1.2.2解三角形应用举例(2)
解三角形 应用举例
解三角形 应用举例1.实际问题中的常用角(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角:指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数. 2、解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.一、距离问题:例1. 如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是50m ,∠A =60°,∠C =75︒. 求A 、B 两点的距离(结果保留根号).例2. 如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法. 小明提供了一种方法:如图在河岸选取相距40米的C 、D 两点,用经纬仪测得∠ADB =∠ACB=60°,∠BDC =45°,∠ACD =30°,你能根据小明提供的这些数据求出AB 吗?A B二、高度问题例3: 在山顶铁塔上B 处测得地面上一点A 的俯角α= 60° ,在塔底C 处测得A 处的俯角β=30°。
已知铁塔BC 部分的高为28m ,求出山高CD.例4、如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .DAB C三.角度问题例5、某巡逻艇在A 处发现北偏东450相距9海里的C 处有一艘走私船,正沿南偏东750的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?( )例6.(2007·山东) 如图4-4-12,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距102海里,问乙船每小时航行多少海里?143538sin 0 北1B2B 1A2A120 105甲乙课后作业:1.有A、B两个小岛相距10 nmile,从A岛望B岛和C岛成60°的视角,从B 岛望A岛和C岛成75°角的视角,则B、C间的距离是()A.5 2 nmileB.10 3 nmileC. 1036nmile D.5 6 nmile2.如下图,为了测量隧道AB的长度,给定下列四组数据,测量应当用数据A.α、a、bB.α、β、aC.a、b、γD.α、β、γ4.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行30 nmile后看见灯塔在正西方向,则这时船与灯塔的距离是. . 5.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为300,则甲、乙两楼的高分别是, .6.如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船沿直线CB前往B处救援,求cos∠ACB的值7.甲舰在A处,乙舰在A的南偏东45°方向,距A有9 nmile,并以20 nmile/h 的速度沿南偏西15°方向行驶,若甲舰以28 nmile/h的速度行驶,应沿什么方向,用多少时间,能尽快追上乙舰?。
解三角形应用举例
解三角形应用举例一、测量距离问题例1(1)如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B 的距离,测量者可以在河岸边选定两点C,D,若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为km.答案6 4解析∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos 45°=34+38-2×32×64×22=38.∴AB=64km.∴A,B两点间的距离为64km.(2)如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 3 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为m.答案900解析由已知,得∠QAB=∠PAB-∠PAQ=30°.又∠PBA=∠PBQ=60°,∴∠AQB=30°,∴AB=BQ.又PB为公共边,∴△PAB≌△PQB,∴PQ =PA.在Rt△PAB中,AP=AB·tan 60°=900(m),故PQ=900 m,∴P,Q两点间的距离为900 m.二、测量高度问题例2如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B 两点间的距离为60 m,则树的高度为m.答案30+30 3解析在△PAB中,∠PAB=30°,∠APB =15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-2 4,由正弦定理得PB sin 30°=AB sin 15°, 所以PB =12×606-24=30(6+2), 所以树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m ). 三、测量角度问题例3 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°≈5314,sin 22°≈3314 解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,结合题意知BC =0.5x ,AC =5,∠BAC =180°-38°-22°=120°.由余弦定理可得BC 2=AB 2+AC 2-2AB ·ACcos 120°,所以BC 2=49,所以BC =0.5x =7, 解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC=5×327=5314, 所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船. 素养提升 数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程,主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或数学术语予以表征.从实际问题中抽象出距离、高度、角度等数学问题,然后利用正弦定理、余弦定理求解,很好地体现了数学抽象的数学素养.。
第一章1.2第2课时解三角形的实际应用举例——高度、角度问题
得20=BP,∴BP=20 3. 13
22
栏目
导引
第一章 解三角形
在△BPC 中,BC=30×80=40, 60
由已知,∠ PBC= 90°, ∴PC= BP2+BC2 = (20 3)2+402 =20 7(海里). ∴P,C 间的距离为 20 7海里.
栏目 导引
第一章 解三角形
易错警示
实际应用问题中忽视隐含条件致误
2 = 84t2-240t+400 =2 21t2-60t+100.
栏目 导引
第一章 解三角形
(2)当 t>2 时,如图(2), 在△APQ 中,AP=8t,AQ=10t-20, ∴PQ= AQ2+AP2-2AQ·APcos 60° =2 21t2-60t+100, 综合(1)(2)可知, PQ=2 21t2-60t+100(t≥0), ∴当 t=30=10时,PQ 最小.
栏目 导引
第一章 解三角形
解析:在△ABD 中,∠BDA=180°-45°-120°=15°.
由sinA1B5°=sinA4D5°,得
AD=ABs·ins1in5°45°=8060-×
2 2 2
4
=800( 3+1)(m).
∵CD⊥平面 ABD,∠CAD=45°,
∴CD=AD=800( 3+1) m.
栏目 导引
第一章 解三角形
[解] 如图,设缉私艇 t 小时后在 D 处追上走私船①,则 BD=10t n mile,CD=10 3 t n mile.1 分 ∵∠BAC=45°+75°=120°,2 分 ∴在△ABC 中,由余弦定理得: BC2=AB2+AC2-2AB·AC·cos∠BAC =( 3-1)2+22-2×( 3-1)×2×cos 120°=6, ∴BC= 6.4 分
解三角形应用举例(二)
B
80
A0
A
B0
C
已知△ABC中, BC=85mm,AB=340mm,∠C=80°,
求AC. 解:(如图)在△ABC中, 由正弦定理可得: BC sin C 85 sin 80 sin A 0.2462 AB 340 因为BC<AB,所以A为税角 , A=14°15′ ∴ B=180°-(A+C)=85°45′ 又由正弦定理: AB sin B 340 sin 85 45 AC 344.3( mm) sin C 0.9848
A0 A A0C AC ( AB BC ) AC ( 340 85) 344.3 80.7 81( mm )
答:活塞移动的距离为81mm.
解三角形应用举例
总结 实际问题 抽象概括 示意图 数学模型 推 演 理 算 实际问题的解 还原说明 数学模型的解
B
A
C
CD=BD-BC=42-28=14(m) 答:山的高度约为14米。
D
测量术语: 1 仰角,俯角 2 方向角:北偏西,南偏东 3 方位角:从正北方向顺时针旋转 到目标方向线的水平角
例 2 如图, 某渔轮在航行中不幸遇 险, 发出呼救信号. 我海军舰艇在 A处获悉后, 测出该渔轮在方位角为45 0 , 距离为10n mile的C处, 并测得渔轮正沿方位角 为105 0 的方向,以9 n mile / h的速度向小岛靠拢 .我海军舰艇立 即以21 n mile / h的速度前去营救 .求舰艇的航向和靠近 渔轮所需的时间 (角度精确到 0.10 , 时间精确到1 min).
答 舰艇应沿着方位角66.8 0 的方向航行, 经过40 min 就可靠近渔轮.
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_30
第一课时 1.2 应用举例(一)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.教学重点:熟练运用正弦定理、余弦定理解答有关三角形的测量实际问题.教学难点:根据题意建立解三角形的数学模型.教学过程:一、复习准备:1.在△ABC 中,∠C =60°,a +b =+1),c =,则∠A 为 .2.在△ABC 中,sin A =sin sin cos cos B C B C++,判断三角形的形状. 解法:利用正弦定理、余弦定理化为边的关系,再进行化简二、讲授新课:1. 教学距离测量问题:① 出示例1:如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC =51︒,∠ACB =75︒. 求A 、B 两点的距离(精确到0.1m ).分析:实际问题中已知的边与角? 选用什么定理比较合适?→ 师生共同完成解答. →讨论:如何测量从一个可到达的点到一个不可到达的点之间的距离? ③ 出示例2:如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法.分析得出方法:测量者可以在河岸边选定两点C 、D ,测得CD =a ,并且在C 、D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ.讨论:依次抓住哪几个三角形进行计算?→ 写出各步计算的符号所表示的结论. 具体如下:在∆ADC 和∆BDC 中,应用正弦定理得AC =sin()sin[180()]a γδβγδ+︒-++ =sin()sin()a γδβγδ+++, BC =sin sin[180()]a γαβγ︒-++=sin sin()a γαβγ++. 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB =④ 练习:若在河岸选取相距40米的C 、D 两点,测得∠BCA =60︒,∠ACD =30︒,∠CDB =45︒,∠BDA =60︒. (答案:AB .2. 小结:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.三、巩固练习:1. 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°. A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离. ()2. 两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30︒,灯塔B在观察站C 南偏东60︒,则A 、B a km )3. 作业:教材P14 练习1、2题.第二课时 1.2 应用举例(二)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学过程:一、复习准备:1. 讨论:测量建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?2. 讨论:怎样测量底部不可到达的建筑物高度呢?二、讲授新课:1. 教学高度的测量:① 出示例1:AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:测量方法→ 计算方法师生一起用符号表示计算过程与结论.AC =sin sin()a βαβ-,AB = AE +h =AC sin α+h =sin sin sin()a αβαβ-+h . ② 练习:如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5440︒',在塔底C 处测得A 处的俯角β=501︒'. 已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1 m )③ 出示例2:如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD .分析:已知条件和问题分别在哪几个三角形中? 分别选用什么定理来依次解各三角形? → 师生共同解答.解答:在∆ABC 中, ∠A =15︒,∠C = 25︒-15︒=10︒,根据正弦定理,sin BC A = sin AB C, BC =sin sin AB A C =5sin15sin10︒︒≈7.4524(km ),CD =BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m ). 2. 练习:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.解法:画图分析,标出各三角形的有关数据,再用定理求解. 关键:角度的概念3. 小结:审题;基本概念(方位角、俯角与仰角);选择适合定理解三角形;三种高度测量模型(结合图示分析).三、巩固练习:1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ? 答案:(m ) 2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高. (答案:230米)3. 作业:P17 练习1、3题.第三课时 1.2 应用举例(三)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.教学重点:熟练运用定理.教学难点:掌握解题分析方法.教学过程:一、复习准备:1. 讨论:如何测量一个可到达的点到一个不可到达的点之间的距离?又如何测量两个不可到达点的距离? 如何测量底部不可到达的建筑物高度?与前者有何相通之处?2. 讨论:在实际的航海生活中,如何确定航速和航向?通法:转化已知三角形的一些边和角求其余边的问题二、讲授新课:1. 教学角度的测量问题:① 出示例1:甲、乙两船同时从B 点出发,甲船以每小时10(3+1)km 的速度向正东航行,乙船以每小时20km 的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.分析:根据题意,如何画图? →解哪个三角形?用什么定理?如何列式?→ 学生讲述解答过程 (答案:630) → 小结:解决实际问题,首先读懂题意,画出图形→再分析解哪个三角形,如何解?② 练习:已知A 、B 两点的距离为100海里,B 在A 的北偏东30°,甲船自A 以50海里/小时的速度向B 航行,同时乙船自B 以30海里/小时的速度沿方位角150°方向航行,问航行几小时,两船之间的距离最小?画出图形,并标记已知和要求的 →解哪个三角形?用什么定理解?如何列式? ③ 出示例2:某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?分析:如何画出方位图? → 寻找三角形中的已知条件和问题? →如何解三角形.→ 师生共同解答. (答案:北偏东8331'︒方向;1.4小时)④ 练习:某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上渔群?2. 小结:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之. (2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.三、巩固练习:1. 我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2. 某时刻A 点西400千米的B 处是台风中心,台风以每小时40千米的速度向东北方向直线前进,以台风中心为圆心,300千米为半径的圆称为“台风圈”,从此时刻算起,经过多长时间A 进入台风圈?A 处在台风圈中的时间有多长?3. 作业:教材P22 习题1.2 A 组 2、3题.第四课时 1.2 应用举例(四)教学要求:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用,能证明三角形中的简单的恒等式.教学重点:三角形面积公式的利用及三角形中简单恒等式的证明. 教学难点:利用正弦定理、余弦定理来求证简单的证明题.教学过程:一、复习准备:1. 提问:接触过哪些三角形的面积公式?2. 讨论:已知两边及夹角如何求三角形面积?二、讲授新课:1. 教学面积公式:①讨论:∆ABC中,边BC、CA、AB上的高分别记为ha 、hb、h c,那么它们如何用已知边和角表示?→如何计算三角形面积?②结论:三角形面积公式,S=12absin C,S=1bcsin A,S=12acsinB③练习:已知在∆ABC中,∠B=30︒,b=6,c求a及∆ABC的面积S.(解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数)④出示例1:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)?分析:由已知条件可得到什么结论?根据三角形面积公式如何求一个角的正弦?→师生共同解答. →小结:余弦定理,诱导公式,面积公式.→讨论:由三边如何直接求面积?(海仑公式)2. 教学恒等式证明:①讨论:射影定理:a = b cos C + c cos B;b = a cos C + c cos A;c = a cos B + b cos A.分析:如何证明第一个式子?证一:右边=22222222222a b c a c b ab c aab ac a+-+-+=== 左边证二:右边= 2R sin B cos C + 2R sin C cos B=2R sin(B+C)=2R sin A= a = 左边→学生试证后面两个.②出示例2:在∆ABC中,求证:(1)222222sin sin;sina b A Bc C++=(2)2a+2b+2c=2(bc cos A+ca cos B+abcosC)分析:观察式子特点,讨论选用什么定理?3. 小结:利用正弦定理或余弦定理,“化边为角”或“化角为边”.三、巩固练习:1. 在△ABC中,若22tantanA aB b=,判断△ABC的形状. (两种方法)2. 某人在M汽车站的北偏西20︒的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶. 公路的走向是M站的北偏东40︒. 开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米. 问汽车还需行驶多远,才能到达M汽车站?(15千米)3. 作业:教材P24 14、15题.。
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2
第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段计算机,PPT,黑板板书。
六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。
解三角形应用举例
B C
α β
A
D
BC AB = sin(α β ) sin(90 + β )
BC sin(90 + β ) BC cos β = 所以,AB = sin(α β ) sin(α β )
解RtABD, 得 BC cos β sin α BD = AB sin ∠BAD = sin(α β ) 28 cos 30 sin 60 = sin(60 30 ) = 42(m)
视 线
N 仰角 俯角
水平线
方位角 60度
目标方向线
视 线
二、例 题 讲 解
例2、如图,要测底部不能到达的烟囱的高 ,从与烟囱底部在 、如图,要测底部不能到达的烟囱的高AB, 间的距离是12m.已知测角仪器高 已知测角仪器高1.5m,求烟囱的高。 求烟囱的高。 , 间的距离是 求烟囱的高 β = 60° CD间的距离是 已知测角仪器高 想一想 图中给出了怎样的一个 几何图形?已知什么, 几何图形?已知什么, 求什么? 求什么?
a sin β AC = sin(α β ) a sin α sin β AB = AE + h = AC sin α + h = +h sin(α β )
ห้องสมุดไป่ตู้
练习: 在山顶铁塔上B处测得地面 练习 在山顶铁塔上 处测得地面 上一点A的俯角 的俯角α= ° 上一点 的俯角 = 60° ,在塔底 C处测得 处的俯角 =30°。已 处测得A处的俯角 处测得 处的俯角β= ° 知铁塔BC部分的高为 部分的高为28m,求出 知铁塔 部分的高为 , 山高CD. 山高 分析:根据已知条件, 分析:根据已知条件,应该设 法计算出AB或 的长 法计算出 或AC的长 解:在⊿ABC中, 中 ∠BCA=90°+β, ° ∠ABC=90°-α, ∠BAC=α° β, ∠BAD=α.根据正弦定理, 根据正弦定理, 根据正弦定理
高中数学人教A版必修5 1.2.2三角形中的几何计算学案
高中数学人教A版必修5第一章解三角形1.2解三角形的实际应用举例1.2.2三角形中的几何计算学案【课前自主学习】预习课本P16~18,思考并完成以下问题(1)已知三角形的两边及内角怎样求其面积?(2)已知三角形的面积如何求其他量?【新知探究•夯实知识基础】三角形的面积公式(1)S=12a·h a(h a表示a边上的高).(2)S=12ab sin C=12bc sin A=12ac sin B.[点睛]三角形的面积公式S=12ab sin C与原来的面积公式S=12a·h(h为a边上的高)的关系为:h=b sin C,实质上b sin C就是△ABC中a边上的高.【学练结合】1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)公式S=12ab sin C适合求任意三角形的面积()(2)三角形中已知三边无法求其面积()(3)在三角形中已知两边和一角就能求三角形的面积()解析:(1)正确,S=12ab sin C适合求任意三角形的面积.(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正弦值,进而求面积.(3)正确.已知两边和两边的夹角可直接求得面积,已知两边和一边的对角,可求得其他边和角,再求面积.答案:(1)√ (2)× (3)√2.在△ABC 中,已知a =2,b =3,C =120°,则S △ABC =( ) A.32 B.332 C. 3D .3解析:选B S △ABC =12ab sin C =12×2×3×32=332.3.已知△ABC 的面积为32,且b =2,c =3,则A 的大小为( ) A .60°或120° B .60° C .120°D .30°或150°解析:选A 由S △ABC =12bc sin A 得 32=12×2×3×sin A , 所以sin A =32, 故A =60°或120°,故选A.4.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 解析:由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A =1,解得sin 2A +⎝ ⎛⎭⎪⎫1-sin A 42=1,sin A =817.答案:817【学以致用•探究解题方法】题型一 三角形面积的计算[典例] 已知△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积. [解] 由正弦定理,得sin C =AB sin B AC =23sin 30°2=32.∵AB >AC ,∴C=60°或C=120°.当C=60°时,A=90°,S△ABC =12AB·AC=23;当C=120°时,A=30°,S△ABC =12AB·AC sin A= 3.故△ABC的面积为23或 3.[解题规律总结][活学活用]△ABC中,若a,b,c的对角分别为A,B,C,且2A=B+C,a=3,△ABC的面积S△ABC=32,求边b的长和B的大小.解:∵A+B+C=180°,又2A=B+C,∴A=60°.∵S△ABC =12bc sin A=32,sin A=32,∴bc=2.①又由余弦定理得3=b2+c2-2bc cos A=b2+c2-2×2×1 2,即b2+c2=5.②解①②可得b=1或2.由正弦定理知asin A=bsin B,∴sin B=b sin Aa=b2.当b=1时,sin B=12,B=30°;当b=2时,sin B=1,B=90°.题型二三角恒等式证明问题[典例]在△ABC中,求证:a-c cos Bb-c cos A=sin Bsin A.证明:[法一化角为边]左边=a-c(a2+c2-b2)2acb-c(b2+c2-a2)2bc=a2-c2+b22a·2bb2-c2+a2=ba=2R sin B2R sin A=sin Bsin A=右边,其中R为△ABC外接圆的半径.∴a-c cos Bb-c cos A=sin Bsin A.[法二化边为角]左边=sin A-sin C cos Bsin B-sin C cos A=sin(B+C)-sin C cos Bsin(A+C)-sin C cos A=sin B cos Csin A cos C=sin Bsin A=右边(cos C≠0),∴a-c cos Bb-c cos A=sin Bsin A.[解题规律总结][活学活用]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .求证:cos B cos C =c -b cos Ab -c cos A .证明:法一:由正弦定理,得c -b cos Ab -c cos A=2R sin C -2R sin B cos A 2R sin B -2R sin C cos A =sin (A +B )-sin B cos A sin (A +C )-sin C cos A =sin A cos B sin A cos C =cos Bcos C .法二:由余弦定理,得c -b cos Ab -c cos A =c -b 2+c 2-a 22c b -b 2+c 2-a 22b=a 2+c 2-b 22c b 2+a 2-c 22b =a 2+c 2-b 22ac b 2+a 2-c 22ab=cos B cos C.题型三 与三角形有关的综合问题命题点一:与三角形面积有关的综合问题1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知a cos B -c =b 2. (1)求角A 的大小;(2)若b -c =6,a =3+3,求BC 边上的高. 解:(1)由a cos B -c =b2及正弦定理可得, sin A cos B -sin C =sin B2,因为sin C =sin(A +B )=sin A cos B +cos A sin B , 所以sin B2+cos A sin B =0. 因为sin B ≠0,所以cos A =-12, 因为0<A <π,所以A =2π3. (2)由余弦定理可知,a 2=b 2+c 2-2bc cos 2π3=b 2+c 2+bc ,所以(3+3)2=b 2+c 2+bc =(b -c )2+3bc =6+3bc , 解得bc =2+2 3.设BC 边上的高为h ,由S △ABC =12bc sin A =12ah , 得12(2+23)sin 2π3=12(3+3)h, 解得h =1. 命题点二:三角形中的范围问题2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B -b cos A =0.(1)求角B 的大小;(2)求3sin A +sin ⎝ ⎛⎭⎪⎫C -π6的取值范围.解:(1)由正弦定理得:(2sin C -sin A )cos B -sin B cos A =0, 即sin C (2cos B -1)=0,∵sin C ≠0,∴cos B =12,∵B ∈(0,π),∴B =π3. (2)由(1)知B =π3,∴C =2π3-A , ∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6=3sin A +cos A =2sin ⎝ ⎛⎭⎪⎫A +π6.∵A ∈⎝ ⎛⎭⎪⎫0,2π3,∴A +π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴2sin ⎝ ⎛⎭⎪⎫A +π6∈(1,2], ∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6的取值范围是(1,2].命题点三:三角形中的最值问题3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知sin (A -B )sin (A +B )=b +cc .(1)求角A 的大小;(2)当a =6时,求△ABC 面积的最大值,并指出面积最大时△ABC 的形状. 解:(1)由sin (A -B )sin (A +B )=b +cc ,得sin (A -B )sin (A +B )=sin B +sin Csin C .又sin(A +B )=sin(π-C )=sin C , ∴sin(A -B )=sin B +sin C , ∴sin(A -B )=sin B +sin(A +B ).∴sin A cos B -cos A sin B =sin B +sin A cos B +cos A sin B , ∴sin B +2 cos A sin B =0, 又sin B ≠0,∴cos A =-12. ∵A ∈(0,π),∴A =2π3.(2)S =12bc sin A =34bc =34×2R sin B ·2R sin C =3R 2sin B ·sin C =3R 2sin B ·sin ⎝ ⎛⎭⎪⎫π3-B=32R 2sin ⎝ ⎛⎭⎪⎫2B +π6-34R 2,B ∈⎝ ⎛⎭⎪⎫0,π3. 由正弦定理2R =a sin A =6sin 2π3=43,∴R =2 3.当2B +π6=π2,即B =C =π6时,S max =33,∴△ABC 面积的最大值为33,此时△ABC 为等腰钝角三角形. 题点四:多边形面积问题4.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .解:如图,连接BD ,则S =S △ABD +S △CBD =12AB ·AD sin A +12BC ·CD sin C . ∵A +C =180°,∴sin A =sin C ,∴S=12sin A(AB·AD+BC·CD)=16sin A.在△ABD中,由余弦定理得BD2=AB2+AD2-2AB·AD cos A=20-16cos A,在△CDB中,由余弦定理得BD2=CD2+BC2-2CD·BC cos C=52-48cos C,∴20-16cos A=52-48cos C.又cos C=-cos A,∴cos A=-12,∴A=120°,∴S=16sin A=8 3.[解题规律总结]高中数学人教A版必修5第一章解三角形1.2应用举例1.2.2三角形中的几何计算同步检测基础达标题1.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.12 B.32 C.3 D.2 32.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为()A.-78 B.78C.-87 D.873.在△ABC中,已知面积S=14(a2+b2-c2),则角C的大小为()A.135°B.45°C.60°D.120°4.在△ABC中,若cos B=14,sin Csin A=2,且S△ABC=154,则b=()A.4 B.3 C.2 D.15.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为()A.40 3 B.20 3 C.40 2 D.20 26.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为________.7.如图,在△ABC中,已知B=45°,D是BC边上一点,AD=5,AC=7,DC =3,则AB=________.8.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.9.在△ABC中,求证:b2cos 2A-a2cos 2B=b2-a2.10.如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.能力达标题1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( )A .5B .6C .7D .82.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152 B.15 C .2 D .33.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( )A. 3 B . C .2 3 D .4 4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝ ⎛⎦⎥⎤0,403 5.已知△ABC 的面积S =3,A =π3,则AB ·AC =________. 6.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +ab =6cos C ,则tan C tan A +tan Ctan B=________. 7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知sin A sin B =sin C tan C .(1)求a2+b2c2的值;(2)若a=22c,且△ABC的面积为4,求c的值.8.在△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2B+C2+sinA=4 5.(1)若满足条件的△ABC有且只有一个,求b的取值范围;(2)当△ABC的周长取最大值时,求b的值.高中数学人教A版必修5第一章解三角形1.2应用举例1.2.2三角形中的几何计算同步检测解析基础达标题1.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.12 B.32 C.3 D.2 3解析:选B S△ABC =12AB·AC·sin A=32.2.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为()A.-78 B.78C.-87 D.87解析:选B设等腰三角形的底边长为a,顶角为θ,则腰长为2a,由余弦定理得,cos θ=4a2+4a2-a28a2=78.3.在△ABC中,已知面积S=14(a2+b2-c2),则角C的大小为()A.135°B.45°C.60°D.120°解析:选B∵S=14(a2+b2-c2)=12ab sin C,由余弦定理得:sin C=cos C,∴tan C=1.又0°<C<180°,∴C=45°.4.在△ABC中,若cos B=14,sin Csin A=2,且S△ABC=154,则b=()A.4 B.3 C.2 D.1解析:选C依题意得,c=2a,b2=a2+c2-2ac cos B=a2+(2a)2-2×a×2a×14=4a2,所以b=c=2a.因为B∈(0,π),所以sin B=1-cos2B=154,又S△ABC =12ac sin B=12×b2×b×154=154,所以b=2,选C.5.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为()A.40 3 B.20 3 C.40 2 D.20 2解析:选A设另两边长为8x,5x,则cos 60°=64x2+25x2-14280x2,解得x=2或x=-2(舍去).故两边长分别为16与10,所以三角形的面积是12×16×10×sin 60°=40 3.6.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为________.解析:∵cos C=13,0<C<π,∴sin C=223,∴S△ABC =12ab sin C=12×32×23×223=4 3.答案:4 37.如图,在△ABC中,已知B=45°,D是BC边上一点,AD=5,AC=7,DC =3,则AB=________.解析:在△ADC中,cos C=AC2+DC2-AD22·AC·DC=72+32-522×7×3=1114.又0°<C<180°,∴sin C=53 14.在△ABC中,ACsin B=ABsin C,∴AB=sin Csin B·AC=5314×2×7=562.答案:56 28.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.解析:不妨设b=2,c=3,cos A=1 3,则a2=b2+c2-2bc·cos A=9,∴a=3.又∵sin A=1-cos2A=22 3,∴外接圆半径为R=a2sin A=32·223=928.答案:92 89.在△ABC 中,求证:b 2cos 2A -a 2cos 2B =b 2-a 2.证明:左边=b 2(1-2sin 2A )-a 2(1-2sin 2B )=b 2-a 2-2(b 2sin 2A -a 2sin 2B ), 由正弦定理a sin A =bsin B ,得b sin A =a sin B , ∴b 2sin 2A -a 2sin 2B =0,∴左边=b 2-a 2=右边, ∴b 2cos 2A -a 2cos 2B =b 2-a 2.10.如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.解:在△ABC 中,AB =5,AC =9,∠BCA =30°, 由正弦定理,得AB sin ∠BCA =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BCA AB =9×sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910.在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°, 由正弦定理,得AB sin ∠ADB =BDsin ∠BAD,解得BD =922,故BD 的长为922.能力达标题1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( )A .5B .6C .7D .8 解析:选C 如图,由题意得 ⎩⎪⎨⎪⎧a +b +c =20,12bc sin 60°=103,a 2=b 2+c 2-2bc cos 60°,则bc =40,a 2=b 2+c 2-bc =(b +c )2-3bc =(20-a )2-3×40, ∴a =7.2.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152 B.15 C .2 D .3 解析:选A 因为b 2-bc -2c 2=0, 所以(b -2c )(b +c )=0,所以b =2c .由a 2=b 2+c 2-2bc cos A ,解得c =2,b =4, 因为cos A =78,所以sin A =158,所以S △ABC =12bc sin A =12×4×2×158=152.3.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( )A. 3 B . C .2 3 D .4 解析:选B ∵S =12bc sin A ,∴3=12×2c sin 120°, ∴c =2,∴a =b 2+c 2-2bc cos A =4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,设△ABC 外接圆的半径为R ,∴2R =a sin A =2332=4,∴R =2.4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝ ⎛⎦⎥⎤0,403 解析:选D ∵c sin C =a sin A =403, ∴c =403sin C .∴0<c ≤403.5.已知△ABC的面积S=3,A=π3,则AB·AC=________.解析:S△ABC =12·|AB|·|AC|·sin A,即3=12·|AB|·|AC|·32,所以|AB|·|AC|=4,于是AB·AC=|AB|·|AC|·cos A=4×12=2.答案:26.在锐角三角形ABC中,角A,B,C的对边分别是a,b,c,若ba+ab=6cos C,则tan Ctan A+tan Ctan B=________.解析:∵ba+ab=6cos C,∴a2+b2ab=6×a2+b2-c22ab,∴2a2+2b2-2c2=c2,又tan Ctan A+tan Ctan B=sin C cos Asin A cos C+sin C cos Bsin B cos C =sin C(sin B cos A+cos B sin A)sin A sin B cos C=sin C sin(B+A)sin A sin B cos C=sin2Csin A sin B cos C=c2ab cos C=c2aba2+b2-c22ab=2c2a2+b2-c2=4.答案:47.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知sin A sin B=sin C tan C.(1)求a2+b2c2的值;(2)若a=22c,且△ABC的面积为4,求c的值.解:(1)由已知sin A sin B =sin C tan C 得cos C =c 2ab . 又cos C =a 2+b 2-c 22ab ,故a 2+b 2=3c 2,故a 2+b2c 2的值为3.(2)由a =22c, a 2+b 2=3c 2得b =102c . 由余弦定理得cos C =255,故sin C =55. 所以12×22c ×102c ×55=4,解得c =4.8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =2,2cos 2 B +C2+sinA =45.(1)若满足条件的△ABC 有且只有一个,求b 的取值范围; (2)当△ABC 的周长取最大值时,求b 的值. 解:2cos 2B +C 2+sin A =45⇒1+cos(B +C )+sin A =45⇒sin A -cos A =-15. 又0<A <π,且sin 2A +cos 2A =1,有⎩⎪⎨⎪⎧sin A =35,cos A =45.(1)若满足条件的△ABC 有且只有一个,则有a =b sin A 或a ≥b ,则b 的取值范围为(0,2]∪⎩⎨⎧⎭⎬⎫103.(2)设△ABC 的周长为l ,由正弦定理得 l =a +b +c =a +asin A (sin B +sin C ) =2+103[sin B +sin(A +B )]=2+103[sin B +sin A cos B +cos A sin B ] =2+2(3sin B +cos B ) =2+210sin(B +θ),其中θ为锐角,且⎩⎪⎨⎪⎧sin θ=1010,cos θ=31010 ,l max =2+210,当cos B =1010,sin B =31010时取到. 此时b =asin A sin B =10.。
高中数学第一章解三角形122高度角度问题课件新人教A版必修5
3.如图,位于 A 处的海面观测站获悉,在其正东方向相距
40 海里的 B 处有一艘渔船遇险,并在原地等待营救.在 A 处南
偏西 30°且相距 20 海里的 C 处有一艘救援船,该船接到观测站
通知后立即前往 B 处救助,则 sin∠ACB=
21
7
.
解析:在△ABC 中,AB=40,AC=20,∠BAC=120°.由余
解:如图所示,设预报时台风中心为 B,开始影响基地时台 风中心为 C,基地刚好不受影响时台风中心为 D,则 B,C,D 在一直线上,且 AD=20,AC=20.
由题意 AB=20( 3+1),DC=20 2,BC=( 3+1)×10 2.
在△ADC 中,∵DC2=AD2+AC2,
∴∠DAC=90°,∠ADC=45°.
2.如图,D,C,B 三点在地面同一直线上,DC=100 m, 从 C,D 两点测得 A 点仰角分别是 60°,30°,则 A 点离地面的 高度 AB 等于( A )
A.50 3 m C.50 m
B.100 3 m D.100 m
解析:因为∠DAC=∠ACB-∠D=60°-30°=30°, 所以△ADC 为等腰三角形.所以 AC=DC=100 m, 在 Rt△ABC 中,AB=ACsin60°=50 3 m.
对于顶部不能到达的建筑物高度的测量,我们可以选择另一 建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、 俯角等构成的三角形,在此三角形中利用正弦或余弦定理求解即 可.
[变式训练 2] 如图,线段 AB,CD 分别表示甲、乙两楼, AB⊥BD,CD⊥BD,从甲楼顶部 A 处测得乙楼顶部 C 的仰角 α =30°,测得乙楼底部 D 的俯角 β=60°,已知甲楼高 AB=24 米, 则乙楼高 CD= 32 米.
高中数学必修5:1.2.2 几何计算问题(人教版高中数学必修5第1章解三角形)
解 由正弦定理得 a2 c2 ( 2a b)b ,即 a2 b2 c2 2ab
由余弦定理得 cos C=a2+b2-c2= 2ab= 2,
2ab
2ab 2
∴C=π4.
∴S=12absin C
例 3 在△ABC 中,内角 A, B, C 对边的边长分别为 a, b, c,已知 c=2,C=π3.
(1) 若△ABC 的面积等于 3,求 a,b;
(2) 若 sin C+sin(B-A)=2sin 2A,求△ABC 的面积.
解 (2)由题意得 sin(B+A)+sin(B-A)=4sin Acos A,
高中数学 必修5
第一章 解三角形
设计:学霸兔
高中数学 必修5
1.2 应用举例
设计:学霸兔
高中数学 必修5 1.2.2 几何计算问题
设计:学霸兔
三角形的面积公式
S 1 hc 1 bsin A c 1 bc sin A
22
2
S 1 ca sin B 1 absin C
h
2
2
D
例 1 在△ABC 中,BC=5,AC=4,cos∠CAD=31,且 BD=AD, 32
(2) 若 sin C+sin(B-A)=2sin 2A,求△ABC 的面积. 有关的综合问题
解 (1)由余弦定理及已知条件,得 a2+b2-1ab cosC=4, 2
又因为△ABC 的面积等于 3,所以 12absin C= 3,得 ab=4.
联立方程组
a2+b2-ab=4, ab=4,
解得
a=2, b=2.
求△ABC 的面积.
解三角形应用举例
3 .
14
在Rt HAO中,AH=350米,cos HAO=11, 14
所以OA= AH =4900 445(米). cos HAO 11
答:扇形的半径OA的长约为445米.
测量角度问题
【例5】 缉私艇发现在北偏东45°方向,距离12 n mile的海面上有一走私船正以10 n mile/h的 速度沿东偏南15°方向逃窜.缉私艇的速度 为14 n mile/h.若要在最短的时间内追上该走 私船,缉私艇应沿北偏东45°+α的方向去 追.求追及所需的时间和角α的正弦值.
方法2:连结AC, 作OH AC,交AC于H. 由题意,得 CD=500米,AD=300米,CDA=120. 在 ACD中, AC 2=CD 2+AD 2-2?CD·AD·cos120 =5002+3002+2 500 300 1=7002,
2 所以AC=700(米).
则cos CAD= AC2 AD2 CD2 =11. 2 AC AD 14
44
得A+ ,故A= .
42
4
2由S=1 AC·ABsinA=3 2 AB=3,得AB=2 2.
2
4
由此及余弦定理得BC2=AC2+AB2-2AC ABcosA
=9+8-2 3 2 2 2 =5,故BC= 5. 2
测量距离问题
【例1】 如图,某住宅小区的平面图呈 扇形AOC.小区的两个出入口设 置在点A及点C处,小区里有两 条笔直的小路AD,DC,且拐弯处的转角为120°. 已知某人从C沿CD走到D用了10分钟,从D沿DA走 到A用了6分钟.若此人步行的速度为每分钟50米, 求该扇形的半径OA的长(精确到1米).
【解析】方法1:设该扇形的半径为r米. 由题意,得 CD=500米,DA=300米,CDO=60. 在 CDO中, CD2+OD2-2 CD OD cos60=OC2,
解三角形应用举例 (2)
C
A
D
新课讲授
2 如图,在山顶铁塔上 B 处测得地面上 A 的俯角 =54o40',在塔底 C 处测得 一点 A 处的俯角 =50o1' .已知铁塔 BC 部分的高 为 27.3 m,求出山高 CD(精确到 1m). B 问题 3:哪个三角形已经知道
三个条件?
问题 4:要求 CD,必须借助哪个 三角形?还需要什么条件?
C
A
D
新课讲授
2 如图,在山顶铁塔上 B 处测得地面上 A 的俯角 =54o40',在塔底 C 处测得 一点 A 处的俯角 =50o1' .已知铁塔 BC 部分的高 为 27.3 m,求出山高 CD(精确到 1m). B 问题 3:哪个三角形已经知道
三个条件?
问题 4:要求 CD,必须借助哪个 三角形?还需要什么条件?
B
新课讲授
1 AB 是底部 B 不可到达的一个建筑物, A 为建筑物的最高点,设计一种测量建筑物高度 AB 的方法。 A
B
新课讲授
1 AB 是底部 B 不可到达的一个建筑物, A 为建筑物的最高点,设计一种测量建筑物高度 AB 的方法。
分析: AB 长的关键是 求 先求 AE,在 ACE 中, 如能求出 C 点到建筑物 顶部 A 的距离 CA, 再测 出由 C 点观察 A 的仰角, 就可以计算出 AE 的长.
问题 6:欲求出 CD, 大家思考在哪个三 角形中研究比较适 合呢?
新课讲授
3 如图,一辆汽车在一条水平的公路上向 正东行驶,到 A 处时测得公路南侧远处一山 顶 D 在东偏南 15o 的方向上,行驶 5km 后到 达 B 处,测得此山顶在东偏南 25o 的方向上, 仰角为 8o,求此山的高度 CD.
§1.2 解斜三角形应用举例(2)
α,∠ADE=β,该小组已经测得一组 α、β 的值, ∠ABE=α,∠ADE=β,该小组已经测得一组 α、β 的值,
anα=1.24,tanβ=1.20,请据此算出 H 的值. 算出了 tanα=1.24,tanβ=1.20,请据此算出 H 的值.
【例 1】 某兴趣小组测量电视塔 AE 【变式 3】►(2011· 揭阳模拟)如图,某人在塔的正东方向上的 C 处与塔垂直 的 变式 3】►(2011· 揭阳模拟)如图,某人在塔的正东方向上的 C 处与塔垂直
x 解析: 设坡底伸长 x m, 在原图左侧的虚线三角形中, 由 sin15° 100 = ,由此解得 x=50( 6- 2). sin30°
答案:50( 6- 2)
例5 一辆汽车在一条水平的公路上向正东行驶,到A处时测得 公路南侧远处一山顶D在东偏南15°的方向上,行驶5km后到 达B处,测得此山顶在东偏南25°的方向上,仰角8°,求此山 的高度CD.
(1)测量距离; (2)测量高度; (3)测量角度.
包含不可达到的点
例3 AB是底部B不可到达的一个建筑物,A为建筑物 的最高点,设计一种测量建筑物高度AB的方法
分析:由于建筑物的底部B 是不可到达的,所以不能直 接测量出建筑物的高。由解 直角三角形的知识,只要能 测出一点C到建筑物的顶部 A的距离CA,并测出由点C 观察A的仰角,就可以计算 出建筑物的高。所以应该设 法借助解三角形的知识测出 CA的长。
例3 AB是底部B不可到达的一个建筑物,A为建筑物 的最高点,设计一种测量建筑物高度AB的方法 解:选择一条水平基线HG,使 H,G,B三点在同一条直线上。由 在H,G两点用测角仪器测得A的 仰角分别是α,β,CD=a,测角仪 器的高是h.那么,在⊿ACD中, 根据正弦定理可得
(完整版)解三角形应用举例
解三角形应用举例【重要知识】1、仰角和俯角在视线和水平线所成的角中,视线在水平线上方的叫做仰角;视线在水平线下方的叫做俯角。
2、方向角:方向角是正北方向或正南方向到目标方向线所成的锐角。
方向角α的取值范围是:︒<<︒900α;如:北偏东︒603、方位角:以指向正北方向的线作为︒0,顺时针转到目标方向线的水平角叫做方位角。
方位角的取值范围是:︒<<︒3600α如:目标S 的方向角是南偏西︒70,则目标的方位角为︒2504、坡角和坡度坡面与地平面所成的角度,叫做坡角;坡面的铅直高度和水平宽度的比叫做坡度或者坡比,常用字母i 表示。
坡比是坡角的正切值。
【注】解题技巧:先确定方位,求边长,求角,再确定用正弦定理还是余弦定理。
1、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,H 、G 、B 三点在同一条水平直线上。
在H 、G 两点用测角仪器测得A 的仰角分别是030ADE ∠=、045ACE ∠=、20CD m =,测角仪器的高是1h m =,求建筑物高度AB 。
水平线 仰角 俯角 ︒60 北 东 ︒250 北 S2、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是42m,∠BAC=45︒,∠ACB=︒75。
求A、B两点的距离.3、为了开凿隧道,要测量隧道上D、E间的距离,为此在山的一侧选取适当点C,如图,测得CA=400m,CB=600m,∠ACB=60°,又测得A、B两点到隧道口的距离AD=80m,BE=40m(A、D、E、B在一条直线上),计算隧道DE的长.4、如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路南侧远处一山顶D 在西偏北030的方向上,行驶82km 后到达B 处,测得此山顶在西偏北075的方向上,仰角为015,求此山的高度CD.5、如图所示,货轮在海上以h km /40的速度沿着方位角为︒140的方向航行。
高中数学第一章解三角形1.2应用举例第2课时高、角问题课件新人教A版必修5[1]
CDsin ∠BDC s·sin β
所以 BC=
=
.
sin∠CBD sin (α+β)
s·tanθ sin β
在 Rt△ABC 中,AB=BCtan∠ACB=
.
sin (α+β)
第二十七页,共51页。
类型 3 角度问题 [典例 3] 如图所示,在坡度一定的山坡上的一点 A 测得山顶上一建筑物顶端 C 对于山坡的斜度为 15°,向山 顶前进了 100 米后到达 B 点,又从 B 点测得建筑物顶端 C 对于山坡的斜度为 45°,已知建筑物的高度为 50 m,求 此山坡相对于水平面的倾斜角 θ 大小(精确到 1°).
故山的高度为 15(1+ 3)(米).
第二十页,共51页。
类型 2 用正弦定理求空间中高度问题 [典例 2] 如下图所示,一辆汽车在一条水平的公路 上向正东行驶,到 A 处时测得公路南侧远处一山脚 C 在 东偏南 15°的方向上,行驶 5 km 后到达 B 处,测得此山 脚在东偏南 30°的方向上,且山顶 D 的仰角为 8°,求此 山的高度 CD(精确到 1 m,参考数据:tan 8°≈0.140 5).
C.d1>20 m
D.d2<20 m
解析:仰角大说明距离小,仰角小说明距离大,即 d1<d2.
答案:B
第九页,共51页。
4.某校运动会开幕式上举行升旗仪式,旗杆正好处 在坡角为 15°的看台的某一列的正前方,从这一列的第一 排和最后一排测得旗杆顶部的仰角分别为 60°和 30°,第 一排和最后一排的距离为 10 6 米(如图所示),旗杆底部 与第一排在一个水平面上.若国歌长度约为 50 秒钟,则 升旗手匀速升旗的速度为________.
必修五正弦定理,余弦定理(2节5课时)
人教A版高中数学必修5全册导学案目录1.1.1正弦定理(2)1.1.2余弦定理(2)1.2.1解三角形应用举例(一)1.2.2解三角形应用举例(二)1.2.3解三角形应用举例(三)1.2.3解三角形应用举例(四)2.1.1数列的概念与简单表示法(一)2.1.2数列的概念与简单表示法(二)2.2.1等差数列(一)2.2.2等差数列(二)2.3.1等差数列的前n项和(一)2.3.2等差数列的前项和(二)2.4.1等比数列(一)2.4.2等比数列(二)2.5.1等比数列的前n项和(一)2.5.2等比数列的前n项和(二)3.1.1不等关系与不等式(一)3.1.2不等关系与不等式(二)3.2.1 一元二次不等式及其解法(一)3.2.2一元二次不等式及其解法(二)3.2.3一元二次不等式及其及解法(三)3.3.1.1二元一次不等式(组)与平面区域(一)3.3.2.1简单的线性规划问题(一)3.3.2.2简单的线性规划问题(二)3.3.2.3简单的线性规划问题(三)3.3.2二元一次不等式(组)与平面区域(二)3.4.1基本不等式(一)3.4.2基本不等式(二)3.4.3基本不等式(三)学案序号: 1 \2 课型: 新授课 时间: 2018/8/ 禄丰一中高 二年级标题 §1.1.1正弦定理【学习目标】1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题. 【重难点】1、会运用正弦定理解斜三角形的两类基本问题.2、掌握正弦定理的证明方法 【自主学习指导】阅读教材第1页-第4页,思考下列问题: 1、 正弦定理还可以怎样推导? 2、 正弦定理用途有哪些?【学习过程】一、 新知:1、 正弦定理文字语言:在一个三角形中,各边和它所对角的 的比相等, 符号语言:sin sin a bA B =sin c C =. 2、 解三角形一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.注意:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c bC B =,sin a A =sin c C . 3、正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b = .②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin aA B b=;sin C = .二、典型例题例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===中,求和.变式:在60,1,,ABC b B c a A C ∆==中,求和.三、总结提升1. 正弦定理:sin sin a bA B =sin c C = 知识拓展sin sin a b A B =2sin cR C==,其中2R 为外接圆直径.2. 正弦定理的证明方法:①三角函数的定义, 还有 ②等积法,③外接圆法,④向量法. 3.应用正弦定理解三角形: ①已知两角和一边;②已知两边和其中一边的对角. 【当堂检测】1. 在ABC ∆中,若cos cos A bB a=,则ABC ∆是( ).A .等腰三角形B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定 4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a sin sin sin a b cA B C++++= .6. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.【知识构建】学案序号: 3\4课型: 新授课 时间:2018/8 禄丰一中高 二年级 班标题§1.1.2余弦定理【学习目标】学习目标1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题. 【重难点】1、运用余弦定理解决两类基本的解三角形问题. 【自主学习指导】复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.【学习过程】 一、新知阅读教材第5—7页内容,然后回答问题(余弦定理)<1>余弦定理及其推导过程?<2>余弦定理及余弦定理的应用?思考:已知两边及夹角,如何解此三角形呢?在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵AC = , ∴AC AC ∙=同理可得: 2222c o s a b c b c A =+-, 2222cos c a b ab C =+-. 余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , . [理解定理](1)若C =90︒,则cos C = ,这时222c ab =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角. 二、典型例题例1. 在△ABC 中,已知a =b =45B =,求,A C 和c变式:在△ABC 中,若AB,AC =5,且cos C =910,则BC =________.例2. 在△ABC 中,已知三边长3a =,4b =,c =,求三角形的最大内角.变式:在∆ABC 中,若222a b c bc =++,求角A .三、学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围: ① 已知三边,求三角;② 已知两边及它们的夹角,求第三边.※ 知识拓展在△ABC 中,若222a b c +=,则角C 是直角; 若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角. 【当堂检测】(1)△ABC中,a =2c =,150B =,求b . (2)△ABC 中,2a =,b =,1c ,求A . 1. 已知ac =2,B =150°,则边b 的长为( ).A.B.C.D. 2. 已知三角形的三边长分别为3、5、7,则最大角为( ). A .60 B .75 C .120 D .1503. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ). A13x << B .13x <5 C . 2<x <5 D <x <54. 在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=________.5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .6、在△ABC 中,已知a =7,b =8,cos C =1314,求最大角的余弦值.7、在△ABC 中,AB =5,BC =7,AC =8,求AB BC ⋅的值.【知识构建】学案序号: 5课型: 习题课 时间:2018/8 禄丰一中高 二年级 班 标题正余弦定理【学习目标】1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形. 【自主学习指导】 复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理; 已知两角和一边,用 定理. 二、典型例题探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =② A =6π,a,b =A =6π,a =50,b =思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A 为锐角时).已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA试试:1. 用图示分析(A 为直角时)解的情况?2.用图示分析(A 为钝角时)解的情况?例1. 在∆ABC 中,已知80a =,100b =,45A ∠=︒,试判断此三角形的解的情况.变式:在∆ABC 中,若1a =,12c =,40C ∠=︒,则符合题意的b 的值有_____个.学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※知识拓展在∆ABC中,已知,,a b A,讨论三角形解的情况:①当A为钝角或直角时,必须a b>才能有且只有一解;否则无解;②当A为锐角时,如果a≥b,那么只有一解;如果a b<,那么可以分下面三种情况来讨论:(1)若sina b A>,则有两解;(2)若sina b A=,则只有一解;(3)若sina b A<,则无解.当堂检测(时量:5分钟满分:10分)计分:1. 已知a、b为△ABC的边,A、B分别是a、b的对角,且sin2sin3AB=,则a bb+的值=().A. 13B.23C.43D.532. 已知在△ABC中,sin A∶sin B∶sin C=3∶5∶7,那么这个三角形的最大角是().A.135°B.90°C.120°D.150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为().A.锐角三角形B.直角三角形C.钝角三角形D.由增加长度决定4. 在△ABC中,sin A:sin B:sin C=4:5:6,则cos B=.5. 已知△ABC中,cos cosb Cc B=,试判断△ABC的形状.一、选择题1.在中,已知角则角A的值是()A.15°B.75°C.105°D.75°或15°2.中,则此三角形有()A.一解 B.两解 C.无解 D.不确定3.若是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在中,已知则AD长为()A.B. C.D.5.在,面积,则BC长为()A.B.75 C.51 D.496.钝角的三边长为连续自然数,则这三边长为()A.1、2、3、B.2、3、4 C.3、4、5 D.4、5、67.在中,,则A等于()A.60°B.45° C.120°D.30°8.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形 D.等边三角形9.在中,,则等于()A.B.C.D.10.在中,,则的值为()A.B.C.D.11.在中,三边与面积S的关系式为则角C为()A.30°B.45°C.60°D.90°12.在中,是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题13.在中,,则14.若的三个内角成等差数列,且最大边为最小边的2倍,则三内角之比为________。
1.2.2任意三角形的面积公式
(2)△ABC的面积S=12bcsinA= 3,故bc=4. 而a2=b2+c2-2bccos A,故b2+c2=8. 解得b=c=2.
PPT
[点评] 本题主要考查正弦定理、余弦定理以及三角 形面积公式的应用.求三角形的面积,要充分挖掘题目中 的条件,转化为求两边或两边之积及其夹角正弦的问题, 要注意方程思想在解题中的应用.另外也要注意三个内角 的取值范围,以避免由三角函数值求角时出现增根错误.
=
1 2
(a
+
b
+
c)r
=
2R2sinAsinBsinC= pp-ap-bp-c,
其中 r 为△ABC 内切圆半径,R 为外接圆半径, p 为半周长.
PPT
结束寄语
下课了!
在数学领域中,重视学习的 过程比重视学习的结果更为 重要.
PPT
课后补充练习
3.在△ABC中,sinA:sinB:sinC=3:5:7,且周长为30,
3 2
PPT
6.若△ABC的面积为
3 2
,c=2,A=60°,求b,a的
值.
解:∵S=12bc·sinA=bsin60°= 23,∴b=1. 由余弦定理,得a2=b2+c2-2bccosA=3, ∴a= 3.
PPT
(1)求sinC的值; (2)当a=2,2sinA=sinC时,求b及c的长.
PPT
解:(1)∵cos2C=1-2sin2C=-14,0<C<π,
∴sinC=
10 4.
(2)当a=2,2sinA=sinC时,
由正弦定理,sianA=sincC,得c=4.
由cos2C=2cos2C-1=-14,0<C<π,
PPT
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3.某渔船在航行中不幸遇险,发出求救信号,我海军 舰艇在A处获悉后,立即测出该渔船在方位角为45°、 距离A为10海里的C处,并测得渔船正沿方位角为 105°的方向,以9海里/h的速度向某小岛B靠拢,我 海军舰艇立即以21海里/h的速度前去营救,试问舰 艇应按照怎样的航向前进?并求出靠近渔船所用的时间PA B源自O四.角度测量问题
例2、如图,一艘海轮从A出发,沿北偏东750的方向航 行67.5 n mile后到达海岛B,然后从B出发,沿北偏东320 的方向航行54.0 n mile后达到海岛C.如果下次航行直 接从A出发到达C,此船应该沿怎样的方向航行,需要航 行多少距离?(角度精确到0.1,距离精确到0.01n mile)
课时小结
• 利用正弦定理和余弦定理来解题时,要学 会审题及根据题意画方位图,要懂得从所给 的背景资料中进行加工、抽取主要因素, 进行适当的简化。
• 备用题 • A,B两个小岛相距21海里,B岛在A岛的正南 方,现在甲船从A岛出发,以9海里/小时的速 度行驶,而乙船同时以6海里/小时的速度离 开B岛向南偏东600方向行使,问行驶多少时 间后两船相距最大?
例4. 据气象台预报,距S岛300 km的A处有一 台风中心形成,并以每小时30km的速度向北 偏西30°的方向移动,在距台风中心270 km 以内的地区将受到台风的影响 问:S岛是否受其影响? 若受到影响,从现在起经过多少小时S岛开始 受到台风的影响?持续时间多久?说明理由
例5. 图中是曲柄连杆机构示意图,当曲柄CB绕C点 旋转时,通过连杆AB的传递,活塞作直线往复运动, 当曲柄在CB0位置时,曲柄和连杠成一条直线,连杠 的端点A在A0处。设连杠AB长为340 mm,曲柄CB长 为85mm,曲柄自CB0按顺时针方向旋转80o,求活塞 移动的距离(即连杠的端点A移动的距离A0A)(精 确到1mm).
解三角形应用举例(2)
三.空间高度测量问题
例1、如图,一辆汽车在一条水平的公路上向 正东行驶,到A处时测得公路南侧远处一山顶D 在东偏南150的方向上,行驶5km后到达B处, 测得此山顶在东偏南250的方向上,仰角为80, 求此山的高度CD.
练习:如图:在地平面上有一旗杆OP,为了测 得它的高度h,在地面上取一基线AB,AB=20 米,在A处测得P点的仰角∠OAP=300,在B出 测得P点的仰角∠OBP=450,又测得 ∠AOB=600,求旗杆的高度