∵15a b+中的分母是15,不含字母, ∴15a b+不是分式; ∵2z x y 中的分母是2x y ,是整式,含字母x ,y , ∴2z x y是分式;∵()22aba b +中的分母是2()a b +,是整式,含字母a ,b ,∴()22aba b +是分式;共有4个, 故选A . 【点睛】本题考查了分式的定义,熟练掌握分式构成的两个基本能条件是解题的关键.3.D解析:D设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个,根据概率建立方程求解即可. 【详解】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个, 根据题意,得551057x x +=++,解得x=20,且x=20是所列方程的根, 故选D . 【点睛】本题考查了简单概率的计算,熟练掌握概率的意义,巧妙引入未知数建立方程求解是解题的关键.4.A解析:A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得. 【详解】 解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解, 即放入口袋中的黄球总数n =3, 故选:A . 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.C解析:C 【分析】先把211x x ++化为121x -+,再根据条件和a 的范围,即可得到答案. 【详解】∵211x x ++=22-12(1)-112111x x x x x ++==-+++,又∵x a =时,分式211x x ++的值为m , ∴121m a -=+, ∵a 取正整数,即a≥1, ∴1112a ≤+, ∴13212a -≥+,即m≥32, 又∵101a >+, ∴1221a -<+,即m<2, ∴322m ≤<. 故选C . 【点睛】本题主要考查分式的运算和化简,把原分式的分子化为常数,是解题的关键.7.C解析:C 【分析】利用分式的基本性质变形化简得出答案. 【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a a b b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C . 【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.9.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.D解析:D 【分析】 设234x y zk ===,则2x k =、3y k =、4z k =,分别代入计算即可. 【详解】 解:设234x y zk ===,则2x k =、3y k =、4z k =, A .::2:3:42:3:4x y z k k k ==,成立,不符合题意; B .23427k k k +=,成立,不符合题意; C.2233441234k k k k k k k k++++===,成立,不符合题意; D. 233244k k k ⨯=⨯≠⨯,不成立,符合题意; 故选:D . 【点睛】本题考查了等式的性质,解题关键是通过设参数,得到x 、y 、z 的值,代入判断.11.A解析:A 【分析】根据新定义,把2x y *=转化为分式的运算即可. 【详解】解:根据定义运算*,2x y *=,112y x-=, 去分母得,2x y xy -=, 代入xyx y-得, 122xy xy =, 故选:A . 【点睛】本题考查了新定义运算以及分式运算,解题关键是根据新定义运算找到x 、y 之间的关系,再整体代入.12.D解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式2121xx-+值为0,∴2x+1≠0,210x-=,解得:x=±1.故选:D.【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.二、填空题13.3≤b<4【分析】首先解分式方程求得a的值然后根据不等式组的解集确定x的范围再根据只有3个整数解确定b的范围【详解】解:解方程两边同时乘以a得:2-a+2a=3解得:a=1∴关于x的不等式组则解集是解析:3≤b<4【分析】首先解分式方程求得a的值,然后根据不等式组的解集确定x的范围,再根据只有3个整数解,确定b的范围.【详解】解:解方程232aa a -+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x a x b≥⎧⎨≤⎩,则解集是1≤x≤b,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b<4.故答案是:3≤b<4.【点睛】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.3【分析】首先由可设a=2kb=k然后将其代入即可求得答案【详解】解:∵∴设a=2kb=k∴==3故答案为:3【点睛】本题考查了分式的化简求值本题的关键是能利用设k法设出未知数解析:3【分析】首先由2a b=,可设a =2k ,b =k ,然后将其代入a b a b +-,即可求得答案. 【详解】 解:∵2a b=, ∴设a =2k ,b =k , ∴a b a b +-=22k k k k+-=3. 故答案为:3.【点睛】 本题考查了分式的化简求值,本题的关键是能利用设k 法,设出未知数.15.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键. 16.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷=2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13 故答案为:13【点睛】 本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 20.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.三、解答题21.(1)甲公司有150人,乙公司有180人;(2)有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资【分析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款10万元,公司共捐款14万元,列出方程,求解出4165m n =-,根据整数解,约束出m 、n 的值,即可得出方案.【详解】解:(1)设乙公司有x 人,则甲公司有()30x -人, 由題意,得10714306x x⨯=- 解得180x =. 经检验,180x =是原方程的解,30150x -=,答:甲公司有150人,乙公司有180人.(2)设购买A 种物资n 箱,购买B 种物资n 箱,由题得1.5 1.21014m n +=+, 整理,得4165m n =-又5n ≥,且m ,n 为正整数, 11125m n =⎧∴⎨=⎩ 22810m n =⎧⎨=⎩ 33415m n =⎧⎨=⎩ 答:有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B种物资或购买4箱A 种物资,15箱B 种物资.【点睛】本题考查了分式方程的应用、方案问题、二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.22.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)无解;(2)x =﹣32【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:()8187x x -+=-,整理得:749x =解得:x =7,经检验x =7是原方程的增根,∴原方程无解;(2)去分母得:()2214x x x +-=-, 整理得:23x =-解得:x =32-, 经检验x =﹣32是分式方程的解.【点睛】本题考查分式方程的解法,解题的关键是化分式方程为整式方程的方法,同时注意检验方程的根.24.(1)46274a a a ++;(2)1519x +;(3)4000000;(4)x=-5;(5)无解.【分析】(1)原式先分别计算积的乘方与幂的乘方,以及单项式乘以单项式,然后再合并同类项即可得到答案;(2)原式分别根据完全平方公式和多项式乘以多项式运算法则去括号,然后再合并同类项即可得到答案;(3)原式运用差的完全平方公式进行计算即可;(4)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(5)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()2222232322a a a a a -⋅+-+ =4462924a a a a -++=46274a a a ++(2)()()()2235x x x ---+=()22102556x x x x ++--+=22102556x x x x ++-+-=1519x +(3)22202020204020-⨯+=222020*********-⨯⨯+=2(202020)-=22000=4000000; (4)52332x x x=-- 去分母得,x=-5 经检验,x=-5是原方程的解,∴原方程的解为:x=-5;(5)2124111x x x +=+-- 去分母得,(1)2(1)4x x -++= 解得,x=1经检验,x=1是增根,∴原方程无解.【点睛】此题考查了整式的运算和解分式方程,熟练掌握相关运算法则是解答此题的关键.25.新鲜柿子每千克2元,柿饼每千克20元【分析】设每千克新鲜柿子x元,则每千克柿饼10x元,根据题意列出方程求解即可;【详解】解:设每千克新鲜柿子x元,则每千克柿饼10x元.依题意得,400080000200010x x+=,方程两边乘10x,得40000+20000x=80000,解得,x=2,检验:当x=2时,10x≠0.所以,原分式方程的解为x=2,且符合实际意义,当x=2时,10x=20,答:新鲜柿子每千克2元,柿饼每千克20元.【点睛】本题主要考查了分式方程的应用,准确计算是解题的关键.26.(1)每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元;(2)学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意列出方程求解即可;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意列出一元一次不等式组求解即可;再结合m为整数即可得出各种购买方案;【详解】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:12x=200.2x+,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:()()1.5800.3800.534m mm m-⎧⎪⎨-+≤⎪⎩≥,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,正确理解题意是解题的关键;。

2020-2021学年八年级数学北师大版下册 5.4分式方程解答题专项练习(应用题篇)(二 )

2020-2021学年八年级数学北师大版下册 5.4分式方程解答题专项练习(应用题篇)(二 )

八年级数学北师大版下册5.4分式方程解答题专项(应用题篇)(二)1.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?2.我县为了改善县区内交通环境,对解放路进行了改造,需要铺设排污管道,其中一段长300米,铺设120米后,为了尽可能减少施工对交通所造成的影响,后来每天的工作量比原计划增加20%,结果完成这一任务共用了27天,求原计划每天铺设排污管道多少米.3.甲、乙两个工程队承担了福州市今年的旧城改造工作中的一个办公楼项目,若乙队单独工作3天后,再由两队合作7天就可以完成这个项目,已知乙队单独完成这个项目所需天数是甲队单独完成这各项目所需天数的2倍.(1)求甲,乙两个工程队单独完成这个项目各需多少天;(2)甲工程队一天的费用是7万元,乙工程队一天的费用是3万元,若甲乙合作5天后剩余工作由乙队单独完成,求这个项目总共要支出的工程费用.(单位:万元)4.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?5.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?6.受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?7.某一工程可以由甲、乙两个工程队进行施工.如果甲队单独完成这项工程刚好如期完成;如果乙队单独完成这项工程要比甲队多用4天;如果甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.请列分式方程求出规定工期为多少天?8.某扶贫干部决定引进改良的中药种子帮助贫困户脱贫.他先花8000元购买了桔梗种子,又花6000元购买了白术种子,已知他购买的这两种种子质量相等,且桔梗种子比白术种子每千克多20元,求白术种子每千克多少元?9.为了响应打赢“蓝天保卫战”的号召,张老师上下班的交通方式由驾车改为骑自行车,张老师的家距学校的路程是8千米;在相同的路线上,驾车的平均速度是骑自行车平均速度的3倍,这样,张老师每天上班要比开车早出发小时,才能按原驾车时间到达学校.(1)求张老师骑自行车的平均速度;(2)据测算,张老师的汽车在上下班行驶过程中平均每小时碳排放量约为12千克,这样张老师一天(按一个往返计算)可以减少碳排放量多少千克.10.为全面改善公园环境,现招标建设某全长960米绿化带,A,B两个工程队的竞标,A 队平均每天绿化长度是B队的2倍,若由一个工程队单独完成绿装化,B队比A队要多用6天.(1)分别求出A,B两队平均每天绿化长度.(2)若决定由两个工程队共同合作绿化,要求至多4天完成绿化任务,两队都按(1)中的工作效率绿化完2天时,现又多出180米需要绿化,为了不超过4天时限,两队决定从第3天开始,各自都提高工作效率,且A队平均每天绿化长度仍是B队的2倍,则B队提高工作效率后平均每天至少绿化多少米?11.某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共160件进行试销,其中A型商品的件数不大于B型的件数,且不小于78件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,则共有哪几种进货方案?(3)在第(2)问条件下,哪种方案利润最大?并求出最大利润.12.甲、乙两地相距300千米,一辆货车和一辆小汽车同时从甲地出发开往乙地,小汽车的速度是货车的1.2倍,结果小汽车比货车早半小时到达乙地,求两辆车的速度.13.甲、乙两人做某种机器零件,每小时乙比甲多做8个.已知甲做240个零件的时间与乙做300个零件的时间相同,求甲、乙每小时各做多少个零件.14.某校为积极响应垃圾分类的号召,从商场购进了A、B两种品牌的垃圾桶用于回收不同种类垃圾.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用3000元购买A品牌垃圾桶的数量是用1500元购买B品牌垃圾桶数量的4倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学准备再次用不超过3000元购进A、B两种品牌垃圾桶共50个,恰逢商场对两种品牌垃圾桶的售价进行了调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?15.利华机械厂为海天公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B 种产品多2件,甲车间生产的A种产品30件的天数与乙车间生产的B种产品24件天数相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)海天公司每天付给甲车间600元的工时费,每天付给乙车间400元的工时费,现海天公司一次性购买A、B两种产品共800件,海天公司购买A、B两种产品付给甲、乙两车间的总工时费用不超过42000元.求购进A种产品至多多少件.参考答案1.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.2.解:设原计划每天铺设排污管道x米,由题意可得:,解得:x=10,经检验,x=10是原方程的解,答:原计划每天铺设排污管道10米.3.解:(1)设甲工程队单独完成这个项目需要x天,则乙工程队单独完成这个项目需要2x天,依题意得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲工程队单独完成这个项目需要12天,乙工程队单独完成这个项目需要24天.(2)设甲乙两队合作5天后乙队还要再单独工作y天,依题意得:+=1,解得:y=9,∴7×5+3×(5+9)=77(万元).答:这个项目总共要支出的工程费用为77万元.4.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.5.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.6.解:(1)设该商场购进的第一批“84”消毒液单价为x元/瓶,依题意得:2×=.解得,x=10.经检验,x=10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(+﹣200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.7.解:设规定工期为x天,则甲队单独完成这项工程需x天,乙队单独完成这项工程需(x+4)天,依题意得:+=1,整理得:x﹣12=0,解得:x=12,经检验,x=12是原方程的解,且符合题意.答:规定工期为12天.8.解:设白术种子每千克x元,根据题意,得,解得x=60,经检验,x=60是原方程的解且符合题意.答:白术种子每千克60元.9.解:(1)设张老师骑自行车的平均速度为x千米/小时,依题意有,﹣=,解得x=16,经检验,x=16是原方程的解.故张老师骑自行车的平均速度为16千米/小时,(2)由(1)可得张老师开车的平均速度为16×3=48(千米/小时),×2×12=4(千克).故可以减少碳排放量4千克.10.解:(1)设B队平均每天绿化x米,则A队平均每天绿化2x米.依题意,得:﹣=6,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴2x=160.答:A队平均每天绿化160米,B队平均每天绿化80米.(2)设B队提高工作效率后平均每天绿化y米,则A队提高工作效率后平均每天绿化2y米,依题意,得:(160+80)×2+(2y+y)×(4﹣2)≥960+180,解得:y≥110.答:B队提高工作效率后平均每天至少绿化110米.11.解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元,依题意得:=×2,解得:x=150,经检验,x=150是原方程的解且符合题意,∴x+10=160.答:一件A型商品的进价为160元,一件B型商品的进价为150元.(2)设购进A型商品m件,则购进B型商品(160﹣m)件,依题意得:,解得:78≤m≤80,又∵m为整数,∴m可以为78,79,80,∴共有3种进货方案,方案1:购进A型商品78件,B型商品82件;方案2:购进A型商品79件,B型商品81件;方案1:购进A型商品80件,B型商品80件.(3)方案1获得的利润为(240﹣160)×78+(220﹣150)×82=11980(元);方案2获得的利润为(240﹣160)×79+(220﹣150)×81=11990(元);方案3获得的利润为(240﹣160)×80+(220﹣150)×80=12000(元).∵11980<11990<12000,∴方案3购进A型商品80件,B型商品80件获得利润最大,最大利润为12000元.12.解:设货车的速度为x千米/小时,则小汽车的速度为1.2x千米/小时,依题意得:﹣=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴1.2x=120.答:货车的速度为100千米/小时,小汽车的速度为120千米/小时.13.解:设甲每小时做x个零件,乙每小时做(x+8)个零件,由题意可得:,解得:x=32,经检验,x=32是原方程的解,∴x+8=40(个),答:甲每小时做32个零件,乙每小时做40个零件.14.解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,由题意得:=4×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+50=100,答:购买一个A品牌垃圾桶需50元,购买一个B品牌垃圾桶需100元;(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,由题意得:50×0.9×(50﹣m)+100×(1+20%)m≤3000,解得:m≤10,∴m最大值是10.答:该学校此次最多可购买10个B品牌垃圾桶.15.解:(1)设乙车间每天生产x件B种产品,则甲车间每天生产(x+2)件A种产品,由题意得:=,解得:x=8,经检验,x=8是原方程的解,且符合题意,则x+2=10,答:甲车间每天生产10件A种产品?乙车间每天生产8件B种产品;(2)设购进A种产品a件,则购进B种产品(800﹣a)件,由题意得:×600+×400≤42000,解得:a≤200,答:购进A种产品至多200件.。

5.4 分式方程(第3课时 列分式方程解应用题)北师大版八年级数学下册课时作业基础卷(含答案)

5.4 分式方程(第3课时 列分式方程解应用题)北师大版八年级数学下册课时作业基础卷(含答案)

5.4 第3课时 列分式方程解应用题知识点 分式方程的应用1.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .80(1+35%)x-80x =40B .80(1+35%)x -80x =40C .80x -80(1+35%)x =40D .80x -80(1+35%)x =402.甲、乙两船从相距300 km 的A,B 两地同时出发,相向而行,甲船从A 地顺流航行180 km 时与从B 地逆流航行的乙船相遇,水流的速度为6 km/h .若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为( )A .180x +6=120x -6B .180x -6=120x +6C .180x +6=120x D .180x =120x -63.某市为治理污水,需要铺设一条全长为550 m 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工作效率比原计划增加10%,结果提前5天完成这一任务.则原计划每天铺设 m .4.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.5.刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40 kg .这种大米的原价是每千克多少元?6.在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进,这样120 t水可多用3天,求现在每天用水量是多少后,现在每天用水量是原来每天用水量的45吨.7.某学校食堂需采购部分餐桌,现有A,B两个商家,A商家每张餐桌的售价比B商家每张餐桌的售价优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为( )A.117元B.118元C.119元D.120元8.某校学生去距学校20 km的白水寺参观,一部分学生骑自行车先走,过了40 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,则骑车学生的速度是 km/h.9.某公司会计欲查询乙商品的进价,发现进货单已被墨水污染(如下表).进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.10.为厉行节能减排,倡导绿色出行,2018年3月“共享单车”登陆某市中心城区.某公司拟在甲、乙两个街道社区投放一批“共享单车”,这批“共享单车”包括A,B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A,B两种款型“共享单车”各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元/辆,A,B两种款型“共享单车”的成本单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“共享单车”,乙街区每1000人投放8a+240辆“共享单车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两a个街区共有15万人,试求a的值.参考答案1.A2.A3.10 [解析] 设原计划每天铺设x m,实际施工时每天铺设(1+10%)x m,由题意,得550x -550(1+10%)x=5,解得x=10.经检验,x=10是原分式方程的根,且符合题意,所以原计划每天铺设10 m .4.解:设乙每小时做x 个零件,则甲每小时做(x+6)个零件.根据题意,得90x +6=60x ,解得x=12.经检验,x=12是原方程的根,且符合题意,故乙每小时做12个零件.5.解:设这种大米的原价是每千克x 元.根据题意,得105x +1400.8x =40,解得x=7.经检验,x=7是原方程的根,且符合题意.故这种大米的原价是每千克7元.6.解:设原来每天用水量是x t,则现在每天用水量是45x t .依题意,得12045x -120x =3,解得x=10.经检验,x=10是原方程的根,且符合题意,∴45x=8.故现在每天用水量是8 t .7.A [解析] 设A 商家每张餐桌的售价为x 元,则B 商家每张餐桌的售价为(x+13)元.根据题意,得20000x +13=18000x ,解得x=117.经检验,x=117是原方程的根,且符合题意.故选A .8.15 [解析] 设骑车学生的速度为x km/h,则汽车的速度为2x km/h .根据题意,得20x -202x =4060,解得x=15.经检验,x=15是原方程的根,且符合题意.故答案为15.9.解:设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件.依题意,得7200(1+50%)x -3200x =40,解得x=40.经检验,x=40是原方程的根,且符合题意,∴(1+50%)x=60,3200x=80,7200(1+50%)x =120.故甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.补全进货单略.10.解:问题1:设A 型车的成本单价为x 元/辆,则B 型车的成本单价为(x+10)元/辆.依题意,得50x+50(x+10)=7500,解得x=70,所以x+10=80.故A,B 两种款型“共享单车”的单价分别是70元/辆和80元/辆.问题2:由题意,得1500a ×1000+ 1200 8a +240a×1000=150000,解得a=15.经检验,a=15是所列方程的根,且符合题意.故a 的值为15.。

2020-2021学年北师大版八年级数学下册 第5章《分式与分式方程》实际应用综合专练(二)

2020-2021学年北师大版八年级数学下册 第5章《分式与分式方程》实际应用综合专练(二)

北师大版八年级下册第5章《分式与分式方程》实际应用综合专练(二)1.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?2.越野自行车是中学生喜爱的交通工具,市场巨大,竞争也激烈.某品牌经销商经营的A 型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)设今年A型车每辆销售价为x元,求x的值.(2)该品牌经销商计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批售出后获利最多?A、B两种型号车今年的进货和销售价格表A型车B型车进货价1100元/辆1400元/辆销售价x元/辆2000元/辆3.宜鲜水果店某种纽荷尔1月份的销售总额为600元,2月份与1月份相比,销量不变,但每斤的售价比1月份减少4元,因此销售总额比1月份减少了40%.(1)求2月份这种纽荷尔每斤的售价;(2)2月价该店计划新进一批这种纽荷尔和沃柑共45斤,已知纽荷尔进货价格是每斤3元;沃柑进货价格是每斤7元,销售价格是每斤20元.要求沃柑进货数量不超过纽荷尔数量的两倍,应如何进货才能使这批水果获得最大利润,并求出最大利润.4.高铁的蓬勃发展为我们的出行带来了便捷.已知某市到天津的路程约为900km,一列动车组列车的平均速度是特快列车的1.5倍,运行时间比特快列车少2h,求该列动车组列车的平均速度.(1)设特快列车的速度为xkm/h,则用含x的式子把表格补充完整;路程(km)速度(km/h)时间(h)动车组列车900特快列车900 x(2)列出方程,完成本题解答.5.为了防止感染新冠病毒,小明家要购买A,B两种型号的口罩,每个A型号口罩比B型号口罩的单价少0.3元,且用45元购买的A型口罩与用60元购买的B型口罩数量相同,求两种口罩的单价.6.甲、乙两地相距300千米,一辆货车和一辆小汽车同时从甲地出发开往乙地,小汽车的速度是货车的1.2倍,结果小汽车比货车早半小时到达乙地,求两辆车的速度.7.德国著名心理学家韦特海默(M•Wertheimer,1880﹣1943)曾写给爱因斯坦(A•Einstein,1879﹣1955)一道数学题:一辆老破车要走4km的路,上山和下山各2km.这辆车太旧了,它上山的速度小于25km/h,下山的速度是上山的1.5倍.问这辆车往返的平均速度能否达到30km/h?8.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.设该公司购买的A型芯片的单价为x元.(1)根据题意,用含x的式子填写下表:单价(元)数量(条)总费用(元)A型芯片x3120B型芯片4200(2)根据题意列出方程,求该公司购买的A、B型芯片的单价各为多少元?9.小丽乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵;路线二的全程是30千米,平均车速比走路线一的平均车速能提高50%,因此能比路线一节省10分钟到达.那么选走路线二去体育场需要多少时间?10.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?参考答案1.解:(1)设购买一件B种纪念品需x元,则购买一件A种纪念品需(x+4)元,依题意,得:=×,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:购买一件A种纪念品需16元,购买一件B种纪念品需12元.(2)设购买m件B种纪念品,则购买(200﹣m)件A种纪念品,依题意,得:16(200﹣m)+12m≤3000,解得:m≥50.答:最少要购买50件B种纪念品.2.解:(1)由题意得:=,解得:x=1600,经检验,x=1600是方程的解,∴x=1600;(2)设经销商新进A型车a辆,则B型车为(60﹣a)辆,获利y元.由题意得:y=(1600﹣1100)a+(2000﹣1400)(60﹣a),即y=﹣100a+36000,∵B型车的进货数量不超过A型车数量的2倍,∴60﹣a≤2a,∴a≥20,由y与a的关系式可知,﹣100<0,y的值随a的值增大而减小.∴a=20时,y的值最大,∴60﹣a=60﹣20=40(辆),∴当经销商新进A型车20辆,B型车40辆时,这批车获利最多.3.解:(1)设2月份这种纽荷尔每斤的售价为x元,则1月份这种纽荷尔每斤的售价为(x+4)元,由题意得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,答:2月份这种纽荷尔每斤的售价为6元;(2)设纽荷尔进货数量为a斤,总利润为w元,则w=(6﹣3)a+(20﹣7)(45﹣a)=﹣10a+585,由题意得:45﹣a≤2a,解得:a≥15,∵w=﹣10a+585,﹣10<0,∴w随a的增大而减小,∴a=15时,w最大=﹣10×15+585=435(元),则45﹣a=30,即纽荷尔进货15斤,沃柑进货30斤,才能使这批水果获得最大利润,最大利润为435元.4.解:(1)设特快列车的速度为xkm/h,则动车组列车的平均速度为1.5xkm/h,∴乘坐动车组列车需要(h),乘坐特快列车需要(h).故答案为:1.5x;;.(2)依题意得:﹣=2,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴1.5x=225.答:该列动车组列车的平均速度为225km/h.5.解:设A型号口罩的单价为x元,则B型号口罩的单价为(x+0.3)元,由题意得:=,解得:x=0.9,经检验:x=0.9是原方程的根,且符合题意,∴x+0.3=1.2.答:A、B两种型号口罩的单价分别为0.9元、2.5元.6.解:设货车的速度为x千米/小时,则小汽车的速度为1.2x千米/小时,依题意得:﹣=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴1.2x=120.答:货车的速度为100千米/小时,小汽车的速度为120千米/小时.7.解:设上山的速度为xkm/h,则下山的速度为1.5xkm/h,假设这辆车往返的平均速度能达到30km/h,由题意得:+=,解得:x=25,经检验,x=25是原分式方程的解,∵上山的速度小于25km/h,∴x=25不合题意舍去,答:这辆车往返的平均速度不能达到30km/h.8.解:(1)由题意得:A型芯片的条数为条,B型芯片单价为(x+9)元,则B型芯片的条数为条;故答案为:;x+9,;(2)由题意得:=,解得:x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=35.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.9.解:设小丽走路线一的平均速度是x千米/小时,则小丽走路线二的平均速度是(1+50%)x千米/小时,由题意,得:﹣=,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴(1+50%)x=45,∴=(小时)=40分钟,答:选走路线二去体育场需要40分钟.10.解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400,经检验,x=400是原分式方程的解,且符合题意,∴1.5x=600,答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩;(2)设甲厂房生产了m天,则乙厂房生产了天,依题意,得:1500m+1200×≤36300,解得:m≥29,答:甲厂房至少生产了29天.。

北师大版八年级数学分式方程解应用题

北师大版八年级数学分式方程解应用题

分式方程解应用题列分式方程解应用题:1、某车间加工1200个零件后,采用了新工艺,功效是原来的1.5倍,这样加工同样多就少用10小时。

采用新工艺前、后每时分别加工多少个零件?2、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。

已知第一次捐款总款为4800元,第二次捐款人数为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。

如果设第一次捐款人数为x人,那么x满足怎样的方程?3、甲、乙两地相距360km,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2小时,试确定原来的平均车速。

4、某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?5、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?6、在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,求小林每分钟跳几下?7、在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.乙队单独完成这项工程需要多少天?8、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.今年三月份甲种电脑每台售价多少元?9、某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?10、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?11.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来..12、铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?分式方程解应用题5、18%)201(160400160=+-+x x6、x x 9020120=+7、解:(1)设乙队单独完成需x 天根据题意,得11120()2416060x ⨯++⨯=解这个方程,得x =90经检验,x =90是原方程的解∴乙队单独完成需90天8、解:(1)设今年三月份甲种电脑每台售价x 元x x 800001000100000=+解得: 4000=x经检验: 4000=x 是原方程的根,9、解:设该厂原来每天加工x 个零件, 由题意得:72500100=+x x解得 x =50经检验:x =50是原分式方程的解10、解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102x x -=,解这个方程,得200x =.经检验,200x =是所列方程的根.11、解:(1)设每个乙种零件进价为x 元,则每个甲种零件进价为(2)x -元.由题意得801002x x =-,解得10x =.检验:当10x =时,(2)0x x -≠,∴10x =是原分式方程的解.1028-=(元)答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y 个,则购进甲种零件(35)y -个由题意得3595(128)(35)(1510)371y y y y -+⎧⎨--+->⎩≤,解得2325y <≤. y 为整数,24y ∴=或25.∴共有2种方案.分别是:方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.12、解:(1)设试销时这种苹果的进货价是每千克x 元,依题意,得11000500020.5x x =⨯+)解之,得 x =5经检验,x =5是原方程的解.(2)试销时进苹果的数量为:500010005= (千克)第二次进苹果的数量为:2×1000=2000(千克)盈利为: 2600×7+400×7×0.7-5000-11000=4160(元)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公路。

某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。

2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必须是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。

3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。

已知B的速度是A的速度的3倍,求两车的速度。

4、某质检部门抽取甲、乙两厂相同数量的产品进行质量检查,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率乙厂高5%,求甲厂的合格率?
5、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

6、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。

已知水流的速度是3千米/时,求轮船在静水中的速度。

7、甲乙两地相距360千米,新修的高速公路开通后,在甲乙两地间行驶的长途客运车平均车速提高了50%,而从甲到乙的时间缩短了2小时,求原来的平均速度
8、八年级(1)班学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车的1。

5倍,求慢车的速度9、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。

10、退耕还林还草是我国西部地区实施的一项重要生态工程,某地规划退耕面积69000公顷,退耕还林与退耕还草的面积比是5:3,设退耕还林的面积是X公顷,那么应满足的分式方程是什么?
11、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。

12、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。

13、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价。

14、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。

15、某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少?
16、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。

小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,
(1)这个八年级的学生总数在什么范围内?
(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
17、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。

已知第一次捐款总额为4800元,第二次捐款为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额相等,如果设第一次捐款人数X人,那么X 应满足怎样的方程?
18、某运输公司需要装运一批货物,由于机械设备没有到位,只好先用人工装运,6小时后完成一半,后来机械装运和人工同时进行,1小时完成了后一半,如果设单独采用机械装运X小时可以完成后一半任务,那么应满足的方程是什么?
19、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。

乙型拖拉机单独耕这块地需要几天?
20、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。

求A、B每小时各做多少个零件。

21、某车间加工1200个零件后,采用新工艺,工效是原来的1。

5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?22、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?
23、某单位将沿街的一部分房屋出租,每年房屋的租金第二年比第一年要多500元,所有房屋的租金第一年为9。

6万元,第二年为10.。

2万元,
你利用方程求出这两年每间房屋的租金各是多少?
24、某市从今年1月1日起调整居民用水价格,每立方水费上涨1/3,小利家去年12月的水费是15元,而今年7月份的水费则是30元,已知小利家今年7月的用水量比去年12月份的用水量多5立方米,求该市今年居民的用水的价格。

25、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?
26、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。

27、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17。

5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?。

相关文档
最新文档