中考数学升学模拟复习试题9

合集下载

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)计算:(﹣1)+2的结果是()A.﹣1 B.1 C.﹣3 D.32.(4分)某校开展形式多样的“阳光体育”活动.七(3)班同学积极响应.全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示).由图可知参加人数最多的体育项目是()A.排球B.乒乓球C.篮球D.跳绳3.(4分)如图所示的物体有两个紧靠在一起的圆柱体组成.它的主视图是()A.B.C.D.4.(4分)已知点P(﹣1.4)在反比例函数的图象上.则k 的值是()A.B.C.4 D.﹣45.(4分)如图.在△ABC中.∠C=90°.AB=13.BC=5.则sin A的值是()A.B.C.D.6.(4分)如图.在矩形ABCD中.对角线AC.BD交于点O.已知∠AOB=60°.AC=16.则图中长度为8的线段有()A.2条B.4条C.5条D.6条7.(4分)为了支援地震灾区同学.某校开展捐书活动.九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示.则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(4分)已知线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离9.(4分)已知二次函数y=(x﹣1)2﹣1(0≤x≤3)的图象.如图所示.关于该函数在所给自变量取值范围内.下列说法正确的是()A.有最小值0.有最大值3 B.有最小值﹣1.有最大值0 C.有最小值﹣1.有最大值3 D.有最小值﹣1.无最大值10.(4分)如图.O是正方形ABCD的对角线BD上一点.⊙O与边AB.BC都相切.点E.F分别在AD.DC上.现将△DEF沿着EF对折.折痕EF与⊙O相切.此时点D恰好落在圆心O处.若DE=2.则正方形ABCD的边长是()A.3 B.4 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣1=.12.(5分)某校艺术节演出中.5位评委给某个节目打分如下:9分.9.3分.8.9分.8.7分.9.1分.则该节目的平均得分是分.13.(5分)如图.a∥b.∠1=40°.∠2=80°.则∠3=度.14.(5分)如图.AB是⊙O的直径.点C.D都在⊙O上.连接CA.CB.DC.DB.已知∠D=30°.BC=3.则AB的长是.15.(5分)汛期来临前.滨海区决定实施“海堤加固”工程.某工程队承包了该项目.计划每天加固60米.在施工前.得到气象部门的预报.近期有“台风”袭击滨海区.于是工程队改变计划.每天加固的海堤长度是原计划的1.5倍.这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米.则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).16.(5分)我国汉代数学家赵爽为了证明勾股定理.创制了一副“弦图”.后人称其为“赵爽弦图”(如图1).图2由弦图变化得到.它是由八个全等的直角三角形拼接而成.记图中正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.若S1+S2+S3=10.则S2的值是.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)化简:a(3+a)﹣3(a+2).18.(8分)如图.在等腰梯形ABCD中.AB∥CD.点M是AB的中点.求证:△ADM≌△BCM.19.(8分)七巧板是我们祖先的一项卓越创造.用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图1)经过平移、旋转拼成图形.(1)拼成矩形.在图2中画出示意图.(2)拼成等腰直角三角形.在图3中画出示意图.注意:相邻两块板之间无空隙.无重叠;示意图的顶点画在小方格顶点上.20.(8分)如图.AB是⊙O的直径.弦CD⊥AB于点E.过点B作⊙O 的切线.交AC的延长线于点F.已知OA=3.AE=2.(1)求CD的长;(2)求BF的长.21.(10分)一个不透明的布袋里装有3个球.其中2个红球.1个白球.它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球.记下颜色后放回.并搅均.再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋.搅均后.使摸出1个球是白球的概率为.求n的值.22.(10分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣2.4).过点A作AB⊥y轴.垂足为B.连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c经过点A.①求c的值;②将抛物线向下平移m个单位.使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界).求m的取值范围(直接写出答案即可).23.(12分)2011年5月20日是第22个中国学生营养日.某校社会实践小组在这天开展活动.调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息.解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%.求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.求其中所含碳水化合物质量的最大值.24.(14分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣4.0).点B的坐标是(0.b)(b>0).P是直线AB上的一个动点.作PC⊥x轴.垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上).连接PP′.P′A.P′C.设点P的横坐标为a.(1)当b=3时.①求直线AB的解析式;②若点P′的坐标是(﹣1.m).求m的值;(2)若点P在第一象限.记直线AB与P′C的交点为D.当P′D:DC=1:3时.求a的值;(3)是否同时存在a.b.使△P′CA为等腰直角三角形?若存在.请求出所有满足要求的a.b的值;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】异号两数相加.取绝对值较大加数的符号.再用较大绝对值减去较小绝对值.【解答】解:(﹣1)+2=+(2﹣1)=1.故选:B.【点评】此题主要考查了有理数的加法.做题的关键是掌握好有理数的加法法则.2.【分析】因为总人数是一样的.所占的百分比越大.参加人数就越多.从图上可看出篮球的百分比最大.故参加篮球的人数最多.【解答】解:∵篮球的百分比是35%.最大.∴参加篮球的人数最多.故选:C.【点评】本题对扇形图的识图能力.扇形统计图表现的是部分占整体的百分比.因为总数一样.所以百分比越大.人数就越多.3.【分析】找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看.圆柱从正面看是长方形.两个圆柱.看到两个长方形.故选:A.【点评】此题主要考查了三视图的知识.主视图是从物体的正面看得到的视图.4.【分析】根据反比例函数图象上的点的坐标特征.将P(﹣1.4)代入反比例函数的解析式.然后解关于k的方程即可.【解答】解:∵点P(﹣1.4)在反比例函数的图象上. ∴点P(﹣1.4)满足反比例函数的解析式.∴4=.解得.k=﹣4.故选:D.【点评】此题比较简单.考查的是用待定系数法求反比例函数的解析式.是中学阶段的重点.解答此题时.借用了“反比例函数图象上的点的坐标特征”这一知识点.5.【分析】本题可以利用锐角三角函数的定义求解.sin A为∠A的对边比上斜边.求出即可.【解答】解:∵在△ABC中.∠C=90°.AB=13.BC=5.∴sin A===.故选:A.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中.锐角的正弦为对边比斜边.余弦为邻边比斜边.正切为对边比邻边.6.【分析】因为矩形的对角线相等且互相平分.所以AO=BO=CO =DO.已知∠AOB=60°.所以AB=AO.从而CD=AB=AO.从而可求出线段为8的线段.【解答】解:∵在矩形ABCD中.AC=16.∴AO=BO=CO=DO=×16=8.∵AO=BO.∠AOB=60°.∴AB=AO=8.∴CD=AB=8.∴共有6条线段为8.故选:D.【点评】本题考查矩形的性质.矩形的对角线相等且互相平分.以及等边三角形的判定与性质.7.【分析】频率=.从直方图可知在5.5~6.5组别的频数是8.总数是40可求出解.【解答】解:∵在5.5~6.5组别的频数是8.总数是40.∴=0.2.故选:B.【点评】本题考查频数分布直方图.从直方图上找出该组的频数.根据频率=.可求出解.8.【分析】针对两圆位置关系与圆心距d.两圆半径R.r的数量关系间的联系得出两圆位置关系.【解答】解:依题意.线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.∴R+r=3+2=5.d=7.所以两圆外离.故选:D.【点评】此题主要考查了圆与圆的位置关系.圆与圆的位置关系与数量关系间的联系.此类题为中考热点.需重点掌握.9.【分析】根据函数图象自变量取值范围得出对应y的值.即是函数的最值.【解答】解:根据图象可知此函数有最小值﹣1.有最大值3.故选:C.【点评】此题主要考查了根据函数图象判断函数的最值问题.结合图象得出最值是利用数形结合.此知识是部分考查的重点.10.【分析】延长FO交AB于点G.根据折叠对称可以知道OF⊥CD.所以OG⊥AB.即点G是切点.OD交EF于点H.点H是切点.结合图形可知OG=OH=HD=EH.等于⊙O的半径.先求出半径.然后求出正方形的边长.【解答】解:如图:延长FO交AB于点G.则点G是切点.OD交EF于点H.则点H是切点.∵ABCD是正方形.点O在对角线BD上.∴DF=DE.OF⊥DC.∴GF⊥DC.∴OG⊥AB.∴OG=OH=HD=HE=AE.且都等于圆的半径.在等腰直角三角形DEH中.DE=2.∴EH=DH==AE.∴AD=AE+DE=+2.故选:C.【点评】本题考查的是切线的性质.利用切线的性质.结合正方形的特点求出正方形的边长.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】符合平方差公式的特征.直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式.熟记公式是解题的关键.12.【分析】把5位评委的打分加起来然后除以5即可得到该节目的平均得分.【解答】解:==9.∴该节目的平均得分是9分.故答案为:9.【点评】本题考查的是平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数.它是反映数据集中趋势的一项指标.熟记公式是解决本题的关键.13.【分析】先根据两直线平行.同位角相等.求出∠2的同位角的度数.再利用三角形的外角的性质求得∠3的度数.【解答】解:如图.∵a∥b.∠2=80°.∴∠4=∠2=80°(两直线平行.同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.【点评】本题比较简单.考查的是平行线的性质及三角形外角的性质.特别注意三角形的一个外角等于与它不相邻的两个内角的和.14.【分析】利用直径所对的圆周角是直角得到直角三角形.然后利用同弧所对的圆周角相等.在解直角三角形即可.【解答】解:∵AB是⊙O的直径.∴∠ACB=90°.∵∠D=30°.∴∠A=∠D=30°.∵BC=3.∴AB=6.故答案为:6.【点评】本题考查了圆周角定理及直角三角形的性质.考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力.有利于培养同学们的发散思维能力.15.【分析】首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.【解答】解:由已知得:原计划用的天数为..实际用的天数为.=.则完成整个任务的实际时间比原计划时间少用的天数为.﹣=.故答案为:.【点评】此题考查的知识点是列代数式.解题的关键是根据题意先列出原计划用的天数和实际用的天数.16.【分析】根据图形的特征得出四边形MNKT的面积设为x.将其余八个全等的三角形面积一个设为y.从而用x.y表示出S1.S2.S3.得出答案即可.【解答】解:将四边形MTKN的面积设为x.将其余八个全等的三角形面积一个设为y.∵正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.S1+S2+S3=10.∴得出S1=8y+x.S2=4y+x.S3=x.∴S1+S2+S3=3x+12y=10.故3x+12y=10.x+4y=.所以S2=x+4y=.故答案为:.【点评】此题主要考查了图形面积关系.根据已知得出用x.y表示出S1.S2.S3.再利用S1+S2+S3=10求出是解决问题的关键.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据乘法的分配律.去括号.合并同类项即可.【解答】解:(1)(﹣2)2+(﹣2011)0﹣.=4+1﹣2.=5﹣2;(2)a(3+a)﹣3(a+2).=3a+a2﹣3a﹣6.=a2﹣6.【点评】本题考查实数的综合运算能力.整式的混合运算及零指数幂.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、二次根式等考点的运算.18.【分析】由等腰梯形得到AD=BC.∠A=∠B.根据SAS即可判断△ADM≌△BCM.【解答】证明:在等腰梯形ABCD中.AB∥CD.∴AD=BC.∠A=∠B.∵点M是AB的中点.∴MA=MB.∴△ADM≌△BCM.【点评】本题主要考查对等腰梯形的性质.全等三角形的判定等知识点的理解和掌握.证出证三角形全等的三个条件是解此题的关键.19.【分析】(1)根据七巧板中有两个较小的等腰直角三角形.由一个小正方形进行拼凑即可;(2)根据七巧板中有两个较小的等腰直角三角形.且小正方形的边长与等腰三角形的腰长相等进行拼凑.【解答】解:参考图形如下(答案不唯一).【点评】本题考查的是作图与应用设计作图.熟知七巧板中各图形的特点是解答此题的关键.20.【分析】(1)连接OC.在△OCE中用勾股定理计算求出CE的长.然后得到CD的长.(2)根据切线的性质得AB⊥BF.然后用△ACE∽△AFB.可以求出BF的长.【解答】解:(1)如图.连接OC.∵AB是直径.弦CD⊥AB.∴CE=DE在直角△OCE中.OC2=OE2+CE232=(3﹣2)2+CE2得:CE=2.∴CD=4.(2)∵BF切⊙O于点B.∴∠ABF=90°=∠AEC.又∵∠CAE=∠F AB(公共角).∴△ACE∽△AFB∴=即:=∴BF=6.【点评】本题考查的是切线的性质.(1)利用垂径定理求出CD的长.(2)根据切线的性质.得到两相似三角形.然后利用三角形的性质计算求出BF的长.21.【分析】(1)由一个不透明的布袋里装有3个球.其中2个红球.1个白球.根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果.然后根据概率公式求出该事件的概率;(3)根据概率公式列方程.解方程即可求得n的值.【解答】解:(1)∵一个不透明的布袋里装有3个球.其中2个红球.1个白球.∴摸出1个球是白球的概率为;(2)画树状图、列表得:第二次白红1 红2 第一次白白.白白.红1白.红2红1红1.白红1.红1红1.红2红2红2.白红2.红1红2.红2∴一共有9种等可能的结果.两次摸出的球恰好颜色不同的有4种. ∴两次摸出的球恰好颜色不同的概率为;(3)由题意得:.解得:n=4.经检验.n=4是所列方程的解.且符合题意.∴n=4.【点评】此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据点A的坐标是(﹣2.4).得出AB.BO的长度.即可得出△OAB的面积;(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标.根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.【解答】解:(1)∵点A的坐标是(﹣2.4).AB⊥y轴.∴AB=2.OB=4.∴△OAB的面积为:×AB×OB=×2×4=4.(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.﹣(﹣2)2﹣2×(﹣2)+c=4.∴c=4.②∵y=﹣x2﹣2x+4=﹣(x+1)2+5.∴抛物线顶点D的坐标是(﹣1.5).过点D作DE⊥AB于点E交AO于点F.AB的中点E的坐标是(﹣1.4).OA的中点F的坐标是(﹣1.2). ∴m的取值范围是:1<m<3.【点评】此题主要考查了二次函数的综合应用以及二次函数顶点坐标求法.二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.23.【分析】(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克.列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.列出不等式求解即可.【解答】解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克.由题意得:x+4x+20+400×40%=400.∴x=44.∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克.则所含蛋白质质量为4y克.所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%.∴y≥40.∴﹣5y≤﹣200.∴380﹣5y≤380﹣200.即380﹣5y≤180.∴所含碳水化合物质量的最大值为180克.【点评】本题由课本例题改编而成(原题为浙教版七年级下P96例题).这使学生对试题有“亲切感”.而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点.给出两个量的和的范围.求其中一个量的最值.隐含着函数最值思想.本题切入点较多.方法灵活.解题方式多样化.可用不等式解题.也可用极端原理求解.不同的解答反映出思维的不同层次.24.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1.m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD.根据相似三角形的对应边的比相等.即可求解;(3)分P在第一.二.三象限.三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3.把x=﹣4.y=0代入得:﹣4k+3=0.∴k=.∴直线的解析式是:y=x+3.②P′(﹣1.m).∴点P的坐标是(1.m).∵点P在直线AB上.∴m=×1+3=;(2)∵PP′∥AC.△PP′D∽△ACD.∴=.即=.∴a=;(3)以下分三种情况讨论.①当点P在第一象限时.1)若∠AP′C=90°.P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC.△ACP∽△AOB∴==.即=.∴b=22)若∠P′AC=90°.(如图2).则四边形P′ACP是矩形.则PP′=AC.若△P´CA为等腰直角三角形.则:P′A=CA.∴2a=a+4∴a=4∵P′A=PC=AC.△ACP∽△AOB∴==1.即=1∴b=43)若∠P′CA=90°.则点P′.P都在第一象限内.这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时.∠P′CA为钝角(如图3).此时△P′CA 不可能是等腰直角三角形;③当P在第三象限时.∠P′AC为钝角(如图4).此时△P′CA不可能是等腰直角三角形.所有满足条件的a.b的值为:..【点评】本题主要考查了梯形的性质.相似三角形的判定和性质以及一次函数的综合应用.要注意的是(3)中.要根据P点的不同位置进行分类求解.。

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,且 |a| > |b|,则 a + b 的符号是()A. 正数B. 负数C. 零D. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sin(A) = 1/2,则角A的度数是()A. 30°B. 45°C. 60°D. 90°4. 若一个等差数列的前三项分别是2、5、8,则该数列的公差是()A. 1B. 2C. 3D. 45. 在直角坐标系中,点P(2, -3)关于原点的对称点是()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)二、判断题1. 任何两个奇数之和都是偶数。

()2. 一元二次方程的判别式Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根。

()3. 在等边三角形中,每个角的度数是60°。

()4. 函数y=2x+3的图像是一条直线。

()5. 互质的两个数的最小公倍数是它们的乘积。

()三、填空题1. 若 a 3 = 5,则 a 的值为______。

2. 若一个等比数列的前三项分别是2、4、8,则该数列的公比是______。

3. 在直角坐标系中,点A(3, 4)到原点的距离是______。

4. 若sin(α) = 1/2,且α是锐角,则cos(α)的值是______。

5. 一元二次方程x^2 5x + 6 = 0的解是______和______。

四、简答题1. 解释什么是等差数列,并给出一个例子。

2. 什么是锐角和钝角?给出一个锐角和一个钝角的例子。

3. 解释一元二次方程的解的意义。

4. 什么是平行线?在直角坐标系中如何判断两条线是否平行?5. 解释什么是函数的图像,并给出一个例子。

五、应用题1. 一个等差数列的前三项分别是2、5、8,求该数列的第10项。

人教版九年级中考数学模拟考试试题(含答案)

人教版九年级中考数学模拟考试试题(含答案)

九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。

(每小题4分,共40分)1.﹣2023的相反数是()A.﹣2023B.2023C.12023 D.﹣120232.如图是由一个5个相同的正方体组成的立体图形,则这个几何体左视图是()3.截至目前,某地区的旅游收入达到43 000 000,数字“43 000 000”用科学记数法表示为()A.43×106B.4.3×107C.0.43×108D.430×1054.如图,CA⊥BE于点A,AD∥BC,若∠C=42°,则∠1的度数为()A.46°B.47°C.48°D.42°(第4题图)(第6题图)(第9题图)5.下列图形中,既是轴对称图形又是中心对称图形的是()6.如图,A,B两点在数轴上的位置如图所示,则下列式子一定成立的是()A.ab<2aB.1-7a<1-7bC.|a|>|b|D.﹣b<ab、7.从甲,乙,丙,丁四名同学随机选择两名同学去参加数学比赛,则恰好抽到甲,丙两位同学的概率是()A.16 B.14C.18D.128.若x+y=﹣2,则代数式(y 2x -x )÷x -y x的值为( )A.2B.﹣2C.12 D.﹣129.如图,在△ABC 中,∠ACB=90°,∠BA15°,分别以A ,B 为圆心,大于12AB 的长为半径画弧,两弧交于M ,N 两点,作直线MN 交AC 于点D ,若AD=2,则△ABC 的面积为( ) A.2 B.2+√32C.2+√3D.410.二次函数y=ax 2+bx ,经过点P (m ,2)当y ≤﹣1时,x 的取值范围为m -1≤x ≤﹣a -m ,则下列四个值中可能为m 的是( ) A.﹣2 B.﹣3C.﹣4D.﹣5二.填空题。

(每小题4分,共24分) 11.分解因式:9m 2-36n 2= .12.若一元二次方程x 2-3x+a=0有两个相等的实数根,则a 的值为 .13.菱形ABCD 的两条对角线的长分别是6厘米和10厘米,则菱形ABCD 的周长是 厘米. 14.如图,一块飞镖游戏板由四个全等的直角三角形和一个正方形构成,若a=1,b=2,游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中阴影部分的概率是 .(第14题图) (第15题图) (第16题图)15.一列慢车从A 地往B 地,一列快车从B 地到A 地,两车同时出发,各自抵达目的地后停止,如图所示,折线表示两车之间的距离y (km )与慢车行驶时间t (h )之间的关系,当快车到达A 地时,慢车与B 地的距离为 Km .(填序号)16.如图,矩形ABCD 中,AB=4,BC=6,点E 是BC 中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,则tan ∠DAF 的值为 .三.解答题。

中考数学模拟试题(九)答案

中考数学模拟试题(九)答案

2019-2020年中考数学模拟试题(九)答案一、选择题: 1.A 2.C 3.D 4.B 5.A 6.D 7.C 8.A 9.C 10.C二、填空题11. 12. 13. 14. 15. 6π16. x≥2 17. X=125 18. 19. 20. 13三、解答题21. 解:原式=………3分当……2分原式=……2分22. 答案:(1)画图正确3分(2)画图正确3分 EF=……1分23. (1)80……2分(2)40%……2分,答…1分;(3)140……2分,答…1分24. (1)证明:由折叠的性质可得:∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠ANM=∠CMN,∴∠CMN=∠CNM,∴CM=CN;(2)解:过点N作NH⊥BC于点H,则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴MC=3ND=3HC,∴MH=2HC,设DN=x,则HC=x,MH=2x,∴CM=3x=CN,在Rt△CDN中,DC=2x,∴HN=2x,在Rt△MNH中,MN=2x,∴==225. 解:(1)设:每套A种背包的进货单价为x元,每套B种背包的进货单价为y元。

根据题意得…2分解得…2分∴每套A种背包的进货单价为25元,每套B种背包的进货单价为30元…1分(2)设:该商场用于批发的背包数量为个则,根据题意得--+7.0≥⨯mm…3分≤500 …1分)220001050050800(50∴该商场用于批发的背包数量最多为500个……1分26. 解:(1)提示:连接CO(2)连接NC。

∵AB=AD ∴∠B=∠D=∠CND ∴CN=CD, CE⊥ND ∴NE=DE(3)∵∠ACP=∠PCB=45°,∴∠BPC=∠BAC=∠ECD ∵DE=2 ∴CE=3ED=6 ∴CD=CB= 过点B作BQ⊥PC于Q,∴CQ=QB=∵∴PQ=3BQ=∴PB=过点Q作QK⊥PB于K,设QK= ∴PK=BK=∴PB==∴S△PQB=PB·QK=2527.(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).----1分∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=2,∴直线BD解析式为:y=﹣x+2.------1分当x=﹣4时,y=4,∴D(﹣4,4).∵点D(﹣4,4)在抛物线y=(x+2)(x﹣4)上,∴(﹣4+2)(﹣4﹣4)=4,∴k=2.∴y= x2-x-2 --1分(2)由(1)知:D(﹣4,4),如图,过点D作DN⊥x轴于点N,则DN=4,ON=4,BN=4+4=8,∴tan∠DBA===.过点D作DK∥x轴,则tan∠KDF= tan∠DBA=.过点F作FG⊥DK于点G,则FG=DF.------1分由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,------1分∴t=AF+FG,即运动时间等于折线AF+FG的长度.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.------1分∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+2,∴y=﹣×(﹣2)+2=3,∴F(﹣2,3).------1分综上所述,当点F坐标为(﹣2,3)时,点M在整个运动过程中用时最少.(3)求出∠AFB的正切值为2,或求出∠AFB余角的正切值----1分P1(6,4)----2分P2(2,-2)----2分26411 672B 末829621 73B5 玵36319 8DDF 跟39444 9A14 騔31323 7A5B 穛 H37127 9107 鄇30068 7574 畴 39360 99C0 駀ef24794 60DA 惚。

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。

徐州市中考数学模拟试卷(九)含答案解析

徐州市中考数学模拟试卷(九)含答案解析

江苏省徐州市中考数学模拟试卷(九)一、选择题(共8小题,每题4分,满分32分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣5的相反数是()A.﹣5 B.5 C.D.﹣2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×1063.如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥4.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.下列命题中,假命题是()A.对顶角相等 B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. = C. = D. =7.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45° B.55°C.60°D.75°8.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.二、填空题(本大题共有10小题.每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.分解因式:ma+mb=.10.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.11.计算:( +1)(﹣1)=.12.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.14.代数式有意义时,x应满足的条件为.15.若(m﹣1)2+=0,则m+n的值是.16.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.18.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: +()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.20.(1)解方程:2x2+4x﹣1=0;(2)解不等式:5x﹣2≤3x,并在数轴上表示解集.21.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.22.如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.23.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?24.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?25.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)26.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.27.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.28.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.江苏省徐州市中考数学模拟试卷(九)参考答案与试题解析一、选择题(共8小题,每题4分,满分32分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣5的相反数是()A.﹣5 B.5 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:B.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将110000用科学记数法表示为1.1×105.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥【考点】由三视图判断几何体.【分析】根据一个空间几何体的主视图和俯视图都是三角形,可判断该几何体是锥体,再根据左视图的形状,即可得出答案.【解答】解:∵几何体的主视图和俯视图都是三角形,∴该几何体是一个锥体,∵俯视图是一个圆,∴该几何体是一个圆锥;故选D.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.4.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.【解答】解;A、x4•x4=x8,故A错误;B、(a3)2=a6,故B错误;C、(ab2)3=a2b6,故C错误;D、a+2a=3a,故D正确.故选:D.【点评】本题主要考查了同底数幂相乘,幂的乘方的性质,积的乘方的性质,合并同类项,熟练掌握运算性质并理清指数的变化是解题的关键.5.下列命题中,假命题是()A.对顶角相等 B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°【考点】命题与定理.【分析】分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.【解答】解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. = C. = D. =【考点】由实际问题抽象出分式方程.【分析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得,现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【解答】解:设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得, =.故选B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45° B.55°C.60°D.75°【考点】正方形的性质;等腰三角形的性质;等边三角形的性质.【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.8.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰直角三角形.【专题】压轴题.【分析】作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图象上点的坐标特征得到A (2,0),B(0,2),易得△AOB为等腰直角三角形,则AB=OA=2,所以EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1;设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),根据反比例函数图象上点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,这样可确定E点坐标为(,),然后根据反比例函数图象上点的坐标特征得到k=×.【解答】解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题(本大题共有10小题.每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.分解因式:ma+mb=m(a+b).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这里的公因式是m,直接提取即可.【解答】解:ma+mb=m(a+b).故答案为:m(a+b)【点评】本题考查了提公因式法分解因式,公因式即多项式各项都含有的公共的因式.10.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【考点】概率公式.【分析】根据不合格品件数与产品的总件数比值即可解答.【解答】解:∵在5个外观相同的产品中,有1个不合格产品,∴从中任意抽取1件检验,则抽到不合格产品的概率是:.故答案为:.【点评】本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.计算:( +1)(﹣1)=1.【考点】二次根式的乘除法;平方差公式.【专题】计算题.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:( +1)(﹣1)=.故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PE=PD.【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.14.代数式有意义时,x应满足的条件为x≠±1.【考点】分式有意义的条件.【分析】根据分式有意义,分母等于0列出方程求解即可.【解答】解:由题意得,|x|﹣1≠0,故答案为:x≠±1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.15.若(m﹣1)2+=0,则m+n的值是﹣1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以m+n=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是20.【考点】平行四边形的性质;等腰三角形的判定与性质.【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【解答】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.【点评】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是5.【考点】平行四边形的判定与性质;直角三角形斜边上的中线;三角形中位线定理.【专题】压轴题.【分析】根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.【解答】解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.18.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=.【考点】正方形的性质;菱形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC=,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.故答案为:.【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: +()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.【考点】实数的运算;整式的混合运算—化简求值;零指数幂.【分析】(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式、单项式成多项式,可化简整式,根据代数式求值,可得答案.【解答】解:(1)原式=3+1+1=5;(2)原式=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=2+4=6.【点评】本题考查了实数的运算,熟练掌握零指数幂、绝对值、二次根式的运算.20.(1)解方程:2x2+4x﹣1=0;(2)解不等式:5x﹣2≤3x,并在数轴上表示解集.【考点】解一元二次方程-公式法;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】(1)方程利用公式法求出解即可;(2)不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)这里a=2,b=4,c=﹣1,∵△=16+8=24,∴x==;(2)不等式移项合并得:2x≤2,解得:x≤1,【点评】此题考查了解一元二次方程﹣公式法,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.21.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.【考点】作图-轴对称变换;勾股定理;锐角三角函数的定义.【分析】①利用勾股定理得出AB的长,再利用锐角三角函数关系得出答案;②利用关于直线对称的性质得出对应点进而利用梯形面积求法得出答案.【解答】解:①∵AC=3,AB==5,∴sinB的值是: =.故答案为:;②如图所示:△A1B1C1,即为所求,梯形AA1B1B的面积为:×(2+8)×4=20.【点评】此题主要考查了轴对称变换和勾股定理以及锐角三角函数关系,正确掌握梯形面积公式是解题关键.23.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是: =50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.【点评】此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】优选方案问题.【分析】(1)设A商品每件x元,B商品每件y元,根据关系式列出二元一次方程组.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件,根据关系式列出二元一次不等式方程组.求解再比较两种方案.【解答】解:(1)设A商品每件x元,B商品每件y元,依题意,得,解得.答:A商品每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件解得5≤a≤6根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.【点评】此题主要考查二元一次方程组及二元一次不等式方程组的应用,根据题意得出关系式是解题关键.25.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-方向角问题.【专题】几何图形问题.【分析】(1)作辅助线,构造直角三角形,解直角三角形即可;(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C 相对于点A的方向.【解答】解:(1)如右图,过点A作AD⊥BC于点D,∠ABE=∠BAF=15°,由图得,∠ABC=∠EBC﹣∠ABE=∠EBC﹣∠BAF=75°﹣15°=60°,在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50,∴CD=BC﹣BD=200﹣50=150,在Rt△ACD中,由勾股定理得:AC==100≈173(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2,∴∠BAC=90°,∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.【点评】考查了解直角三角形的应用﹣方向角问题,关键是熟练掌握勾股定理,体现了数学应用于实际生活的思想.26.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【考点】三角形的外接圆与外心;圆周角定理;解直角三角形.【分析】(1)根据题意得出AE的长,进而得出BE=AE,再利用tan∠ACB=,求出EC的长即可;(2)首先得出AC的长,再利用圆周角定理得出∠D=∠M=60°,进而求出AM的长,即可得出答案.【解答】解:(1)过点A作AE⊥BC,垂足为E,∴∠AEB=∠AEC=90°,在Rt△ABE中,∵sinB=,∴AE=ABsinB=3sin45°=3×=3,∵∠B=45°,∴∠BAE=45°,∴BE=AE=3,在Rt△ACE中,∵tan∠ACB=,∴EC====,∴BC=BE+EC=3+;(2)连接AO并延长到⊙O上一点M,连接CM,由(1)得,在Rt△ACE中,∵∠EAC=30°,EC=,∴AC=2,∵∠D=∠M=60°,∴sin60°===,解得:AM=4,∴⊙O的半径为2.【点评】此题主要考查了解直角三角形以及锐角三角函数关系应用,根据题意正确构造直角三角形是解题关键.27.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=1,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.【考点】相似形综合题.【专题】几何动点问题;压轴题.【分析】(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.【解答】(1)解:当t=秒时,OP=2t=2×=1.如答图1,过点P作PD⊥AB于点D.在Rt△POD中,PD=OP•sin60°=1×=,∴S△ABP=AB•PD=×(2+1)×=.(2)解:当△ABP是直角三角形时,①若∠A=90°.∵∠BOC=60°且∠BOC>∠A,∴∠A≠90°,故此种情形不存在;②若∠B=90°,如答图2所示:∵∠BOC=60°,∴∠BPO=30°,∴OP=2OB=2,又OP=2t,∴t=1;③若∠APB=90°,如答图3所示:过点P作PD⊥AB于点D,则OD=OP•sin30°=t,PD=OP•sin60°=t,∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.在Rt△ABP中,由勾股定理得:PA2+PB2=AB2∴(AD2+PD2)+(BD2+PD2)=AB2,即[(2+t)2+(t)2]+[(1﹣t)2+(t)2]=32解方程得:t=或t=(负值舍去),∴t=.综上所述,当△ABP是直角三角形时,t=1或t=.(3)证明:如答图4,过点O作OE∥AP,交PB于点E,则有,∴PE=PB.∵AP=AB,∴∠APB=∠B,∵OE∥AP,∴∠OEB=∠APB,∴∠OEB=∠B,∴OE=OB=1,∠3+∠B=180°.∵AQ∥PB,∴∠OAQ+∠B=180°,∴∠OAQ=∠3;∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,∴∠1=∠2;∴△OAQ∽△PEO,∴,即,化简得:AQ•PB=3.【点评】本题是运动型综合题,考查了相似三角形的判定与性质、解直角三角形、勾股定理、一元二次方程等多个知识点.第(2)问中,解题关键在于分类讨论思想的运用;第(3)问中,解题关键是构造相似三角形,本问有多种解法,可探究尝试.28.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P 的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.。

最新九年级数学中考模拟考卷及答案

最新九年级数学中考模拟考卷及答案

最新九年级数学中考模拟考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y=x^3B. y=x^2C. y=|x|D. y=2x2. 已知一组数据的方差是9,那么这组数据每个数都加上5后,方差是()A. 4B. 9C. 14D. 253. 下列等式中,正确的是()A. sin30°=1/2B. cos60°=1/2C. tan45°=1D. tan30°=1/24. 一个正方体的体积是8cm^3,那么它的表面积是()A. 24cm^2B. 32cm^2C. 36cm^2D. 48cm^25. 下列各数中是无理数的是()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)1. 任何两个实数的和仍然是实数。

()2. 一元二次方程的解一定是实数。

()3. 对角线互相垂直的四边形一定是矩形。

()4. 任何数乘以0都等于0。

()5. 相似三角形的面积比等于边长比的平方。

()三、填空题(每题1分,共5分)1. 已知一组数据的平均数是10,那么这组数据的总和是______。

2. 一个等腰三角形的底边长是8cm,腰长是5cm,那么这个三角形的周长是______cm。

3. 若a+b=6,ab=2,则a=______,b=______。

4. 在直角坐标系中,点A(2,3)关于x轴的对称点是______。

5. 两个等差数列的通项公式分别是an=a1+(n1)d和bn=b1+(n1)d,那么这两个数列的前n项和分别是______和______。

四、简答题(每题2分,共10分)1. 简述平行线的性质。

2. 请解释无理数的概念。

3. 什么是二次函数的顶点坐标?4. 简述三角形面积的计算方法。

5. 请举例说明什么是等差数列。

五、应用题(每题2分,共10分)1. 某商店进行打折促销,原价100元的商品打8折,那么折后价格是多少?2. 一个长方体的长、宽、高分别是4cm、3cm、2cm,求它的体积。

2020年中考数学模拟试题(九)

2020年中考数学模拟试题(九)

2020年中考模拟试题(九)数学注意事项:1. 本试卷共8页,26个小题,满分为120分,考试时间为120分钟。

2. 根据阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效。

3. 考试结束后,将本试卷保管好并将答题卡上交。

一、选择题(本大题包括10个小题,每小题3分,共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.估算面积为3的正方形的边长b的值()A.在0和1之间B.在1和2之间C.在2和3之间D.在3和4之间2.2020年5月5日18时,长征五号B运载火箭首飞成功,标志着我国空间站工程建设进入实质阶段.长征五号B运载火箭运载能力超过22000千克,是目前我国近地轨道运载能力最大的火箭.将22000用科学记数法表示应为()A.2.2×104B.2.2×105C.22×103D.0.22×1053.下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6 4.下列防控疫情的图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是()A.B.C.D.6.“某学校改造过程中整修门口1500m的道路,但是在实际施工时,……,求实际每天整修道路多少米?”在这个题目中,若设实际每天整修道路xm,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多修5m,结果延期10天完成B.每天比原计划多修5m,结果提前10天完成C.每天比原计划少修5m,结果延期10天完成D.每天比原计划少修5m,结果提前10天完成7.如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=(x>0)的图象上,顶点B在反比例函数y=(x>0)的图象上,点C在x轴的正半轴上.若平行四边形OABC的面积为8,则k2﹣k1的值为()A.4 B.8C.12D.168.如图,在△ABC中,AB<BC,在BC上取一点P,使得PC=BC﹣P A.根据圆规作图的痕迹,可以用直尺成功找到点P的是()A.B.C.D.9.宽和长的比为的矩形称为黄金矩形,如图,黄金矩形ABCD中,宽AB=2,将黄金矩形ABCD沿EF折叠,使得点C落在点A处,点D落在点D′处,则△AEF的面积为()A.B.C.D.10.如图,在边长为2cm的等边△ABC中,AD⊥BC于D,点M、N同时从A点出发,分别沿A﹣B﹣D、A﹣D运动,速度都是1cm/s,直到两点都到达点D即停止运动.设点M、N运动的时间为x(s),△AMN的面积为y(cm2),则y与x的函数图象大致是()A.B.C.D.二、填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.如果y=(k﹣3)x2+k(x﹣3)是二次函数,那么k需满足的条件是.12.分解因式:5a3﹣20a=.13.如果一组数据x1,x2,x3,x4,x5的方差是1,那么数x1﹣10,x2﹣10,x3﹣10,x4﹣10,x5﹣10的方差是.14.如图,正方形ABCD的四个顶点分别在扇形OEF的半径OE,OF和上,且点A是线段OB的中点,若的长为π,则OD长为.15.如图,BC为半圆O的直径,EF⊥BC于点F,且BF:FC=5:1,若AB=8,AE=2,则AD的长为.16.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.17.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,且OA=OC,对称轴为直线x=1,则下列结论:①;②;③关于x的方程ax2+bx+c+2=0无实根,④ac﹣b+1=0;⑤OA⋅OB=﹣.其中正确结论的有.三、解答题(本题包括9个小题,共69分,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.计算:4sin45°﹣+()﹣2+|3﹣π|.19.先化简:,然后在﹣内找一个你喜欢的整数代入求值.20.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB交BC于点E,F是BD中点.求证:EF平分∠BED.21.2019年是新中国成立70周年,在“庆祝新中国成立70年华诞”主题教育活动月,深圳某学校组织开展了丰富多彩的活动,活动设置了“A:诗歌朗诵展演,B:歌舞表演,C:书画作品展览,D:手工作品展览”四个专项活动,每个学生限选一个专项活动参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图:(1)本次随机调查的学生人数是人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角为度.(4)小涛和小华各自随机参与其中的一个专项活动,请你用画树状图或列表的方式求他们恰好选中同一个专项活动的概率.22.某次台风来袭时,一棵笔直大树树干AB(树干AB垂直于水平地面)被刮倾斜后折断倒在地上,树的顶部恰好接触到地面D处,测得∠CDA=37°,∠ACD=60°,AD=5米,求这棵大树AB的高度.(结果精确到0.1米)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)23.某酒店计划购买一批换气扇,已知购买2台A型换气扇和2台B型换气扇共需220元;购买3台A型换气扇和1台B型换气扇共需200元.(1)求A,B两种型号的换气扇的单价.(2)若该酒店准备同时购进这两种型号的换气扇共60台,并且A型换气扇的数量不多于B型换气扇数量的2倍,请设计出最省钱的购买方案,并说明理由.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.25.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=,试求的值.26.如图,抛物线y=x2﹣ax+a﹣1与x轴交于A,B两点(点B在正半轴上),与y轴交于点C,OA=3OB.点P在CA的延长线上,点Q在第二象限抛物线上,S△PBQ=S△ABQ.(1)求抛物线的解析式.(2)求直线BQ的解析式.(3)若∠P AQ=∠APB,求点P的坐标.2020年中考模拟数学试题(九)参考答案一.选择题(共10小题)1.估算面积为3的正方形的边长b的值()A.在0和1之间B.在1和2之间C.在2和3之间D.在3和4之间【分析】根据正方形的面积公式可得面积为3的正方形的边长b的值为,因为1<<2,由此可以得到b的值的范围.【解答】解:面积为3的正方形的边长b的值为,∵1<<2,∴实数的值在整数1和2之间.故选:B.2.2020年5月5日18时,长征五号B运载火箭首飞成功,标志着我国空间站工程建设进入实质阶段.长征五号B运载火箭运载能力超过22000千克,是目前我国近地轨道运载能力最大的火箭.将22000用科学记数法表示应为()A.2.2×104B.2.2×105C.22×103D.0.22×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:22000用科学记数法表示为:2.2×104.故选:A.3.下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a3+a2,不是同类项,无法合并,故此选项错误;B、a3÷a=a2,故此选项错误;C、a2•a3=a5,正确;D、(a2)4=a8,故此选项错误;故选:C.4.下列防控疫情的图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.5.如图是一个长方体切去部分得到的工件,箭头所示方向为主视方向,那么这个工件的主视图是()A.B.C.D.【分析】主视图是从几何体的正面看所得到的视图,注意看不到的棱需要画成虚线.【解答】解:该几何体的主视图是一个矩形,矩形的右边有一条线段把矩形分成了一个梯形和三角形.故选:B.6.“某学校改造过程中整修门口1500m的道路,但是在实际施工时,……,求实际每天整修道路多少米?”在这个题目中,若设实际每天整修道路xm,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多修5m,结果延期10天完成B.每天比原计划多修5m,结果提前10天完成C.每天比原计划少修5m,结果延期10天完成D.每天比原计划少修5m,结果提前10天完成【分析】由x代表的含义找出(x﹣5)代表的含义,再分析所列方程选用的等量关系,即可找出结论.【解答】解:设实际每天整修道路xm,则(x﹣5)m表示:实际施工时,每天比原计划多修5m,∵方程,其中表示原计划施工所需时间,表示实际施工所需时间,∴原方程所选用的等量关系为实际施工比原计划提前10天完成.故选:B.7.如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=(x>0)的图象上,顶点B在反比例函数y=(x>0)的图象上,点C在x轴的正半轴上.若平行四边形OABC的面积为8,则k2﹣k1的值为()A.4B.8C.12D.16【分析】延长BA交y轴于D,连接OB,如图,利用平行四边形的性质得到AB⊥y轴,S△AOB=S▱ABCO=4,再利用反比例函数k的几何意义得到S△AOD=k1,S△BOD=k2,从而得到k2﹣k1=4.【解答】解:延长BA交y轴于D,连接OB,如图,∵四边形ABCO为平行四边形,∴AB∥x轴,即AB⊥y轴,S△AOB=S▱ABCO=×8=4,∵S△AOD=|k1|=k1,S△BOD=|k2|=k2,∴k2﹣k1=4,∴k2﹣k1=8.故选:B.8.如图,在△ABC中,AB<BC,在BC上取一点P,使得PC=BC﹣P A.根据圆规作图的痕迹,可以用直尺成功找到点P的是()A.B.C.D.【分析】根据线段垂直平分线的性质即可在BC上取一点P,使得PC=BC﹣P A.【解答】解:如图,根据题意可知:作AB的垂直平分线交BC于点P,所以P A=PB,所以PC=BC﹣PB=BC﹣P A,故选:A.9.宽和长的比为的矩形称为黄金矩形,如图,黄金矩形ABCD中,宽AB=2,将黄金矩形ABCD沿EF折叠,使得点C落在点A处,点D落在点D′处,则△AEF的面积为()A.B.C.D.【分析】依据黄金矩形ABCD中,宽AB=2,可得BC的长,设AF=CF=x,则BF=+1﹣x,再根据勾股定理即可得到AF的长,进而得出△AEF的面积.【解答】解:∵黄金矩形ABCD中,宽AB=2,∴,即BC==+1,设AF=CF=x,则BF=+1﹣x,∵∠B=90°,∴Rt△ABF中,AB2+BF2=AF2,即=x2,解得x=,∴AF=,又∵AD'=CD=AB=2,∴△AEF的面积=AF×AD'=××2=,故选:A.10.如图,在边长为2cm的等边△ABC中,AD⊥BC于D,点M、N同时从A点出发,分别沿A﹣B﹣D、A﹣D运动,速度都是1cm/s,直到两点都到达点D即停止运动.设点M、N运动的时间为x(s),△AMN的面积为y(cm2),则y与x的函数图象大致是()A.B.C.D.【分析】分0≤t≤时、<2、2≤t≤3,三种情况分别求解即可.【解答】解:AD=AB sin60°=,①当0≤t≤时,过点M作MH⊥AD于点H,y=AN×MH=t×AM×sin∠BAD=t2,为开口向上的抛物线;②当<2时,同理可得:y=×t×sin30°=t,为一次函数;③2≤t≤3时,同理可得:y=(3﹣t)×=(3﹣t),为一次函数;故选:C.二.填空题(共7小题)11.如果y=(k﹣3)x2+k(x﹣3)是二次函数,那么k需满足的条件是k≠3.【分析】直接利用二次函数的定义分析得出答案.【解答】解:∵y=(k﹣3)x2+k(x﹣3)是二次函数,∴k﹣3≠0,解得:k≠3,∴k需满足的条件是:k≠3,故答案为:k≠3.12.分解因式:5a3﹣20a=5a(a﹣2)(a+2).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=5a(a2﹣4)=5a(a﹣2)(a+2).故答案为:5a(a﹣2)(a+2).13.如果一组数据x1,x2,x3,x4,x5的方差是1,那么数x1﹣10,x2﹣10,x3﹣10,x4﹣10,x5﹣10的方差是1.【分析】根据题意得;数据x1,x2,x3,x4,x5的平均数设为a,则数据x1﹣10,x2﹣10,x3﹣10,x4﹣10,x5﹣10的平均数为a﹣10,在根据方差公式进行计算:S22=[(x1﹣)2+(x2﹣)2+…(x5﹣)2]即可得到答案.【解答】解:根据题意得;数据x1,x2,x3,x4,x5的平均数设为a,则数据x1﹣10,x2﹣10,x3﹣10,x4﹣10,x5﹣10的平均数为a﹣10,根据方差公式:S12=[(x1﹣a)2+(x2﹣a)2+…(x5﹣a)2]=1.则:S22={[(x1﹣10)﹣(a﹣10)]2+[(x2﹣10)﹣(a﹣10)]2+…(x5﹣10)﹣(a﹣10)]}2,=[(x1﹣a)2+(x2﹣a)2+…(x5﹣a)2],=1,故答案为:114.如图,正方形ABCD的四个顶点分别在扇形OEF的半径OE,OF和上,且点A是线段OB的中点,若的长为π,则OD长为4.【分析】根据正方形的性质得到AD=AB,∠DAB=90°,求得∠EOF=45°,根据弧长公式得到OF=4,连接OC,求得OC=OF=4,设OA=BC=x,根据勾股定理得到OC=x=4,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴点A是线段OB的中点,∴OA=AB,∴OA=AD,∵∠OAD=∠DAB=90°,∴∠EOF=45°,∵的长为π,∴=π,∴OF=4,连接OC,∴OC=OF=4,设OA=BC=x,∴OB=2x,∴OC=x=4,∴x=4,∴OA=AD=4,∴OD=4,故答案为:4.15.如图,BC为半圆O的直径,EF⊥BC于点F,且BF:FC=5:1,若AB=8,AE=2,则AD的长为.【分析】连接BE,则△ABE与△BEC都是直角三角形,在直角△ABE利用勾股定理即可求得BE的长,在直角△BEC中利用射影定理即可求得EC的长,根据切割线定理即可得到:AD•AB=AE•AC.据此即可求得AD的长.【解答】解:连接BE.∵BC是直径.∴∠AEB=∠BEC=90°在直角△ABE中,根据勾股定理可得:BE2=AB2﹣AE2=82﹣22=60.∵=5∴设FC=x,则BF=5x,BC=6x.又∵BE2=BF•BC即:30x2=60解得:x=,∴EC2=FC•BC=6x2=12∴EC=2,∴AC=AE+EC=2+2,∵AD•AB=AE•AC∴AD===.故答案为.16.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.【分析】以BD为对称轴作N的对称点N',连接PN',MN',依据PM﹣PN=PM﹣PN'≤MN',可得当P,M,N'三点共线时,取“=”,再求得==,即可得出PM∥AB∥CD,∠CMN'=90°,再根据△N'CM为等腰直角三角形,即可得到CM=MN'=2.【解答】解:如图所示,以BD为对称轴作N的对称点N',连接PN',MN',根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.17.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,且OA=OC,对称轴为直线x=1,则下列结论:①;②;③关于x的方程ax2+bx+c+2=0无实根,④ac﹣b+1=0;⑤OA⋅OB=﹣.其中正确结论的有④⑤.【分析】根据二次函数的图象和性质,对称轴、与x轴、y轴的交点坐标,以及二次函数与一元二次方程的关系,逐个进行判断,得出答案.【解答】解:抛物线与x轴有两个不同交点,因此b2﹣4ac>0,开口向下,a<0,因此<0,故①不正确;抛物线与y轴交于正半轴,因此c>0,对称轴为x=1,所以﹣=1,也就是a=﹣b,∴a+b+c=﹣b+b+c=c>0,故②不正确;当y=﹣2时,根据图象可得ax2+bx+c=﹣2有两个不同实数根,即ax2+bx+c+2=0有两个不等实根,因此③不正确;∵OA=OC,∴A(﹣c,0)代入得:ac2﹣bc+c=0,即:ac﹣b+1=0,因此④正确;设A(x1,0),B(x2,0),有x1、x2是方程ax2+bx+c=0的两个根,有有x1+x2=,又∵OA=﹣x1,OB=x2,所以OA•OB=﹣,故⑤正确;综上所述,正确的有④⑤,故答案为:④⑤三.解答题(共23小题)18.计算:4sin45°﹣+()﹣2+|3﹣π|.【分析】根据绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简的计算法则进行计算即可求得结果.【解答】解:4sin45°﹣+()﹣2+|3﹣π|=4×﹣2+4+π﹣3=2﹣2+4+π﹣3=π+1.19.先化简:,然后在﹣内找一个你喜欢的整数代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:原式=(﹣)÷=•=x(x﹣2),∵x≠±2且x≠0,∴取x=1,则原式=1×(1﹣2)=1×(﹣1)=﹣1.20.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB交BC于点E,F是BD中点.求证:EF平分∠BED.【分析】根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ABD=∠BDE,证明EB=ED,根据等腰三角形的三线合一证明结论.【解答】证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥AB,∴∠ABD=∠BDE,∴∠BDE=∠CBD,∴EB=ED,∵EB=ED,F是BD中点,∴EF平分∠BED.21.2019年是新中国成立70周年,在“庆祝新中国成立70年华诞”主题教育活动月,深圳某学校组织开展了丰富多彩的活动,活动设置了“A:诗歌朗诵展演,B:歌舞表演,C:书画作品展览,D:手工作品展览”四个专项活动,每个学生限选一个专项活动参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图所示的不完整的条形统计图和扇形统计图:(1)本次随机调查的学生人数是60人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角为108度.(4)小涛和小华各自随机参与其中的一个专项活动,请你用画树状图或列表的方式求他们恰好选中同一个专项活动的概率.【分析】(1)从两个统计图中可得“A组”的有15人,占调查人数的28%,可求出调查人数;(2)求出“C组”部分的人数,即可补全条形统计图;(3)样本中“B组”占调查人数的,因此圆心角占360°的,可求出圆心角的度数;(4)画出树状图,由概率公式即可得出结果.【解答】解:(1)15÷25%=60人,答:本次随机调查的学生人数是60人;故答案为:60;(2)C组:60﹣15﹣18﹣9=18人,补全条形统计图如图所示:(3)B”所在扇形的圆心角为:360°×=108°故答案为:108;(4)画树状图如图2所示:共有16个等可能的结果,小涛和小华恰好选中同一个主题活动的结果有4个,∴小涛和小华恰好选中同一个主题活动的概率==.22.某次台风来袭时,一棵笔直大树树干AB(树干AB垂直于水平地面)被刮倾斜后折断倒在地上,树的顶部恰好接触到地面D处,测得∠CDA=37°,∠ACD=60°,AD=5米,求这棵大树AB的高度.(结果精确到0.1米)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)【分析】过点A作AE⊥CD于点E,解Rt△AED,求出DE及AE的长度,再解Rt△AEC,得出CE及AC的长,进而可得出结论.【解答】解:过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.∵在Rt△AED中,∠ADC=37°,∴cos37°===0.8,∴DE=4,∵sin37°===0.6,∴AE=3.在Rt△AEC中,∵∠CAE=90°﹣∠ACE=90°﹣60°=30°,∴CE=AE=,∴AC=2CE=2,∴AB=AC+CE+ED=2++4=3+4(米).答:这棵大树AB原来的高度是(3+4)米.23.某酒店计划购买一批换气扇,已知购买2台A型换气扇和2台B型换气扇共需220元;购买3台A型换气扇和1台B型换气扇共需200元.(1)求A,B两种型号的换气扇的单价.(2)若该酒店准备同时购进这两种型号的换气扇共60台,并且A型换气扇的数量不多于B型换气扇数量的2倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)根据题意,可以得到相应的二元一次方程组,从而可以求得A,B两种型号的换气扇的单价;(2)根据题意,可以得到费用与购买A型换气扇数量的函数关系,然后根据一次函数的性质,即可得到最省钱的购买方案.【解答】解:(1)设A,B两种型号的换气扇的单价分别为a元、b元,,得,答:A,B两种型号的换气扇的单价分别为45元、65元;(2)最省钱的购买方案是购买A型换气扇40台,B型换气扇20台,理由:设购买A型换气扇x台,则购买B型换气扇(60﹣x)台,费用为w元,w=45x+65(60﹣x)=﹣20x+3900,∵x≤2(60﹣x),∴x≤40,∴当x=40时,w取得最小值,此时w=3100,60﹣x=20,即最省钱的购买方案是购买A型换气扇40台,B型换气扇20台.24.问题背景:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.证明:过点C作AB的平行线,过点B作AC的平行线,两平行线交于点E,连接DE.∵AB∥CE,AC∥BE.∴四边形ABEC为平行四边形,则AC=BE,AB=CE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,CD=DE.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的两个填空.迁移应用:如图2,正方形ABCD的边长为4,点M在边AB上,点N在边CD上,点O在MN上,过点O作MN的垂线,交AD于点F,交BC于点E.求证:①MN=EF;②FM+NE≥4.联系拓展:如图3,△ABC为等腰三角形,AB=AC,过点A作BC的平行线l,点D在直线l上,点A到BD的距离为2,求线段CD的最小值.【分析】问题背景:利用平行四边形的性质以及等边三角形的性质即可解决问题.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.证明△FHE≌△MKN(AAS)可得结论.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.证明△MNG 是等腰直角三角形即可解决问题.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接P A交BD于O.证明AP=CD,求出P A的最小值即可解决问题.【解答】解:问题背景:根据平行四边形的性质可知AC=BE,根据等边三角形的性质可知CD=DE,故答案为BE,DE.迁移应用:①如图2中,作FH⊥BC于H,MK⊥CD于K.∵四边形ABCD是正方形,∴∠A=∠B=∠C=90°,∵FH⊥BC,∴∠FHB=90°,∴四边形AFHB是矩形,∴FH=AB,同理可证:MK=BC,∵AB=BC,∴FH=MK,∵MN⊥EF,∴∠EON=∠ECN=90°,∴∠MNK+∠CEO=180°,∵∠FEH+∠CEO=180°,∴∠MNK=∠FEH,∵∠FHE=∠MKN=90°,∴△FHE≌△MKN(AAS),∴EF=MN.②如图2中,以EF,EM为邻边作平行四边形FMGE,连接NG.∴FM=EG,FM∥EG,EF=MG,EF∥MG,∴∠NOE=∠NMG=90°,∵MN=EF,∴MN=MG,∴GN=MG=EF,∵FM+EN=EG+EN≥NG,∵EF≥AB=4,∴FM+NE≥4.联系拓展:如图3中,以AD,AB为邻边作平行四边形ADPB,连接P A交BD于O.∴DP=AB=BC,∴∠DPB=∠ABC=∠ACB,∵DP=AC,∠DPB=∠ACB,PC=OC,∴△DPC≌△ACP(SAS),∴DC=AP,∵A到DB的距离为2,∴AO≥2,∴DC=AP=2AO≥4,∴CD的最小值为4.25.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=,试求的值.【分析】(1)连接OE,由圆周角定理证得∠EAB+∠B=90°,可得出∠OAE=∠AEO,则∠PEA+∠AEO=90°,即∠PEO=90°,则结论得证;(2)连接OD,证得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF=2∠B,∠AOD=2∠B,可证得∠PEF=∠AOD=∠AGF,则结论得证;(3)可得出tan∠P=tan∠ODF=,设OF=5x,则DF=12x,求出AE,BE,得出,证明△PEA∽△PBE,得出,过点H作HK⊥P A于点K,证明∠P=∠P AH,得出PH=AH,设HK=5a,PK=12a,得出PH=13a,可得出AH=13a,AG=10a,则可得出答案.【解答】解:(1)证明:如图1,连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠B=90°,∵OA=OE,∴∠OAE=∠AEO,∴∠B+∠AEO=90°,∵∠PEA=∠B,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴=,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=,设OF=5x,则DF=12x,∴OD==13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE==4x,BE==6x,∵∠PEA=∠B,∠EP A=∠BPE,∴△PEA∽△PBE,∴,∵∠P+∠PEF=∠F AG+∠AGF=90°,∴∠HEG=∠HGE,∴∠P=∠F AG,又∵∠F AG=∠P AH,∴∠P=∠P AH,∴PH=AH,过点H作HK⊥P A于点K,∴PK=AK,∴,∵tan∠P=,设HK=5a,PK=12a,∴PH=13a,∴AH=13a,PE=36a,∴HE=HG=36a﹣13a=23a,∴AG=GH﹣AH=23a﹣13a=10a,∴.26.如图,抛物线y=x2﹣ax+a﹣1与x轴交于A,B两点(点B在正半轴上),与y轴交于点C,OA=3OB.点P在CA的延长线上,点Q在第二象限抛物线上,S△PBQ=S△ABQ.(1)求抛物线的解析式.(2)求直线BQ的解析式.(3)若∠P AQ=∠APB,求点P的坐标.【分析】(1)令y=x2﹣ax+a﹣1=0,解得:x=a﹣1或1,故点A、B的坐标分别为:(a ﹣1,0)、(1,0),即可求解;(2)S△PBQ=S△ABQ,则△PBQ和△ABQ底边BQ边上的高相等,故直线PC∥BQ,即可求解;(3)证明△PBQ≌△AQB(SAS),则∠PQB=∠ABQ=45°,则PQ∥y轴,即可求解.【解答】解:(1)令y=x2﹣ax+a﹣1=0,解得:x=a﹣1或1,故点A、B的坐标分别为:(a﹣1,0)、(1,0),∵OA=3OB,故1﹣a=3,解得:a=﹣2,故抛物线的表达式为:y=x2+2x﹣3;(2)对于y=x2+2x﹣3,令x=0,则y=﹣3,故点C(0,﹣3),∵S△PBQ=S△ABQ,∴△PBQ和△ABQ底边BQ边上的高相等,故直线PC∥BQ,设直线AC的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=﹣x﹣3,则设直线BQ的表达式为:y=﹣x+b,将点B的坐标代入上式并解得:b=1,故直线BQ的表达式为:y=﹣x+1;(3)设直线PB交AQ于点D,由直线BQ的表达式知∠ABQ=45°,由(2)知PC∥BQ,∴∠QAP=∠AQB,∠BP A=∠QBP,而∠P AQ=∠APB,∴∠AQB=∠PBQ,∴DB=DQ,∵∠P AQ=∠APB,∴DP=DA,∴P A=AQ,而BQ=BQ,∴△PBQ≌△AQB(SAS),∴∠PQB=∠ABQ=45°,∴PQ∥y轴,联立直线PQ和抛物线的表达式,得,解得或,即x=1或﹣4(舍去1),故点Q的横坐标为﹣4,即为点P的横坐标,而点P在直线AC:y=﹣x﹣3,故点P(﹣4,1).。

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为3cm和4cm,且这两边的夹角为90°,则这个三角形的周长为多少cm?A. 6cmB. 7cmC. 8cmD. 10cm2. 下列哪个数是有理数?A. √2B. √3C. √5D. √93. 若a、b为实数,且a≠b,则下列哪个选项是正确的?A. |a|=|b|B. a²=b²C. a+b=0D. a-b=04. 下列哪个选项是二次函数?A. y=2x+1B. y=3x²-2x+1C. y=x³+2x²+1D. y=4x-35. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为多少cm?A. 26cmB. 32cmC. 36cmD. 40cm二、判断题(每题1分,共5分)1. 若两个角的和为90°,则这两个角互为余角。

()2. 任何一个实数的平方都是非负数。

()3. 若a、b为实数,且a≠b,则|a|=|b|。

()4. 一次函数的图像是一条直线。

()5. 任何一个等腰三角形的底角相等。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为____cm。

2. 若|a|=3,则a的值为____。

3. 下列函数中,____是正比例函数。

4. 若两个角的和为180°,则这两个角互为____角。

5. 任何一个等腰三角形的底角相等,这个性质称为____。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述二次函数的定义。

3. 简述等腰三角形的性质。

4. 简述一次函数的图像特点。

5. 简述余角和补角的定义。

五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为10cm,腰长为13cm,求这个三角形的周长。

2. 已知|a|=3,求a的值。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

中考数学模拟考试题卷(含答案) (9)

中考数学模拟考试题卷(含答案) (9)

考模拟试题(命题:中考数学备课组)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1、 5的相反数是( )A 、51-B 、51C 、5-D 、52、下列运算正确的是( )A 、246x x x +=B 、326()x x -= C 、235a b ab += D 、632x x x ÷=3、下图中所示的几何体的主视图是( )4、要使函数y=1-x 有意义,自变量x 的取值范围是( )A 、x ≥1B 、x ≤1C 、x>1D 、x<15、如图,C 是⊙O 上一点,若圆周角∠ACB=40°,则圆心角∠AOB 的度数是( )A 、50°B 、60°C 、80°D 、90°6、如图,ABCD 中,对角线AC 和BD 相交于点O ,如果 AC=12 , BD=10, AB=m , 那么m 的取值范围是( )A 、10<m<12B 、2<m<22C 、1<m<11D 、5<m<6 7、函数(0)ky k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )图 A B C D8、二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,a-b-c ,b+c-a ,2b a-这四个式子中,值为正数的有( )A 、4个B 、3个C 、2个D 、1个二、填空题(本大题共7个小题,每小题3分,满分21分) 9、如果32a b =,那么a b b-= .10、已知空气的密度为0.001239克/厘米3,用科学记数法表示是 克/厘米3.11、当x = 时,分式2233x x x ---的值为零.12、已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是 .13、某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 米.14、若圆锥的母线长为3 cm ,底面半径为2 cm ,则圆锥的侧面展开图的面积 cm. 15、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个.三、解答题(本大题共10个题,共75分) 16、(5分)计算10)21()2006(312-+---+.17、(8分)化简求值(8分)211121222+---÷+++x x x x x x , 其中x=22-.18、(7分)如图,在等腰梯形ABCD 中,AD ∥BC ,AB=DC ,点E 是BC 边的中点,EM ⊥AB ,EN ⊥CD ,垂足分别为M 、N .求证:EM=EN . 19、(7分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点均在格点上,点C 的坐标为(41)-,.(1)把ABC △向上平移5个单位后得到对应的111A B C △,画出111A B C △,并写出1C 的坐标;(2)以原点O 为对称中心,再画出与111A B C △关于原点O 对称的222A B C △,并写出点2C 的坐标.A .B .C .D .1 2 3…… ENMD CBAO xy-1 120、(8分)某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=680,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过500时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长(精确到0.1m);(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米(精确到0.1m)?(参考数据:sin680=0.9272,cos680=0.3746,tan680=2.4751,sin500=0.766O,cos500=0.6428,tan500=1.1918)21、(6分)为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指字母相同时,他就可以获得一次指定一位到会者为大家表演节目的机会.(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)若小亮参加一次游戏,则他能获得这种指定机会的概率是多少?22、(9分)国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度.某市根据本地的实际情况,制定了纳入医疗保险的农民医疗费用报销规定,享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销.医疗费的报销比例标准如下表:费用范围500元以下(含500元)超过500元且不超过10000元的部分超过10000元的部分报销比例标准不予报销70% 80%(1)设某农民一年的实际医疗费为x元(500<x≤10000),按标准报销的金额为y元,试求y与x的函数关系式;(2)若某农民一年内自付医疗费为2600元(自付医疗费=实际医疗费-按标准报销的金额),则该农民当年实际医疗费为多少元?(3)若某农民一年内自付医疗费不少于4100元,则该农民当年实际医疗费至少为多少元?23、(7分)某县中考有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:频率分布表请结合图表完成下列问题:(1)表中的a=、b= 、c= .(2)请把频数分布直方图补充完整;(3)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”,这次15000名学生中约有多少人评为“B”?24、(7分)某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?25、(11分)如图,在直角坐标系中,以点A(3,0)为圆心,以32为半径的圆与x轴交于B、C两点,与y轴交于D、E两点.(1)求D点坐标.(2)若B、C、D三点在抛物线cbxaxy++=2上,求这个抛物线的解析式.(3)若⊙A的切线交x轴正半轴于点M,交y轴负半轴于点N,切点为P,∠OMN=30º,试判断直线MN是否经过所求抛物线的顶点?说明理由.分组频数频率49.5~59.5 20 b59.5~69.5 32 0.0869.5~79.5 a 0.2079.5~89.5 124 c89.5~100.5 144 0.36合计400 1PoNMEDCBAyx成绩(分)频数(人)6040208010012014016049.559.569.579.589.5100.532124144双柏县妥甸中学数学中考模拟试题参考答案一、选择题1. C2. B3. D4. A5. C6. C7. C8. A二、填空题9. 12 10. 1.239×10-3 11. -1 12. 外切 13. 4.8 14. 6π 15. 2n-1 三、解答题16. 331+. 17. 化简得 2x x +, 求值得 12-.18. 证明:∵AD ∥BC ,AB=DC , ∴∠B=∠C.∵点E 是BC 边的中点, ∴BE=CE.∵EM ⊥AB ,EN ⊥CD , ∴∠BME=∠CNE=90°. ∴△BME ≌△CNE, ∴EM=EN.19. 画图答案如右图所示:(1) C 1 ( 4 , 4 ) ; (2) C 2 ( - 4 , - 4 ).20. 解:(1)作BE ⊥AD ,E 为垂足,则BE=AB ·sin68°=22sin68°=20.40≈20.4(m ).(2)作FG ⊥AD ,G 为垂足,连接FA ,则FG=BE .∵AG=tan 50FG︒=17.12,AE=AB ·cos68°=22cos68°=8.24, ∴BF=AG-AE=8.88≈8.9(m ), 即BF 至少是8.9米. 21.22. 解:(1)y = 0.7(x - 500) = 0.7x - 350 (500<x ≤10000).(2)设该农民一年内实际医疗费为x 元,则当x ≤500时,不合题意;当500<x ≤10000时,有500+(x-500)×0.3=2600,解之得 x=7500(元), 答:(略). (3)设该农民一年内实际医疗费为x 元,∵500+(10000-500)×0.3=3350<4100, ∴x >10000.根据题意有 500+(10000-500)×0.3+(x-10000)×0.2≥4100,解之得 x ≥13750, 答:(略).23. 解:(1)表中的a = 80 、b= 0.05 、c= 0.31 .(2) (图略)(3)15000×(0.20+0.31)= 7650(人), 答:(略).24. 解:设甲工厂每天能加工x 件,则乙工厂每天能加工(x +20)件.1200x- 120020x + = 10, 解得x 1 = 40,x 2 = -60.经检验,x 1 = 40,x 2 = -60都是原方程的根. ∵工作效率不能为负数, ∴x = 40. 当x = 40时,x +20 = 40+20 = 60.∴甲工厂每天能加工40件,乙工厂每天能加工60件.25. 解:(1)连结AD ,得OA=3,AD=23 , ∴OD=3, ∴D(0,-3).(2)由B(-3,0),C(33,0),D(0,-3)三点在抛物线c bx ax y ++=2上,得 ⎪⎩⎪⎨⎧=-++=+-=c c b a c b a 333270330 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==333231c b a PoN MED C B AyxENM D C BA∴抛物线为 3332312--=x x y . (3)连结AP ,在Rt △APM 中,∠PMA==30º,AP=23, ∴AM=43, ∴ M(53,0).∵5333530tan =⋅=︒⋅=MO ON , ∴N(0,-5). 设直线MN 的解析式为 y=kx+b, 由于点M(53,0)和N(0,-5)在直线MN 上,得05b ⎧=+⎨-⎩ 解得35k b ⎧=⎪⎪⎨=-⎪⎪⎩∴直线MN 的解析式为 533-=x y . ∵ 抛物线的顶点坐标为 (3,-4) , 当x=3时,y =45333533-=-⨯=-x , ∴点(3,-4) 在直线533-=x y 上, 即直线MN 经过抛物线的顶点.。

中考数学模拟试卷九新人教版中考数学.doc

中考数学模拟试卷九新人教版中考数学.doc

2019-2020 年中考数学模拟试卷九新人教版中考数学一、精心选一选,相信自己的判断!( 本大题共12 个小题,每小题 3 分,共 36 分)1.光年是天文学中的距离单位, 1 光年约是 9500000000000km,用科学计数法表示为 cA .950 1010 kmB .95 1011 kmC . 9.5 1012 kmD .0.95 1013 km 2.把多项式2x2 8x 8分解因式,结果正确的是()2 2C.2 x 2 2 2A.2x 4 B.2 x 4 D.2 x 23.已知:1 x 4 则下列式子中有意义的是()A.x 1 1 B .x 1 C.x 2 4 x D.5 x4 x 4 x x 1 4.下列运算中,正确的是()A.若a b ,则 a b B .若 a 2 b 2 0 ,则a b 0C.若a 1 9 ,则 a 4 D .若 a b 0, ab 0 ,则a 0 b 5.下列说法中错误的是()A.正三角形既是轴对称图形也是中心对称轴图形;B.三边长分别为m2n2、2mn和m2n2(m n 0)的三角形是直角三角形;C.等腰三角形底边上的高、中线及顶角平分线重合;D.正五边形不可以进行平面镶嵌.6.如图:在Rt △ABC中,∠ C=90°, AB=4,△ ABC的面积为2,则 tan A +tan B等于 D4 5 16A.5 B.2 C.5 D. 4主视图左视图2 24 3第 6 题图第 7 题图7.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是()2 .2 2 2A. 12cm B. 8cm .C. 6cm.D. 4cm .8.某市 2008 年国内生产总值( GDP )比 2007 年增长了 12%,由于受到国际金融危机的影响,预计今年比 2008 年增长 7%,若这两年 GDP 年平均增长率为 x %,则 x %满足的关系是( )A . 12% 7% x%B . (1 12%)(1 7%) 2(1 x%)C . 12%7% 2 x%D . (1 12%)(1 7%) (1 x%) 29.如图, 在△ ABC 中, AD ⊥ BC , CE ⊥ AB ,垂足分别为 D 、E ,AD 、CE 交于点 H ,且 EHEB 、小马虎在研究时得到四个结论:①∠ABC=45° ② AH=BC ③ AE - BE=CH ④⊿ AEC 是等腰直角三角形.你认为正确的序号是( )A . ①②③④B .②③④C .①②③D .②③10.化简 (xx ) 1 的结果是( )x 2 x 2 4 x 2A .4xB .- 4C . 4xD . 411.如图: AB 是⊙ O 的直径,且 AB=10,弦 MN 的长为 8,若弦 MN 的两端在圆上滑动时,始终与AB 相交,记点 A 、 B 到 MN 的距离分别为 h , h ,则 |h - h | 等于()1212A . 5B.6 C. 7D. 8AyEO xHBD Cx=1 第 9 题图第 11 题图第 12 题图12.二次函数 y ax 2bx c( a 0) 的图象如图所示,则下列结论中:(1) c0 ;(2)b 0 ;( 3) 4a 2b c 0 ; ( 4) (a c) 2b 2 ,正确的有() A . 3 个B . 2 个C . 1 个D . 0 个二、细心填一填,试试自己的身手! (本大题共 6 个小题,每小题3 分,共 18 分 )13.已知反比例函数 y ( m 3)x m 26 m 7,当x0时 , y 随x 的减小而减小 , 则 m=14.如图所示,直线a ∥b ,点 B 在直线 b 上,且 AB BC , ACD 51 ,则 BAD.15.我们知道:平均数,中位数和众数都是数据的代表,它们从不同侧面反映了数据的平均水平.有一次:小王、小李和小张三位同学举行射击比赛,每人打 10 发子弹,命中环数如下:小王: 9 7 6 9 9 10 8 8 7 10小李: 7 10 9 8 9 10 6 8 9 10小张: 10 8 9 10 7 8 9 9 10 10某种统计结果表明,三人的“平均水平” 都是9环.每人运用了平均数、中位数和众数中的一种“平均水平” , 则小王运用了;小李运用了;小张运用了.16.若关于x的分式方程x a 3 1有正数解,则 a 的取值范围是.x 1 x17.正方形 1 1 1,2 2 2 1, 3 3 3 2,⋯按如图所示的方式放置.点1、 2、3,⋯和点1、 2、 3,⋯AB CO A B CC AB CC A A A C C C分别在直线 y kx b (k>0)和x轴上,已知点B1(1,1),B2(3,2),则 B6的坐标是.yA 3 AA B B3A 2B2M PA1B 1 BC D NO C1 C2 C3 x O第 17 题图第 11 题图第 18 题图18.如图:点 P 是∠AOB内一定点 , 点M、N分别在边OA、OB上运动,若∠AOB =30°,OP 3 2 ,则PMN 的周长的最小值为______________.三、用心做一做,显显自己的能力!(本大题共7 小题,满分66 分)19.(本题满分 10 分)x 3 ,( 1)( 5 分)解不等式组: 2 3 x 1 ,并在数轴上把解集表示出来.1 3(x 1) ≤ 8 x- 3 - 2 - 1 0 1 2 3 x3 sin 452010( 2)( 5 分)已知:x 2 cos45 1, y1, 求xy的值.20.(本题满分 6 分)如图:随机闭合开关S1、S2、 S3中的两个,用树形图法求能让灯泡发光的概率.第 21 题图21.(本题满分8 分)已知关于 x 的一元二次方程: x2 mx 2m 1 0 的两个实数根分别是x1、 x2,且 x1 2 x2 2 14 ,求 m 的值.22.(本题满分10 分)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长10 3 cm,其一个内角为60°.60°⋯⋯dL( 1)若d26 时,则该纹饰要231 个菱形图案,求纹饰的长度L;( 2)当d20 时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?23.(本题满分10 分)水产公司有一种海产品共 2 104千克,为寻求合适的销售价格,进行了8 天试销,试销情况如下:第1第2第3第4第5第6第7第8天天天天天天天天售价x(元/ 千400 250240 200150125120 克 )销售量y( 千3040 48 608096100 克 )观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克) 之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)(2)(3) 写出这个反比例函数的解析式,并补全表格;在试销 8 天后,公司决定将这种海产品的销售价格定为150 元 / 千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?在按 (2) 中定价继续销售15 天后,公司发现剩余的这些海产品必须在不超过 2 天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?24.(本题满分10 分)已知,如图在矩形ABCD中,点 0 在对角线 AC上,以 OA 长为半径的圆0 与 AD、AC分别交于点E、F.∠ACB=∠ DCE.( 1)判断直线CE与⊙ O的位置关系,并证明你的结论;2(2)若 tan ∠ACB=, BC=2,求⊙ O的半径.2第 24 题图25.(本题满分12 分)如图,抛物线经过A(4,0), B(10),, C (0, 2) 三点.( 1)求出抛物线的解析式;( 2)P是抛物线上一动点,过P 作PM x 轴,垂足为M,是否存在P 点,使得以A, P, M为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;( 3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.yO B 1 4 A x2C第 25 题图参考答案及评分标准一、精心选一选,相信自己的判断!1~5:CCDBA;6~10: DADBA; 11~12: BA.二、细心填一填,试试自己的身手!13, m=2 ; 14, 39 °;15, 众数、中位数、平均数;16, a 2 且 a 1;17, B(127,64);18, 3 2 .三、用心做一做,显显自己的能力!19. (1) .解:由①得:x 1;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分由②得: x 2 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分综合得: 2 x 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分数轴上表示如右图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分- 3 - 2 - 1 0 1 2 3 x(2) .解:x 221 2 1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分2y 3 2 31 2 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分2 2∴ xy ( 2 1)( 2 1) 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴xy 2010 12010 1⋯⋯⋯⋯⋯⋯⋯⋯⋯5分20:解:(树形图略)能让灯泡发光的概率为2⋯⋯⋯⋯⋯⋯⋯⋯⋯6分321.解:由已知:x1 x2 m , x1 x2 2m 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分而 x12 x22 x1 x2 2 2 x1 x2 14∴ m 2 2 2m 1 14 ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分解得:m1 6,m2 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分检验知 , 当m 6 ,原方程无实数根,舍去故符合条件的m 的值为m2⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22.解:(1)菱形图案水平方向对角线长为10 3 cos30o 2 =30cm按题意, L 30 26 (231 1) 6010 cm⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分( 2)当d 20cm时,设需x个菱形图案,则有:30 20 ( x 1) 6010⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分解得 x 300即需 300 个这样的菱形图案.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分23.解: (1) 函数解析式为 y 12 000 .⋯⋯ 2 分x填表如下:第 1 第 2 第 3 第 4 第 5 第 6 第 7 第 8天天天天天天天天售价 x(元/千400 300 250 240 200 150 125 120克)销售量 y(千30 40 48 50 60 80 96 100克)⋯⋯ 1 分(2) 2 104-(30+40+48+50+60+80+96+100)=1 600 ,即 8 天试销后,余下的海产品还有 1 600 千克.⋯⋯1分12 000⋯⋯ 1 分当 x=150时,y =80.1501 600 ÷ 80=20,所以余下的这些海产品预计再用20 天可以全部售出.⋯⋯ 1 分(3) 1 600-8 0× 15=400, 400÷2=200,即如果正好用 2 天售完,那么每天需要售出200 千克.⋯⋯ 1 分当 y=200时,x 12 000=60.200所以新确定的价格最高不超过60 元 / 千克才能完成销售任务.⋯⋯ 1 分24.解: (1) 直线 CE与⊙ O相切.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 证明如下:∵四边形 ABCD为矩形∴BC∥AD,∠ ACB=∠DAC又∵∠ ACB=∠DCE ∴∠ DAC=∠D CE连接 0E,则∠ DAC=∠AEO=∠DCE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分分∵∠ DCE+∠DEC=90°∴∠ AEO+∠DEC=90°∴∠ DEC=90°∴CE与⊙O相切.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分AB 2(2) ∵tan ∠ACB= , BC=2BC 2∴AB=BCtan∠ACB= 2 ,AC= 62又∵∠ ACB=∠DCE∵tan∠DCE=2∴DE=DCtan∠DCE=l⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分方法一:在 Rt △ CDE中 CE= CD2 DE 2 3连接 OE,令⊙ O的半径为r,则在 Rt △ COE中,CO 2 OE 2 CE 2 即 ( 6 r )2 r 2 3解得: r6⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分4方法二: AE=CD-AE= 1 过点 O作 OM⊥AE于点 M 则 AM 1 AE 12 2在Rt△ AMO中,1 OA AM2 6⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分cos EAO 2 4625.解:( 1)该抛物线过点 C (0, 2) ,可设该抛物线的解析式为y ax 2 bx 将A(4,0) , B(1,0) 代入,yDPBMAO14 xE2 C(第 25 题图)2.16a 4b 2 , a 1,0 2得2 0. 解得 5a bb.2 此抛物线的解析式为 y 1 x2 5x 2.·············( 3 分)2 2( 2)存在.···························( 4 分)如图,设 P 点的横坐标为m ,则 P 点的纵坐标为1 m2 5 m 2 ,2 21 m2 5m 2 .当 1 m 4 时,AM4 m , PM22又COAPMA 90°,AMAO2①当OC 时,PM 1△ APM ∽△ ACO ,即 4 m 21 m2 5m 2 .22解得 m 1 2, m 2 4 (舍去), P(2,1) . ·············· ( 6 分)②当AMOC 1 时, △ APM ∽△ CAO ,即 2(4 m) 1 m 2 5 m 2 . PMOA 222解得 m 1 4 , m 2 5(均不合题意,舍去)当 1 m4 时, P(2,1) . ····················( 7 分) 类似地可求出当 m4 时, P(5, 2) . ···············( 8 分)当 m 1时, P( 3, 14) .综上所述,符合条件的点P 为 (2,1) 或 (5, 2) 或 ( 3, 14) . ····· ( 9 分)( 3)如图,设 D 点的横坐标为 t (0t 4) ,则 D 点的纵坐标为1 t2 5 t 2 .22过 D 作 y 轴的平行线交 AC 于 E .由题意可求得直线AC 的解析式为 y12 . ··········· ( 10 分)x2E 点的坐标为1 2 .t , t2DE1 t2 5 t 21 t 21 t2 2t . ··········( 11 分)2 2 22S △ DAC1 1 t2 2t4t 2 4t(t 2)24 .22当 t2 时, △DAC 面积最大.D (2,1) .。

中考数学模拟试卷9带答案

中考数学模拟试卷9带答案

中考数学模拟试卷(9)1.−12的倒数是( )A. −2B. 2C. −12D. 122.如图所示的几何体的左视图是( )A. B. C. D.3.下列算结果正是( )A. −2x2y2⋅2xy=−2x3y4B. 28x4y2÷7x3y=4xyC. 3x2y−5xy2=−2x2yD. (−3a−2)(3a−2)=9a2−44.2015年春运期间,全国有23.2亿人次进行东西南北大流动,用科学记数法表示23.2亿是( )A. 23.2×108B. 2.32×109C. 232×107D. 2.32×1085.已知四边形ABCD是平行四边形,下列结论中不正确的是( )A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90∘时,它是矩形D. 当AC=BD时,它是正方形6.在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为15,那么m的值是( )A. 12B. 15C. 18D. 217.如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为( )A. B.C. D.8.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(−1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③−1≤a≤−2;④4ac−b2>8a;3其中正确的结论是( )A. ①③④B. ①②③C. ①②④D. ①②③④9.化简:√8−√2=______.10.分解因式:x3−6x2+9x=______.11.某校女子排球队队员的年龄分布如表:则该校女子排球队队员的平均年龄是______岁.年龄131415人数47412.若|b−1|+√a−4=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是______.13.如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90∘,那么点B的对应点B′的坐标是____.14.将一副三角尺如图所示叠放在一起,则BE的值是EC______.15.如图a是长方形纸带,∠DEF=20∘,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是______度.16.两个反比例函数y=3x ,y=6x在第一象限内的图象如图所示,点P1,P2,P3,…,P2015在反比例函数y=6x图象上,它们的横坐标分别是x1,x2,x3,…,x2015,纵坐标分别是1,3,5,…,共2015个连续奇数,过点P1,P2,P3,…,P2015分别作y轴的平行线,与y=3x的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…Q2015(x2015,y2015),则y2015=______.17.请你先化简:(3x+1−x+1)÷(x2−4x+4x+1),然后从−1≤x≤2中选一个合适的整数作为x的值代入求值.18.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?月均用水量x(t)频数(户)频率0<x≤560.125<x≤10______0.2410<x≤15160.3215<x≤20100.2020<x≤254______25<x≤3020.0419.现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,”,她的这种看法是否正确?说明理由.所以出现‘和为4′的概率是1320.据报道,四川雅安发生7.0级地震后,在对灾区的救援中,不少企业都为赈灾救援提供了便利.某公司获悉雅安急需某药品,就用320000元购进了一批这种药品,运到雅安后很快用完,某公司又用680000元购进第二批这种药品,所购数量是第一批购进数量的2倍,但每件药品进价多了10元.(1)该公司两次共购进这种药品多少件?(2)若一件药品一天可以满足15人使用,那么这些药品可以在30天内至少满足多少人使用?21.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60∘.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45∘,已知山坡AB的坡度i=1:√3,AB=10米,AE=15米.(i=1:√3是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:√2≈1.414,√3≈1.732)22.如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=6,tan∠PDA=3,求OE的长.423.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个)…30405060…销售量y(万个)…5432…同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?24.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.25.如图,抛物线y=ax2−(2a+1)x+b的图象经过(2,−1)和(−2,7)且与直线y=kx−2k−3相交于点P(m,2m−7).(1)求抛物线的解析式;(2)求直线y=kx−2k−3与抛物线y=ax2−(2a+1)x+b的对称轴的交点Q的坐标;(3)在y轴上是否存在点T,使△PQT的一边中线等于该边的一半?若存在,求出点T的坐标;若不存在请说明理由.答案和解析【答案】1. A2. C3. B4. B5. D6. B7. A8. B9. √210. x(x−3)211. 1412. k≤4且k≠013. (1,0)14. √3315. 12016. 2014.517. 解:原式=4−x2x+1÷(x−2)2x+1=(2−x)(2+x)x+1⋅x+1(x−2)2=2+x2−x由于x≠−1且x≠2当x=0时,原式=1当x=1时,原式=318. 120.0819. 解:(1)根据题意画树状图如下:数字相同的情况有2种,则,,则这个游戏公平;(2)不正确,理由如下;因为“和为4”的情况只出现了1次,所以和为4的概率为14,所以她的这种看法不正确.20. 解:(1)设公司第一次购进x件药品,由题意得:320000x =6800002x−10,解这个方程,得x=2000,经检验,x=2000是所列方程的根.2x=4000,4000+2000=6000(件),答:某公司两次共购进这种药品6000件.(2)设这些药品可以在30天内满足y人使用:y15×30≤6000,解这个不等式,得y≤3000所以这些药品可以在30天内至少满足3000人使用.21. 解:(1)过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH=√3=√33,∴∠BAH=30∘,∴BH=12AB=5;(2)∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=5,AH=5√3,∴BG=AH+AE=5√3+15,Rt△BGC中,∠CBG=45∘,∴CG=BG=5√3+15.Rt△ADE中,∠DAE=60∘,AE=15,∴DE=√3AE=15√3.∴CD=CG+GE−DE=5√3+15+5−15√3=20−10√3≈2.7m.答:宣传牌CD高约2.7米.22. (1)证明:PA ,PC 与⊙O 分别相切于点A ,C ,∴∠APO =∠EPD 且PA ⊥AO ,∴∠PAO =90∘,∵∠AOP =∠EOD ,∠PAO =∠E =90∘,∴∠APO =∠EDO ,∴∠EPD =∠EDO ;(2)解:连接OC ,∴PA =PC =6,∵tan∠PDA =34, ∴在Rt △PAD 中,AD =8,PD =10,∴CD =4,∵tan∠PDA =34, ∴在Rt △OCD 中,OC =OA =3,OD =5,∵∠EPD =∠ODE ,∴△OED ∽△DEP ,∴PD DO =PE DE =EDOE =2,∴DE =2OE在Rt △OED 中,OE 2+DE 2=OD 2,即5OE 2=52,∴OE =√5. 23. 解:(1)根据表格中数据可得出:y 与x 是一次函数关系,设解析式为:y =ax +b ,则{30a +b =540a +b =4, 解得:{a =−110b =8, 故函数解析式为:y =−110x +8;(2)根据题意得出:z=(x−20)y−40=(x−20)(−110x+8)−40=−110x2+10x−200,=−110(x2−100x)−200=−110[(x−50)2−2500]−200=−110(x−50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即−110(x−50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=−110(x−50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=−110x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.24. 证明:(1)如图2,连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE,∵MD=ME,∴∠MAD=∠MAE,∴∠MAD−∠BAD=∠MAE−∠CAE,即∠BAM=∠CAM,在△ABM和△ACM中,{AB=AC∠BAM=∠CAM AM=AM,∴△ABM≌△ACM(SAS),∴MB=MC;(2)MB=MC.理由如下:如图3,延长DB、AE相交于E′,延长EC交AD于F,∴BD=BE′,CE=CF,∵M是ED的中点,B是DE′的中点,∴MB//AE′,∴∠MBC=∠CAE,同理:MC//AD,∴∠BCM=∠BAD,∵∠BAD=∠CAE,∴∠MBC=∠BCM,∴MB=MC;(3)MB=MC还成立.如图4,延长BM交CE于F,∵CE//BD,∴∠MDB=∠MEF,∠MBD=∠MFE,又∵M是DE的中点,∴MD=ME,在△MDB和△MEF中,{∠MDB=∠MEF ∠MBD=∠MFE MD=ME,∴△MDB≌△MEF(AAS),∴MB=MF,∵∠ACE=90∘,∴∠BCF=90∘,∴MB=MC.25. 解:(1)∵抛物线y=ax2−(2a+1)x+b的图象经过(2,−1)和(−2,7),∴{4a−4a−2+b=−14a+4a+2+b=7,解得{a=12b=1,∴抛物线的解析式为y=12x2−2x+1;(2)∵抛物线的图象经过点P(m,2m−7),∴2m−7=12m2−2m+1,解得m1=m2=4,∴点P的坐标为(4,1),∵直线y=kx−2k−3经过点P,∴4k−2k−3=1,解得k=2,∴直线的解析式为y=2x−7,∵y=12x2−2x+1=12(x−2)2−1,∴抛物线的对称轴为直线x=2,∴在y=2x−7中,当x=2时,y=2×2−7=−3,∴点Q的坐标为(2,−3);(3)设点T的坐标为(0,t),M为PQ的中点,连结TM,根据题意得:TM=12PQ,即TM=PM=QM,∴点T在以PQ为直径的圆上,∴∠PTQ=90∘,∴△PQT为直角三角形,同理,点M为PT或QT的中点时,△PQT仍为直角三角形,作PA⊥y轴于A,交直线x=2于点C,QB⊥y轴于B,则AT=|1−t|,BT=|−3−t|,∵PA=4,QB=2,PC=2,CQ=4,∴PQ=√PC2+CQ2=√20=2√5,①当∠PTQ=90∘时,∵PQ2=TQ2+TP2=BT2+QB2+PA2+AT2=|−3−t|2+22+|1−t|2+42=20,∴2t2+4t+10=0,即(t+1)2=−4,∵(t+1)2≥0,∴此方程无解;②当∠PQT=90∘时,PQ2+QT2=PT2,∴(2√5)2+22+|−3−t|2=42+|1−t|2,解得t=−2;③当∠QPT=90∘时,TQ2=PT2+PQ2,∴QB2+BT2=PA2+AT2+(2√5)2,∴4+|−3−t|2=16+|1−t|2+20,解得t=3,综上所述,在y轴上存在点T,其坐标分别为(0,3)和(0,−2),使△PQT的一边中线等于该边的一半.【解析】1. 解:−1的倒数是−2,2故选:A.根据乘积为1的两个数互为倒数,可得答案.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2. 解:从左往右看,易得一个长方形,正中有一条横向实线,故选:C.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3. 解:应为−x2y2⋅2y=−xy3,故本项错误;x2y和5xy不是同项不能并,故本选项错误;应为(−3a−)3a−2)=−9a2+故选项误.故B.根据单项式单式的则单项式乘单式的法则,平方公式对各选分析判断后利用法求解.主考查单的法法单项式的除法法,方差公式以及合并同类项的法则,不同类项一定不能合并.4. 【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将23.2亿用科学记数法表示为:2.32×109.故选B.5. 解:∵四边形ABCD是平行四边形,∴当AB=BC或AC⊥BD时,四边形ABCD为菱形,故A、B结论正确;当∠ABC=90∘时,四边形ABCD为矩形,故C结论正确;当AC=BD时,四边形ABCD为矩形,故D结论不正确,故选:D.分别根据菱形、矩形和正方形的判定逐项判断即可.本题主要考查菱形、矩形和正方形的判定,掌握菱形、矩形、正方形是特殊的平行四边形是解题的关键.6. 【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.根据摸到红球的概率为15列出方程,求解即可.【解答】解:由题意得3m =15,解得m=15.故选:B.7. 解:由图示得A>1,A<2,故选:A.根据图示,可得不等式组的解集,可得答案.本题考查了在数轴上表示不等式的解集,先求出不等式的解集,再在数轴上表示出来,注意,不包括点1、2,用空心点表示.8. 【分析】本题主要考查的是二次函数的图象和性质,掌握抛物线的对称轴、开口方向与系数a、b、c之间的关系是解题的关键.①先由抛物线的对称性求得抛物线与x轴另一个交点的坐标为(3,0),从而可知当x>3时,y<0;②由抛物线开口向下可知a<0,然后根据x=−b2a=1,可知:2a+b=0,从而可知3a+b=0+a=a<0;③设抛物线的解析式为y=a(x+1)(x−3),则y=ax2−2ax−3a,令x=0得:y=−3a.由抛物线与y轴的交点B在(0,2)和(0,3)之间,可知2≤−3a≤3.④由4ac−b2> 8a得c−2<0与题意不符.【解答】解:①由抛物线的对称性可求得抛物线与x轴另一个交点的坐标为(3,0),当x>3时,y<0,故①正确;②抛物线开口向下,故a<0,∵x=−b2a=1,∴2a+b=0.∴3a+b=0+a=a<0,故②正确;③设抛物线的解析式为y=a(x+1)(x−3),则y=ax2−2ax−3a,令x=0得:y=−3a.∵抛物线与y轴的交点B在(0,2)和(0,3)之间,∴2≤−3a≤3.解得:−1≤a≤−23,故③正确;④.∵抛物线y轴的交点B在(0,2)和(0,3)之间,∴2≤c≤3,由4ac−b2>8a得:4ac−8a>b2,∵a<0,∴c−2<b2 4a∴c−2<0∴c<2,与2≤c≤3矛盾,故④错误.故选:B.9. 解:原式=2√2−√2=√2.故答案为:√2.先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10. 先提取公因式x,再对余下的多项式利用完全平方公式继续分解.本题考查因式分解提公因式法和公式法的综合运用,熟练掌握因式分解的基本方法是解题的关键.解:x3−6x2+9x,=x(x2−6x+9),=x(x−3)2.故答案为:x(x−3)2.11. 解:根据题意得:(13×4+14×7+15×4)÷(4+7+4)=14(岁),答:该校女子排球队队员的平均年龄是14岁;故答案为:14.根据加权平均数的计算公式列出算式,再进行计算即可.此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.12. 解:∵|b−1|+√a−4=0,∴b−1=0,√a−4=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2−4kb≥0且k≠0,即16−4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.13. 解:如图,将△ABC绕C点按逆时针方向旋转90∘,点B的对应点B′的坐标为(1,0).故答案为:(1,0).本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30∘,45∘,60∘,90∘,180∘.14. 解:∵∠BAC=∠ACD=90∘,∴AB//CD,∴△ABE∽△DCE,∴BEEC =ABCD,∵在Rt△ACB中∠B=45∘,∴AB=AC,∵在Rt△ACD中,∠D=30∘,∴CD=ACtan30∘=√3AC,∴BEEC=√3AC=√33.故答案为:√33.由∠BAC=∠ACD=90∘,可得AB//CD,即可证得△ABE∽△DCE,然后由相似三角形的对应边成比例,可得:BEEC =ABCD,然后利用三角函数,用AC表示出AB与CD,即可求得答案.此题考查了相似三角形的判定与性质与三角函数的性质.此题难度不大,注意掌握数形结合思想的应用.15. 解:根据图示可知∠CFE=180∘−3×20∘=120∘.故答案为:120∘.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.本题考查图形的翻折变换.16. 解:由题意可知:P2015的坐标是(x2015,4029),又∵P2015在y=6x上,∴x2015=64029,∵Q2015在y=3x上,且横坐标为x2015,∴y2015=3x2015=364029=2014.5.故答案为2014.5.要求出y2015的值,就要先求出P2015的横坐标,因为纵坐标分别是1,3,5…,共2015个连续奇数,其中第2015的奇数是2×2015−1=4029,所以P2015的坐标是(x2015,4029),那么可根据P点都在反比例函数y=6x上,可求出此时x2015的值,那么就能得出P2015的坐标,然后将P2015的横坐标代入y=3x中即可求出y2015的值.本题的关键是找出P点纵坐标的规律,以这个规律为基础求出P2015的横坐标,进而来求出y2015的值.17. 根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18. 解:(1)如图所示:根据0<x≤5中频数为6,频率为0.12,则6÷0.12=50,50×0.24=12户,4÷50=0.08,故答案为:12和0.08;(2)6+12+1650×100%=68%;(3)1000×(0.08+0.04)=120户,答:该小区月均用水量超过20t的家庭大约有120户.(1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;(2)根据(1)中所求即可得出不超过15t的家庭总数即可求出,不超过15t的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过20t的家庭数,即可得出1000户家庭超过20t的家庭数.此题主要考查了利用样本估计总体以及频数分布直方图与条形图综合应用,根据已知得出样本数据总数是解题关键.19. 此题考查了游戏的公平性,关键是根据题意画出树状图,求出每件事情发生的概率,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(1)根据题意画树状图,再根据概率公式求出概率,即可得出答案;(2)根据概率公式求出和为4的概率,即可得出答案.20. (1)设公司第一次购进x件药品,则设公司第二次购进2x件药品,根据关键语句“每件药品进价多了10元”可得等量关系:第一次药品的单价=第二次药品的单价−10元,由等量关系列出方程即可;(2)设这些药品可以在30天内满足y人使用,根据题意可得不等关系求出即可.此题主要考查了分式方程的应用,以及一元一次不等式的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程和不等式.21. (1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG 中,∠CBG=45∘,则CG=BG,由此可求出CG的长然后根据CD=CG+GE−DE即可求出宣传牌的高度.此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.22. 本题综合考查了切线长定理,相似三角形的性质和判定,勾股定理的应用,能综合运用性质进行推理和计算是解此题的关键,通过做此题培养了学生的分析问题和解决问题的能力.(1)根据切线的性质即可证明:∠EPD=∠EDO;(2)连接OC,利用tan∠PDA=3,可求出CD=4,再证明△OED∽△DEP,根据相似4三角形的性质和勾股定理即可求出OE的长.23. (1)根据数据得出y与x是一次函数关系,进而利用待定系数法求一次函数解析式;(2)根据z=(x−20)y−40得出z与x的函数关系式,求出即可;(x−50)2+50时x的值,进而得出x(元/个)的取值范围.(3)首先求出40=−110此题主要考查了二次函数的应用以及待定系数法求一次函数解析式、二次函数最值问题等知识,根据已知得出y与x的函数关系是解题关键.24. (1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB//AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC//AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.25. (1)根据抛物线y=ax2−(2a+1)x+b的图象经过(2,−1)和(−2,7),求得a,b的值即可得到抛物线的解析式;(2)先根据抛物线的图象经过点P(m,2m−7),求得点P的坐标,再根据直线y=kx−2k−3经过点P,求得k的值,最后根据抛物线的对称轴为直线x=2,求得点Q的坐标;(3)设点T的坐标为(0,t),M为PQ的中点,连结TM,分三种情况讨论:∠PTQ=90∘时,∠PQT=90∘时,∠QPT=90∘时,分别根据勾股定理列出关于t的方程进行求解即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数解析式、直角三角形的性质、二次函数与坐标轴的交点等知识,分类讨论是解题的关键.。

初三数学升学复习模拟考试题(含答案)

初三数学升学复习模拟考试题(含答案)

初三数学升学复习模拟考试题(含答案)以下是查字典数学网为您推荐的初三数学升学复习模拟考试题(含答案),希望本篇文章对您学习有所帮助。

初三数学升学复习模拟考试题(含答案)一、选择题(本题共有10小题,每小题4分,共40分。

请选出各题中一个符合题意的正确选项,不选,多选,错选,均不得分)1、如果a与-7互为相反数,那么a是()A.0B.C.7D. 12、太阳是太阳系的中心天体,是离我们最近的一颗恒星。

太阳与地球的平衡距离为14960万公里,用科学记数法表示14960万,应记为( )A.14.960108B. 1.496108C. 1.4961010D. 0.14961093、计算:的结果是( )A. B. C. D.4、若一次函数(k0)的图像经过(1,2),则这个函数的图像一定经过点( )A . (0 , 2)B . (-1 , 3)C . (-1, 4)D . (2 , 3)5、从上面看如右图所示的几何体,得到的图形是( )6、如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分BEF,若1=5O,则2的度数为( ).A. 50B. 6OC. 65D. 7O7、某次器乐比赛设置了6个获奖名额,共有ll名选手参加,他们的比赛得分均不相同.若知道某位选手的得分。

要判断他能否获奖,在下列ll名选手成绩的统计量中,只需知道()A.方差B.平衡数C.众数D.中位数8、点A(0,2)向右平移2个单位得到对应点,则点的坐标是( )A.(2,2)B.(2,4)C.(-2,2)D.(2,-2)9、下列各图中,不是中心对称图形的是( )10.甲为一半径为10cm,圆心角为600的扇形玻璃;乙为一个上、下底分别为7cm、12cm且一个底角为450的直角梯形玻璃。

问它们能否从一个边长为5cm正方形木框中穿过吗(玻璃厚度不计)?( )A.甲、乙都能穿过B.甲、乙都不能穿过C.只有乙能穿过D.只有甲能穿试卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分)11、二次根式有意义,则x的取值范围是。

2021年初中毕业生学业(升学)模拟考试数学试卷9(附答案)

2021年初中毕业生学业(升学)模拟考试数学试卷9(附答案)

初中毕业生学业(升学)模拟考试数学试题注意事项:1、 答题前,考生务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号清 楚地填写在答题卡规定的位置上。

2、 答题时,第Ⅰ卷必须用2B 铅笔把答题卡上对应的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号;第Ⅱ卷必须用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上,在试题卷上作答无效。

3、 本试卷满分150分,考试用时120分钟。

第Ⅰ卷一、选择题:(本大题共10小题,每小题4分,共40.0分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上。

1. 已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费( ) A. 17元 B. 19元 C. 21元 D. 23元 2. 为了绿化校园,某班学生共种96棵树苗,其中男生每人种3棵,女生每人种2棵,该班男生人数比女生少8人,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A. {y −8=x3x +2y =96 B. {x −8=y3x +2y =96 C. {y −8=x2x +3y =96D. {x −8=y2x +3y =963. 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所时间相同,设原计划平均每天生产x 机器,根据题意,下面所列方程正确的是( )A.x+50600=x450B. 600x+50=450xC.600x=450x+50D.600x=450x−504. 甲、乙两人共同解关于x ,y 的方程组{ax +by =5 ①3x +cy =2 ②,甲正确地解得{x =2y =−1,乙看错了方程②中的系数c ,解得{x =3y =1,则(a +b +c)2的值为( )A. 16B. 25C. 36D. 495. 如图,正方形ABCD 的边长为10,点A 的坐标为(0,−8),点B 在x 轴上,若反比例函数y =kx (k ≠0)的图象过点C ,则该反比例函数的表达式为( )A. y =6x B. y =−12xC. y=10xD. y=−10x6.O为线段AB上一动点,且AB=2,绕O点将AB旋转半周,则线段AB所扫过的面积的最小值为()A. 4πB. 3πC. 2πD. π7.如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC的面积为16,则△BEF的面积是()A. 2B. 4C. 6D. 88.如图,AD是△ABC的中线,E,F分别是AD及AD延长线上的点,且DE=DF,连接BF,CE,则下列的结论中正确的有()①△BDF≌△CDE;②CE=BF;③△ABD与△ACD的面积相等;④BF//CE.A. 1个B. 2个C. 3个D. 4个9.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B. 540°C. 630°D. 720°10.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR第Ⅱ卷二、填空题(本大题共8小题,共32.0分)(k是常数,k≠3)的图象有一支在第二象限,那么k的取值11.已知反比例函数y=k−3x范围是______.12.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为______ .13.若x,y为实数,且|x+2|+√y−3=0,则(x+y)2012的值为______.14.如图,四边形ABCD中,∠B=88°,AE、CF分别平分∠BAD和∠BCD,且AE//CF,若∠BAE=54°,则∠D的度数等于______.15.如图,在四边形ABCD中,点E,F,G,H分别是AB,CD,AC,BD的中点,若AD=BC=2√5,则四边形EGFH的周长是______.16.如图,已知DC为∠ACB的平分线,DE//BC.若AD=8,BD=10,BC=15,求EC的长=______.17.如图:在△ABC中,∠ACB=90°,CD⊥AB于D点,若AC=2√3,tan∠BCD=√22,则AB=______.18.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2;以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3;以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中弧P2020O2021⏜ 的长______.三、解答题(本大题共7小题,共78.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:1. 本试卷分试题卷和答题卷两部分。

满分120分, 考试时间120分钟.2.答题时, 应该在答题卷密封区内写明校名, 姓名和学号。

3.考试时不能使用计算器,所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应.4.考试结束后, 上交答题卷.试题卷一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分) 1.下列四个数中,比0小的数是 ( ▲ ) A .23B .C .πD .12.2009年初甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 ( ▲ )A .0.156×510- mB .0.156×510 mC .1.56×610- mD .1.56×610 m3.下列运算正确的是( ▲ )A .236·a a a = B .11()22-=- C4=± D .|6|6-=4.解方程组23739x y x y +=⎧⎨+=⎩ ,①-②得( ▲ )A .32x = B. 32x =- C. 2x = D.2x =-5.把不等式组110x x +⎧⎨-≤⎩>0, 的解集表示在数轴上,如下图,正确的是( ▲ )① ②第9题图2cm215cm6.已知二次函数131232+-=x x y ,则函数值y 的最小值是(▲) A. 3B. 2C. 1D. -17.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟。

以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用( ▲ )A. 14分钟B. 13分钟 C . 12分钟 D . 11分钟8.由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图A .B .C .D .-1 0 1-1 0 1 -1 0 1-1 0 1A BCD主视图左视图9.如图是一个高为,底面半径为2cm 的圆锥形无底纸帽,现利用这个纸帽的侧面纸张裁剪出一个圆形纸片(不考虑纸帽接缝),这个圆形纸片的半径最长可以是( ▲ )(计算结果保留3个有效数字。

参考数据41.12≈ 4 , 73.13≈2).A 3.12cmB 3.28 cmC 3.3 1cm 3.00cm10.如图,已知O ⊙的半径为5,锐角△ABC 内接于O ⊙于点D ,AB=8, 则tan CBD ∠的值等于 ( ▲) A .34B .54C .53D .43二、填空题 (本大题有6小题,每小题4分,共24分) 11.分解因式:x 2-9 =。

12.已知x=2是一元二次方程(04)222=-+-m x x m 的一个根, 则m 的值是。

13.如图,点P 在反比例函数1yx= (x>0)若将点P 点P '.则经过点P ' 14.一个几何体的三视图如图所示 , 则它的表面积是 。

15.在△ABC 中,AB=AC=12cm ,BC=6cm ,D 为BC 的中点, 动点P 从B 点出发,以每秒1cm 的速度沿B →A →C 的方向运动.设运动时间为t 秒,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍,那么t 的值为 . 16.图(1)是面积都为S 的正n 边形(3≥n ),图(2)是由图(1)中的每个正多边形分别对应“扩展”而来。

如:图(2)中的a 是由图(1)中的正三角形的每边长三等分,以居中的一条线段向外作正三角形,并把居中线段去掉而得到;图(2)中的b 是由图(1)中的第10题图 第14题图…图(2) ab cd… ;图(1)正四边形的每边长三等分,以居中的一条线段向外作正四边形,并把居中线段去掉而得到 … ,以此类推,当图(1)中的正多边形是正十边形时,图(2)中所有“扩展”后的图形面积和为248。

则S 的值是 。

三、解答题(本大题有8小题,共66分) 17.(本题满分6分)先化简211()1122x x x x -÷-+-1,-1中选取一个你认为合适..的数作为x 的值代入求值. 18.(本题满分6分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图1中从左到右各长方形A 、B 、C 、D 、E 高度之比为3∶4∶5∶6∶2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少? (2)图2中,捐款数为20元的D 部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D 部分学生的人数及D 部分学生的捐款总额。

第18题(图1) (图2)19.(本题满分6分)如图, 在ABC ∆中, D 是BC 边上的一点, E 是AD 的中点, 过A 点作BC 的平行线交CE 的延长线于点F , 且BD AF =, 连接BF . (1) 求证: D 是BC 的中点;(2) 如果AC AB =, 试判断四边形AFBD 的形状, 并证明你的结论.第19题20.(本题满分8分)有三张卡片(背面完全相同)分别写有32,-2,3,把它们背面朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张.(1)小军抽取的卡片是32的概率是 ;两人抽取的卡片都是3的概率是 .(2)李刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜.你认为这个游戏规则对谁有利?请用列表法或树状图进行分析说明.21.(本题满分8分)如图,Rt △OAC 是一张放在平面直角坐标系中的直角三角形纸片,点O 与原点重合,点A 在x 轴上,点C 在y 轴上,OC=3,∠CAO =30º.将Rt △OAC 折叠,使OC 边落在AC 边上,点O 与点D折痕为CE.(1)求折痕CE 所在直线的解析式; (2)求点D 的坐标;22.(本题满分10分)如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F , 且交O ⊙于点E ,且∠AEC=∠ODB .(1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当AB=10,BC=8时,求DFB 的面积.23.(本题满分10分)某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?第21题第22题(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?24. (本题满分12分)如图,在菱形ABCD 中,AB=2cm ,∠BAD=60°,E 为CD 边中点,点P 从点A 开始沿AC方向以每秒的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒 (1)当点P 在线段AO 上运动时.①请用含x 的代数式表示OP 的长度;②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围);(2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.C第24题数学试卷答案一. 仔细选一选(每小题3分, 共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 B C D D B C C A C D二. 认真填一填(每小题4分, 共24分)11. ;12. 4,0 ;13. ;14. 108 15、7秒或17秒;16. 18.三、解答题(共8小题,计66分,解答应写出过程)17.(本题满分6分)解:= ……4分当x= 时……………………1分,原式=2 ………………1分18、(本题满分6分)(1)60人………………1分,众数=20元…………1分,中位数=15元………………1分;(2)108o……………1分;(3)300人,6000元…………………2分19.(本题满分6分)(1) 因为, 又是的中点, 所以可以证明, 所以有, 又, 所以可得是的中点; ………3分(2) 四边形应该是矩形.因为, 是的中点, 所以, 而四边形是平行四边形, 所以四边形是矩形. ……………3分20.(本题满分8分)解:(1) ………………………2分(2)由表可以看出:出现有理数的次数为5次,出现无理数的次数为4次,所以小军获胜的概率为5/9>小明的4/9。

此游戏规则对小军有利。

…………………6分21.(本题满分8分)解:(1)CE:;……………4分(2);………………………4分22.(本题满分10分)(1)直线和相切.……………………1分证明:∵,,∴.∵,∴.∴.即.∴直线和相切.……………………………………4分(2)连接.∵AB是直径,∴.在中,,∴.∵直径,∴OB=5 BC=8. ∵OF ∴BF=4 OF=3由三角形相似得DF= ∴S = ………………………5分(若用其他方法酬情给分)23.(本题满分10分)(1)解:设今年三月份甲种电脑每台售价元解得:………………2分经检验:是原方程的根……………………1分所以甲种电脑今年三月份每台售价4000元(2)设购进甲种电脑台…………………2分解得………………………………………………1分因为的正整数解为6,7,8,9,10,所以共有5种进货方案……………1分(3)设总获利为元………2分当时,(2)中所有方案获利相同………………1分24.(本小题满分12分)解:(1)①由题意得∠BAO=30°,AC⊥BD∵AB=2 ∴OB=OD=1,OA=OC=∴OP= ……………2分②过点E作EH⊥BD,则EH为△COD的中位线∴∵DQ=x ∴BQ=2-x∴…………………………3分(2)能成为梯形,分三种情况:当PQ∥BE时,∠PQO=∠DBE=30°∴即∴x=此时PB不平行QE,∴x= 时,四边形PBEQ为梯形.…………………………2分当PE∥BQ时,P为OC中点∴AP= ,即∴此时,BQ=2-x= ≠PE,∴x= 时,四边形PEQB为梯形.…………………………2分当EQ∥BP时,△QEH∽△BPO∴∴∴x=1(x=0舍去)此时,BQ不平行于PE,∴x=1时,四边形PEQB为梯形. (2)分综上所述,当x= 或或1时,以P,B,E,Q为顶点的四边形是梯形.……………1分。

相关文档
最新文档