机械能守恒定律典型例题
【高考物理必刷题】机械能守恒定律(后附答案解析)
12C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功4竖直悬挂.用外力将绳的下端缓慢地竖直向上拉.在此过程中,外力做功为()5的两点上,弹性绳的原长也为.将;再将弹性绳的两端缓慢移至天花板)6时,绳中的张力大于如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为,到小环的距离为,其两侧面与夹子间的最大静摩擦力均为.小环和物块以速度右匀速运动,小环碰到杆上的钉子后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为.下列说法正确的是()78受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下9的太空飞船从其飞行轨道返回地面.飞船在离地面高度的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为1 2C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功天体椭圆运行中,从远日点向近日点运行时,天体做加速运动,万有引力做正功,引力势能转化为动能;反之,做减速运动,引力做负功,动能转化为引力势能;而整个过程机械能守恒.从这个规律出发,CD正确,B错误.同时由于速度的不同,运动个椭圆4,那么重心上升,外力做的功即为绳子增5答案解析6C设斜面的倾角为,物块的质量为,去沿斜面向上为位移正方向,根据动能定理可得:上滑过程中:,所以;下滑过程中:,所以据能量守恒定律可得,最后的总动能减小,所以C正确的,ABD错误.故选C.7时,绳中的张力大于A.物块向右匀速运动时,对夹子和物块组成的整体进行分析,其在重力和绳拉力的作B.绳子的拉力总是等于夹子对物块摩擦力的大小,因夹子对物块的最大摩擦力为,C.当物块到达最高点速度为零时,动能全部转化为重力势能,物块能达到最大的上升8受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下和受到地面的支持力大小均为;在的动能达到最大前一直是加速下降,处于失受到地面的支持力小于,故A、B正确;达到最低点时动能为零,此时弹簧的弹性势能最大,9答案解析考点一质量为的太空飞船从其飞行轨道返回地面.飞船在离地面高度处以的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为.(结果保留2位有效数字)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(1)求飞船从离地面高度处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的.(2);(1)(2)地地,地,大大大,大.(1)大,,由动能定理得:地,.(2)机械能机械能和机械能守恒定律机械能基础。
机械能守恒定律常考题型及解题方法
机械能守恒定律常考题型及解题方法要点一机械能守恒的判断(系统摩擦力做功,系统机械能一定不守恒)例1.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对跟踪训练1.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大要点二机械能守恒定律的简单应用(熟练理解“守恒”)例2.如图所示,一轻杆可绕O点的水平轴无摩擦地转动,杆两端各固定一个小球,球心到O轴的距离分和r2,球的质量分别为m1和m2,且m1>m2,r1>r2,将杆由水平位置从静止开别为r始释放,不考虑空气阻力,求小球m1摆到最低点时的速度是多少?跟踪训练2.如图所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?要点三应用机械能守恒定律处理竖直平面内的圆周运动(整体分析)例3.如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0 m的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为半径r=0.69 m的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m=0.01 kg的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到曲面N的某一点上,取g=10 m/s2.问:(1)发射该钢珠前,弹簧的弹性势能E p多大?(2)钢珠落到圆弧N上时的动能E k多大?(结果保留两位有效数字)跟踪训练3.如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF 是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合的点.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放.(g取10 m/s2)(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.课堂分组训练A组机械能守恒的判断1.[多选]一个轻质弹簧,固定于天花板的O点处,原长为L,如图所示.一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,在此过程中()A.由A到C的过程中,物块的机械能守恒B.由A到B的过程中,物块的动能和重力势能之和不变C.由B到C的过程中,弹性势能的变化量与克服弹力做的功相等D.由A到C的过程中,重力势能的减少量等于弹性势能的增加量2.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()A.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mghD.弹簧的弹性势能最大时圆环动能最大3.[多选]如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始运动过程中()A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒B组机械能守恒的简单应用4.如图是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系物体A、B,且m A=2m B,从图示位置由静止开始释放A物体,当物体B到达半圆顶点时,求绳的张力对物体B所做的功.C组应用机械能守恒定律处理竖直平面内的圆周运动5.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点).a 站在地面上,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态.当演员b摆至最低点时,a刚好对地面无压力,则演员a的质量与演员b的质量之比为()A.1∶1 B.2∶1 C.3∶1 D.4∶16.为了研究过山车的原理,物理兴趣小组提出了下列设想:如图所示,取一个与水平方向夹角为30°,长L=0.8 m的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道都是光滑的.其中AB与BC轨道以微小圆弧相接,竖直圆轨道的半径R=0.6 m.现使一个质量m=0.1 kg的小物块从A点开始以初速度v0沿倾斜轨道滑下,g取10 m/s2.问:(1)若v0=5.0 m/s,则小物块到达B点时的速度为多大?(2)若v0=5.0 m/s,小物块到达竖直圆轨道的最高点时对轨道的压力为多大?(3)为了使小物块在竖直圆轨道上运动时能够不脱离轨道,v0大小应满足什么条件?7. 如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。
高中物理机械能守恒定律(解析版)
机械能守恒定律目录一.练经典---落实必备知识与关键能力 (1)二.练新题---品立意深处所蕴含的核心价值 (1)一.练经典---落实必备知识与关键能力1.(2022·山东学考)若忽略空气阻力的影响,下列运动过程中物体机械能守恒的是()A.被掷出后在空中运动的铅球B.沿粗糙斜面减速下滑的木块C.随热气球一起匀速上升的吊篮D.随倾斜传送带加速上行的货物【答案】A【解析】:机械能守恒的条件是只有重力做功,被掷出后在空中运动的铅球只有重力做功,机械能守恒;沿粗糙斜面下滑的木块除重力外还有摩擦力做功,机械能不守恒;随热气球一起匀速上升的吊篮在上升过程中动能不变,重力势能随高度增大而增大,机械能不守恒;随倾斜传送带加速上行的货物在上行过程中动能增大,重力势能增大,机械能不守恒。
故A正确。
2.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计滑轮质量和任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒【答案】CD【解析】:甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错误。
乙图中物体B除受重力外,还受弹力,弹力对B做负功,机械能不守恒,但从能量特点看A、B组成的系统机械能守恒,B错误。
丙图中A、B组成的系统只有重力做功,动能和势能相互转化,总的机械能守恒,C正确。
丁图中动能不变,势能不变,机械能守恒,D正确。
3.(2022·浙江7月学考)如图所示,质量为m的小球从距桌面h1高处的A点由静止释放,自由下落到地面上的B点,桌面离地高为h2。
选择桌面为参考平面,则小球()A.在A点时的重力势能为-mgh1B .在A 点时的机械能为mg (h 1+h 2)C .在B 点时的重力势能为mgh 2D .在B 点时的机械能为mgh 1 【答案】D【解析】: 选择桌面为参考平面,小球在A 点的重力势能为mgh 1,A 错误;小球在A 点的机械能等于重力势能和动能之和,而动能为零,所以在A 点的机械能为mgh 1,B 错误;小球在B 点的重力势能为-mgh 2,小球在B 点的机械能与在A 点的机械能相同,也是mgh 1,C 错误,D 正确。
机械能守恒定律的综合应用经典例题
机械能守恒定律的综合应用例1、如图所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴。
AO 、BO 的长分别为2L 和L 。
开始时直角尺的AO 部分处于水平位置而B 在O 的正下方。
让该系统由静止开始自由转动,求:⑴当A 到达最低点时,A 小球的速度大小v ;⑵ B 球能上升的最大高度h ;⑶开始转动后B 球可能达到的最大速度v m 。
解析:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。
⑴过程中A 的重力势能减少, A 、B 的动能和B 的重力势能增加,A 的即时速度总是B 的2倍。
222321221322⎪⎭⎫ ⎝⎛⋅+⋅⋅+⋅=⋅v m v m L mg L mg ,解得118gL v = ⑵B 球不可能到达O 的正上方,它到达最大高度时速度一定为零,设该位置比OA 竖直位置向左偏了α角。
2mg ∙2L cos α=3mg ∙L (1+sin α),此式可化简为4cos α-3sin α=3,解得sin (53°-α)=sin37°,α=16°⑶B 球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功W G 。
设OA 从开始转过θ角时B 球速度最大,()223212221v m v m ⋅⋅+⋅⋅=2mg ∙2L sin θ-3mg ∙L (1-cos θ) =mgL (4sin θ+3cos θ-3)≤2mg ∙L ,解得114gL v m =例2、如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?解析:A 球沿半圆弧运动,绳长不变,B A 、两球通过的路程相等,A 上升的高度为R h =;B 球下降的高度为242R R H ππ==;对于系统,由机械能守恒定律得:K P E E ∆=∆- ;2)(212v m M mgR R Mg E P +=+-=∆∴π m M mgR RMg v c +-=∴2π例3、如图所示,均匀铁链长为L ,平放在距离地面高为L 2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度? 解:选取地面为零势能面:2212)102(51254mv L mg L L mg L mg +=-+ 得:gL v 7451=v 1⑴ ⑵⑶例4、如图所示,粗细均匀的U 形管内装有总长为4L 的水。
机械能守恒经典例题
机械能守恒定律典型例题题型一:单个物体机械能守恒问题1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1m,长2m,补给空气阻力,物体滑到斜面底端的速度是多大拓展:若光滑的斜面换为光滑的曲面,求物体滑到斜面底端的速度是多大2、把一个小球用细绳悬挂起来,就成为一个摆,摆长为l,最大偏角为θ,求小球运动到最低位置时的速度是多大题型二:连续分布物体的机械能守恒问题1、如图所示,总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,则铁链刚脱离滑轮的瞬间的速度多大2、一条长为L的均匀链条,放在光滑水平桌面上,链条的一半垂直于桌边,如图所示,现由静止开始链条自由滑落,当它全部脱离桌面时的速度多大3、如图所示,粗细均匀的U型管内装有同种液体,开始两边液面高度差为h,管中液体总长度为4h,后来让液体自由流动,当液面高度相等时,右侧液面下降的速度是多大题型三:机械能守恒定律在平抛运动、圆周运动中的应用(当个物体)1、如图所示,AB是竖直平面内的四分之一圆弧轨道,其下端B与水平轨道相切,一小球自A点起由静止开始沿轨道下滑。
已知圆弧轨道半径为R,小球的质量为m,不计各处摩擦。
求:(1)小球运动到B点时的动能(2)小球下滑到距水平轨道高度为R时的速度大小和方向(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大2、如图所示,固定在竖直平面内的光滑轨道,半径为R,一质量为m的小球沿逆时针方向在轨道上做圆周运动,在最低点时,m对轨道的压力为8mg,当m运动到最高点B时,对轨道的压力是多大3、如上图所示,可视为质点的小球以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道。
若不计轨道的摩擦,为使小球能通过圆形轨道的最高点,则v0至少应为多大4、如右图所示,长度为l的无动力“翻滚过山车”以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道,若不计轨道的摩擦,且 l>2π R,为使“过山车”能顺利通过圆形轨道,则v0至少应为多大5、游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如左图所示,我们把这种情况抽象为右图所示的模型:弧形轨道的下端与竖直圆轨道相接.使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h 大于一定值.小球就可以顺利通过圆轨道的最高点. 如果已知圆轨道的半径为R,h至少要等于多大不考虑摩擦等阻力。
(典型题)高中物理必修二第八章《机械能守恒定律》测试题(含答案解析)
一、选择题1.如图所示,轻质弹簧竖直放置,下端固定。
小球从弹簧的正上方某一高度处由静止下落,不计空气阻力,则从小球接触弹簧到弹簧被压缩至最短的过程中()A.小球的动能一直减小B.小球的机械能守恒C.弹簧的弹性势能先增加后减小D.小球的重力势能一直减小2.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地(不计空气阻力),以下说法正确的是()①运行的时间相等②重力的平均功率相等③落地时重力的瞬时功率相等④落地时的动能相等A.④B.②③C.③④D.②③④3.两个互相垂直的力F1与F2作用在同一物体上,使物体运动,物体通过一段位移时,力F1对物体做功为4J。
力F2对物体做功为3J,则力F1与F2的合力对物体做功为()A.0 B.5J C.7J D.25J4.关于功和能,下列说法不正确的是()A.滑动摩擦力对物体可以做正功B.当作用力对物体做正功时,反作用力可以不做功C.一对互为作用力和反作用力的滑动摩擦力,做功之和一定为零D.只有重力做功的物体,在运动过程中机械能一定守恒5.物体从某一高度做初速为0v的平抛运动,p E为物体重力势能,k E为物体动能,h为下落高度,t为飞行时间,v为物体的速度大小。
以水平地面为零势能面,不计空气阻力,下E与各物理量之间关系可能正确的是()列图象中反映pA.B.C.D.6.在水平地面上竖直上抛一个小球,小球在运动过程中重力瞬时功率的绝对值为P,离地高度h。
不计空气阻力,从抛出到落回原地的过程中,P与h关系图像为()A.B.C.D.7.如图,游乐场中,从高处P到水面Q处有三条不同的光滑轨道,图中甲和丙是两条长度相等的曲线轨道,乙是直线轨道。
甲、乙、丙三小孩沿不同轨道同时从P处自由滑向Q 处,下列说法正确的有()A.甲的切向加速度始终比丙的小B.因为乙沿直线下滑,所经过的路程最短,所以乙最先到达Q处C.虽然甲、乙、丙所经过的路径不同,但它们的位移相同,所以应该同时到达Q处D.甲、乙、丙到达Q处时的速度大小是相等的8.将一个小球从水平地面竖直向上抛出,它在运动过程中受到的空气阻力大小恒定,其上升的最大高度为20m,则运动过程中小球的动能和重力势能相等时,其高度为(规定水平地面为零势能面)()A.上升时高于10m,下降时低于10mB.上升时低于10m,下降时高于10mC.上升时高于10m,下降时高于10mD.上升时低于10m,下降时低于10m9.在倾角为30°的斜面上,某人用平行于斜面的力把原来静止于斜面上的质量为2kg的物体沿斜面向上推了2m的距离,并使物体获得1m/s的速度,已知物体与斜面间的动摩擦因数为33,g取10m/s2,则在这个过程中()A.物体机械能增加41J B.摩擦力对物体做功20JC.合外力对物体做功1J D.物体重力势能增加40J10.按压式圆珠笔内装有一根小弹簧,尾部有一个小帽,压一下小帽,笔尖就伸出来。
验证机械能守恒定律例题
验证机械能守恒定律例题一、在验证机械能守恒定律的实验中,使重物带动纸带下落,通过打点计时器记录运动情况。
关于该实验,以下说法正确的是:A. 实验时,应先释放重物,再接通电源B. 选用重物时,应选用质量较小且体积较大的物体C. 纸带上第一个点迹到起始点的距离,等于重物下落的高度D. 若纸带上某两点间的距离逐渐变小,则重物在该段运动过程中速度逐渐减小(答案:D)二、在验证机械能守恒定律的实验中,下列说法正确的是:A. 必须用天平称出重物的质量B. 选用重物时,应选用密度较大的物体C. 实验时,应先接通电源,再释放重物D. 实验时,应尽量减小重物下落的高度,以减小实验误差(答案:C)三、在验证机械能守恒定律的实验中,通过打点计时器记录的运动情况来分析。
关于该实验,以下说法错误的是:A. 实验时,应先接通电源,使打点计时器稳定工作后,再释放重物B. 选用重物时,应选用质量较大且体积较小的物体,以减小空气阻力的影响C. 实验时,应尽量增大重物下落的高度,以提高实验的准确性D. 实验中,可以通过测量重物下落的时间和距离,直接验证机械能是否守恒(答案:D)四、在验证机械能守恒定律的实验中,关于误差的分析,以下说法正确的是:A. 重物质量的测量误差,对实验结果的准确性没有影响B. 实验时,应先释放重物,再接通电源,这样也可以得到准确的实验结果C. 纸带上起始点迹模糊,可以通过选取清晰的点迹作为起始点,来减小实验误差D. 重物下落过程中受到空气阻力的影响,是实验误差的主要来源之一(答案:D)五、在验证机械能守恒定律的实验中,通过打点计时器和纸带记录运动情况。
关于该实验,以下说法正确的是:A. 实验时,纸带上的点迹越密集,说明重物下落的速度越大B. 选用重物时,应选用密度较小且体积较大的物体C. 实验时,应先接通电源,使打点计时器开始工作,再释放重物D. 若纸带上某两点间的距离相等,则重物在该段运动过程中速度保持不变(答案:C)六、在验证机械能守恒定律的实验中,关于实验原理和方法,以下说法正确的是:A. 实验原理是验证重物下落过程中,重力势能的减少量是否等于动能的增加量B. 选用重物时,应选用质量较小且体积也较小的物体C. 实验时,应先释放重物,使重物带动纸带下落,再接通电源D. 实验中,可以通过测量重物下落的高度和速度,直接计算出重力势能和动能的数值(答案:A)七、在验证机械能守恒定律的实验中,通过打点计时器和纸带记录的运动情况来分析。
机械能守恒定律典型例题
机械能守恒定律1.在只有重力做功的情况下,_________________________,这个结论叫作机械能守恒定律.2.下列情况中,运动物体机械能一定守恒的是( ).(A)物体所受的合外力为零(B)物体不受摩擦力(C)物体受到重力和摩擦力(D)物体只受重力3.关于机械能是否守恒,下列叙述中正确的是( ).(A)作匀速直线运动的物体的机械能一定守恒(B)作匀变速运动的物体机械能可能守恒(C)外力对物体做功为零时,机械能一定守恒(D)只有重力对物体做功,物体机械能一定守恒4.下列说法中正确的是( ).(A)一个物体所受的合外力为零,它的机械能一定守恒(B)一个物体所受的合外力恒定不变,它的机械能可能守恒(C)一个物体作匀速直线运动,它的机械能一定守恒(D)一个物体作匀加速直线运动,它的机械能可能守恒5.a、b、c三球自同一高度以相同速率抛出,a球竖直上抛,b球水平抛出,c球竖直下抛.设三球落地的迷率分别为v a、v b,v c则( ).(A)v a>v b>v c (B)v a=v b>v c (C)v a>v b=v c(D)v a =v b =v c6.质量为m 的物体,以初速度v 0由固定的光滑斜面的底端沿斜面向上滑动,在滑动过程中,当高度为h 时,该物体具有的机械能为(). (A)20mv 21 (B)mgh mv 2120 (C)mgh (D)mgh -mv 21207.如图所示,质量相同的两个小球,分别用长l 和2l 的细绳悬挂在天花板上,分别拉起小球使线伸直呈水平状态,然后轻轻释放.当小球到达最低位置时( ).(A)两球运动的线速度相等 (B)两球运动的角速度相等(C)两球的向心加速度相等 (D)细绳对两球的拉力相等8.当重力对物体做正功时,物体的( ).(A)重力势能一定增加,动能一定减少 (B)重力势能一定减少,动能一定增加(C)重力势能一定减少,动能不一定增加 (D)重力势能不一定减少,动能一定增加9.以下运动中机械能守恒的是( ).(A)物体沿斜面匀速下滑(B)物体从高处以g/3的加速度竖直下落(C)不计阻力,细绳一端拴一小球,使小球在竖直平面内作圆周运动(D)物体沿光滑的曲面滑下10.图中的四个选项,木块均在固定的斜面上运动,其中图(A)(B)(C)中的斜面是光滑的,图(A)(B)中的F为木块所受的外力,方向如图中箭头所示,图(A)(B)(D)中的木块向下运动,图(C)中的木块向上运动.在这四个图所示的运动过程中,机械能守恒的是图( ).11.枪竖直向上以初速度v0发射子弹,忽略空气阻力,当子弹离枪口距离为____时,子弹的动能是其重力势能的一半.12.如图所示,一小球从倾角为30°的固定斜面上的A点水平抛出,初动能为6J,问球落到斜面上的B点时动能有多大?13.如图所示,通过定滑轮悬拌两个质量为m1、m2的物体(m1>m2),不计绳子质量、绳子与滑轮问的摩擦,在m1向下运动一段距离的过程中,下列说法中正确的是 ( ).(A)m1势能的减少量等于m2动能的增加量(B)m1势能的减少量等于m2势能的增加量(C)m1机械能的减少量等于m2机械能的增加量(D)m1机械能的减少量大于m2机械能的增加量14.如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端被压缩到b位置.现将重球(视为质点)从高于a位置的c位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置 d.以下关于重球运动过程的正确说法应是( ).(A)重球下落压缩弹簧由a至d的过程中,重球作减速运动(B)重球下落至b处获得最大速度(C)由a至d过程中重球克服弹簧弹力做的功等于小球由c下落至d处时重力势能减少量(D)重球在b位置处具有的动能等于小球由c下落到b处减少的重力势能15_如图所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球,支架悬挂在O点,可绕过O点并与支架所在平面相垂直的同定轴转动.开始时OB与地面相垂直,放手后支架开始运动,在不计任何阻力的情况下,下列说法中正确的是( ).(A)A球到达最低点时速度为零(B)A球机械能减少量等于B球机械能增加量(C)B球向左摆动所能达到的最高位置应高于A球开始运动时的高度(D)当支架从左向右返回摆动时,A球一定能回到起始高度16.如图35所示,一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ.17.质量是2000kg、额定功率为80kW的汽车,在平直公路上行驶中的最大速度为20m/s。
机械能守恒定律典型例题
机械能守恒定律典型例题一、单物体在重力作用下的机械能守恒1. 例题- 质量为m = 1kg的物体从离地面h = 5m高处以初速度v_0= 10m/s水平抛出,不计空气阻力,求物体落地时的速度大小。
2. 解析- (1)首先分析物体的运动过程,物体在平抛运动过程中,只有重力做功。
- (2)取地面为零势能面,根据机械能守恒定律E_1=E_2。
- (3)物体抛出时的机械能E_1包括动能E_k1和重力势能E_p1。
- 动能E_k1=(1)/(2)mv_0^2=(1)/(2)×1×10^2 = 50J。
- 重力势能E_p1=mgh = 1×10×5=50J。
- 所以E_1=E_k1 + E_p1=50 + 50 = 100J。
- (4)物体落地时的机械能E_2只有动能E_k2(因为重力势能E_p2 = 0)。
- (5)由E_1=E_2,即100=(1)/(2)mv^2,解得v=√(frac{2×100){1}} =10√(2)m/s。
二、系统内物体间机械能守恒(轻绳连接)1. 例题- 如图所示,一轻绳跨过定滑轮,两端分别系着质量为m_1和m_2的物体(m_1,m_2开始时静止在地面上,当m_1由静止释放下落h高度时(m_1未落地),求此时m_2的速度大小。
(不计滑轮质量和摩擦)2. 解析- (1)对于m_1和m_2组成的系统,只有重力做功,系统机械能守恒。
- (2)设m_1下落h高度时,m_1和m_2的速度大小均为v。
- (3)以地面为零势能面,系统初始机械能E_1为m_1的重力势能m_1gh。
- (4)系统末态机械能E_2为m_1的动能(1)/(2)m_1v^2、m_1的重力势能m_1g(h - h)(此时m_1相对于初始位置下降了h),以及m_2的动能(1)/(2)m_2v^2和m_2的重力势能m_2gh。
- (5)根据机械能守恒定律E_1=E_2,即m_1gh=(1)/(2)m_1v^2+(1)/(2)m_2v^2+m_2gh。
高中物理《机械能守恒定律》专题训练
高中物理《机械能守恒定律》专题训练1.(2022全国乙,16,6分)固定于竖直平面内的光滑大圆环上套有一个小环。
小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于 ( )A.它滑过的弧长B.它下降的高度C.它到P点的距离D.它与P点的连线扫过的面积答案 C 如图所示,x为PA间的距离,其所对的圆心角为θ,小环由P点运动到A点,由动能定理得mgh=12mv2,由几何关系得h=R-R cos θ,所以v=√2gR(1−cosθ)。
由于1-cos θ=2 sin2θ2,sinθ2=x2R,所以v=√2gR(1−cosθ)=√2gR×2×x24R2=x√gR,故v正比于它到P点的距离,C正确。
2.(2022全国甲,14,6分)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示。
运动员从a处由静止自由滑下,到b处起跳,c点为a、b之间的最低点,a、c两处的高度差为h。
要求运动员经过c点时对滑雪板的压力不大于自身所受重力的k倍,运动过程中将运动员视为质点并忽略所有阻力,则c点处这一段圆弧雪道的半径不应小于 ( )A.ℎk+1B.ℎkC.2ℎkD.2ℎk−1第1页共70页答案 D 运动员从a处滑至c处,mgh=12m v c2-0,在c点,N-mg=m v c2R,联立得N=mg(1+2ℎR ),由题意,结合牛顿第三定律可知,N=F压≤kmg,得R≥2ℎk−1,故D项正确。
3.(2022北京,8,3分)我国航天员在“天宫课堂”中演示了多种有趣的实验,提高了青少年科学探索的兴趣。
某同学设计了如下实验:细绳一端固定,另一端系一小球,给小球一初速度使其在竖直平面内做圆周运动。
无论在“天宫”还是在地面做此实验, ( )A.小球的速度大小均发生变化B.小球的向心加速度大小均发生变化C.细绳的拉力对小球均不做功D.细绳的拉力大小均发生变化答案 C 在“天宫”中是完全失重的环境,小球在竖直平面内做匀速圆周运动,细绳拉力提供小球做圆周运动所需的向心力,小球的线速度大小、向心加速度大小、向心力(细绳的拉力)大小均不变,无论在“天宫”还是在地面,细绳的拉力始终与速度垂直而不做功,故只有C正确。
高中物理机械能守恒定律100题(带答案)
一、选择题1.有一质量m=2kg 的带电小球沿光滑绝缘的水平面只在电场力的作用下,以初速度v 0=2m/s 在x 0=7m 处开始向x 轴负方向运动。
电势能E P 随位置x 的变化关系如图所示,则小球的运动范围和最大速度分别为( )A. 运动范围x≥0B. 运动范围x≥1mC. 最大速度v m =2m/sD. 最大速度v m =3m/s 【答案】BC 【解析】试题分析:根据动能定理可得W 电=0−12mv 02=−4J ,故电势能增大4J ,因在开始时电势能为零,故电势能最大增大4J ,故运动范围在x≥1m ,故A 错误,B 正确;由图可知,电势能最大减小4J ,故动能最大增大4J ,根据动能定理可得W =12mv 2−12mv 02;解得v=2√2m/s ,故C 正确,D 错误;故选:BC 考点:动能定理;电势能.2.如图所示,竖直平面内光滑圆弧轨道半径为R ,等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷.现把质量为m 带电荷量为+Q 的小球由圆弧的最高点M 处静止释放,到最低点C 时速度为v 0.不计+Q 对原电场的影响,取无穷远处为零电势,静电力常量为k ,则( )A. 小球在圆弧轨道上运动过程机械能守恒B. C 点电势比D 点电势高C. M 点电势为(mv 02﹣2mgR )D. 小球对轨道最低点C 处的压力大小为mg+m +2k【答案】C 【解析】试题分析:此题属于电场力与重力场的复合场,根据机械能守恒和功能关系即可进行判断.解:A、小球在圆弧轨道上运动重力做功,电场力也做功,不满足机械能守恒适用条件,故A错误;B、CD处于AB两电荷的等势能面上,且两点的电势都为零,故B错误;C、M点的电势等于==,故C正确;D、小球对轨道最低点C处时,电场力为k,故对轨道的压力为mg+m+k,故D错误;故选:C【点评】此题的难度在于计算小球到最低点时的电场力的大小,难度不大.3.如图,平行板电容器两极板的间距为d,极板与水平面成45°角,上极板带正电。
机械能守恒经典例题
机械能守恒定律典型例题题型一:单个物体机械能守恒问题1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1m,长2m,补给空气阻力,2、把一个小球用细绳悬挂起来,就成为一个摆,摆长为l,最大偏角为8,求小球运动到最低位置时的速度是多大?题型二:连续分布物体的机械能守恒问题1、如图所示,总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,则铁链刚脱离滑轮的瞬间的速度多大?7口曰益】2、一条长为L的均匀链条,放在光滑水平桌面上,链条的一半垂直于桌边,如图所示,3、如图所示,粗细均匀的U型管内装有同种液体,开始两边液面高度差为h,管中液体总长度为4h,后来让液体自由流动,当液面高度相等时,右侧液面下降的速度是多大?题型三:机械能守恒定律在平抛运动、圆周运动中的应用(当个物体)1、如图所示,AB是竖直平面内的四分之一圆弧轨道,其下端B与水平轨道相切,一小球自A点起由静止开始沿轨道下滑。
已知圆弧轨道半径为R,小球的质量为m,不计各处摩擦。
求:(1)小球运动到B点时的动能(2)小球下滑到距水平轨道高度为块时的速度大小和方向2(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大2、如图所示,固定在竖直平面内的光滑轨道,半径为R,—质量为m的小球沿逆时针方向在轨道上做圆周运动,在最低点时,m对轨道的压力为8mg,当m运动到最高点B时,对轨道的压力是多大?3、如上图所示,可视为质点的小球以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道。
若不计轨道的摩擦,为使小球能通过圆形轨道的最高点,则v4、如右图所示,长度为l的无动力“翻滚过山车”以初速度v沿水平轨道运动,然0后进入竖直平面内半径为R的圆形轨道,若不计轨道的摩擦,且l>2nR,为使过山车”能顺利通过圆形轨道,则v至少应为多大?5、游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如左图所示,我们把这种情况抽象为右图所示的模型:弧形轨道的下端与竖直圆轨道相接.使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h大于一定值.小球就可以顺利通过圆轨道的最高点.如果已知圆轨道的半径为R,h至少要等于多大?不考虑摩擦等阻力。
高中物理第八章机械能守恒定律知识总结例题(带答案)
高中物理第八章机械能守恒定律知识总结例题单选题1、如图所示,用细绳系住小球,让小球从M点无初速度释放,小球从M点运动到N点的过程中( )A.若忽略空气阻力,则机械能不守恒B.若考虑空气阻力,则机械能守恒C.绳子拉力不做功D.只有重力做功答案:CA.忽略空气阻力,拉力与运动方向垂直不做功,只有重力做功,机械能守恒,故A错误;B.若考虑空气阻力,阻力做功,则机械能不守恒,故B错误;C.拉力与运动方向即速度方向垂直不做功,故C正确;D.如果考虑阻力,重力和阻力都做功,不考虑阻力,重力做功,故D错误。
故选C。
2、如图,高台跳水项目中要求运动员从距离水面H的高台上跳下,在完成空中动作后进入水中。
若某运动员起跳瞬间重心离高台台面的高度为h1,斜向上跳离高台瞬间速度的大小为v0,跳至最高点时重心离台面的高度为h2,入水(手刚触及水面)时重心离水面的高度为h1。
图中虚线为运动员重心的运动轨迹。
已知运动员的质量为m,不计空气阻力,则运动员跳至最高点时速度及入水(手刚触及水面)时速度的大小分别是()A.0,√v02+√2gHB.0,√2g(H+ℎ2−ℎ1)C.√v02+2g(ℎ1−ℎ2),√v02+2gH D.√v02+2g(ℎ1−ℎ2),√v02+2g(H−ℎ1)答案:C从跳离高台瞬间到最高点,据动能定理得−mg(ℎ2−ℎ1)=12mv2−12mv02解得最高点的速度v=√v02+2g(ℎ1−ℎ2)从跳离高台瞬间到入水过程,据动能定理得mgH=12mvʹ2−12mv02解得入水时的速度vʹ=√v02+2gH故选C。
3、如图所示,斜面倾角为θ=37°,物体1放在斜面紧靠挡板处,物体1和斜面间动摩擦因数为μ=0.5,一根很长的不可伸长的柔软轻绳跨过光滑轻质的小定滑轮,绳一端固定在物体1上,另一端固定在物体2上,斜面上方的轻绳与斜面平行。
物体2下端固定一长度为h的轻绳,轻绳下端拴在小物体3上,物体1、2、3的质量之比为4:1:5,开始时用手托住小物体3,小物体3到地面的高度也为h ,此时各段轻绳刚好拉紧。
机械能守恒定律基础练习(计算题,带答案)
机械能守恒定律基础练习1
1. 气球以10m/S的速度匀速上升,当它上升到离地15m的高空时,从气球上掉下一个物体,若不计空气阻力,求物体落地的速度是多少?
2.质量为50㎏的跳水运动员,从1m的跳板上向上跳起,最后以⒐8m/S的速度入水,不计空气阻力,取g=9.8m/S2,求
(1)跳板对运动员做的功是多少?
(2)运动员在空中的最大高度离跳板多高?
3.如图所示,用长为L的细线将质量为m的小球悬于O点,现将小球拉到细线偏离竖直方向 角的位置,由静止释放,求小球摆到最低点时绳子拉力的大小。
4.如图所示,一匀质直杆AB长为2r.从图示位置由静止沿光滑面ABD滑动,AB是半径为r的四分之一圆弧,BD为水平面,求直杆全部滑到BD时的速度大小.
A
O
B D
5.如图所示,轻质弹簧的一端与墙相连,质量为2kg的滑块以5m/s的初速度沿光滑平面运动并压缩弹簧,求:
(1)弹簧在被压缩过程中最大弹性势能.
(2)当木块的速度减为2 m/s时,弹簧具有的弹性势能.
v0
6.如图所示,质量为m的物体,以某一初速度从A点向下沿光滑的轨道运动,不计空气阻力,若物体通过轨道最低点B时的速度为3gR,求:
(1)物体在A点时的速度大小;
(2)物体离开C点后还能上升多高.
7. 如图所示,一小球从倾角为30°的固定斜面上的A点水平抛出,初动能为6J,问球落到斜面上的B点时动能有多大?
答案:1、20m/s 2、(1)1911J (2)3.9m 3、mg(3-2cosθ) 4、
5、(1)25J (2)21J
6、(1)(2)3.5R
7、14J。
机械能守恒经典例题
第九讲:机械能守恒定律(一)【基本知识】【典型题例】【例1】关于物体的机械能是否守恒的叙述,下列说法中正确的是A.做匀速直线运动的物体,机械能一定守恒B.做匀变速直线运动的物体,机械能一定守恒C.外力对物体所做的功等于0时,机械能一定守恒D.物体若只有重力做功,机械能一定守恒【例2】质量均为m的甲、乙、丙三个小球,在离地面高为h处以相同的动能在竖直平面内分别做平抛、竖直下抛、沿光滑斜面下滑,则A.三者到达地面时的速度相同B.三者到达地面时的动能相同C.三者到达地面时的机械能相同D.以上说法都不正确【例3】质量为m的小球.从桌面上竖直抛出,桌面离地高为h.小球能到达的离地面高度为H,若以桌面为零势能参考平面,不计空气气阻力则小球落地时的机械能为A、mgH B.mgh C mg(H+h) D mg(H-h)【例4】如图所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球,支架悬挂在O点,可绕过O点并与支架所在平面相垂直的固定轴转动,开始时OB与地面相垂直,放手后开始运动,在不计任何阻力的情况下,下列说法正确的是B.A球机械能减少量等于B球机械能增加量。
C.B球向左摆动所能达到的最高位置应高于A球开始运动时的高度。
D.当支架从左向右往回摆动时,A球一定能回到起始高度【例5】如图,一小球自A 点由静止自由下落 到B 点时与弹簧接触.到C 点时弹簧被压缩到最短.若不计弹簧质量和空气阻力 在小球由A -B—C 的运动过程中A 、小球和弹簧总机械能守恒B 、小球的重力势能随时间均匀减少C 、小球在B 点时动能最大D 、到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量【例6】如图,质量分别为m 和3m 的小球A 和B ,系在长为L 细线两端,放在高为h(h<L)的光滑水平桌面上.A 球无初速度从桌边滑下,落在沙地上静止不动,则B 球离开桌边时的速度为 A.2ghB. gh 2C. 3ghD. 6gh【例7】有一竖直放置的“T ”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图7所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为A.4v 2gB.3v 2gC.3v 24gD.4v 23g【例8】如图3所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物块从静止释放到相对静止这一过程,下列说法正确的是A .电动机做的功为12mv 2B .摩擦力对物体做的功为mv 2C .传送带克服摩擦力做的功为12mv 2D .电动机增加的功率为μmgv【例9】如图4所示,一根不可伸长的轻绳两端分别系着小球A 和物块B ,跨过固定于斜面体顶端的小滑轮O ,倾角为θ=30°的斜面体置于水平地面上.A 的质量为m ,B 的质量为4m .开始时,用手托住A ,使OA 段绳恰处于水平伸直状态(绳中A BC无拉力),OB 绳平行于斜面,此时B 静止不动.将A 由静止释放,在其下摆过程中,斜面体始终保持静止,下列判断中正确的是A .物块B 受到的摩擦力先减小后增大 B .地面对斜面体的摩擦力方向一直向右C .小球A 的机械能守恒D .小球A 的机械能不守恒,A 、B 系统的机械能守恒 【例10】如图所示,质量为m 的小球用不可伸长的细线悬于O 点,细线长为L ,在O 点正下方P 处有一钉子,将小球拉至与悬点等高的位置无初速释放,小球刚好绕P 处的钉子作圆周运动。
高中物理 机械能守恒定律 典型例题(含答案)【经典】
第五章:机械能守恒定律第一讲:功和功率考点一:恒力功的分析与计算1.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是().答案DA.500 J B.4 500 J C.5 000 J D.5 500 J2.(单选)如图所示,三个固定的斜面底边长度相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。
完全相同的三物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部,在此过程中() 选D A.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多3、(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图所示,则().答案ADA.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3 s内,力F做的功为零C.除力F外,其他外力在第1 s内做正功D.力F在第3 s内做的功是第2 s内做功的3倍4.(单选)质量分别为2m和m的A、B两种物体分别在水平恒力F1和F2的作用下沿水平面运动,撤去F1、F2后受摩擦力的作用减速到停止,其v-t图象如图所示,则下列说法正确的是().答案CA.F1、F2大小相等B.F1、F2对A、B做功之比为2∶1C.A、B受到的摩擦力大小相等D.全过程中摩擦力对A、B做功之比为1∶25.(单选)一物体静止在粗糙水平地面上.现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v.若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v.对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则() A.W F2>4W F1,W f2>2W f1B.W F2>4W F1,W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1,W f2<2W f1 答案C6.如所示,建筑工人通过滑轮装置将一质量是100 kg的料车沿30°的斜面由底端匀速地拉到顶端,斜面长L是4 m,若不计滑轮的质量和各处的摩擦力,g取10 N/kg,求这一过程中:(1)人拉绳子的力做的功;(2)物体的重力做的功;(3)物体受到的各力对物体做的总功。
机械能守恒定律习题(含答案)
图 2 图3 《机械能守恒》 第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。
)1、关于机械能是否守恒的叙述,正确的是( ) A .做匀速直线运动的物体机械能一定守恒 B .做变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .若只有重力对物体做功,物体的机械能一定守恒2、质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( )A .mgh ,减少mg (H-h )B .mgh ,增加mg (H+h )C .-mgh ,增加mg (H-h )D .-mgh ,减少mg (H+h ) 3、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图2所示,表示物体的动能E k 随高度h 变化的图象A 、物体的重力势能E p 随速度v 变化的图象B 、物体的机械能E 随高度h 变化的图象C 、物体的动能E k 随速度v 的变化图象D ,可能正确的是( )4、物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为 ( ) A .1:4 B .1:3 C .1:2 D .1:15、如图3所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过 桌边的定滑轮与质量为M 的砝码相连,已知M =2m ,让绳拉直后使砝码 从静止开始下降h (小于桌面)的距离,木块仍没离开桌面,则砝码的速率为( )A .31gh 6 B .mgh C .gh 2D .gh 332图1图46、质量为m 的小球用长为L 的轻绳悬于O 点,如图4所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在 此过程中F 做的功为( ) A .FL sin θ B .mgL cos θ C .mgL (1-cos θ) D .Fl tan θ7、质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mgh B .物体的机械能减少了54mgh C .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh8、如图5所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自 由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少 B .重物的重力势能增大 C .重物的机械能不变 D .重物的机械能减少9、如图6所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变 C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变10、平抛一物体,落地时速度方向与水平方向的夹角为θ.取地面为参考平面,则物体被抛出时,其重力势能和动能之比为( ) A .tan θ B .cot θ C .cot 2θ D .tan 2θ第Ⅱ卷(非选择题,共60分)二、填空题(每小题6分,共24分。
机械能守恒定律典型例题
例1.某同学从高为h 处以速度v0 水平投 出一个质量为m 的铅球,求铅球落地时 速度大小。
例2.以初速度v0 冲上倾角为 光滑斜面, 求物体在斜面上运动的最远距离是多 少?
分析: 物体在运动过程中受到重力和支 持力的作用,但只有重力做功,因此 物体的机械能守恒,选水平地面为零 势面,则物体开始上滑时和到达最高 时的机械能相等
在能量转化中, m的重力势能减小, 动能增加, M 的重力势能和动能都增加, 用机械能的减少量 等于增加量是解决为一类题的关键
mg M h sgin h 1M2 v1m2v
可得
22
2gh(mMs in)
v
Mm
需要提醒的是, 这一类的题目往往需要利用 绳连物体的速度关系来确定两个物体的速度关系
例:如图,光滑斜面的倾角为 ,竖直的光
在整个机械能当中,只有A的重力势能减小, A球的动能以及B球的动能和重力势能都增 加,我们让减少的机械能等于增加的机械 能。有:
m2g Lmg 1 2 LmA 2v1 2mB 2v
根据同轴转动, 角速度相等可知 vA 2vB
所以:
vA 2
2 5gLvB
2gL 5
需要强调的是, 这一类的题目要根据同轴转动,
两球受到的重力做功不会改变系统的机械能,轴 对杆的作用力由于作用点没有位移而对系统不做 功,所以满足系统机械能守恒的外部条件,系统 内部的相互作用力是轻杆的弹力,弹力对A球做 负功,对B球做正功,但这种做功只是使机械能 在系统内部进行等量的转换也不会改变系统的机 械能,故满足系统机械能守恒的外部条件。
C. 甲小球在a点的机械能等于乙小球在b点的机械能 (相对同一个零势能参考面)
D. 甲小球在a点时重力的功率等于乙小球在b点时重 力的功率
物理机械能守恒定律题及解析
物理机械能守恒定律题及解析
题目:一个质量为10kg的物体,从高度为5m的斜面顶端下滑,初始速度为零,斜面底端有一个垂直向上的弹簧。
物体压缩弹簧后被弹起,最后飞出斜面,求物体飞出斜面的速度和弹簧对物体做的功。
解析:根据机械能守恒定律,物体在运动过程中,其重力势能和动能之间相互转化,而总的机械能保持不变。
在本题中,物体在斜面上运动,重力势能转化为动能,而弹簧的弹力对物体做功,将一部分动能再次转化为弹簧的势能,最终物体飞出斜面时,其速度和弹簧的势能分别为:
1.物体飞出斜面的速度
根据机械能守恒定律,物体在斜面上的重力势能和动能之和保持不变,即:
mgh + 0 = 1/2 m v^2
其中,m为物体的质量,g为重力加速度,h为物体在斜面上的高度,v为物体在斜面上的速度。
根据题目给出的条件,可以计算出物体在斜面上的速度:
v = sqrt(2gh) = sqrt(2 x 9.8 x 5) = 7.98 m/s
2.弹簧对物体做的功
弹簧对物体做功,将物体的动能转化为弹簧的势能,根据机械能守恒定律,有:
1/2 m v^2 = W
其中,m为物体的质量,v为物体在斜面上的速度,W为弹簧对物体做的功。
根据题目给出的条件,可以计算出弹簧对物体做的功:
W = 1/2 m v^2 = 1/2 x 10 x 7.98^2 = 304.1 J
因此,弹簧对物体做的功为304.1焦耳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律典型例题
题型一:单个物体机械能守恒问题
1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1 m,长2 m,不计空气阻力,物体滑到斜面底端的速度是多大?
拓展:若光滑的斜面换为光滑的曲面,求物体滑到斜
面底端的速度是多大?
2、把一个小球用细绳悬挂起来,就成为一个摆,摆长
为l,最大偏角为θ,求小球运动到最低位置时
的速度是多大?
.
题型二:连续分布物体的机械能守恒问题
1、如图所示,总长为L的光滑匀质铁链跨过一个光
滑的轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,则铁链刚脱离滑轮的瞬间的速度多大?
2、一条长为L的均匀链条,放在光滑水平桌面上,链条的一半垂于桌边,如图
所示,现由静止开始使链条自由滑落,当它全部脱离桌面时的速度多大?3、如图所示,粗细均匀的U型管内装有同种液体,开始两边液面高度差为h,管中液体总长度为4h,后来让液体自由流动,当液面的高度相等时,右侧液面下降的速度是多大?
题型三:机械能守恒定律在平抛运动、圆周运动中的应用(单个
物体)
1、如图所示,»AB是竖直平面内的四分之一圆弧轨道,其下端B
与水平直轨道相切,一小球自A点起由静止开始沿轨道下滑。
已知圆弧轨道半径为R,小球的质量为m,不计各处摩擦。
求:
(1)小球运动到B点时的动能
(2)小球下滑到距水平轨道的高度为1
2
R时的速度大小和方向
(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大?
2、如图所示,固定在竖直平面内的光滑轨道,半径为R,一质量为m的小球沿逆时针方向在轨道上做圆周运动,在最低点时,m对轨道的压力为8mg,当m 运动到最高点B时,对轨道的压力是多大?
3、如上图所示,可视为质点的小球以初速度v0沿水平
轨道运动,然后进入竖直平面内半径为R的圆形轨道.
若不计轨道的摩擦,为使小球能通过圆形轨道的最高
点,则v0至少应为多大?
4、如右图所示,长度为l的无动力“翻滚过山车”以
初速度v0沿水平轨道运动,然后进入竖直平面内半
径为R的圆形轨道,若不计轨道的摩擦,且l>2π
R,为使“过山车”能顺利通过圆形轨道,则v0至少
应为多大?
5、游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如左图所
示,我们把这种情况抽象为右图所示的模型:弧形轨道的下端与竖直圆轨道相接.使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h 大于一定值.小球就可以顺利通过圆轨道的最高点. 如果已知圆轨道的半径为R,h至少要等于多大?不考虑摩擦等阻力。
6、如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆
形轨道连接而成,圆形轨道的半径为R。
一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。
要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度)。
求物块初始位置相对于圆形轨道底部的高度h的取值范围。
7、如图所示,以固定在竖直平面内的光滑的半圆形轨
道ABC,其半径R=0.5m,轨道在C处与水平地面相
切。
在C处放一小物块,给它一水平向左的初速度
V
=5m/s,结果它沿CBA运动,通过A点,最后落在
水平面上的D点,求C、D间的距离S,取g=10m/s2
8、如图所示,一个光滑的水平轨道与半圆轨道相连接,
其中半圆轨道在竖直平面内,半径为R.质量为m的小球以某速度从A点无摩擦地滚上半圆轨道,小球通过轨道的最高点B后恰好做平抛运动,且正好落在水平地面上的C点,已知AC=AB=2R,求:
(1)小球在A点时的速度大小.
(2)小球在B点时半圆轨道对它的弹力.
9、如图所示,位于竖直平面上的1/4圆弧光滑轨道,
半径为R,OB沿竖直方向,上端A距地面高度为H,
质量为m的小球从A点由静止释放,最后落在水
平地面上C点处,不计空气阻力,求:
(1)小球运动到轨道上的B点时,对轨道的压力多大?
(2)小球落地点C与B点水平距离s是多少?
(3)要使小球的水平射程为最大值,求圆弧轨道半径R与高度H的关系。
10、如图所示,小球用不可伸长的轻绳悬于O点,在O点
的正下方有一固定的钉子B,OB = d,开始时小球拉
至 A点,且OA水平,小球在A点无初速度释放。
绳子
长为 L,为了使小球能绕B点做圆周运动.试求d的取
值范围。
题型四:系统机械能守恒问题
1、如图所示,将A、B两个砝码用细线相连,挂在定滑
轮上。
已知m
A =200g,m
B
=50g,托起砝码A,使其比B的位置高
0.2m,然后由静止释放,当两砝码处于同一高度时,求它们的速度大小。
(g=10 m/s2)
2、如图所示,质量为m 的木块放在光滑的水平桌面上.用轻绳绕过桌边的定滑轮与质量为M的砝码相连,已知 M=2m.让绳拉直后使砝码从静止开始下降h(小于桌面)的距离,木块仍没离开桌面,则砝码的速度是多大?
3、如图所示,半径为R的光滑半圆上有两个小球B
A、,质量
分别为M
m和,由细线挂着,今由静止开始无初速度自由释放,
求小球A升至最高点C时B
A、两球的速度?
4、有一光滑水平板,板的中央有一小孔,孔内穿入
一根光滑轻线,轻线的上端系一质量为M的小球,
轻线的下端系着质量分别为m
1和m
2
的两个物
体。
当小球在光滑水平板上沿半径为R的轨道
做匀速圆周运动时,轻线下端的两个物体都处于静止状态,若将两物体之间的轻线剪断,则小球的线速度为多大时才能再次在水平板上做匀速圆周运动?
6、如图所示,长为L的轻质杆,中点和右端分别固定着质
量为m的A球和B球,杆可绕左端在竖直平面内转动,
现将杆由静止释放,当杆摆到竖直位置时,B球的速率
为多少?
7、如图所示,轻直细杆长为2l,中点有一转轴O,两端分别
固定质量为2m、m的小球a和b。
当杆从水平位置转到
竖直位置时,两小球的速度为多大?
8、如图所示,质量为 m=2kg的小球系在轻弹簧的一端, 另
一端固定在悬点O处,将弹簧拉至水平位置A处由静止释放,小球到达O点的正下方距O点h = 0.5 m处的B点时速度为2 m/s。
求小球从A 运动到B的过程中弹簧弹力做的功。
9、如图所示,一个质量为 m=0.2 kg的小球系于轻质弹簧的一端,且套在光滑竖
直的圆环上,弹簧的上端固定于环的最高点A,环的半径R=0.5m,弹簧的原长
l = 0.5m,劲度系数为m。
若小球从图示位置B 点由静止开始滑动到最低点C
时,弹簧的弹性势能
p
E=,(g=10 m/s2)求:
(1)小球到C点时的速度
c
V的大小
(2)小球在C点对环的作用力。